S

+ way that k, -k, ... +-ko<<2x. Let, further,a polyhedral angle V* @m. Liven
with .ﬂbm nwmauw_w nwmﬂ.h}mln& image equal to kit + ..+ ka and 50 .,....\EE.&
that any perpendicular to T either has no points in common with 'V, or its
whole semi-line lies within it. There exists then an infinite convex polyhedron
with n vertices projecting into A,, A,, ..., A, and having the areas of their
spherical images equal to k,, k,, ..., kn. o w

We take the (r—1 )-dimensional manifold P consisting of all convex poly-
hedrons with a given limit cone ¥, one of the vertices of which is A, and the
projections of the others are 4,, ..., 4, and the (n—1)-dimensional manifold
Q consisting of complexes of positive numbers %, k,, ..., k, such that their
sum is equal to the area of the spherical image of V. We have a natural
mapping of P ¢nto Q and by means of Brower's thoorem of invariance of
the domain we prove that it is 8 mapping of P onto Q.

The theorem, being proved for the case of polyhedrons, can be cxiended on
the case of surfaces by means of a limit process, for which the following lemma
is important: )

’ 1f mrm sequence of 1CCS’s F; converges to F7, then k(E), the corresponding
integral curvatures reduced to T', weakly converge to k& (£), the integral cur-
vature of F reduced to T; in other words, for any bounded continuous

function f(z) on T -

:Euw f(z) &, (dE) = m { () k (dE).
i-+0 o
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MATHEMATICS

EXISTENCE AND UNIQUENESS OF A CONVEX SURFACE WITIL
A GIVEN INTEGRAL CURVATURE

By A. ALEXANDROFF

{Communicated by §. L, Soboleff, Member of the Academy, 8.1V .1942)
Let F be a convex surface, i

- €.2 domain on the boundary of a convex body
. (finite or infinfte). Let £ be a subset of /7. Consider the Bupporting planes (o
§ At every point of & and the outer normals to these supporting planes. The get,
of the end-points of the normals, the latter being considered ag the radii
of a fixed unit sphere, is called the spherical image of E, and its aren, the
integral curvature of E. It is €asy 10 see that the integral curvature is a nop-
negative completely additive set function defined on the totality of al] Borel
setg of the convex surface (*). ’

Our purpose will be 1°. to obtain necessary and sufficient conditions for
& st function to represent the integral curvature of 8 convex surface, and 2 °,
to find out in how far the convex surface is determined by ite integral curva-
ture considered as a set function. We shall inves tigate only complete convex
surfaces, i. e. complete boundaries of convex bodies; closed and open infinite
- surfaces will be atudied separately. Our problem is yet quite indefiniie,
Hince the integral curvatures of different surfaces are defined cn different
tystems of sels and therefore cannot be compared. To avoid this difficulty we
i must define the iniegral curvature of the surfaces on one and the same system
1 of sets. The statements and proofs of the following thcorems are given for
- the three-dimensional space; they hold, however, for n-dimensional space
{ {#=2). The only difference hetweéen our case and the general one is that one
must Lake the areas of the unit sphere and the semi-gphere in the n-dimensio-
Ik nal space fnstead of 4 = and 2 n,

Consider a unit, sphere S with centre O and a closed convex surface F
wuch that O be within F. The projection from the cenire O determines a ho-
meotnorphism between F and . U Ef and Eg are subse(s of ¥ and S, respecti-
vely, corresponding to each other under this homeomorphism, then, assigning
10 Es the value of the integral curvature of the set Ep, we oblain a funclion
defined on the subsets of S. We call this function the i ntegral cur-
yature of F roduced to the sphere S :
- Theorem 1./n order that a non-negative completely additive set func-
tion k(L) defined on the Borel sets of the sphere § be the integral curcature
reduced to S of a closed convex surface, it is necessary and sufficient that:
1} k (S)=4x, 2} for any convex subset E of S k(K) < bn-—gp, where P Is the
wrea of the spherical image of the cone projecting F from the centre of S.
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This theorem has already been proved by the author @. The necessity o“
the above conditions being evident, it is, properly speaking, a prmoamﬂ._ 0
existence of a surface with a given integral ﬂuzmgao. The corresponding

i can be formulaled as follows: )
ermoumo%_mﬁ% —.sw- _Mﬁmwmwmh&sﬁ , and F_ be clased convex surfaces and O a ﬁmﬁm
lying within each of them. Suppose that for every pair of Borel sets on Fy w: I
.nanﬂmwno:&:a to each other when projected from O, the areas o [ their Mw Nm.an
images are anv:&. Then F, and F, arc similar, O being the cenlre of similitude.

w Proof. Let ¥, F, apd O have the meaning just defined. The points
ing on ﬁ:.@mmsm ___.mwu&méz out of O we shall call corresponding points.
Y Hm is easy to prove that if the tangents to F,and F, atany ooﬁomwwsﬂ_:m
points of smoothness® of F, and ¥, are parallel, then F; and F, are similar,
: ing the céntre of similitude**. ) .
¢ wmﬂmam now that the tangent planes to m . and Fmp%ro M%uﬂﬂﬂ%ﬂ %Mwﬁﬂ
othness z, and z, are not parallel. By means ol & transk
Mm, nﬂmﬂwcmo of m_u_ with a centre O we make me.p nun %o_ﬁﬂiw:ﬂp% ma_._m.mu,ﬂ
H - '3 .—
formed surface will also be denoted by £, Lhe ider ; of
ﬂ“nmm%mmlo& images of the corresponding subsets of I, and F, 13 evi
ly invariant under this transformation: o
%:»w wm:a F, intersect pow at the point Z==2,=%,. Let Fy, vwﬂﬂwa part wmrm__
Q.Em outside F,; F,,, the respective part of m.u.. F,,,the part of 17y WMH% iiw
F.: F,,, the respective part of F, lying outside F,; and finally, let Fy=1,
1t 3
on part of ¥, and F
bo WM:MMMH, mw_« H %m..w. the mu_.rmnmnm_ .H.Ewmm of the set B .hﬁﬁm %:w;.w _wao<mw_wrhﬂ _MMM
ess th

iven situation of the surfaces F, and I, the area of o (F,;) 13
wﬁmmm.ﬁw. According to Lhe conditions E%owmg_ z:wmo m%mm must be equal.

is contradiclion will lead to the proof of our theorem. )
.H_:wv o (F,y2D 0 (F,). In fact, the supporting Em:.m cuts off,at every w%_cwm
F,.a oos<.mx piece of F,, at the wsummity of which the supporting plan

2112 A
, 1 to the given one.
wsguwrwﬁ +Fy, mmi F,.+F,, are closed, congequently eﬁﬂm. msm %rvrﬁﬁm

w(F _+w_:v are closed, too; @ —w (F,,+F,,) and @-—w(F; + 1), W
Qis the whole sphere, are open. At the same time

Q—w(F,+F,) Do{Fy)

o _..ﬁl.Eﬁﬁu—#.m...uu:EQu:v “ 0.

Thus, the set .
W S [2 0 (B + P (2 0 (Fa ok Fl
: . s ing © (F,)-

. tained in © (F,,) and not inlerseciing w{F,, L .
b ow_uvmmramm.ﬂa_. ﬁo prove _&Me the area of o (F,,) mu.oom% that of w %sz i m_ﬂa
fices Lo show that @ is not void. Let us draw the hiscclor plane _ﬁ Mﬁémwwns_
tangent planes P,, P, to F,and F, at the point & =%, =%, {so 1 En»c o u& P
to P be the bisector of the angle EMM_E& ww %rm oﬂpww %omm.ﬂw.ws ﬁm ! ,owui_mmm

D cuts off two pieces of and F,, at the y
meomﬂw_wmlmb% planes mumﬁﬁmamﬂm_ to _m. The spherical image cm_». :ﬁmm mmwwMM.
ting planes belongs neither to w {(Fry-+Fhp) nor to o (Fy +F )%
¢uently, it belongs 10 o, q. e. d.

» Point of smoothness of the surface is such a point at which there exists a lan
wmbwav_wﬁam&:onm to remark that almost every point of a convex surface is a pointef
smoothness.

+++ 1L is quite evident, if we consider tha ?.o.ﬂ.mozo:m of Py, Iy, Py, Py and P in lhe
direction of the intersection line of planes P, and Py
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We shall now turn to infinite complete convex surfaces, abbreviated:
1CCS’s. In what follows we exclude cylinders from the class of ICCS’s (which,
their integral curvature being zero, are of no interest). At the same time we
refer to this class the rays and the infinite plane domains, except semi-
planes and regions bounded by parallel straight lines, which should bhe
considered as limit cases of cylinders. Such domains are limit casea of 1CCS’s.
In the sequel the term ICCS will be understood to have these qualifications.

Let & be an 1GCS and T a plane situated so that the interdection of any
normal to T with a body bounded by # (including F) is either void, or is a
semi-line. Consider the orthogonal projection of F onto T'. Let Er be a Borel
get on 7', and Ep—its complete p—original, which is a Borel set, 100. Assigning
to Er the value of the integral curvature of theset £Fx*, we define a set function
on T and call it the integral curvature of F reduced to the plane 7.1t is
non-negative, completely additive and defined on all Borel sets of 7.

Theorem 3. A nonnegative completely additive set function k(E)
defined on all Borcl sets of the plane T s an integral curcature reduced to T of
an ICCS if and only tf its value for the whole plane T is posilive and does
not exceed 2w, i. e. O<k(T)<im. .

It is easy to prove that the spherical image of every ICCS is a convex sub-
sct of the sphere and, conscquently, contained in the closed semi-sphere,
80 that its area does not exceed 2x. The necessity of the condition ia thus
established. As to the sulficiency, we can obtain a more precise result by
introducing the following new notion: ‘

The convex cone, whose spherical image coincides with the closure of
the spherical image of the 1CCS F, will becalled the limit cone of F. The Limit
cone of an 1GCS always exists, in virtue of the convexity of the latter. It can
be represented as the intersection of semi-spaces bounded by the planes
parallel to the supporting planes to F and passing through a fixed point.

Theorem4. Let k(E)bea non-negative completely additive set function
defined on Borel sets of the plane T dnd such that I(T)<2x. Let, further,V be
a convex cone**, the arca ‘of the spherical image of which is equal to K(T),
situated so that any perpendicular to T either has no points in common
with T or its whole semi-line Lies within T. There exists then a unique (up to
8 translation in- the direction normal to T) ICCS suck that k(T) is ils
integral curvature reduced to T and V s its {{mit cone.

The required uniqueness way be proved in the same way as Theorem 2,
excepl that (1) the transformation of similitude must now be replaced by
the translation in the direction perpendicular to T (which, of course, may
be censidered as a transformation of similitude with the cenire at infinity};
(2) the various parts of F, and F, (F,,, F,, a. 0.) may be infinite; (3) the
spherical images of F, and F, should be considered up to the poinls
belonging to théir common boundary***, hecause the fact that they do not
necessarily coincide thero con present cerlain difficulties ; this does not
affect the arens, since w(F )Yand w(F,)are convex and their closures coincide.

As to the existence of ICGS's stated in the theorem, it can be proved essen-
tislly in the same way as Theorem 1:supposing the uniqueness to have
been established and applying the principle of invariance of the domain, we
shall first prove existence theorem for the case of polyhedrons.

Theorem 5. Letn points A,, A,, ..., An in the plane T be given.
Suppose that a positive number ki is assigned to each of these poinls Ay in such

* If Ep is void, then the corresponding value of the inlegral curvalure is zero.
** Rays and convox plane angles are also considured as convex cones.
#* w () and w (F,) have the common boundary, since they are convex and their elosu-
res coincide with the spheriexl imoye of tho limit cona ¥ of F, anl ;.
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