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Overview: Nonsmooth Lorentzian analogs of

1. metric measure geometry: ‘metric measure spacetimes’
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Overview: Nonsmooth Lorentzian analogs of

1. metric measure geometry: ‘metric measure spacetimes’

2. the metric notion of completeness: 'forward’ and ‘backward’

3. speed of a (nondecreasing) curve: ‘causal speed’

4. slope of a (nondecreasing) function: ‘maximal weak subslope’

5 (negative homogeneity) Legendre duality of tangent and cotangent fields
6. infinitesimally Hilbert (Riemann v Finsler): ‘infinitesimally Minkowski’
7. (timelike) lower Ricci bounds via entropic convexity & optimal transport
8. Laplacian comparison with constant curvature: ‘d'Alembert comparison’
9. nonsmooth (timelike) splitting: extremizing line yields product geometry

(future work)

(Toronto) Nonsmooth gravity/d'Alembert comparison 4 June 2025 2/25



A nonsmooth framework for gravity

e replace Lorentz manifold (M, gj;) of relativity with metric spacetime M
(variant on Kunzinger-Sadmann's '18 Lorentzian prelength spaces; also
Minguzzi-Suhr’s '24 bounded Lorentzian metric spaces, [M.24], Miieller)

o /:M?> — {—c0}UJ0,00) is called a time-separation function if

Ux,y)+ Ly, z) <lx,z) Vx,y,zeM

o ( defines the transitive relations causality < and chronology < by:
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A nonsmooth framework for gravity

e replace Lorentz manifold (M, gj;) of relativity with metric spacetime M
(variant on Kunzinger-Sadmann's '18 Lorentzian prelength spaces; also
Minguzzi-Suhr’s '24 bounded Lorentzian metric spaces, [M.24], Miieller)

o /:M?> — {—c0}UJ0,00) is called a time-separation function if

Ux,y)+ Ly, z) <lx,z) Vx,y,zeM

o ( defines the transitive relations causality < and chronology < by:

<:={¢>0} < ={l>0}
future JT(x)={yeM|y>x} IT(x):={yeM|y>x}
past J (z):={yeM|y <z} I7(z) ={yeM]|y <z}

e assume ((y,y) = 0 Vy € M, so (the preorder) < is reflexive

e chronological topology: the coarsest topology with /=(y) open Vy € M
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e a topology is called Polish if it has a complete, separable metrization

Definition (Metric spacetime; time-reversal)

A time-separation function ¢ : M? — {—co0} U [0, 00) as above makes
(M, ¢) a metric spacetime if the chronological topology it induces is Polish.
The time-reversal (M, £*) of (M, ¢) refers to (*(y, x) = {(x, y).

e metrizability implies < is partial-order: i.e. (x <z & z < x) = (x = z)

o < is forward-complete < x; < xj+1 < z(Vi € N) implies lim x; exists
1—00
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e a topology is called Polish if it has a complete, separable metrization

Definition (Metric spacetime; time-reversal)

A time-separation function £ : M? — {—00} U [0, 00) as above makes
(M, ¢) a metric spacetime if the chronological topology it induces is Polish.
The time-reversal (M, £*) of (M, ¢) refers to (*(y, x) = {(x, y).

e metrizability implies < is partial-order: i.e. (x <z & z < x) = (x = z)

o < is forward-complete < x; < xj+1 < z(Vi € N) implies lim x; exists
1—00

Definition ( — our standing assumption)

A metric spacetime (M, ¢) (with its causal and chronological relations <
and < and Polish chronological topology) is called forward if the partial
order < is forward-complete and £ is upper semicontinuous.

e write (M, £) is backward <> its time-reversal (M, ¢*) is forward
o let JT(X) 1= UxexJT(x) and J(2) := U,ezJd ™ (2)
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Definition (Emeralds)
An emerald refers to J(X, Z) := JT(X) N J~(Z) with X, Z C M compact.

Minguzzi: (M, £) is called globally hyperbolic if every emerald is compact

Example (Manifolds)

Any smooth Lorentzian manifolds which admits a Cauchy surface is a
forward spacetime (as is any globally hyperbolic Lorentzian length space).

Example (Manifolds with boundary)
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Definition (Emeralds)

An emerald refers to J(X, Z) := JT(X) N J~(Z) with X, Z C M compact.

Minguzzi: (M, £) is called globally hyperbolic if every emerald is compact
Example (Manifolds)

Any smooth Lorentzian manifolds which admits a Cauchy surface is a
forward spacetime (as is any globally hyperbolic Lorentzian length space).

Example (Manifolds with boundary)

The closed interval [—1, 1] with the time-separation

y—=-X if y > )
Uxy) = {—oo else

is a forward spacetime (but not a Lorentzian length space nor a manifold,
whereas its open subset (—1,1) is globally hyperbolic as a Lorentzian
manifold, hence also a Lorentzian length space and a forward spacetime).

v
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Calculus of worldlines (i.e. nondecreasing curves)

Definition (Causal curve and speed; c.f. [A90] for (M, d))

0:[0,1] — M is causal < o5 :=0(s) < o(t) forall 0 <s <t <1; (itis
timelike < we can replace < above with <). Its causal speed refers to the
(pointwise a.e.) limit on (0, 1)

. : E(Us—l—h,O's)
= lim ————>=~
o (s)] i i
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Calculus of worldlines (i.e. nondecreasing curves)

Definition (Causal curve and speed; c.f. [A90] for (M, d))

0:[0,1] — M is causal < o5 :=0(s) < o(t) forall 0 <s <t <1; (itis
timelike < we can replace < above with <). Its causal speed refers to the
(pointwise a.e.) limit on (0, 1)

. : E(Us—l—h,o's)
= lim ————>=~
o (s)] i P

v

e in a metric (resp. forward) spacetime, discontinuities of a causal curve o
are countable (and o may be taken left-continuous without loss, resp.)
o the set LCC([0,1]; M) of Left-Continuous Causal curves metrized by

1
D(o,7) := d(00, 70) —I—/ d(os,7s)ds
0

is Polish, if d makes the chronological topology Polish on (M, ¢)
e Limit-curve theorem: C C M compact makes LCC([0,1]; C) D-compact
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g-Lagrangian action and (rough) ¢-geodesics

Definition (g-Lagrangian action, geodesics [Minguzzil9,M.20,MS23])

Given 0 # g < 1, the action of a causal curve refers to

1
Agfo] = ;/0 16(s)|ds
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g-Lagrangian action and (rough) ¢-geodesics

Definition (g-Lagrangian action, geodesics [Minguzzil9,M.20,MS23])
Given 0 # g < 1, the action of a causal curve refers to

L < Lo
Aole] = /0 7(5){%s < —t(o(0), o(1)

Causal curves maximizing this action (for given endpoints) are called
rough geodesics; if o € LCC([0, 1]; M) then simply geodesic.
e recall twin paradox
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g-Lagrangian action and (rough) ¢-geodesics

Definition (g-Lagrangian action, geodesics [Minguzzil9,M.20,MS23])

Given 0 # g < 1, the action of a causal curve refers to

L < Lo
Aole] = /0 7(5){%s < —t(o(0), o(1)

Causal curves maximizing this action (for given endpoints) are called
rough geodesics; if o € LCC([0, 1]; M) then simply geodesic.

e recall twin paradox

e maximizers are independent of g;

e the set of geodesics is denoted CGeo(M);

e curves in TGeo(M) := {o € CGeo(M) | Aq[o] # 0} are called timelike
or (-geodesics.
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Nonbranching conditions; characterizing geodesics

Lemma (Indpendence of g; affine parameterization)
A curve o : [0,1] — M is a rough (¢-)geodesic iff V0 < s <t <1,

l(o(s),o(t)) = (t — 5)(a(0),0(1)) (> 0).

Definition (Nonbranching conditions)

(a) A metric spacetime (M, ¢) has no endpoint branching if any two
(-geodesics 0,5 € TGeo(M) that agree on (0,1) also agree on [0, 1].
(b) The metric spacetime is called timelike nonbranching if
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Nonbranching conditions; characterizing geodesics

Lemma (Indpendence of g; affine parameterization)
A curve o : [0,1] — M is a rough (¢-)geodesic iff V0 < s <t <1,

l(o(s),o(t)) = (t — 5)(a(0),0(1)) (> 0).

Definition (Nonbranching conditions)

(a) A metric spacetime (M, ¢) has no endpoint branching if any two
(-geodesics 0,5 € TGeo(M) that agree on (0,1) also agree on [0, 1].
(b) The metric spacetime is called timelike nonbranching if any two
(-geodesics o, € TGeo(M) that agree on (3, %) also agree on [0, 1].

e If a forward spacetime (a) has no endpoint branching, any rough
(-geodesic is left-continuous (but not necessarily right-continous).
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Fuzzy events: lifting the geometry from events to measures

Optimal transport on forward spacetimes:

1/q
ly(p,v) == sup < E(x,y)qd*y(x,y)>
yel<(p,v) e

defines a time-separation (and a causal relation [EM17]) between Borel
probability measures (1,7 € Pem(M) on emeralds in M. Here

r () = {7 > 00n M2 [A[{£> 0} =1, p[Y] =[Y x M]

VY C M, y[M x Y] = V[Y]}

e maximizers vy exist if [<(u,v) # () and are called g-optimal couplings
e the /4-speed along any causal curve (is)s¢[o,1 Of measures is

. . Lg(ps, psih)
|slq = ',%%

(Toronto) Nonsmooth gravity/d'Alembert comparison 4 June 2025 9/25



Tangent fields; lifting curves (p;); to measures 7 on curves

Definition (Rough /,-geodesics can be defined like rough ¢-geodesics)

Given 0 # g < 1, the action of a causal curve (pit)¢ejo,1) C P(M) is

1t 1 .
Aqglu] == q/ |1t gdt < Efq(uo,ul)" < 00 if pg, 1 € Pem(M).
0

Define e; : LCC([0,1]; M) — M by e:(0) := o(t).
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Tangent fields; lifting curves (p;); to measures 7 on curves

Definition (Rough /,-geodesics can be defined like rough ¢-geodesics)

Given 0 # g < 1, the action of a causal curve (pit)¢ejo,1) C P(M) is

1t 1 .
Aqglu] == q/ |1t gdt < Eﬁq(uo,m)" < 00 if pg, 1 € Pem(M).
0

Define e; : LCC([0,1]; M) — M by e:(0) := o(t). We say (ut)o<e<1 as
above is induced by a plan m € P(LCC([0,1]; M)) if put = (e)ym for all
t €[0,1]. Then t € [0,1] — p is narrowly left-continuous.

Theorem (Lifting curves of measures in forward spacetimes c.f.[Lis07])
Conversely, if (f1t)¢ejo,1) C P(M) is causal, narrowly left-continuous on
[0,1], and tight on (¢,1 —€) (Ve > 0) then it's induced by a plan

m € P(LCC([0,1]; M)) with expected action

[ Adloldn(o) = Aqlu
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Tangent fields; lifting curves (p;); to measures 7 on curves

Definition (Rough /,-geodesics can be defined like rough ¢-geodesics)

Given 0 # g < 1, the action of a causal curve (pit)¢ejo,1) C P(M) is

1t 1 .
Aqglu] == q/ |1t gdt < Eﬁq(uo,m)" < 00 if pg, 1 € Pem(M).
0

Define e; : LCC([0,1]; M) — M by e:(0) := o(t). We say (ut)o<e<1 as
above is induced by a plan m € P(LCC([0,1]; M)) if put = (e)ym for all
t €[0,1]. Then t € [0,1] — p is narrowly left-continuous.

Theorem (Lifting curves of measures in forward spacetimes c.f.[Lis07])
Conversely, if (f1t)¢ejo,1) C P(M) is causal, narrowly left-continuous on
[0,1], and tight on (¢,1 —€) (Ve > 0) then it's induced by a plan

m € P(LCC([0,1]; M)) with expected action

[ Addoldn(o) = Adlil (= talpo.m)%/q it 7 s “groptimal”)
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Consequences in forward spacetimes

e these measures 7 on curves (i.e. ‘plans’) represent tangent fields

Corollary (Optimal plans concentrate on geodesics)
If m € P(LCC([0,1]; M)) is g-optimal, then w[CGeo] = 1.

e we'll need criteria which improve this to 7[TGeo| = 1

Corollary (Narrow forward-completeness in a forward spacetime)
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Consequences in forward spacetimes

e these measures 7 on curves (i.e. ‘plans’) represent tangent fields

Corollary (Optimal plans concentrate on geodesics)
If m € P(LCC([0,1]; M)) is g-optimal, then w[CGeo] = 1.

e we'll need criteria which improve this to 7[TGeo| = 1

Corollary (Narrow forward-completeness in a forward spacetime)

If pi < piv1 <wvin (P(M),£q), then lim;_,o p;i converges narrowly.

e plays a crucial role in our eventual construction of ‘good’ test plans
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g-dualizability and narrow continuity of rough ¢,-geodesics

Definition (Strict timelike g-dualizability; c.f. [M.20] [CM24])

The pair p, v € Pem(M) is strictly timelike g-dualizable iff every g-optimal
coupling v € I<(u, ) vanishes outside {¢ > 0}.

Lemma (Narrow continuity of rough ¢,-geodesics)

If (M, £) is a forward spacetime with no endpoint branching
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g-dualizability and narrow continuity of rough ¢,-geodesics

Definition (Strict timelike g-dualizability; c.f. [M.20] [CM24])

The pair p, v € Pem(M) is strictly timelike g-dualizable iff every g-optimal
coupling v € I<(u, ) vanishes outside {¢ > 0}.

Lemma (Narrow continuity of rough ¢,-geodesics)

If (M, £) is a forward spacetime with no endpoint branching and (fit)sejo1]
is a rough {q4-geodesic with strictly timelike q-dualizable endpoints

1o, 41 € Pem(M), then t € [0,1] — p¢ is narrowly continuous wherever it
is locally tight.

e local tightness can come from e.g., global hyperbolicity or density
bounds or narrow forward-completeness...
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(Exact, future-directed) cotangent fields; their magnitudes

Definition (Causal functions (nondecreasing); form a convex cone)

f: M — [—00,00] is causal < {(x,y) > 0 implies f(x) < f(y).

Definition (Metric-measure spacetimes; test plan; maximal subslope)

Fix a Radon measure m on (M, ¢) assigning finite mass to each emerald.
A plan m € P(LCC([0,1]; M)) is called (initially) test <
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(Exact, future-directed) cotangent fields; their magnitudes

Definition (Causal functions (nondecreasing); form a convex cone)

f: M — [—00,00] is causal < {(x,y) > 0 implies f(x) < f(y).

Definition (Metric-measure spacetimes; test plan; maximal subslope)

Fix a Radon measure m on (M, ¢) assigning finite mass to each emerald.
A plan m € P(LCC([0,1]; M)) is called (initially) test < thereis C € R
such that (e;)zm < Cm for each (small) t € [0,1]. A function

g: M —[0,00] is called a weak subslope of f <

13/25
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(Exact, future-directed) cotangent fields; their magnitudes

Definition (Causal functions (nondecreasing); form a convex cone)

f:M— [—o00,00] is causal < £(x,y) > 0 implies f(x) < f(y).

Definition (Metric-measure spacetimes; test plan; maximal subslope)

Fix a Radon measure m on (M, ¢) assigning finite mass to each emerald.
A plan 7 € P(LCC([0,1]; M)) is called (initially) test < thereis C € R
such that (e;)zm < Cm for each (small) t € [0,1]. A function

g: M —[0,00] is called a weak subslope of f <

1
F(o1) — f(00) > /0 g(00)|6ldt

for every test plan 7 and 7-a.e. curve . They form a stable lattice. Each
m-measurable causal f admits a maximal weak subslope, denoted g = |df]|.

e this very general definition, c.f. [AGS14], good for integration-by-parts
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Infinitesimal Minkowskianity

Lemma (Examples of weak subslopes; (TMCP = equality))

Continuity of causal f and ¢, = max{¢,0} imply m-a.e. y satisfies

() = F(x) - f(z) = f(y)
I|)r(n<<|)r/1fW <|df(y)l, ||?1>>|hW < |df(y)|.

Definition (c.f. infinitesimally Hilbertian [G15] rather than [AGS14d])

A metric-measure spacetime (M, ¢, m) is infinitesimally Minkowskian <
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Infinitesimal Minkowskianity

Lemma (Examples of weak subslopes; (TMCP = equality))

Continuity of causal f and ¢, = max{¢,0} imply m-a.e. y satisfies

() = F(x) - f(z) = f(y)
I|)r(n<<|)r/1fW <|df(y)l, ||?1>>|hW < |df(y)|.

Definition (c.f. infinitesimally Hilbertian [G15] rather than [AGS14d])

A metric-measure spacetime (M, ¢, m) is infinitesimally Minkowskian < all
real causal m-measurable functions f, g satisfy the parallelogram law

|d(f + g)> + |dg|® = 2|d(f + 2g)|* + 2|df|? m-a.e.
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Infinitesimal Minkowskianity

Lemma (Examples of weak subslopes; (TMCP = equality))

Continuity of causal f and ¢, = max{¢,0} imply m-a.e. y satisfies

. f(y) = () . f(z) —f(y)
"QJ?fW <|df(y)l, Ilggpfw < |df(y)|.

Definition (c.f. infinitesimally Hilbertian [G15] rather than [AGS14d])

A metric-measure spacetime (M, ¢, m) is infinitesimally Minkowskian < all
real causal m-measurable functions f, g satisfy the parallelogram law

|d(f + g)> + |dg|® = 2|d(f + 2g)|* + 2|df|? m-a.e.

e equivalently, the following polarization is positively bilinear m-a.e.:
2((df , dg)) = |d(f + g)|* — |df|* — |dg?

e distinguishes Lorentz from Lorentz-Finsler metrics on e.g. R"” [BO24]
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Convex analysis; horizontal derivatives, raising indices

Just as causal curves and functions on a smooth Lorentz manifold satisfy

1 1
(df,) ZEIIdfllf + Elld\lq when p! + ¢! =1

with equality iff (¢, -) = ||df||P2df("), i.e. iff & = ||VF||P~2VF [M.20],
Theorem (Nonsmooth Fenchel-Young inequality for

If (es) ™ — (€0)4m narrowly, |df|P € LY(m), and 7 initially test then

im [ F(25) = f(20)

dr(o)>
fm < (o)
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Convex analysis; horizontal derivatives, raising indices

Just as causal curves and functions on a smooth Lorentz manifold satisfy

1 1
(df,) ZEIIdfllf + Elld\lq when p! + ¢! =1

with equality iff (¢, -) = ||df||P2df("), i.e. iff & = ||VF||P~2VF [M.20],
Theorem (Nonsmooth Fenchel-Young inequality for

If (es) ™ — (€0)4m narrowly, |df|P € LY(m), and 7 initially test then

F(os) — 51
lim [ f(25) = f(00) |df |Pd(ep #7T+I|m// 19012 i
510 S tl0
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Convex analysis; horizontal derivatives, raising indices

Just as causal curves and functions on a smooth Lorentz manifold satisfy

1 1
(df,) Zglldfllf + Elld\lq when p! + ¢! =1

with equality iff (¢, -) = ||df||P2df("), i.e. iff & = ||VF||P~2VF [M.20],
Theorem (Nonsmooth Fenchel-Young inequality for

If (es) ™ — (€0)4m narrowly, |df|P € LY(m), and 7 initially test then

lim wcfﬂ(a) ;/|df|Pd(eo #7T+I|m// lo "qdd ().

s]0 t}0

e limit on left called horizontal (inner, Lagrangian) derivative of f along =
e aims at bilinear pairing of 7 with f; (NB concave p-Dirichlet energy of )

Definition (Identified tangent and cotangent fields;

If lims)o exists and equality holds, we say 7 represents the p-gradient of f.
A nonlinear duality between some tangent and cotangent fields (7 and f)
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Perturbation & variational derivative of p-Dirichlet energy

e given m-measurable E C M, write g € Pert,(f, E) if for all € > 0 small
enough, f + eg is causal and |d(f + eg)|P € LX(E, dm).

Theorem (Horizontal dominates vertical derivative; c.f. [G15])

Iff: M — R is causal, g € Pert,(f, E), and 7 represents the p-gradient
of f and is concentrated on curves remaining initially in E, then
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Perturbation & variational derivative of p-Dirichlet energy

e given m-measurable E C M, write g € Pert,(f, E) if for all € > 0 small
enough, f + eg is causal and |d(f + eg)|P € LX(E, dm).

Theorem (Horizontal dominates vertical derivative; c.f. [G15])

Iff: M — R is causal, g € Pert,(f, E), and 7 represents the p-gradient
of f and is concentrated on curves remaining initially in E, then

— p_ P
lim g(os) g(ao)d () > lim |d(f + eg)|P — |df|
50 S €l0 Ep

d(eo)ym

= variation of p-Dirichlet energy =: /d+g(Vf)|df|p_2d(eo)#7r
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Perturbation & variational derivative of p-Dirichlet energy

e given m-measurable E C M, write g € Pert,(f, E) if for all € > 0 small
enough, f + eg is causal and |d(f + eg)|P € LX(E, dm).

Theorem (Horizontal dominates vertical derivative; c.f. [G15])

Iff : M — R is causal, g € Pert,(f, E), and 7 represents the p-gradient
of f and is concentrated on curves remaining initially in E, then

— p_ P
lim g(os) g(ao)d (o) > lim |d(f + eg)|P — |df|

510 S €l0 ep ( 0)#7T

= variation of p-Dirichlet energy =: /d+g(Vf)|df|p_2d(eo)#7r

v

e last is direction g vertical (/ outer / Eulerian) derivative of p-energy at f
e nonlinear in f but becomes linear in g if two-sided limit in € exists

Corollary (If (M, ¢, m) is infinitesimally Minkowskian)
and if —g,g € Perty(f, E) then Iin”(n) and Iifg exist & equality holds above!
E—> S
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Curvature bounds via entropy

Given N € (1, 00), define N-Renyi (or Boltzmann) entropy of u € P(M) by
Su(p) = N [ (2 m g d S(n) == lim S
() = () Jdp (and Soo(p) == lim S(u))
M m N—oo

e in the smooth globally hyperbolic setting, convexity properties of

t € [0,1] — Sn(pt) along £4-geodesics (or of Soo(fet)) are well-known to
characterize timelike lower Ricci curvature bounds [B23] [MS23] [M.20];
c.f. [RS04][CMS01][OV00][M.94] (or [EKS15])
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Given N € (1, 00), define N-Renyi (or Boltzmann) entropy of u € P(M) by
Su(p) = N [ (2 m g d S(n) == lim S
() = () Jdp (and Soo(p) == lim S(u))
M m N—oo

e in the smooth globally hyperbolic setting, convexity properties of

t € [0,1] — Sn(pt) along £4-geodesics (or of Soo(fet)) are well-known to
characterize timelike lower Ricci curvature bounds [B23] [MS23] [M.20];
c.f. [RS04][CMS01][OV00][M.94] (or [EKS15])

TMCP* (or TMCPZ): a poor man's lower Ricci curvature bounds

e we impose only sublinearity of Sy(u¢) only along ¢4-geodesics starting or
ending at a Dirac point mass — the timelike measure contraction
properties TMCP* of [B23]; c.f. [CM24] [LV09] [007] [S06]

o if (1o, 0;) are strictly timelike g-dualizable precisely one /4-geodesic links
Lo to Oz; moreoever Sy(d;) = 0 (whereas Sy (d;) = +00.)
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A poorer cousin to timelike lower Ricci curvature bounds

Definition ( timelike measure contraction property; c.f. [B23])

For K € R write (M, £, m) € TMCP*(K, N) if Vg € Pem(M) N LX(m)
and each z € spt m with ug[/~(z)] = 1, for some (hence all) 0 # g < 1,
there exists a (rough) ¢,-geodesic from i to p11 := 6, such that all

t €0,1] and N > N satisfy

Swu)< = [ 000 2) S0 ()

Past version: (M, ¢, m) € TMCP~(K,N) (M, (*,m) € TMCP* (K, N)

v

o o () =1 tfor K =0
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A poorer cousin to timelike lower Ricci curvature bounds

Definition ( timelike measure contraction property; c.f. [B23])
For K € R write (M, £, m) € TMCP*(K, N) if Y19 € Pem(M) N L*(m)
and each z € spt m with ug[/~(z)] = 1, for some (hence all) 0 # g < 1,

there exists a (rough) ¢,-geodesic from i to p11 := 6, such that all
t €0,1] and N > N satisfy

Sw(n)< — [ 7300 2) S22 ().

m

Past version: (M, ¢, m) € TMCP~(K,N) (M, (*,m) € TMCP* (K, N)

v

o Té_ll\Tt)(f) :=1—t for K = 0; asserts sublinearity of ¢t € [0, 1] — Sys(p¢),

and follows from the strong energy condition, a case of primary interest

e a smooth globally hyperbolic Lorentzian manifold M" satisfies
TMCP*(K,N) if n < N and Ric(v,v) > Kg(v, v) for all timelike v € TM

(Toronto) Nonsmooth gravity/d'Alembert comparison 4 June 2025 18 /25



Test plans: finding /4-geodesics having density bounds

Theorem ( with Dirac targets; c.f. [B23][CM17]|[R13])

Fix (K€ Ror) K=0#qg <1< N < oo, a forward spacetime
(M, £, m) € (TMCP* N TMCPZX)(K, N) with no endpoint branching and
ze M. If uo[l~(2)] =1 for g € L°(m) N Pem(M) then there exists a
g-optimal plan m inducing (an {4-geodesic) ji: = (e¢)xm from pig to
p1 = 0, such that t € [0,1] — Sns(p¢) is (suitably) sublinear for each
N > N and

19

t
—_— (%) <
dm”L () =
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Theorem ( with Dirac targets; c.f. [B23][CM17]|[R13])

Fix (K€ Ror) K=0#qg <1< N < oo, a forward spacetime
(M, £, m) € (TMCP* N TMCPZX)(K, N) with no endpoint branching and
ze M. If uo[l~(2)] =1 for g € L°(m) N Pem(M) then there exists a
g-optimal plan m inducing (an {4-geodesic) ji: = (e¢)xm from pig to
p1 = 0, such that t € [0,1] — Sns(p¢) is (suitably) sublinear for each
N > N and

” dpe CK,Ne Ao

%”L‘X’(m) < W” || oo (m

e cone=1if K=0 (else cx n = exp(tHEHLm(ﬂoxﬂl) K_(N —1)))
e Boltzmann version TMCP, can be replaced by global hyperbolicity
e extends to non-Dirac targets provided
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Test plans: finding /4-geodesics having density bounds

Theorem ( with Dirac targets; c.f. [B23][CM17]|[R13])

Fix (K€ Ror) K=0#qg <1< N < oo, a forward spacetime

(M, £, m) € (TMCP* N TMCPZX)(K, N) with no endpoint branching and
z€ M. If uo[l=(2)] =1 for pg € L>°(m) N Pem(M) then there exists a
g-optimal plan m inducing (an {4-geodesic) ji: = (e¢)xm from pig to

p1 = 0, such that t € [0,1] — Sns(p¢) is (suitably) sublinear for each
N > N and

”th Ck,Nye | dpo

%”L‘X’(m) < W” || oo (m

o cone=1if K=0 (else ck n,e := exp(t[ €]l oo (uoxpy) v/ K- (N —1)))
e Boltzmann version TMCP, can be replaced by global hyperbolicity
e extends to non-Dirac targets provided (po, p11) strictly timelike

g-dualizable and (M, ¢, m) is (g-essentially) timelike nonbranching,

COROLLARY (Busemann and Lorentz distance functions have unit slope)
g(-) = —{(-, z) satisfies |dg| =1 m-a.e. on I7(z2)
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When is the p-gradient of f represented by a test plan 77
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When is the p-gradient of f represented by a test plan 77

l(x,z)9 , U(x,z)9
FD(z):= sup f(x)+ x):= inf z)—
(<) xel=(2) % q ga(x) ze/+(x)g( ) q

e write f : M — R is %—concaveiff:gqforsomeg: M —R;ifqg<0
e then f is causal, upper semicontinuous, and Jq/4f relatively closed in <

pasqf = {x < z| FO(z) = F(x) + e R} € M, if ¢, € C(M)

Theorem (A metric Brenier-M. thm; cf.[CM24][MS23][M.20][AGS14])

Fix0+#qg<1andpt+qg =1 Let (M, m) be forward, {
continuous and f = (f(9)),,.
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When is the p-gradient of f represented by a test plan 77

l(x,z)9 , U(x,z)9
FD(z):= sup f(x)+ x):= inf z)—
(<) xel=(2) % q ga(x) ze/+(x)g( ) q

e write f : M — R is %—concaveiff:gqforsomeg: M —R;ifqg<0
e then f is causal, upper semicontinuous, and Jq/4f relatively closed in <

pasqf = {x < z| FO(z) = F(x) + e R} € M, if ¢, € C(M)

Theorem (A metric Brenier-M. thm; cf.[CM24][MS23][M.20][AGS14])

Fix0+#qg<1andpt+qg =1 Let (M, m) be forward, {
continuous and f = (f(@)),. If (e, e1)47[0paqf] = 1 for some g-optimal
initial test plan 7 such that (e;)u7[E] =1 for each small t > 0 and

|df|P € LY(E, m), then T represents the p-gradient of f, [and the maximal
weak subslope of f tells how far to transport, i.e., w-a.e. curve o satisfies

|df|(o0) = £(00,01)7 "]

4
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dom Ogq /qf = {x € M | O /qf N ({x} x M) # 0}

Theorem (d'Alembert comparison theorem: O,f < N if K = 0)

Fix0#qg<1l=pl4+qgt<N<oo, aforward spacetime
(M, ¢, m) € TMCP(‘;)(K, N) with no endpoint branching, ¢+ € C(M),

K € R and f = (f(9),. Let (M, £, m) be (q-essential) timelike
nonbranching unless 3z € M with

F(x) = {_E(X’Z)q/q vx € 17(2),

+o00 else.
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dom Ogq /qf = {x € M | O /qf N ({x} x M) # 0}

Theorem (d'Alembert comparison theorem: O,f < N if K = 0)

Fix0#qg<1l=pl4+qgt<N<oo, aforward spacetime
(M, ¢, m) € TMCP(‘;)(K, N) with no endpoint branching, ¢+ € C(M),

K € R and f = (f(9),. Let (M, £, m) be (q-essential) timelike
nonbranching unless 3z € M with

F(x) = {_E(X’Z)q/q vx € 17(2),

+o00 else.

If0 < ¢ € Pert,(f) N L>, compact support and m[spt ¢ \ dom 9yq /qf] =0
then

/d+¢(Vf)|df|P2dmg/ Fe n(|dFIP~Y)pdm
M M

otk n(r N if K=0
Fron(r) == w2oean)

Ot|t=1 1+ ry/(N = 1)[K[cot(r\/+55) else.
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Same nonsmooth sense and setting with e.g. K =0, a chain rule yields

on I (z)

e Analogous results also hold true in backward spacetimes and K # 0.
After time-reversing them, the forward (M, ¢, m) € TMCP~ (K, N) satisfies

N—-1
£(x,-)

e It is conceivable that Pert,(f, M) is sometimes too sparse to be of use

Op(4(x,-)) > — on I (x)

e However,
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e However, on smooth globally hyperbolic manifolds, Pert,(f, M) is rich
enough to imply the preceding conclusions in the usual, distributional sense
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e However, on smooth globally hyperbolic manifolds, Pert,(f, M) is rich
enough to imply the preceding conclusions in the usual, distributional sense

e Eschenburg (1988) proved such estimates hold where £(-, z) is smooth
e we extend them past the cutlocus for the first time; c.f. Calabi (1958)
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Same nonsmooth sense and setting with e.g. K =0, a chain rule yields

on I (z)

e Analogous results also hold true in backward spacetimes and K # 0.
After time-reversing them, the forward (M, ¢, m) € TMCP~ (K, N) satisfies

N—-1
£(x,-)

e It is conceivable that Pert,(f, M) is sometimes too sparse to be of use

Op(4(x,-)) > — on I (x)

e However, on smooth globally hyperbolic manifolds, Pert,(f, M) is rich
enough to imply the preceding conclusions in the usual, distributional sense

e Eschenburg (1988) proved such estimates hold where £(-, z) is smooth
e we extend them past the cutlocus for the first time; c.f. Calabi (1958)
e [BGMOS25+] extends his timelike splitting theorem to g;; € C}(M)
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Defining the p-d'Alembertian

e thus even on smooth globally hyperbolic manifolds we obtain new results

e functional analysis: [l,f is a measure, nonunique unless infinitesimally
Minkowskian, TMCP(j;)(K7 N), and Pert,(f, E) is dense; c.f. [G15]

e localization: [B24+| establishes many fundamental properties of O, f by
developing an approach based on needle decompositions; c.f. [CM20]
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