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RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS 
OF MULTIVARIATE NORMAL DISTRIBUTIONS* 

Z B Y N I ~ K  SIDLK 
Mathematical Institute, Czechoslovak Academy of Sciences, 

and 
Michigan State University 

For rectangular confidence regions for the mean values of multi- 
variate normal distributions the following conjecture of 0. J. Dunn [3], 
[4] is proved: Such a confidence region constructed for the case of in- 
dependent coordinates is, a t  the same time, a conservative confidence 
region for any case of dependent coordinates. This result is based on an 
inequality For the probabilities of rectangles in normal distributions, 
which permits one to factor out the probability for any single coordinate. 

1. INTRODUCTION 

N TESTING the vector of mean values of a multivariate normal distribution, I the common procedure is to apply Hotelling’s T2-statistic. The correspond- 
ing confidence regions for the vector of mean values, obtained by this pro- 
cedure, have the shape of ellipsoids. (See e.g. T. w. Anderson [2 ,  Section 5.31.) 
For an experimenter, however, the mathematical expression and the shape of 
ellipsoids is too complicated and difficult to imagine. Moreover, this procedure 
gives only a simultaneous Confidence region for all mean values, but it does 
not yield any reasonable clear-cut confidence statements for the individual 
mean values separately. 

Thus we are led to the problem of finding rectangular confidence regions, 
which are free of the mentioned difficulties and have rather attractive properties 
from the practical point of view. 

A survey of several procedures for finding rectangular confidence regions has 
been given by 0. J. Dunn [3], [4]. However, the “best” of these procedures, 
yielding the shortest confidence intervals and being based on certain inequalities 
for normal probabilities, and on the confidence intervals for independent vari- 
ables, has been established only for some special cases: for the case of two- 
dimensional or three-dimensional variables, and for the case where the corre- 
lation coefficients pi3 have the special structure paj= b,b,. 

The aim of the present paper is to show the validity of this “best” procedure 
generally. 

2. A N  INEQUALITY FOR PROBABILITIES O F  RECTANGLES 

Theorem 1. Let X =  (XI, X Z ,  . . . , X,) be the vector of random variables 
having the k-dimensional normal distribution with zero means, arbitrary 
variances u:, gi, * . . , uz, and an arbitrary correlation matrix R = { p i ?  1. Then, 
for any positive numbers CI, CZ, . . . , ck, 

~~~ 

* The final revision of this paper was done under the National Science Foundation Grant GP 6035 while the 
author was a t  Statistical Laboratory, Michigan state University. 
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Therefore 

Now, we shall investigate the behavior of the function 

applying T. W. Anderson's Corollary 2 in [l] which asserts the following: 
If X is a random vector with density g(x) such that g(z) =g(  -5)  and the set 
{x; g ( x ) Z u ]  is convex for every non-negative u, and if E is a convex set, 
symmetric about the origin, y is a vector and k a number, OjkSl, then 
P{X+h/EE] 2P(X+yEEj .  

Continuing our proof, put finally 

H(c1) = s '' ' ' ' J-'>2, ' ' * , x k  1 cl)dzz * ' . d z k ,  

-c2 

( 2 )  

and note that f ( x 2 ,  . . , xkl c1) is the density of a normal distribution with 
mean values p~~uzu;'cl, . . ., plkuhu;lc1, and with someivariances and correlation 
coefficients not depending on c1. Thus the density f(z2, . . . , x k l  el) is obtained 
by "shifting" the densityf(z2, - . . , 0). Obviously, f(xz, . . . , ~ 1 0 )  and the 
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628 AMERICAN STATISTICAL ASSOCIATION JOURNAL, J U N E  1967 

integration region in (2) satisfy the assumptions of Anderson's Corollary 2, 
which shows that H(c1) is a decreasing function of c1 (except the case 
p12= . * * = p l k = O ,  in which H(c3) is constant; this case may be omitted in 
the sequel, since the assertion of Theorem 1 is here obvious), 

Thus G(c1) is also decreasing, and, taking into account liin,,,, H(cl) =0, that is 
limc1+- G(c1) < 0, we see that the following two cases may occur: either G(c1) 5 0 
for all CI, 0 5 c l <  a, or there exists a c* such that G(cl) > O  for 05c l<c* ,  
G(c1) <O for c* < c1< m . The same inequalities are then true for the derivative 
dF(C1) /dC1. 

Thus, in the second case, F(c1) is increasing for O i c l < c *  and decreasing for 
c* < c1< . Moreover, 

(3) F(0)  = 0, lim F(cl) = 0, 
Cl+* 

so that F(cl) 2 0 for all el, 0 6 c1 < co . 
In  the first case, F(cl) would be decreasing, but this is clearly impossible in 

view of (3). 
The inequality (1) is thus proved provided the distribution of XI, XZ, . , 

Xa is non-singular. If their distribution is a singular one, it may be approxi- 
mated by a sequence of non-singular distributions; hence, by an obvious 
passage to the limit, the validity of (1) can be established in general. 

Remark 1. The following conjecture seems to be very plausible, and I hope to 
publish its proof later. Let p(X) = P( I X1l 5 el, . - . , 
Xk) is the vector described in Theorem 1, except that the correlation coeffi- 
cients p l j ,  2 5j6 k, are replaced by Xplj. Then p ( X )  is an increasing function of 
X, 0 5 x 5 1 ,  

, 1 Xkl  5 ck), where (XI, . 

By induction we can immediately prove the following 
Corollary 1. Under the assumptions of Theorem 1 we have 

k 

P( 1x1 I i c1, * * * , I Xk I s Ck) 2 P(  1 x, I 5 C i ) .  
r = l  

(4) 

This result was obtained by 0. J. Dunn [3] for the following special cases: 
for k= 2 or 3, and for p i j =  bibj, 1 5i, j s k ,  i # j ,  with 0 < b;< 1, 1 5 i S k .  

It might also be mentioned here that the following, in some sense analogous, 
one-sided result was found by D. Slepian [ll] (see also [7], p. 805): Let the 
vector X have, under PR, the normal distribution with zero means, unity vari- 
ances and correlation matrix R = ( p i l  ] ; and let it have, under PK, the same dis- 
tribution except that its correlation matrix is now K =  { K , . ] .  If p i j l ~ r j  for all 
i#j, then 

PR(X1 5 C l ,  * . * ,  Xk i Ck] 2 PK(X1 s c1, * * * ,  Xk i C k ) .  

3. CONFIDENCE RECTANGLES I N  T H E  CASE O F  KNOWN VARIANCES 

Let us consider a random sample of n vectors Y ,  = ( Ylv, . - . , Yku),  v = 1, . . , 
n, where each Y ,  has the same normal distribution with unknown mean values 
p k  . * * , ,Uk and known variances a:, . - 
( Y i - p J / u i ,  i= 1, . . 

,uE. Then the variables 
, k ,  with 
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CONFIDENCE REGIONS FOR MULTIVARIATE MEANS 629 

v=l 

satisfy the assumptions of Theorem 1 and Corollary 1 with rf = ri = + 

= 1. 

level 1 -a,  we may determine c1, * 

equals 1 -a ,  and the desired confidence rectangle is then 

- - - *k 
Wishing to find a confidence rectangle for 111, . . * , pk with the confidence 

. , ck such that the right-hand side of (4) 

- - 
y .  - c. %u2n . - 1 / 2  5 - pi 5 Yi  + Cicr%%-'", i = 1, * . . , k.  (5 )  

In  other words, we may always act as if all coordinates of the vectors Y, were 
independent. For any case of dependent coordinates (4) shows that the con- 
fidence level of (5) can never be less than 1 - a. 

= ck = c, (say), so that c, will be chosen to 
satisfy @(cJ = $ [1+ (1 - c Y ) ~ / ~ ] ,  where @ is the standardized normal distribution 
function. 

Usually we shall put c1 = c2 = + 

4. AN EXTENSION OF THE INEQUALITY FOR PROBABILITIES O F  RECTANGLES 

Theorem 2. Let us consider the following two probability distributions P, P I  
of random variables Z1, * 1 . , Z k ,  s. Under P ,  let the vector Z =  (Zl, * - , 2,) 
have the k-dimensional normal distribution with zero means, arbitrary vari- 
ances 4, + . . , u:, and an arbitrary correlation matrix R = { p i i  1. Under PI ,  let 
Z=(Z,,  . . . , 2,) have the same distribution with the onIy exception that 21 is 
now independent of Zz, 9 . , Zk (i.e. p12, p13, * . , Plk are replaced with 0). 
Finally suppose that s is a positive random variable, which is independent of 
21, - . . , Zk and has the same distribution both under P and PI. Then, for any 
positive constants c1, . - - , ck, 

Proof. By Theorem 1 we obtain for conditional probabilities 

(7) p (  1 21 1 c18, I 22 I sc2s, ' * ' 7 I z k  I 5 CkS I 8) => pl( I 2 1  I 5 CIS, 
IzZl 5 CZs, ' * ' 1 I z k ]  5 Cksl 8). 

Since the distribution of s is the same both under P and PI, we may take ex- 
pectations with respect to this distribution on both sides of (7), and the first 
inequality in (6) follows. 

For proving the second inequality in (6), we make use of an inequality given 
by A. W. Kimball [g], namely E{F(s ) .G(s )  { zEE(P(s))  -EE(G(s)] ,  which is 
valid for non-negative increasing functions F ,  G of a random variable s. Apply- 
ing it in our case, we have 
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630 AMERICAN STATISTICAL ASSOCIATION JOURNAL, J U N E  1967 

P I (  I 2 1  I 5 C I S 7  [ ZZ [ 5 c 2 s 7  * * * 7 [ z k  I 5 c k s )  

= E ( P 1 ( [ Z 1 1  S C l S ,  IzZl ~ C Z S , " ' ,  I z k l  S C k s I S ) ]  

= E ( P (  I 2 1  I 5 c 1 s  I 8) ' P (  I ZZ I 
2 E ( P (  [ z 1 (  5 C i S (  S ) ]  ' E { P (  [ 2 2 1  5 CZS, ' ' 

= P ( [ z 1 1  s c l s ) * P ( [ z Z I  ~ C Z S , " ' ,  ( z k l  seeks). 

CZS,  ' ' * 1 I zk I c k s  I s) ] 
, [ z k (  5 c k s  I s)] 

Corollary 2. Let the distribution P of the vector Z=(Z, ,  . . . z k )  be the 
same as given in Theorem 2. Further, under the distribution P k ,  let = (21, 
. . .  2,) have the k-dimensional normal distribution with zero means, the 
same variances u;, . , u:, and all coordinates 2 1 ,  . . . z k  independent (i.e. 
all p i j ,  i # j ,  are replaced with 0). Finally, let s be a positive random variable, 
which is independent of 2 1 ,  * * , Z k  and has the same distribution both under 
P and P k .  Then 

Proof. The first inequality in (8) is proved similarly to  the corresponding in- 
equality in (6), replacing PI in (7)  by Pk. The second inequality in (8) follows by 
induction from (6), putting there P k  in place of P. 

Let us mention that 0. J. Dunn [3] proved the first inequality in (8) for the 
special case k = 2 or 3, and the inequality between the first and the last terms in 
(8) for the special case of correlation coefficients pt3  = b,bi, 1 si, jsk, i # j ,  with 
0 < b, < 1, 15 is lc. A one-sided analogue of the latter inequality was obtained, 
also for the same case p z j =  b,b,, by C. W. Dunnett and M. Sobel [6]. 

5. CONFIDENCE RECTANGLES I N  T H E  CASE O F  UNKNOWN BUT EQUAL VARIANCES 

Theorem 2 and Corollary 2 are useful for the following experimental situ- 
ation: We observe n vectors Y,= (Yip, . . . , Ykv), v =  1, . . . , n, as in Section 3, 
and we suppose in addition u? = u; = . ' = ui = uz (say), where this common 
variance uZ is now unknown. We may estimate o - ~  by the sample variance 

U = l  

where g is some fixed index chosen from 1, . . . , lc, and then the variables 
Z . = n 1 / ~ ( F { - p J l  i= 1, . . . , lc, and s = s, satisfy the assumptions of Theorem 2 
and Corollary 2 (see [2, Theorem 3.3.21). The confidence rectangle for pl, . . . , 
111. is now 

(9) 
- - 
Y ,  - ctsgn-1'2 5 pi 5 Yi + C , S ~ ~ - ~ / ~ ,  i = 1, . . . 1 k ,  

and we can make statements concerning its confidence level analogous to those 
in Section 3. 

I n  the last-mentioned situation, the middle probability in (8) is given by the 
lc-dimensional Student distribution u~i th  zero correlations and n - 1 degrees of 
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CONFIDENCE REGIONS FOR MULTIVARIATE MEANS 631 

freedom (see, e.g., [7], p. 806). Critical values c l=c2= . =ck=cu (say) for 
this distribution may be found in K. C. S. Pillai and K. V. Ramachandran [lo], 
reproduced in 0. J. Dunn [4], for a=0.05, l S l c 6 8 ,  and selected degrees of 
freedom. More comprehensive tables were recently prepared by 0. J. Dunn and 
F. J. Massey [5] fora=0.50,0.40,0.30,0.20,0.10,0.05,0.025,0.01, k = 2 ,  6, 10, 
20, and n - 1 = 4, 10, 30, 0 0 .  (This paper [5] contains also a survey of related 
topics and tables.) 

Somewhat worse, but more easily available, method is to find ci)s such that 
the last term in ( 8 )  equals 1--a, which can be done by applying the common 
Student distribution with n - 1 degrees of freedom. The paper [ 5 ]  contains also 
the values c l=cz= . . . = c k = c ,  (say) found by this procedure, for the same 
cases as mentioned above. 

Remark 2. 0. J. Dunn [3], [4] suggested also the use of a “pooled” estimate 

- 
3.09 3.15 
2.61 2.63 
2.47 2.48 
2.41 2.42 
2.23 2.24 

g = l  

in place of si, keeping, however, n- 1 degrees of freedom. Now, it is known that. 
the distributions of this s2 under P ,  PI ,  and PI, are different (see [2 ,  Theorem 
3 .3 .2 ] ) ,  and even (n- l)s2/u2may not have a x2 distribution. Thus our Theorem 
2 and Corollary 2 can not be applied; more precisely, the inequalities between 
the first and the middle terms in (6) and in (8) can not be established by our 
method. Still, i t  is easy to show, by a proof similar to that given above, that the 
inequalities between the first and the last terms in (6) and in (8) remain true 
for this s2. 

Remark 3. The described procedure is applicable only in the case of equal 
variances, u;=ui= . . . =uE. Therefore it would be useful to  prove the 
analogues of Theorem 2 and Corollary 2 in which the variable s in the i-th co- 
ordinate would be replaced by si. I hope to publish this result soon also. 

3.78 1 4.01 4.14 4.50 
3.10 3.18 3.35 3.43 
2.91 2.94 3.12 3.17 
2.82 2.84 3.02 3.05 
2.57 2.57 2.73 2.73 

6. NUMERICAL COMPARISON O F  CRITICAL VALUES 

The following Table 1 may give the reader some idea of the closeness of the 
two procedures obtained from (8) in Section 4. In  this table we present several 
critical values c, = cl= . . . = cb for a! = 0.05; for each k, in each double-column, 
the first columns contain those c, (reproduced from [lo] or [4]) which make the 
middle probability in (8) equal to 0.95, and analogously for the second columns 

TABLE 1. COMPAltISON OF TWO K I N D S  O F  CRITICAL VALUES 
F O R  a = 0 . 0 5  

5 
10 
15 
20 
W 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
 L

ib
ra

ri
es

] 
at

 1
4:

40
 0

6 
Se

pt
em

be
r 

20
17

 



632 AMERICAN STATISTICAL ASSOCIATION JOURNAL, J U N E  1967 

and the last probability in (8) (computed from [lZ]). It is seen that the critical 
values of the two procedures are very close, unless k is large and the number of 
degrees of freedom small. Naturally, the two values for each k in the last row 
should be equal (thus it seems that the reproduced value 2.23 for k = 2  is 
erroneous). 

These conclusions of ours are also confirmed by more extended tables of the 
both kinds of c,’s given in [5]. 

7. DISCUSSION 

As was pointed out by 0. J. Dunn [ 3 ] ,  [4], if the variances are known but we 
know nothing about the correlations, the present procedure is the “best” one 
and yields the shortest confidence intervals. As a matter of fact, the confidence 
rectangle must be chosen to be valid in particular for independent variables, but 
then, by our results, it is valid for any dependent variables. 

Let us compare briefly the procedure described here and the procedure de- 
rived from the L‘classical” confidence ellipsoids. Having such an ellipsoid of the 
confidence level 1 -a, one may circumscribe a rectangular region around it. 
Though the ellipsoids for different correlation matrices are different, it is easy 
to see that the circumscribed rectangles coincide; they have always a confidence 
level > 1 -a. Moreover, if the rectangle has for independent variables the con- 
fidence level (say) 1 -p> 1 - a, then, by our results, it has a confidence level 
2 1 -/3 for any kind of dependent variables. Thus this rectangular confidence 
region is unnecessarily large, and it may be made smaller. 

The validity of the “best” procedure described in this paper is now proved 
only for the variances known, or unknown but equal. For the variances un- 
known and unequal we may apply the procedure based on confidence ellipsoids, 
or, better, the procedure based on the Bonferroni inequality (for details see [ 3 ] ,  
[4] ; also [8] is related to this topic) ; the latter procedure is in most cases very 
close to the (‘best” one. 
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