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Abstract

The thin film and quantum drift diffusion equations belong to a fourth-order family of evolution
equations proposed in [21] to be analogous to the (second-order) porous medium family. They are 2-
Wasserstein (= d2) gradient flows of the generalized Fisher information I(v) just as the porous medium
family was shown to be the d2 gradient flow of the generalized entropy E(v) by Otto [40]. The identity
aI(v) = bE(v) + |∇d2E(v)|2/2 implies aHessd2 I(v∗) = Hessd2 E(v∗)(b + Hessd2 E(v∗)) formally, when
the equation is rescaled and linearized around the resulting self-similar critical profile v∗. We couple this
relation with the diagonalization of Hessd2 E(v∗) for the porous medium flow computed in [45]. This
yields information about the leading- and higher-order asymptotics of the equation on RN which —
outside of special cases — was inaccessible previously.

1 Introduction

In this manuscript, we investigate the long time asymptotic behaviour of certain nonnegative solutions to a
family of nonlinear fourth-order equations in RN , namely

∂tu+∇ ·
(
u∇
(
um−3/2∆um−1/2

))
= 0 (1)

with exponent m ≥ 1. Our main contribution is a powerful heuristic which leads to a complete asymptotic
expansion (35) for these solutions as time tends to infinity. In the special case (N,m) = (1, 3/2), such a
prediction was made by Bernoff and Witelski using a completely different method; our calculation not only
supports their result, but vastly extends it to cover at least the full range of parameters (N,m) ∈ N× [1, 3/2]
for which weak solutions to (1) have been constructed [35].

This family has two prominent members which are of physical relevance: If m = 3/2 the above equation
is the thin film equation (with linear mobility), which is a model for the capillarity-driven evolution of a
viscous thin film over a solid substrate [38, 37] and can also be seen as a lubrication approximation of a
Hele–Shaw flow [27]. In this case, the unknown u(t, x) represents the height of the thin film. The other
physically relevant case is m = 1, which models statistical mechanical fluctuations around a one-dimensionsal
interface [22, 23], and has also been proposed as a simplified quantum drift-diffusion model for electrons in
semiconductors; see [33] for references.

Solutions to (1) are expected to feature different phenomena, depending on the nonlinearity exponent.
If m = 1, the equation can be viewed as a fourth-order analog for the heat equation and thus u is expected
to become strictly positive instantaneously. On the other hand, if m > 1, there are compactly supported
solutions (“droplets”) which exhibit a slowly propagating contact line ∂ spt(u). In this case, (1) involves a
free boundary problem for the support of u and the equation shows some similarities to the porous medium
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flow. It is this similarity to the heat and porous medium equations — which is not purely phenomenological
— that we will exploit in this paper to study the long time behavior of solutions.

The Cauchy problem for the nonlinear fourth-order equation (1) is still not completely solved. As the
equation is only degenerate parabolic, i.e., it is parabolic only in regions where u > 0, solutions to (1) will in
general not be classical — at least when m > 1. The theory of existence of weak solutions in the thin film
case m = 3/2 was initiated by Bernis & Friedman [8] and is by now quite complete, see [11, 4, 30] and
references therein. On the other hand, regularity and uniqueness of solutions are only partially understood,
even in the one-dimensional setting; see Giacomelli, Knüpfer & Otto [25] and John [31] for example.
If m = 1, existence of nonnegative solutions was established in [33, 28]. The first existence results in the
complete range 1 ≤ m ≤ 3/2 (this is the range in which the generalized Fisher information, see Eq. (7)
below, is convex in the ordinary sense) were found by Mattes, McCann and Savare [35], and they are
completely unknown for m > 3/2. The major difficulty in the analysis of (1) is the lack of a comparison
principle for fourth-order equations. Still, the weak solutions which have been constructed are known to
preserve non-negativity.

To properly discuss the existence theory for (1) in the case m > 1, one should be more precise. Since
a fourth-order stationary problem in a fixed domain typically requires two boundary conditions, we expect
the fourth-order free-boundary problem (1) to require three spatial boundary conditions for well-posedness.
These are the defining condition u = 0 for the free-boundary ∂ spt(u), the no-flux condition

ν · u∇(um−3/2∆um−1/2) = 0 on ∂ spt(u), (2)

where ν is the outer unit normal vector to the free boundary ∂ spt(u), and the Neumann condition

ν · ∇
(
um−1/2

)
= 0 on ∂ spt(u). (3)

Condition (3) can also be viewed as a regularity or order-of-vanishing condition; it seems not to have been
previously articulated outside of the thin film case m = 3/2, where it was discussed e.g. by Giacomelli
and Otto [27] (with N = 1) among others. There it corresponds to the complete wetting regime. In that
context, different choices of contact angles also have physical significance, but the zero contact angle implied
by (3) is apparently the simplest one [39].

Suitable weak solutions of (1)–(2) preserve mass∫
u(t, x) dx =

∫
u(0, x) dx =: M for any t > 0; (4)

those that satisfy (3) also preserve center of mass∫
xu(t, x) dx =

∫
xu(0, x) dx for any t > 0. (5)

This is true in particular for the Generalized Minimizing Movements (GMM) constructed by Matthes,
McCann and Savare for m ∈ [1, 3/2]. These are shown in [35] to satisfy (4) and a weak form (16) of the
flow (1); as we presently explain, it is possible to deduce (5) and weak forms of (2)–(3) from these facts.

As already remarked, the evolution equation (1) represents a fourth-order analog for the porous medium
equation

∂tu−∆um = 0 (6)

on RN . This equation is best known for modeling the flow of an isentropic gas through a porous medium if
m > 1; it becomes the ordinary heat equation if m = 1. We refer to Vázquez’s monograph [50] for a recent
survey on the analytical treatment of this equation. In fact, both the fourth-order equation (1) and the
porous medium equation (6) can be interpreted as gradient flows for the 2-Wasserstein distance. (Indeed,
Denzler and the first author initially introduced (1) as a 2-Wasserstein gradient flow [21, Section 4.3].) In
the case of the fourth-order equation (1), the dissipating functional is the generalized Fisher information

1

2m− 1

∫
|∇
(
um−1/2

)
|2 dx, (7)
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while in the case of the porous medium equation, the dissipating functional is the entropy∫
e(u) dx, where e(z) =

{
z ln z if m = 1,

1
m−1z

m if m > 1,
(8)

a fact that was established in Otto’s seminal work [40]. The derivation of (1) in [21] was also foreshadowed
by Otto’s discovery of this 2-Wasserstein gradient flow structure in the thin film case m = 3/2 [39, 26].
However, besides this structural similarity, there are further close links between (1) and (6), one of which is
via the following identity:

d

dt

∫
e(u(t, · )) dx = −

(
2m

2m− 1

)2 ∫
|∇
(
u(t, · )m−1/2

)
|2 dx

for any sufficiently smooth solution u of (6). That is, the generalized Fisher information encodes the limiting
dissipation mechanism for the porous medium flow. A certain rescaled version of this identity, the entropy-
information relation (23), is at the heart of our analysis, cf. Section 4 and 5. The gradient flow structure of
(1) will be reviewed in Sections 3 and 4 below.

Both equations (1) and (6) allow for a family of self-similar solutions. The former, first discovered by
Smyth & Hill [47] in the particular case m = 3/2 and N = 1 and then generalized in [24, 21], is given by

u∗(t, x) =
1

tNα
û∗

(
|x|
tα

)
, (9)

where

e′(û∗(r)) =

{
1 + log û∗(r) =

(
σM − γr2/2

)
if m = 1,

m
m−1 û(r)m−1 =

(
σM − γr2/2

)
+

if m > 1.

Here, ( · )+ = max{ · , 0}, and

α =
1

N(2m− 2) + 4
and γ2 =

2αm2

(2m− 1)(N(m− 1) + 1)
.

Moreover, σM is a real number (positive if m > 1) that is determined by the mass constraint∫
u∗ dx = M.

These self-similar solutions have a delta measure located at the origin as initial data, hence are often called
source-type solutions. For the thin film case it is shown that u∗ is the only radially symmetric self-similar
solution of (1) that satisfies the auxiliary condition (3), cf. [9, 24]; we expect the same to be true also for the
general case m ≥ 1. We also remark that u∗ resembles the Barenblatt solution (except for the specific values
of α and γ), which is well-known to be the self-similar solution of the porous medium equation [52, 5, 41].
Moreover, just as the Barenblatt solution describes the long time behavior of any solution to the porous
medium equation [49], we conjecture that u∗ is the asymptotic limit of any solution to the fourth-order
equation. More precisely, for any solution of (1) with total mass M (and satisfying (3)) we expect that

u(t, · ) ≈ u∗(t, · ) as t� 0. (10)

This asymptotic behavior, however, is only partially understood. In the case m = 3/2, Carrillo &
Toscani prove this asymptotics for strong solutions in one space dimension and obtain the sharp rate of
convergence. In the range 1 ≤ m ≤ 3/2, the long time behavior and rate of convergence is established by
Matthes, Savaré and the first author [35] for GMM solutions of arbitrary dimension.

In the present work, we build upon (10) and go further: we show the 2-Wasserstein gradient structure
and relation to the porous medium flow leads to a powerful heuristic allowing us to predict the the complete
spectrum and the corresponding eigenfunctions of the displacement Hessian operator obtained by linearizing
a certain rescaled version of (1) around its global attractor u∗. This new approach confirms and vastly
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extends the heuristic derivation of the spectrum given by Bernoff & Witelski [10] for the case of the
one-dimensional thin film equation (m = 3/2, N = 1). The knowledge of the spectrum and the corresponding
eigenfunctions provides information not only on the slowest rates of convergence that saturate the optimal
bounds; it also allows us to extract further information on large time behaviour of the flow to all orders. In
particular, we will make explicit conjectures about the role of solutions generated by translations, shears,
and dilations of u∗. We obtain the precise information on the spectrum and the corresponding eigenfunctions
directly from the spectrum of the displacement Hessian of the linearized (confined) porous medium equation
via an entropy-information relation to be described in Section 4 below. This entropy-information relation
provides us with an formula that associates eigenvalues and eigenfunctions of the porous medium equation
with those of the fourth-order equations considered in this paper. The former were computed by the second
author in [45] using techniques from mathematical physics developed for the spectral analysis of Schrödinger
operators. An analogous earlier study for the fast diffusion equation (that is (6) with m < 1) is due to
Denzler and the first author [20].

We finally caution the reader that even though the spectral analysis presented in the Section 6 of this
manuscript is rigorous, the linearization that gives rise to the displacement Hessian operator is not. That is
why the results presented in Corollary 3 below position us to conjecture (rather than prove) the higher-order
asymptotics of solutions to the nonlinear equation (1). In the fast-diffusion case (m < 1 of (6)), an argument
for closing the analogous gap is provided by work of Denzler, Koch, and the first author [19], who find a
rigorously controlled linearization of the fast diffusion equation and a similarity transform that relates the
operator which appears in this controlled linearization to the displacement Hessian operator from [20]. As a
result, the authors derive higher-order asymptotics for the fast diffusion equation in weighted Hölder spaces.

The remainder of the paper is organized as follows: In Section 2, we provide a convenient rescaling of the
equation following a standard procedure. Section 3 recalls the definition and construction of weak solutions
using the GMM scheme and explains why they preserve center of mass and obey (2)–(3). Section 4 describes
the formal gradient flow structure of the resulting dynamics and the aforementioned entropy-information
relation. In Section 5 we finally linearize the rescaled equation around its global attractor. Section 6
describes the diagonalization of the resulting linear operator, while Section 7 explores the dynamical and
analytic implications of its spectrum. The paper concludes with an appendix on the spectral analysis of the
Ornstein–Uhlenbeck operator in a Gaussian weighted Sobolev space.

2 Rescaling

In order to study the long time behavior of solutions to (1), it is convenient to rescale equation (1) in such
a way that the global attractor becomes a fixed point of the dynamics. That is, we choose to view the
dynamics from perspective receding at a rate |x| ∼ tα inspired by (9). Indeed, setting

x̂ =
x

Atα
, t̂ = α log t, and v =

tNα

B
u,

and

u(t, x) =
B

tNα
v
(
α log t,

x

Atα

)
,

yields

∂t̂v − ∇̂ · (x̂v) +
γ2

α
∇̂ ·
(
v∇
(
vm−3/2∆̂vm−1/2

))
= 0, (11)

where we have chosen

A =

{
21/4 if m = 1,√

2σM/γ if m > 1,
and B =

{
exp

(
σM − 1

2

)
if m = 1,

(2σM )
1

m−1 if m > 1.

We call equation (11) the confined equation; the parameter γ2/α can be interpreted as the relative strength
of diffusion compared to confinement.
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Under this change of variables, the self-similar solution u∗ from (9) transforms to a fixed point v∗(x) with
a particular simple form (due to our choices of A and B):

e′(v∗(r̂)) =

{
log v∗(r̂) + 1 = 1

2

(
1− r̂2

)
if m = 1,

m
m−1v∗(r̂)

m−1 = 1
2

(
1− r̂2

)
+

if m > 1.
(12)

By a slight abuse of language, we will call v∗ the Barenblatt profile. We remark the above choice of the
prefactor in the Barenblatt profile is motivated by the particular formula of the global attractor of the
confined porous medium equation considered in [45], the benefit of which we will become apparent in the
subsequent analysis.

Working with the confined equation (11) instead of (1) has the advantage that the global attractor is a
stationary solution of the equation. This change of perspective proved very useful in the study of long time
asymptotics of both the porous medium equation and the thin film equation, e.g., [14, 40, 18, 15]. Also, as
described in the following sections, the above rescaling makes the Barenblatt profile a ground state of the
dissipating functional for which the rescaled evolution remains a 2-Wasserstein gradient flow.

We finally remark that under the above rescaling, the initial data of (1) and (11) must be evaluated
at different times. More precisely, the initial datum v(0, · ) corresponds to u(1, · ). However, as we are
interested in the long time behavior of solutions, this drawback is merely of aesthetic nature.

The remainder of this paper is exclusively devoted to the analysis of the confined equation. Hence, to
simplify the notation we drop from here on the hats from the time and space variables.

3 Weak solutions and their properties

In this section, we recall the weak solutions to (1) for m ∈ [1, 3/2] constructed by Matthes, McCann
and Savare using Generalized Minimizing Movements [35]. The GMM framework was proposed in a very
general setting by DeGiorgi [17], and specialized to the 2-Wasserstein setting by Jordan, Kinderlehrer
and Otto [32] in the context of heat flow dynamics. Otto exposed its gradient flow interpretation in the
context of the porous medium equation [40], and its pertinence to the thin film equation first alone [39] and
then with Giacomelli [26, 27].

To define our minimizing movement scheme we require an energy functional defined on a metric space.
We take our energy functional to be proportional to generalized Fisher information (20), plus an extra term
to account for the rescaling (11):

Iγ2/α(v) =
γ2/α

2m− 1

∫
|∇
(
vm−1/2

)
|2 dx+

1

2

∫
|x|2v dx.

It is an extended real-valued functional on the set of all nonnegative functions on RN with finite second
moments and fixed total mass M :

M :=

{
v : RN → [0,∞) :

∫
v dx = M,

∫
|x|2vdx <∞

}
.

The distance between two such functions w0 and w1 in M is the so called 2-Wasserstein distance:

d2(w1, w0)2 := inf
π∈Γ(w1,w0)

∫∫
|x− y|2 dπ(x, y), (13)

where the set Γ(w1, w0) consists of all Borel joint measures π ≥ 0 on the product space RN × RN with
marginals w1 and w0.

Given a sequence τ = {tnτ }n increasing monotonically from t0τ = 0 to limn→∞ tnτ = +∞, we define a
discrete solution vτ : [0,∞) −→M from initial condition v0 ∈M by choosing

vn ∈ arg min
v∈M

2Iγ2/α(v) +
d2

2(vn−1, v)

tnτ − tn−1
τ

(14)
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recursively, and setting vτ (t) = vn for t ∈ (tn−1
τ , tnτ ]. A Generalized Minimizing Movement (GMM) refers to

any continuous curve v : [0,∞) −→M which arises as a pointwise limit v(t) = limk→∞ vτk(t) of a sequence
of discrete solutions vτk whose time steps shrink to zero locally uniformly

0 = lim
k→∞

sup
{1≤i≤n|tnτk≤T}

tiτk − t
i−1
τk

for each T <∞, and whose initial conditions converge to v(0) not only in the metric d2, but also in entropy
and information senses:

E(v(0)) = lim
k→∞

E(vτk(0)) and Iγ2/α(v(0)) = lim
k→∞

Iγ2/α(vτk(0)).

Here

E(v) =

∫
e(v) dx+

1

2

∫
|x|2v dx, (15)

is the generalized entropy defined using (8).

The main result of [35] is the existence of GMM solutions to (11) in the range m ∈ [1, 3/2], with arbitrary
initial condition v(0) ∈M having finite logarithmic entropy. It is also shown in [35] that these GMM solutions

v arise as weak limits in L2
loc((0, T ), H2(RN )) of discrete solutions v

m−1/2
τk → vm−1/2, and satisfy

0 =

∫ ∞
0

∫
RN

[(−∂tϕ+ x · ∇ϕ)v +
γ2

α
(vm−1/2∆ϕ+∇ vm−1/2

m− 1/2
· ∇ϕ)∆(vm−1/2)]dxdt (16)

for all compactly supported smooth test functions ϕ ∈ C∞0 ((0,∞) × RN ). Here H2(RN ) = W 2,2(RN )
denotes the usual Sobolev space of L2 functions whose first two distributional derivatives lie in L2(RN ).
This is a weak form of (1).

Since v(t) ∈ M, it is evident that GMM solutions preserve non-negativity and mass (4). The no-flux
boundary condition (2) is implicit in (16). And just as the derivative of any differentiable nonnegative
function must vanish wherever the function does, (3) follows from non-negativity and vm−1/2(t) ∈ H2(RN )
(which holds for almost all t > 0). Finally let us show why weak solutions (16) which evolve continuously in
(M, d2) — as GMM solutions do — preserve zero center of mass.

Lemma 1 (Center of mass evolution). If vm−1/2 ∈ L2
loc((0, t), H

2(RN )) satisfies (16) for all ϕ ∈ C∞0 ((0,∞)×
RN ) and v ∈ C([0,∞),M), then ∫

RN

xv(t, x)dx = e−t
∫
xv(0, x)dx. (17)

In particular, the center of mass of v(t) vanishes for all t > 0 if it vanishes when t = 0.

Proof. Recall that convergence in d2 is equivalent to weak convergence of measures plus convergence of all
moments up to order two [51, Theorem 7.12]. This shows the center of mass (17) of v ∈ C([0,∞),M) is
finite, well-defined, and depends continuously on t ≥ 0. Formally, letting ei denote a unit vector and setting
ϕ(x) = ψ(t)x · ei in (16) yields∫ ∞

0

[ψ′(t)− ψ(t)]

∫
RN

x · eivdxdt =
γ2

α

∫ ∞
0

ψ(t)

∫
RN

(∂i
vm−1/2

m− 1/2
)∆(vm−1/2)dxdt

= B1 −
γ2

α(m− 1/2)
ei ·
∫ ∞

0

ψ(t)

∫
RN

∇|∇(vm−1/2)|2

2
dxdt

= B2

= 0

where the boundary integrals B1 and B2 vanish due to the no-flux condition (2) and Neumann condition (3)
respectively. Conclusion (17) then follows from the fact that the center of mass varies continuously in time,
and satisfies a weak form of the exponential decay equation since ψ ∈ C∞0 ((0,∞)) is arbitrary.

Although ϕ(x) = ψ(t)x · ei is not compactly supported in space, the foregoing argument can be made
rigorous by choosing ϕ(x) = ψ(t)ηR(x)x · ei where ηR(x) is a cut-off function supported on a ball of radius R
such that |∇ηR| ≤ c1R−1 and |D2ηR| ≤ c2R−2, and using vm−1/2 ∈ H2(RN )∩M to control the errors that
this cut-off introduces to the preceding argument (in place of the boundary terms) in the usual way.
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4 Gradient flow interpretation

It is well-known that Generalized Minimizing Movements can be understood formally as producing a gradient
flow of the energy Iγ2/α(v) with respect to the distance d2. Indeed, if M were a Riemannian manifold
and Iγ2/α a smooth function on M this would be rigorously true. In our more general setting, such an
interpretation requires much more care to substantiate analytically [2]. On the other hand it provides
powerful geometric intuition, leading to analytical statements which in many cases have proven rigorously
verifiable a posteriori by other means. Two examples of such statements include the explicit rate of d2

contraction by the porous medium flow [40, 42, 16, 2], and the higher-order asymptotics of the fast diffusion
equation from [20] and [19].

Our purpose here is to use this intuition to extract the analogous predictions concerning the fourth-order
evolution (1). Before doing so, let us briefly recall the salient ingredients of the gradient flow formalism
developed by Otto [40].

The Benamou–Brenier formula [7]

d2(v0, v1)2 = inf

{∫ 1

0

∫
RN

v(s, x)|∇ψ(s, x)2|dxds : ∂sv +∇ · (v∇ψ) = 0

}
(18)

indicates the 2-Wasserstein distance can be understood as a Riemannian distance induced by the weighted
H−1 metric

gv(δv, δv) =

∫
RN

v|∇ψ|2dx = 〈ψ,ψ〉H1
v

(19)

on the tangent space TvM. Here ψ is related to δv = ∂tv by the linear elliptic boundary value problem

−∇ · (v∇ψ) = δv in spt(v),
ν · v∇ψ = 0 on ∂ spt(v),

(20)

whose solution we denote by ψ = Lv(δv). When spt(v) 6= RN , the boundary conditions on ψ also have to be
understood in a limiting sense, cf. (29) below. Since tangent fields with spt(δv) 6⊂ spt(v) are not physically
relevant and do not arise in (18), we simply set gv(δv, δv) =∞ for such fields. Notice that we can define the
metric tensor also variationally (and simultaneously for all m) by

1

2
gv(δv, δv) = sup

ϕ

{
−1

2

∫
v|∇ϕ|2 dx+

∫
ϕδv dx

}
,

where the supremum is taken over all smooth functions ϕ on RN . Indeed, the right hand side is finite only
if spt(δv) ⊂ spt(v) and in this case, the maximizer ψ satisfies (20) with or without the boundary condition,
depending on whether v is strictly positive (as for m = 1) or not (as for m > 1).

A short, purely formal, computation now allows us to identify the gradient of a functional F : M −→
R ∪ {+∞} in this representation as follows. Along any (sufficiently smooth) curve v(s) ∈M,

d

ds
F (v(s)) =

∫
RN

δF

δv

∂v

∂s
dx =

∫
RN

v∇δF
δv
· ∇ψdx = 〈δF

δv
, ψ〉H1

v

in view of (20). On the other hand, abstractly

d

ds
F (v(s)) = gv(gradF (v), v̇(s)).

Comparing the abstract and concrete expressions above shows the abstract tangent vector gradF is repre-
sented by a variational derivative δF/δv under the identification of TvM with the Sobolev space H1

v (RN )
(just as the tangent vector v̇(0) is represented by ψ(x) and not ∂sv(0, x) under the same identification). For
the curve v(s) to be a gradient flow v̇(s) = − gradF (v(s)), we therefore want ψ = − δFδv , or equivalently

∂v

∂s
= ∇ · (v∇δF

δv
) in spt v,

0 = v∇δF
δv
· ν on ∂ spt v
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in view of (20). Choosing F = Iγ2/α we recover the rescaled flow (11) subject to the no flux condition (2).

Alternately, choosing F = E, the generalized entropy (15) yields the confined porous medium equation

∂tv −∇ · (xv)−∆ (vm) = 0, (21)

subject to the no flux condition

ν · ∇vm = 0 on ∂ spt v, (22)

cf. Otto [40].

Finally, we are in a position to state the entropy-information relation

(N(m− 1) + 1)Iγ2/α(v)− 1

2
| gradE(v)|2TvM =

{
NM if m = 1,
N(m− 1)E(v) if m > 1,

(23)

which is at the heart of the subsequent analysis. It is possible to verify this from the foregoing development,
which implies

| gradE(v)|2TvM =

∥∥∥∥δEδv
∥∥∥∥2

H1
v

=

∫
v|∇

(
e′(v) +

1

2
|x|2
)
|2 dx. (24)

However, the entropy-information relation is by now well-known: see for example McCann, Matthes,
Savaré [35, Corollary 2.3], where it is stated with a different normalization, and builds upon an observation
exploited by Carrillo & Toscani in [14].

In fact, (23) establishes a link between the generalized entropy and the generalized Fisher information,
that is, between the dissipating functionals in the Wasserstein gradient flow formulation of the confined porous
medium equation and the confined fourth-order equation, respectively. As a consequence, it turns out that
linearizing (11) around the global attractor v∗ yields an explicit formula for the fourth-order displacement
Hessian in terms of the porous medium displacement Hessian computed and studied by the second author in
[45]. Moreover, eigenvalues and eigenfunctions of the porous medium displacement Hessian will immediately
translate into those of the fourth-order displacement Hessian.

5 Linearization

Near a critical point v∗ ∈ M of a (C2-smooth) functional F (v), Taylor expansion shows the gradient flow
v̇ = − gradF (v(t)) to be governed by the Hessian of F :

(v(t)− v∗)′ = −HessF (v∗)(v(t)− v∗) + o(|v(t)− v∗|). (25)

Here HessF (v∗) is a linear operator on the Hilbert tangent space Tv∗M, and should formally be computed
using the Levi–Civita connection corresponding to the Riemannian metric structure inducing d2, and is
therefore called the displacement Hessian; its spectrum determines the behaviour of the flow near v∗. Setting
aside the poorly formulated question of C2 smoothness, our present goal is to identify the displacement
Hessian of Iγ2/α on (M, d2) at the Barenblatt profile (12), and its spectral properties.

As is well-known, v∗ minimizes both Iγ2/α(v) and E(v) onM [40]; (the former follows from the latter via
(23)). Therefore, it is natural to expect both Hess Iγ2/α(v∗) and HessE(v∗) to be self-adjoint nonnegative
definite operators on Tv∗M. Furthermore, the relationship between these two operators can be computed
abstractly, starting from the energy-entropy formula (23). Differentiating this identity twice yields

(1 +N(m− 1)) Hess Iγ2/α(v) = D3E(v) gradE(v) + (HessE)2(v) +N(m− 1) HessE(v).

At the critical point v∗ however, a small miracle occurs: gradE(v∗) = 0 so we obtain

(1 +N(m− 1)) Hess Iγ2/α(v∗) = (HessE)2(v∗) +N(m− 1) HessE(v∗) (26)
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without needing to know the third derivative of E. This simplification is crucial. It shows the complete
spectral information concerning Hess Iγ2/α(v∗) = f(HessE(v∗)) is contained in that of HessE(v∗). Moreover,
since m ≥ 1, the quadratic function

f(λ) =
λ2 +N(m− 1)λ

1 +N(m− 1)
(27)

relating them is strictly increasing on the nonnegative real axis, which contains the spectrum of HessE(v∗).
Thus the ordering and multiplicity of all eigenvalues of Hess Iγ2/α are the same as those of HessE(v∗). This
would not necessarily be the case for m < 1.

Fortunately, a rigorous spectral analysis for the operator HessE(v∗) in the range m > 1 was recently
completed by one of us [45]. The range m < 1 had been previously analyzed by the other author, together
with Denzler [20]. We devote an appendix to the case m = 1; although this operator is familiar in this
case, the setting which our analysis requires is somewhat different from any of the standard ones.

To make predictions concering the evolutions (1) and (11), we shall need to recall the conclusions of Seis’s
analysis. This we do in the next section. A point which distinguishes the case of present interest is that
the operator HessE(v∗) possesses a complete basis of eigenfunctions in the range m ≥ 1. This simplifies the
remaining analysis considerably; it would not be the case for m < 1. As a result, we can already anticipate
that there will be a complete basis for Tv∗M consisting of simultaneous eigenfunctions of Hess Iγ2/α(v∗) and
HessE(v∗). Moreover, the eigenvalues µ`k = f(λ`k) of the former are related to those of the latter λ`k by
the quadratic increasing function (27) on [0,∞).

6 Rigorous spectral results

To make further progress, we shall need concrete representations HI and HE of the Hessian operators
Hess Iγ2/α(v∗) and HessE(v∗) of interest; these should act on the concrete representation H1

v∗ of the tangent
space Tv∗M to M at the Barenblatt profile v∗. Here the Sobolev space H1

v∗ denotes the class of all locally
integrable functions on spt(v∗) such that

‖ψ‖2H1
v∗

:=

∫
v∗|∇ψ|2 dx < ∞,

with the identification of functions that only differ by an additive constant. We recall that in the case m > 1
the Barenblatt profile v∗ is compactly supported on a ball of radius one, while for m = 1 the Barenblatt
profile is a Gaussian and thus positive everywhere, see (12). In any of these cases, the weighted Sobolev
space H1

v∗ is a separable Hilbert space with respect to the topology induced by ‖ · ‖H1
v∗

.

For functions ψ ∈ C∞b := C∞ ∩ L∞ which are smooth and bounded on the support of the Barenblatt
profile v∗, the desired concrete representation of HessE(v∗) derived in [45] (c.f. [20]) is

HEψ(x) = −mvm−2
∗ ∇ · (v∗∇ψ) =

{
−∆ψ(x) + x · ∇ψ(x) if m = 1,

−m−1
2 (1− |x|2)∆ψ(x) + x · ∇ψ(x) if m > 1;

(28)

(the case m = 1 is discussed in the appendix below, where the operator HE appears identical in form to the
well-known Ornstein–Uhlenbeck operator). Notice that C∞b (spt(v∗)) equals C∞b (RN ) if m = 1 and C∞(B̄1)
if m > 1. In either case, C∞b (spt(v∗)) is a dense subspace of H1

v∗ , see, e.g., Lemma 14 in the appendix or
[45, Lemma 2], and the operator HE is nonnegative and symmetric, and thus closable in H1

v∗ .

Its nonnegative symmetric closure, still denoted by HE , is self-adjoint with domain

D(HE) =
{
ψ ∈ H3

loc(spt(v∗)) : ψ, HEψ ∈ H1
v∗

}
,

as established in [45] (for m > 1) and Proposition 12 below (for m = 1). (Self-adjointness is well-known

for the Ornstein-Uhlenbeck operator on the Gaussian-Lebesgue space L2(e−|x|
2/2dx) = L2(v∗dx); what is
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established below is self-adjointness on the Gaussian-Sobolev space H1
v∗ .) Notice that for every ψ ∈ D(HE)

we have the integration by parts formula∫
v∗∇ξ · ∇ψ dx = −

∫
ξ∇ · (v∗∇ψ) dx for all ξ ∈ H1

v∗ , (29)

which can be easily seen via approximation with C∞b (spt v∗) functions. In the case m > 1, this implies the
asymptotic no-flux condition ν · v∗∇ψ = 0 on ∂B1 which in the case ψ ∈ C1(B1) simply becomes

lim
|x|↑1

v∗(x)∇ψ(x) · x
|x|

= 0,

cf. [45, Remark 1].

Letting N0 = {0, 1, 2, . . .} denote the set of nonnegative integers, we recall the following theorem:

Theorem 2 (Porous medium spectrum from [45]; heat spectrum from Appendix below). The operator
HE : D(HE)→ H1

v∗ is self-adjoint. Its spectrum is purely discrete and given by the eigenvalues

λ`k = `+ 2k + 2k(k + `+
N

2
− 1)(m− 1),

for (`, k) ∈ N0 × N0 \ {(0, 0)} if N ≥ 2 and (`, k) ∈ {0, 1} × N0 \ {(0, 0)} if N = 1. The corresponding
eigenfunctions form an orthonormal basis for H1

v∗ . In the case m = 1, they are given by the Hermite
polynomials, while if m > 1, the eigenfunctions are given by polynomials

ψ`nk(x) = F (−k, 1

m− 1
+ `+

N

2
− 1 + k; `+

N

2
; |x|2)Y`n

(
x

|x|

)
|x|`,

of degree `+ 2k, where n ∈ {1, . . . , N`} with N` = 1 if ` = 0 or ` = N = 1 and N` = (N+`−3)!(N+2`−2)
`!(N−2)! else,

where F (a, b; c; z) is a hypergeometric function and Y`n is a spherical harmonic if N ≥ 2, corresponding to
the eigenvalue `(`+N − 2) of −∆SN−1 with multiplicity N`. Otherwise, if N = 1 it is Y`n(±1) = (±1)`.

Hermite polynomials can be computed recursively from

ψ0(z) = 1, ψn+1(z) = zψn(z)− ψ′n(z) for n ∈ N,

where z ∈ R, and then in higher dimensions for every multi-index α = (α1, . . . , αN ) ∈ NN
0 via ψα(x) =

ψα1(x1) · · ·ψαN (xN ), cf., e.g., [48, 46]. Hypergeometric functions F (a, b; c, z) are power series of the form

F (a, b; c; z) =

∞∑
j=0

(a)j(b)j
(c)jj!

zj , (30)

where a, b, c, z ∈ R and c is not a non-positive integer. The definition involves the Pochhammer symbols

(s)j = s(s+ 1) · · · (s+ j − 1), for j ≥ 1, and (s)0 = 1.

Since the hypergeometric functions reduce to polynomials of degree k in the case a = −k, the eigenfunctions
ψ`nk are polynomials of degree `+ 2k and are harmonic if k = 0. The literature on hypergeometric functions
and spherical harmonics is vast, see, e.g., [1, 6, 29].

Armed with this understanding of the displacement Hessian HessE(v∗), the formulas (26)–(27) obtained
in the preceding section identify the concrete representation of the displacement Hess Iγ2/α(v∗) associated
with the confined fourth-order equation (11) to be

HI := f(HE) =
H2
E +N(m− 1)HE
1 +N(m− 1)

. (31)
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More explicitly, the eigenvector basis {ψ`nk} for H1
v∗ yields

D(HE) =

w =
∑
`,n,k

c`kψ`nk ∈ H1
v∗ :

∑
`,n,k

λ2
`k|c`nk|2 <∞

 ,

HEw =
∑
`,n,k

λ`kc`nkψ`nk if w =
∑
`,n,k

c`nkψ`nk ∈ D(HE).

Noting that the eigenvalues are all bounded away from zero, we define HI on

D(HI) :=

w =
∑
`,n,k

c`nkψ`nk ∈ H1
v∗ :

∑
`,n,k

(λ2
`k +N(m− 1)λ`k)2|c`nk|2 <∞

 ,

by

HIw :=
∑

f(λ`k)c`nkψ`nk =
1

1 +N(m− 1)

∑
`,n,k

(λ2
`k +N(m− 1)λ`k)c`nkψ`nk.

With this definition, the following result is an immediate corollary of Theorem 2:

Corollary 3 (Spectral theory of our fourth-order flows). The operator HI : D(HI) → H1
v∗ is self-adjoint

and positive definite, and has purely discrete spectrum given by the eigenvalues

µ`k := f(λ`k) =
λ2
`k +N(m− 1)λ`k

1 +N(m− 1)
.

The range of indices (`, k), values λ`k, and eigenvectors ψ`nk are as in Theorem 2, and HIψ`nk = µ`kψ`nk.

Remark 4 (Spectral gap and lowest modes). Note that the eigenvalues λ`k and hence µ`k depend mono-
tonically on `, k,m and N . This makes it easy to identify the lowest lying modes to be λ10 = 1 and
λ20 = 2. Indeed, the only modes below λ40 = 4 must correspond to polynomial eigenfunctions of degree
` + 2k < 4, namely λ30 = 3 and perhaps 2 + N(m − 1) = λ01 < λ11 = 3 + (N + 2)(m − 1), depending

on the values of m and N . Thus the only modes below µ40 = 4(4+N(m−1))
1+N(m−1) are 1 = µ10 < µ20 < µ30

(corresponding to homogenous harmonic polynomials ψ`nk of degrees 1, 2 and 3 respectively) plus possibly

2(2 +N(m− 1)) = µ01 < µ11 = (3+(N+2)(m−1))(3+2(N+1)(m−1))
1+N(m−1) .

Although HI is defined by its spectral decomposition, it is useful to have a representation of it as a partial
differential operator. This is supplied by the following Proposition.

Proposition 5 (Hessian of the generalized information as a partial differential operator). The action of
(1+N(m−1))HI on finite linear combinations of eigenfunctions coincides with that of HE◦HE+N(m−1)HE,
where HE is the partial differential operator (28). The domain of self-adjointmess of HI coincides with

D(HI) =
{
ψ ∈ H5

loc(spt(v∗)) : ψ, HEψ, H2
Eψ ∈ H1

v∗

}
.
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Proof. We compute:

D(H2
E +N(m− 1)HE) =

w =
∑
`,n,k

c`nkψ`nk ∈ H1
v∗ :

∑
`,n,k

(λ2
`k +N(m− 1)λ`k)2|c`nk|2 <∞


=

w =
∑
`,n,k

c`nkψ`nk ∈ H1
v∗ :

∑
`,n,k

(λ2
`k)2|c`nk|2 <∞

 (since λ`k ≥ 1)

=

w =
∑
`,n,k

c`nkψ`nk ∈ D(HE) :
∑
`,n,k

λ2
`k|λ`kc`nk|2 <∞


=

w =
∑
`,n,k

c`nkψ`nk ∈ D(HE) : HE
(
HEw

)
∈ H1

v∗


=

w =
∑
`,n,k

c`nkψ`nk ∈ H1
v∗ : HEw ∈ H1

v∗ , HE
(
HEw

)
∈ H1

v∗

 .

In the interior of Ω = spt v∗, HE is a second order elliptic operator, and HE(HEw) ∈ H1
loc(Ω) then implies

w ∈ H5
loc(Ω) (by classical theory of elliptic regularity).

7 Dynamical and analytic implications

The knowledge of the complete spectrum of the displacement Hessian operator is a promising starting point
for a full asymptotic expansion of solutions to the fourth-order equation (1)–(3) around the self-similar
solution. In view of the discreteness of the spectrum, all modes are in principle accessible. The eigenvalues
of HI are nonlinear functions of m and eigenvalue crossings occur throughout the spectrum. Moreover, the
eigenvalues are increasing functions of the eigenvalues of the porous medium equation λ`k, and thus, we
expect the same ordering of eigenmodes with respect to the rate of convergence for both equations. For any
value of N and m, the dynamics are translation-governed as the smallest eigenvalue µ10 = 1 corresponds
to a spatial translation in direction of the n-th coordinate axis en, for n ∈ {1, . . . , N1 = N}. The role of
the eigenfunctions is best understood by considering geodesics in the Wasserstein space, which are given by
displacement interpolants (cf. [36]) via v∗(x) = det

(
I + s∇2ψ(x)

)
vs(x + s∇ψ(x)), that is, push-forwards

of v∗ under the map id + s∇ψ. Observe that vs generates tangent fields in the Wasserstein gradient flow
interpretation of the dynamics, cf. Section 4, since ∂s|s=0 vs = −∇ · (v∗∇ψ). The eigenfunctions ψ1n0 are
affine functions for which the corresponding Lagrangian perturbations are translations x+scnen with cn ∈ R.
A fully rigorous justification of the translation-governed dynamics was obtained by Carrillo & Toscani
[15] for (N,m) = 1, 3/2) and by Matthes, Savaré, and the first author [35] for general N and 1 ≤ m ≤ 3/2
who prove

d2(v(t), v∗) . e−t, (32)

where d2 denotes the 2-Wasserstein distance. This decay rate is sharp for translations. The second smallest
eigenvalue µ20 corresponds to an affine shear in Lagrangian variables of the form x+sA2nx for some symmetric
and trace-free matrix A2n. Exact solutions of this form were studied in detail by Betelú and King for
m = 3/2 [12] and Denzler and the first author [21] more generally.

A serious difficulty, however involves the potential lack of C2 smoothness of Iγ2/α(v) required to justify
the approximation (25). What is really required is a function space metric or topology in which the dynamics
near v∗ depend differentiably on their initial conditions. However, at present this seems far out of reach: if
such a topology existed, it would imply uniqueness and well-posedness for the fourth-order flow near v∗, or
at least for GMM solutions thereto.

For the porous medium dynamics m > 1 on the other hand, such a framework was identified by An-
genent [3] in one dimension, and in higher dimensions by Koch’s habilitation thesis [34]. In the latter
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context however, there is a mismatch between this function space topology and the weighted Sobolev induced
d2 geometry for which the displacement Hessian has been diagonalized [45]. In the fast diffusion regime, the
analogous mismatch was resolved by Denzler, Koch and McCann [19], which allowed these authors to
obtain rigorous higher-order asymptotics of solutions to the fast diffusion equation around the self-similar
solution based on the spectral analysis of Denzler and McCann. However, their expansion is naturally
limited to a finite number of modes due to the occurrence of continuous spectrum. A complete picture of the
N = 1 porous medium asympotics was obtained by Angenent however, whose diagonalization was set in
the same little Hölder spaces where he established analyticity of the flow; it displays no continuous spectrum.

In spite of the above mentioned difficulty, let us proceed by advancing the conjectures suggested by our
analysis. Due to the nonlinear corrections hiding in the error term of (25), or rather (34), near an attracting
fixed point a smooth flow can potentially produce exponential decay not only at eigenvalue rates, but also
at positive integer combinations of these. Moreover, when such an integer combination coincides with an
eigenvalue, resonance can lead to the exponential decay being modulated by polynomial growth. This yields
the following conjecture, which is a fourth-order analog of the results of Angenent [3], Denzler, Koch
and McCann [19], and the conjecture appearing in [20, 45].

Recall from McCann’s version [36, Remark 4.5] of Brenier’s theorem [13], any measure v(t, x) ≥ 0
with the same mass as v∗ satisfies

v∗(x) = det
(
I +D2ψ(t, x)

)
v(t, x+∇ψ(t, x)) (33)

v∗-a.e., where 1
2 |x|

2 + ψ(t, x) is convex in x and uniquely determined up to an additive constant. Moreover,
from [13] it is clear that (13) is achieved by

d2
2(v∗, v(t)) =

∫
RN

v∗(x)|∇ψ(t, x)|2dx,

which also shows for v(t) ∈M that ψ(t, ·) ∈ H1
v∗ . Alternately, from the point of view of differential geometry,

identity (33) can be read as v(t) = expv∗ ψ(t), where expv∗ : Tv∗M → M is the Riemannian exponential
map, which introduces local coordinates on M given by Wasserstein geodesics through v∗.

On an abstract level, the linearization of the dynamical sysmtem d
dtv = V (v) on the manifoldM around

the (attracting) fixed point V (v∗) = 0,

d

dt
(v(t)− v∗) = DV (v∗)(v(t)− v∗) +O

(
‖v(t)− v∗‖2

)
, (34)

expressed in new coordinates ψ = G(v) takes the form

d

dt
(ψ(t)− ψ∗) = DG(v(t))

d

dt
(v(t)− v∗)

= DG(v∗)
d

dt
(v(t)− v∗) +O

(
‖v(t)− v∗‖2

)
= DG(v∗)DV (v∗)(v(t)− v∗) +O

(
‖v(t)− v∗‖2

)
= DG(v∗)DV (v∗)DG(v∗)

−1(ψ(t)− ψ∗) +O
(
|‖ψ(t)− ψ∗‖|2

)
.

That is, the generator DV (v∗) of the linearized dynamics in one coordinate system is related to the gen-
erator DG(v∗)DV (v∗)DG(v∗)

−1 of the linearized dynamics in any other coordinate system by a similarity
transformation given by a linear operator DG(v∗) (which takes any tangent vector expressed in the first set
of coordinates to its representation with respect to the second coordinates).

For the particular choice ψ(t) = G(v(t)), where ψ(t) is given by (33), i.e., G = exp−1
v∗ , it holds that

DG(v∗) = Lv∗ , with Lv∗ being the operator from (20). This identity is a consequence of sψ(t) = G(v(s, t)) for
geodesics s 7→ v(s, t). A short computation shows that DG(v∗)DV (v∗)DG(v∗)

−1 = HI — which motivates
the term “displacement Hessian” and gives rise to our first conjecture:
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Conjecture 6 (Complete asymptotics in Riemannian normal coordinates). Given a GMM solution v(t, x)
to (11) with the same mass as v∗, we conjecture an asymptotic expansion

ψ(t, x) ∼
∑
~β

e−
~β·~µt

I(β)∑
i=1

c
~β
i Ψ

~β
i (x)ti, (35)

for the potential ψ(t, x) of (33), where ~µ = {µ`nk} represents the sequence of eigenvalues and the first

summation takes place over multi-indices ~β = {β`nk} with β`nk ∈ N0. Here

~β · ~µ =
∑

`,k∈N0

N∑̀
n=1

β`nkµ`nk,

Ψ
~β
i (x) is a polynomial determined by i, β, m and N which vanishes for all but I(β) < ∞ many i, and

the constants c
~β
i are determined by the initial condition v(0, x). If β has length 1 = |~β| =

∑
β`nk, hence

represents an eigenvalue, then Ψ
~β
0 (x) is the corresponding eigenvector. By asymptotic expansion, we mean

for each Λ <∞ there exists a metric dΛ for functions on RN such that

dΛ(ψ(t, ·), ψΛ(t, ·)) ≤ o(e−Λt) (36)

where ψΛ represents the restriction of the sum (35) to values of ~β for which ~β · ~µ ≤ Λ.

Remark 7. Equality in (35) seems likely to violate convexity of 1
2 |x|

2 + ψ(t, x), suggesting the best we can
hope for is an asymptotic statement such as (36). For the porous medium dynamics in one-dimension [3],
and fast diffusion dynamics in all dimensions [19], asymptotic expansions were obtained by Angenent, and
Denzler, Koch and McCann, respectively. The present challenge is to identify a metric dΛ which is
strong enough for the conjecture to have useful consequences yet weak enough for the conjecture to be true.

The fact that HEΨ
~β
0 = ~β · ~λΨ

~β
0 is an eigenvector when |~β| = 1 yields more concrete predictions if, as

in [19], we are willing to limit the accuracy of our approximation to detect only the lowest lying (= most
persistent) modes. These modes are enumerated in Remark 4. As long as we stay within factor two of the
lowest mode to be excited, resonances will not appear. Since no other modes lie within a factor of two of
the ground state µ01 = 1, we arrive at the corollary:

Corollary 8 (First correction to leading-order rate). For any GMM solution v(t, x) to (11) with the same
mass as v∗(x) and ε > 0,

v(t, x)− ∗(x) =
1

m
v2−m
∗ (x)[b · xe−t + o(e−(2−ε)t)] (37)

holds for some b ∈ RN determined by the initial condition v(0, ·) and all x ∈ int(spt(v∗)). Moreover, if
m > 1, spt(v(t, · )) ⊂ Br(t)(0) where

r(t) ≤ 1 + |b|e−t + o(e−(2−ε)t). (38)

Proof. Since λ`k ≥ ` + 2k ≥ 2 for all `, k ∈ N0 except ` ≤ 1 and k = 0, we see µ`k ≥ λ`k > 2 unless
(`, k) = (1, 0). Thus there are no modes within factor 2 of µ10 = 1. The corresponding eigenfunctions
ψ1n0(x) depend linearly on x, so we find ∇ψ(t, x) = be−t + o(e−(2−ε)t) for some b ∈ RN . The map

y = x+∇ψ(t, x)

can then be inverted to yield
x = y − be−t + o(e−(2−ε)t).

Noting (12) implies

mvm−2
∗ ∇v∗(y) =

{
−y if y ∈ int(spt v∗)

0 if y 6∈ spt v∗
(39)
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from (33) we deduce

v(t, y) = v∗(y − be−t + o(e−(2−ε)t)) det[I + o(e−(2−ε)t)]

= v∗(y)− e−tb · ∇v∗(y) + o(e−(2−ε)t)

= v∗(y) +
1

m
e−tb · yv2−m

∗ + o(e−(2−ε)t)

for x ∈ int(spt(v∗)), i.e., (37) holds. Also, in the case m > 1, we infer from (33) that spt(v(t, · )) ⊂ Br(t)(0)

where r(t) ≤ 1 + |b|e−t + o(e−(2−ε)t).

Finally, since (1) is translation invariant, it costs no generality to suppose the initial data v(0, x) has
center of mass at the origin. Lemma 1 ensures this condition is preserved by weak solutions (16) which
vary continuously in (M, d2), and by Generalized Minimizing Movements in particular. This rules out the
excitation of the µ10 mode and forces b = 0 above. In this case, the lowest potentially excitable mode

µ20 = 2(2+N(m−1))
1+N(m−1) corresponds to shearing, and the only other modes which have the potential to lie within

factor two of this are µ30 and µ01 (since µ11 > 2µ20). This leads to a second corollary of our conjecture:

Corollary 9 (Improvements by centering and exchange of stability). If the center of mass of v(0, ·) vanishes,
then for any Λ < 2µ20,

v(t, x) = v∗(x)(1− cNe−µ01t) +
1

m
v2−m
∗ (x)[x ·Axe−µ20t + 3h3(x)e−µ30t + c|x|2e−µ01t + o(e−Λt)] (40)

for x ∈ int(spt(v∗)), where the trace-free matrix A, constant c ∈ R, and homogeneous harmonic polynomial
h3(x) of degree three are determined by the initial data. can be improved to

r(t) ≤ 1 + ‖A‖e−µ20t + ce−µ01t + sup
|x|<1

|∇h3(x)|e−µ30t + o(e−Λt) (41)

Proof. The strategy of proof is the same as for the preceding proposition. The eigenfunctions corresponding
to µ20 and µ30 are homogeneous harmonic polynomials h2(x) = x · Ax/2 and h3(x) of degree 2 and 3
respectively, while the eigenfunction corresponding to µ01 is ψ011(x) = 1− (N(m−1)α)−1|x|2. Here A = A∗

is symmetric without loss of generality, and trace-free. Since both µ30 and µ01 exceed µ20 > Λ/2, inverting
the map

y = x+∇ψ(t, x)

= x+Axe−µ20t + cxe−µ01t +∇h3(x)e−µ30t + o(e−Λt)

yields

x = y −Aye−µ20t − cye−µ01t −∇h3(y)e−µ30t + o(e−Λt).

Now (12), (33) and homogeneity and harmonicity trA = 0 = trD2h3(x) imply

v(t, y) = v∗(x) det[(1− ce−µ01t)I −Ae−µ20t −D2h3(x)e−µ30t + o(e−Λt)]

= v∗(y)(1− cNe−µ01t)− (Aye−µ20t + cye−µ01t +∇h3(y)e−µ30t) · ∇v∗(y) + o(e−Λt)

= v∗(y)(1− cNe−µ01t) +
1

m
(Aye−µ20t + c|y|2e−µ01t +∇h3(y)e−µ30t) · yv2−m

∗ (y) + o(e−Λt)

for y ∈ int(spt v∗). Moreover, for x ∈ spt v∗ we see r(t) = |y| satisfies (41).

Note that after the second eigenvalue µ20, a first level crossing occurs and it involves two of the eigenvalues
appearing in Corollary 9: µ30 ≥ µ01 precisely if 1 ≥ N(m−1). This determines which of these two corrections
to the shear rate µ20 in (40) will be dominant. These eigenvalues correspond to pear-shaped deformations
(with order 3 symmetry) and dilations, respectively. The geometric complexity of the higher modes is
increasing with the degree of the polynomials, and so we do not attempt to extend this discussion to larger
values of µ`k.
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Remark 10. As an alternative approach to deriving such corollaries, it would be possible to develop an
asymptotic expansion analogous to (35) for v(t, x)−v∗(x) directly based on the operator L−1

v∗ HILv∗ = v2−m
∗ ◦

HI ◦vm−2
∗ whose eigenfunctions are v2−m

∗ and v2−m
∗ (x)ψ̂`nk(x), where ψ̂`nk = ψ`nk+ const for each (`, n, k).

Here we have used the fact that the linearization of (33) near (v∗, 0) yields the elliptic boundary value problem
(20) relating the different representations ψ = Lv∗(δv) and δv of a tangent vector at v∗. Thus δv = L−1

v∗ ψ,
and mL−1

v∗ = v2−m
∗ ◦HE from (28), while HE commutes with HI = f(HE). This observation helps to explain

both the factors of v2−m
∗ and some of the constants which appear in (37)–(40), analogously to [19].

Finally, we close with some comments on the conjecture and its corollaries. We have stated these con-
jectures for Generalized Minimizing Movements rather than solutions to (1)–(3), since they are based on
the same gradient flow intuition as the GMM construction, and it is not known whether all solutions to the
free-boundary problem (1)–(3) can arise from the GMM construction, or not. In addition, it is the GMM
solutions which are known [35] to becomes self-similar asymptotically (10) as t → ∞. Corollary 8 already
proposes a substantial improvement consistent with the established rate (32) for these solutions, and Corol-
lary 9 and the conjecture go further still. What is absent from all three results however, is the specification of
a sense in which the series (35) is supposed to approximate the solutions, or the error terms in (37)–(40) are
supposed to be small. One might imagine (35) refers to the H1

v∗ norm, yet past experience with second-order
analogs suggests this is not the right metric for controlling the extent to which linearization approximates
the nonlinear flow [3] [19]. On the other, hand, the corollaries themselves give some clues regarding the
missing metric(s), at least when m > 1. In that case the right hand sides of (37)–(40) vanish outside the
ball while the left hand sides need not (as for translations v(x, 0) = v∗(x − z).) This demonstrates clearly
that if we hope to improve the latter expansions from pointwise to function-space statements, the desired
function-space metric must be relatively insensitive to information near and outside the boundary of the
support of the Barenblatt profile, which in our case is the unit ball. (Both the 2-Wasserstein distance and
the framework advanced in Koch’s habilitation have this property.) It is also the reason that pointwise
statements (37)–(40) can be formulated only away from ∂(spt v∗). The uniform parabolicity away from this
boundary yields some hope for establishing the desired smoothness of the flow if a suitable framework can
be identified.

Appendix: Spectrum of the Ornstein–Uhlenbeck operator on H1
v∗

.

In this appendix, we compute the spectrum and the corresponding eigenvalues of the Ornstein–Uhlenbeck
operator HE : D(HE) → H1

v∗ where m = 1 and thus HEψ(x) = −∆ψ(x) + x · ∇ψ(x). Spectral properties
of the differential operator −∆ + x · ∇ are well-known to the stochastics community because of its role
in stochastic processes, and also in the mathematical physics community because HE is conjugate to the
harmonic oscillator. The only difference between the operator studied here and the “classical” Ornstein–
Uhlenbeck operator is the choice of the underlying Hilbert space. While the standard choice is the Gauss
space L2(e−|x|

2/2dx), we consider its Sobolev variant Ḣ1(e−|x|
2/2dx) = H1

v∗ . We will see, however, that apart
from the presence or absence of a zero eigenvalue reflecting the presence or absence of constant functions in
the space, the spectrum of both operators is identical. More precisely, we have the following

Theorem 11. The operator HE : D(HE)→ H1
v∗ is self-adjoint. Its spectrum σ(HE) is purely discrete and

given
σ(HE) = N.

The corresponding eigenfunctions are Hermite polynomials.

For the convenience of the reader, we will sketch the proof of this result in the sequel. It is based on the
following two Propositions:

Proposition 12. The operator HE : D(HE)→ H1
v∗ is nonnegative , self-adjoint, and has a bounded inverse.

Proposition 13. The operator HE : D(HE)→ H1
v∗ has a purely discrete spectrum.

Proof of Theorem 11. We immediately deduce from Propositions 12 and 13 that the spectrum of HE is a
discrete subset of (0,∞), and thus it is enough to solve the eigenvalue problem for HE . On the one hand,
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one can easily show that H1
v∗ embeds continuously into the Gauss space L2(e−|x|

2/2dx) = L2(v∗dx), cf.
Lemma 15 below, and thus every eigenvalue must be an eigenvalue of the “classical” operator defined on
the Hilbert space L2(v∗dx). It is well-known that the eigenvalues of the Ornstein–Uhlenbeck operator on
L2(v∗dx) are all positive integers and the corresponding eigenfunctions are Hermite polynomials, cf. [46].
It is easily checked that every polynomial lies in the domain of HE . Therefore, we conclude that Hermite
polynomials are eigenfunctions of HE and thus σ(HE) = N.

Before turning to the proofs of Propositions 12 and 13, we derive some auxiliary results:

Lemma 14. C∞b (RN ) is dense in H1
v∗ .

This is a fairly standard result and we therefore only sketch its proof.

Proof. We first observe that L∞(RN ) ∩ H1
v∗ is dense in H1

v∗ , which can be easily seen by considering the
truncated functions ψM = max{−M,min{M,ψ}} for M > 0. It holds that

lim
M↑∞

∫
v∗|∇ψ −∇ψM |2 dx = lim

M↑∞

∫
|ψ|≥M

v∗|∇ψ|2 dx = 0

by the dominated convergence theorem. The density of C∞b (RN ) in H1
v∗ then follows by a standard mollifi-

cation argument, see, e.g., [45, Lemma 2].

Lemma 15. There exists a constant C > 0 dependent only on the space dimension N such that for all
ψ ∈ H1

v∗

inf
c∈R

∫
(1 + |x|2)v∗(ψ − c)2 dx ≤ C

∫
v∗|∇ψ|2 dx (42)

holds.

Proof. In the following C > 0 will always denote a universal constant (possibly dependent on N) whose value
may change from line to line. Thanks to the density of smooth functions provided in the previous lemma, it
is enough to prove the statement for ψ ∈ C∞b (RN ). We first show that∫

(1 + |x|2)e−|x|
2/2ψ2 dx ≤ C

(∫
e−|x|

2/2ψ2 dx+

∫
e−|x|

2/2|∇ψ|2 dx
)
. (43)

Indeed, because ∇ ·
(
xe−|x|

2/2
)

=
(
N − |x|2

)
e−|x|

2/2, we have that∫
|x|2e−|x|

2/2ψ2 dx = −
∫
∇ ·
(
xe−|x|

2/2
)
ψ2 dx+N

∫
e−|x|

2/2ψ2 dx

= 2

∫
xe−|x|

2/2ψ · ∇ψ dx+N

∫
e−|x|

2/2ψ2 dx,

and we have integrated by parts in the second identity. We apply Young’s inequality 2ab ≤ a2 + b2 to deduce∫
|x|2e−|x|

2/2ψ2 dx ≤ C

(∫
e−|x|

2/2ψ2 dx+

∫
e−|x|

2/2|∇ψ|2 dx
)
.

From this, (43) follows upon adding
∫
e−|x|

2/2ψ2 dx on both sides of the inequality.

We now turn to the proof of (42). We prove a slightly stronger statement by choosing c =
∫
BR(0)

ψ dx

for some R > 0 that has to be fixed later. Equivalently, we may assume that∫
BR(0)

ψ dx = 0.

Then the Poincaré estimate on the ball BR(0) reads∫
BR(0)

ψ2 dx ≤ CR2

∫
BR(0)

|∇ψ|2 dx,
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and thus ∫
BR(0)

e−|x|
2/2ψ2 dx ≤

∫
BR(0)

ψ2 dx ≤ CeR
2/2R2

∫
e−|x|

2/2|∇ψ|2 dx.

On the other hand, we also have that∫
RN\BR(0)

e−|x|
2/2ψ2 dx ≤ 1

R2

∫
|x|2e−|x|

2/2ψ2 dx.

Consequently, combining the last two estimates with (43) yields∫
(1 + |x|2)e−|x|

2/2ψ2 dx

≤ C

(
1

R2

∫
|x|2e−|x|

2/2ψ2 dx+ eR
2/2R2

∫
e−|x|

2/2|∇ψ|2 dx
)
.

Choosing R sufficiently large (uniformly in ψ), we see that the first term on the right can be absorbed into
the left-hand side of the inequality, which yields the statement of the lemma by the definition of v∗.

Lemma 16. The embedding of H1
v∗ in L2(v∗dx) is compact.

Proof. We deduce the statement of this lemma from the standard Rellich compactness lemma for classical
Sobolev functions on bounded domains and from estimate (42). Let {ψn}n∈N denote a bounded sequence in
H1
v∗ . It is convenient to assume that

∫
(1 + |x|2)v∗ψ dx = 0, because then (42) holds with c = 0. Since H1

v∗
is a Hilbert space, there exists a ψ ∈ H1

v∗ and a subsequence which converges to ψ weakly in H1
v∗ . By the

continuous embedding provided by (42), this weak convergence also holds in L2((1 + |x|2)v∗dx). Moreover,
since v∗ is bounded away from zero on every compact subset of RN , it holds that {ψn}n∈N is bounded in
H1(Bk(0)) for every k ∈ N. Therefore, by the standard Rellich compactness lemma and since v∗ . 1, we
can extract a further subsequence {ψnk}k∈N such that∫

Bk(0)

v∗(ψ − ψnk)2 dx ≤ 1

k
(44)

for every k ∈ N. We now have∫
v∗(ψ − ψnk)2 dx =

∫
Bk(0)

v∗(ψ − ψnk)2 dx+

∫
RN\Bk(0)

v∗(ψ − ψnk)2 dx

(44)

≤ 1

k
+

1

k2

∫
(1 + |x|2)v∗(ψ − ψnk)2 dx.

Since the integral on the right-hand side of the above inequality is bounded by the embedding (42), we
deduce that ∫

v∗(ψ − ψnk)2 dx ≤ 1

k
+
C

k2

for some uniform constant C > 0. We let k converge to infinity to obtain the desired result.

Lemma 17. For every u ∈ L2(v−1
∗ dx) with

∫
u dx = 0, there exists a unique ψ ∈ H2

loc ∩H1
v∗ such that∫

v∗∇ψ · ∇ϕdx =

∫
uϕdx (45)

for all ϕ ∈ H1
v∗ .

Proof. We first observe that (45) are the Euler–Lagrange equations for the convex energy functional

F(ψ) =
1

2

∫
v∗|∇ψ|2 dx−

∫
uψ dx

defined for ψ ∈ H1
v∗ . Existence and uniqueness of a minimizers follows from soft methods based on the

continuous embedding H1
v∗ ⊂ L2(v∗dx) established in Lemma 15, whose details we omit as they are fairly

standard.
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We are now in the position to prove Propositions 12 and 13. As both statements are established very
similarly to the analogous statements Propositions 1 and 2 from [45], we again omit most of the details. We
start with the

Proof of Proposition 12. The proof of this proposition is very close to the one of [45, Prop. 1]. By Lemma
14, the operator HE : D(HE)→ H1

v∗ is densely defined. A simple integration-by-parts argument shows that
HE is nonnegative and symmetric. Moreover, via Lemmas 15 and 17 it can be shown that HE is onto, which
in turn implies that HE is self-adjoint and has a bounded inverse via arguments from Functional Analysis
(see [43, Theorem 13.11]).

It remains to provide the

Proof of Proposition 13. By Proposition 12, HE is invertible and has a bounded inverse. To prove the
discreteness of the spectrum, we have to show that the resolvent H−1

E : H1
v∗ → H1

v∗ is compact, cf. [44, Prop.
2.11]. This, however, is a consequence of the Rellich compactness established in Lemma 16. We omit details
and refer the interested reader to [45, Prop. 2] for a similar argument.

References

[1] Abramowitz, M., and Stegun, I. A., Eds. Handbook of mathematical functions with formulas,
graphs, and mathematical tables. Dover Publications Inc., New York, 1992. Reprint of the 1972 edition.
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[35] Matthes, D., McCann, R. J., and Savaré, G. A family of nonlinear fourth order equations of
gradient flow type. Comm. Partial Differential Equations 34, 10-12 (2009), 1352–1397.

[36] McCann, R. J. A convexity principle for interacting gases. Adv. Math. 128, 1 (1997), 153–179.

[37] Myers, T. Thin films with high surface tension. SIAM Reviews 40 (1998), 441–462.

[38] Oron, A., Davis, S. H., and Bankoff, S. G. Long-scale evolution of thin liquid films. Rev. Mod.
Phys. 69 (Jul 1997), 931–980.

[39] Otto, F. Lubrication approximation with prescribed nonzero contact angle. Comm. Partial Differential
Equations 23, 11-12 (1998), 2077–2164.

[40] Otto, F. The geometry of dissipative evolution equations: the porous medium equation. Comm.
Partial Differential Equations 26, 1-2 (2001), 101–174.

[41] Pattle, R. E. Diffusion from an instantaneous point source with a concentration-dependent coefficient.
Quart. J. Mech. Appl. Math. 12 (1959), 407–409.

[42] Renesse and K.-T. Sturm, M.-K. v. Transport inequalities, gradient estimates, entropy and Ricci
curvature. Comm. Pure Appl. Math. 58 (2005), 923–940.

[43] Rudin, W. Functional analysis, second ed. International Series in Pure and Applied Mathematics.
McGraw-Hill Inc., New York, 1991.
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