
MAT1845HS, DYNAMICAL SYSTEMS

1. Introduction

For our course, a dynamical system is either a (invertible or non-invertible) map
f : X → X or a flow (or semi-flow) f t : X → X . The type of a dynamical system
is determined by the structure of the space X (then f should preserve that structure):
topological, measure theoretical, smooth, holomorphic, etc. In this course we focus
on the smooth case, so X = M is a manifold, and f is Cr , C∞ or (real) analytic.

2. Course information

Instructor: Ke Zhang
Office: PG 200B
Time and place : M 12-1 and 2-3; W 12-1, BA6180
Office hours: Wednesday 1:30-3:30 or by appointments.

3. Grading

Problem sets and final presentation. I will provide (and update) a list of suggested
topics for final presentation. You are welcome to suggest your own related topic.

4. References and lecture notes

Michael Brin and Garrett Stuck, Introduction to dynamical systems, Cambridge
University Press.

Anatole Katok andBoris Hasselblatt, Introduction to themodern theory of dynamical
systems, Cambridge University Press.
Karl Friedrich Sigburg, The principle of least action in Geometry and dynamics.

Springer.
The topics covered does not follow particular orders in these textbooks. The goal is

to provide lecture notes for a majority of topics covered.

5. List of topics

5.1. Introduction and examples. We introduce the basic concepts by going through
a (long) list of examples.
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5.2. Hadamard-Perron Theorem. In its simplest form, Hadamard-Perron theorem
states that a hyperbolic fixed point of a C1 local diffeomorphism admits a stable and
an unstable manifold. However, the nature of the proof is so flexible that almost all
aspect of the last statement can be generalized. We will try to give the key ideas that
allow application to different settings. Refer to section 6.2 of Katok-Hasselblatt, but
we will make some small modifications. We will also discuss the inclination lemma
and transverse homoclinic points.

5.3. Local analysis of fixed points.

5.3.1. Hartman-Grobman Theorem. Hartman-Grobman Theorem states that near a
hyperbolic fixed point, a smooth map is topologically conjugate to its linear part.
Higher regularity is not possible in general. We refer to section 6.3 of Katok Hasselblatt.

5.3.2. Smooth normal forms. Under special assumptions, near a hyperbolic fixed
point, it is possible to smoothly conjugate a map to its linear part. This is the simplest
example of a smooth normal form. If time allows, we will also discuss other smooth
normal forms. Sternberg’s theorem is covered in section 6.6 of Katok-Hasselblatt.

5.3.3. Elliptic fixed points, a taste of KAM theorem. The local analysis of elliptic
fixed points is much harder. One of the cases when this can be done is if the map is
complex analytic. We describe the proof of the Siegel’s theorem, as an introduction to
KAM phenomenon.

5.4. Theory of hyperbolic sets. We start the theory of (uniform) hyperbolicity.
Maps admitting a hyperbolic set has many good properties: Anosov closing lemma,
shadowing theorem, and structural stability. We also introduce Smale’s Axiom A
systems and the spectral decomposition theorem.

5.5. Ergodicity of Anosov diffeomorphisms. This is one of the main theorems in
hyperbolic theory, linking hyperbolicity to ergodicity.

5.6. Lyapunov exponents and Non-uniform hyperbolicity. While pure hyperbol-
icity often lead to strong conclusion about the dynamics, it may be hard to verify
in examples. One common approach to detect hyperbolicity in systems is using the
Lyapunov exponents. This leads to the notion of non-uniform hyperbolicity.

5.7. Equilibrium measures and thermodynamic formalism (optional).

5.8. Introduction to Hamiltonian systems. We give an introduction to Hamiltonian
systems and Lagrangian systems. We will discuss integrability and Arnold-Liouville
Theorem, and the Hamiltonian version of the KAM theorem. (Optional) Nekhoroshev
theory of stability.

5.9. Variational techniques in Hamiltonian systems. We introduce techniques
related to the minimizing orbits in Hamiltonian systems, using the twist map as an
example. Various applications to the billiard problem will be given.


