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Abstract

In this project, we formulate the Monge-Kantorovich optimal transport problem and
consider possible ways to compute solutions. One approach is using linear programming
to solve the problem. Computational examples are also demonstrated with the linear
programming approach at a solution. Another approach taken is turning the optimal
transport problem into a polar factorization problem. This becomes a matter of solving
evolution equations. We also discuss existence and uniqueness of solutions when finding
solutions to the evolution equations.

1 Introduction

We begin to describe the optimal mass transport problem by a simple analogy. Suppose we
have a pile of sand and a hole that needs to filled up with sand. Define �(x, y) to be the
cost to transport one unit of sand from location x to location y. The goal is to transport
the sand from the pile to the hole at the minimal cost (Villani, 2003).

1.1 Monge Formulation

Mathematically, the pile and hole will be modeled by probability measures µ
0

on a measure
space ⌦

0

and µ
1

on a measure space ⌦
1

respectively (Villani, 2003). In words, given subsets
A, B of ⌦

0

,⌦
1

respectively, µ
0

[A] gives a measure of how much sand is in A and µ
1

[B] gives
a measure of how much sand can be piled in B. The cost function � is a measurable map
from X ⇥ Y to R [ {+1}. As described above, this function gives the cost to transport
one unit of mass from location x to location y.

We wish to find a transport map T : ⌦
0

! ⌦
1

such that we minimize the cost �(x, y):

M(T ) =

Z

⌦0

�(x, T (x)) dµ
0

(x), (1)
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such that T (µ
0

) = µ
1

. In other words, for B ✓ ⌦
1

, µ
0

(T�1(B)) = µ
1

(B). So the µ
0

mass
transported to B must equal the µ

1

mass of B. Here, we say that µ
1

is the pushforward of
µ
0

by T (Villani, 2003), or that T transports µ
0

onto µ
1

, and write

µ
1

= T
#

µ
0

.

Notice that this formulation implies that all the mass at location x goes to the same location
y.

1.2 Kantorovich’s Formulation

Kantorovich allows us to relax the optimization problem by allowing the mass at x 2 ⌦
0

to be split (Villani, 2003). Instead, for x 2 ⌦
0

, we have a measure � that describes how
the mass of x is distributed in ⌦

1

(Villani, 2003). In Kantorovich’s formulation, we define a
measure � � 0 on ⌦

0

⇥ ⌦
1

to minimize

M(�) =

Z

X⇥Y

�(x, y) d�(x, y), (2)

such that µ
0

, µ
1

are marginal distributions on ⌦
0

,⌦
1

respectively, ie. for A ✓ ⌦
0

, B ✓ ⌦
1

�(A⇥ ⌦
1

) = µ
0

(A), (3)

�(⌦
0

⇥ B) = µ
1

(B). (4)

What (3) means is the � mass transported from A equals the µ
0

mass of A. Similarly, (4)
says the � mass transported into B equals the µ

1

mass of B (Zemel, 2012). We call � the
transference plan.

1.3 Outline

This paper is organized as follows. We first talk about reducing the optimal transport
problem to a linear programming problem by discretizing the domains ⌦

0

,⌦
1

. In the next
section, we discuss a method of using partial di↵erential equations to find a solution. We also
talk about what defines existence and uniqueness of solutions found using partial di↵erential
equations.

2 The Discrete Case

We consider the case of supply and demand to explain the discrete case. Say we have an
initial configuration of resources X = {x

1

, x
2

, x
3

, x
4

} where x
i

2 R2. At every x
i

, we produce
a quantity p

0,i

= p
0

(x
i

). The final configuration is Y = {y
1

, y
2

, y
3

}. At every y
i

, the quantity
p
1,j

= p
1

(y
j

) is expected. Define �
ij

= �(x
i

, y
j

) to be the unitary cost of transporting one
unit from point x

i

to point y
j

(Savare, 2010). Possible transference plans T
ij

= T (x
i

, y
j

)
that choose the quantities moved from x

i

to y
j

must satisfy the following constraints:
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1. �(x
i

, y
j

) � 0,

2.
P
y2Y

�(x
i

, y) = p
0

(x
i

),

3.
P
x2X

�(x, y
j

) = p
1

(y
j

).

The first requirement is intuitive since the quantity transferred cannot be negative. The
second requirement tells us that, for each x

i

, the quantity transferred, from x
i

equals the
quantity available at x

i

. Similarly, the third requirement tells us that, for each y
j

, the
quantity transferred to y

j

equals the quantity demanded at y
j

. We assume the problem
is balanced: the total supply available equals the total demand required. The cost of a
transference plan � is then

C(�) :=
P

x2X,y2Y
�(x, y)�(x, y).

From the set of admissible tranference plans �, we want to find one that minimizes the cost
functional C(�). Hence, we have a structure of a linear program(Savare, 2010):

Given positive coe�cients p
0,i

, p
1,j

, and �
ij

, find �
ij

that minimizes

C(�) :=
P
i,j

�
ij

�
ij

,

subject to the constraints

�(x
i

, y
j

) � 0,
P
y2Y

�(x
i

, y) = p
0

(x
i

),
P
x2X

�(x, y
j

) = p
1

(y
j

).

The yellow dots represent supply and the green dots represent demand. The quantity avail-
able at each point in X1 and the supply demanded at each point in X2 can be representated
with the following matrices:

p
0

=

0

BB@

0.28701
0.19786
0.026992
0.48808

1

CCA , p
1

=

0

@
0.28807
0.30294
0.40898

1

A.

(Notice the problem is balanced:
P

4

i=1

p
0,i

=
P

3

j=1

p
1,j

).
We take the cost function to be the L2 Wasserstein distance (Vilanni, 2003)

�
i,j

= kx
i

� y
j

k2.

The optimal transport plan, solved using linear programming (Peyre, 2010), is then
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Figure 1: Visual Representation of Example

� =

0

BB@

0 0.10509 0.18198
0 0.19786 0
0 0 0.026992

0.28807 0 0.20001

1

CCA.

In this example, we have a distribution of only a total of seven points. Let’s consider a
larger example.

Suppose now we have two discrete distributions µ
0

and µ
1

. µ
0

has n
0

points, µ
1

has n
1

points. Hence, X
0

= (x
0,i

)n0
i=1

and X
1

= (x
1,i

)n1
i=1

are our point clouds. So,

µ
k

=
nkX

i=1

p
k,i

�
xk,i

k = 0, 1. (5)

�
x

is the dirac at x 2 R2 (Peyre, 2010). Just as before, we consider transference plans such
that

X

j

�
i,j

= p
0,i

, (6)

X

i

�
i,j

= p
1,j

. (7)

We use the L2 Wasserstein distance as our cost function

�
i,j

= kx
0,i

� x
1,j

k2. (8)

Hence, we are minimizing X

i,j

�
i,j

�
i,j

. (9)
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The following figures will show the optimal transport plans for various point clouds. We
consider examples where µ

0

, µ
1

are translated dilates of each other. Define t(x) = �x � z
to be the translation mapping. If µ

1

is the image of µ
0

under t and we have a strictly
convex cost function then, as shown in the figures, the translation mapping is the optimal
solution(Gangbo and McCann, 1996).

Figure 2: Point cloud X0 is uniformly distributed in a circle of radius 2, centered at (0,0). Point cloud

X1 is uniformly distributed in a circle of radius 2, centered at (4,4).

Figure 3: Both point clouds have the same normal distribution.
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Figure 4: Point cloud X0 is uniformly distributed in a rectangle of length 1, width 1, centered at

(2.5,3.5). Point cloud X1 is uniformly distributed in a rectangle of length 1, width 1, centered at

(2.5,1.5)

3 Gradient Descent

In this section, we discuss another approach to solve the Monge-Kantorovich problem using
gradient descent. We divide this section into two subsections: first, we will introduce the
process of gradient descent simply by using domains in Rd, densities on those domains,
and defining a mapping from the first domain to the other (Haker, Zhu, Tannenbaum, and
Angenent, 2004) . In the second section, we get more abstract, introducing the notion of
measures as well as theorems and lemmas about the existence and uniqueness of solutions
(Angenent, Haker, and Tannenbaum, 2003). Throughout the section, we denote r as the
gradient. Also, a superscript above a function indicates that said function is parameterized
by superscript variable.

3.1 Mapping Approach

Let ⌦
0

and ⌦
1

be subdomains of Rd with smooth boundaries and with positive density
functions m

0

,m
1

respectively. We assume that the problem is balanced so the total mass
associated with ⌦

0

is the same as ⌦
1

:
R
⌦0

m
0

(x)dx =
R
⌦1

m
1

(x)dx.

Note here that x 2 Rd so for d � 2, x is a vector and dx is the standard Lebesque measure
on the domain (Haker et al., 2004) . We will sometimes condense the notation by simply
writing

R
⌦

f(x)dx :=
R
⌦

f .

6



We say that a di↵eomorphism1 u : ⌦
0

! ⌦
1

satisfies the mass preservation property(MP) if:

m
0

(x) = |Du(x)|m
1

(u(x)) , (10)

(Haker et al., 2004). Here, Du is the jacobian map and |Du| the determinant of the jacobian.
We take the cost function to be the Lp Kantorovich-Wasserstein metric. The goal is to find
u(x) 2 MP such that u(x) is optimal, ie. it minimizes the Monge-functional:

M(u) =
R
⌦0

ku(x)� xkpm
0

(x)dx.

We consider the case for p=2. An important result (Knott and Smith, 1984) that will help
us derive a solution is that there exists a unique optimal ũ 2 MP and this ũ is the gradient
of a convex function w, ie. ũ = rp.

Note that for this ũ,

Dũ = D(rp) = Hp,

where H is the Hessian matrix and so the MP property becomes what we call the Monge-
Ampère equation(Haker et al., 2004):

m
0

= |Hp|m
1

(rp).

Using the fact that the optimal solution has the form ũ = rp, we first find an initial mapping
u0 : (⌦

0

,m
0

) ! (⌦
1

,m
1

). Then, the polar factorization (Gangbo, 1994) of u0 with respect
to m

0

is

u0 = rp � st.

where p is a convex function and s is an MP mapping s : (⌦
0

,m
0

) ! (⌦
0

,m
0

). Since we
know the solution is of the form ũ = rp,

) rp = u0 � (st)�1

ũ = rp = u0 � (st)�1.

So, the problem of finding the optimal mapping now becomes the problem of finding the polar
factorization of our initial mapping u0 (Haker et al., 2004) . An important result (Strang and
Aarikka, 1986) that will come into play is that for a vector field u, we can decompose u into
the sum of a curl-free and a divergence-free vector field, called it’s Helmholtz decomposition,

u = rp+ ⇠,

where div(⇠) = 0. Let’s first find the initial mapping.

1A di↵eomorphism is a di↵erentiable map between manifolds that is bijective and has a di↵erentiable
inverse.
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Let’s consider ⌦
0

= ⌦
1

= [0, 1]2 to be rectangles. To find the initial mapping, let
u0(x, y) = (a(x), b(x, y)) (Knothe, 1957). We find a(x) by solving

Z
a(x)

0

Z
1

0

m
1

(⌘, y)dyd⌘ =

Z
x

0

Z
1

0

m
0

(⌘, y)dyd⌘. (11)

To find b(x, y), we solve

a0(x)

Z
b(x,y)

0

m
1

(a(x), ⇢)d⇢ =

Z
y

0

m
0

(x, ⇢)d⇢. (12)

We have thatDu =

✓
a
x

a
y

b
x

b
y

◆
and so |Du| = a

x

b
y

�b
x

a
y

. Note that a(x) is independent

of y so a
y

= 0. Hence, |Du| = a
x

b
y

. We need this fact to show that this u0 satisfies the MP
property. Di↵erentiating (5) with respect to y, we get

a0(x)b
y

(x, y)m
1

(a(x), b(x, y)) = m
0

(x, y)
a
x

b
y

m
1

= m
0

|Du|m
1

= m
0

.

For the cases where the domain is not a rectangle, we use the method of Moser(1965) and
Dacorogna and Moser(1990).

Now, take st to initially be the identity mapping and set ut = u0 � (st)�1. We want the
update for ut to satisfy the MP property and hence, s must also satisfy the MP property.
This gives us the evolution equations for st and ut (Haker et al., 2004):

st
t

=

✓
1

m
0

⇣

◆
� s, (13)

ut

t

= � 1

m
0

Dut⇣. (14)

Here, ⇣ is some vector field on ⌦
0

such that div(⇣) = 0 and h⇣,~ni=0, ~n being the normal to
the boundary of ⌦

0

.

Proof. We omit the proof for the evolution equation of st and just show the proof for ut

t

. We
know u0 = ut � st ) u0 = ut(st(x)) (Remember that st(x) gives us a new point x0 2 ⌦

0

).
Di↵erentiate with respect to t (Haker et al., 2004):

) 0 = ut

t

(st(x)) + (Du(st(x)))st
t

,
) ut

t

� st = �(Dut � st)st
t

,

) ut

t

= �Dutst
t

� (st)�1. (15)

Using the fact that st
t

=
⇣

1

m0
⇣
⌘
� st ) st

t

� (st)�1 = 1

m0
⇣. Plugging this into (8), we get our

evolution equation
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ut

t

= � 1

m0
Dut⇣.

Now, the question is, what should we take ⇣ as? We want to minimize the Monge-
Kantorovich functional so let us take the derivative with respect to t. This will lead us to a
conclusion of what to ⇣ should be. We find that (Haker et al., 2004)

�1

2
M

t

=

Z

⌦0

⌦
ut, ⇣

↵
. (16)

Proof. Recall that the MK functional is

M =

Z

⌦0

kut(x)� xk2m
0

(x)dx

=

Z

⌦0

kut(x)k2m
0

(x)dx� 2

Z

⌦0

⌦
ut(x), x

↵
m

0

(x)dx+

Z

⌦0

kxk2m
0

(x)dx.

Clearly, the last term is independent of t so the derivative with respect to t will be zero.
Consider

R
⌦0

kut(x)k2m
0

(x)dx. First, we show that m
0

(x)dx = m
0

(y)dy for y 2 ⌦
0

(Haker
et al., 2004). Since st is bijective, we can find y such that x = st(y) ) y = (st)�1(x). So,

m
0

(x)dx = m
0

(st(y))d(st(y)),

= m
0

(st(y))|Dst(y)|dy
= m

0

(y)dy.

where we have used the fact that st satisfies the MP property so m
0

(st(y))|Dst(y)| = m
0

(y).
Now, noting that ut = u0 � (st)�1(x) and (st)�1(x) = y,

Z

⌦0

kut(x)k2m
0

(x)dx =

Z

⌦0

ku0 � (st)�1(x)k2m
0

(x)dx

=

Z

⌦0

ku0(y)k2m
0

(y)dy,

and we see that this term is also independent of t. Hence, we are left with

M = �2

Z

⌦0

⌦
ut(x), x

↵
m

0

(x)dx

�1

2
M =

Z

⌦0

⌦
ut(x), x

↵
m

0

(x)dx

=

Z

⌦0

⌦
u0 � (st)�1(x), x

↵
m

0

(x)dx

=

Z

⌦0

⌦
u0(y), st(y)

↵
m

0

(y)dy.
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Taking derivative with respect to t,

�1

2
M

t

=

Z

⌦0

⌦
u0(y), st

t

(y)
↵
m

0

(y)dy

=

Z

⌦0

⌧
ut � st(y), 1

m
0

⇣ � st(y)
�
m

0

(y)dy

=

Z

⌦0

⌧
ut(x),

1

m
0

(x)
⇣(x)

�
m

0

(x)dx

=

Z

⌦0

⌦
ut(x), ⇣(x)

↵
dx

=

Z

⌦0

⌦
ut, ⇣

↵
.

Once we find the Helmholtz Decomposition of ut, ut = rp + �, we find that we take
⇣ = � (Haker et al., 2004).

Proof. Assuming we have found the Helmholtz Decomposition, we have that ut = rp + �
where div(�) = 0. Plugging this into (9), we get

�1

2
M

t

=

Z

⌦0

hrp+ �, ⇣i

=

Z

⌦0

hrp, ⇣i+
Z

⌦0

h�, ⇣i .

Using the property div(p⇣) = hrp, ⇣i+ pdiv(⇣), we then get

�1

2
M

t

=

Z

⌦0

(div(p⇣)� pdiv(⇣)) +

Z

⌦0

h�, ⇣i

=

Z

⌦0

div(p⇣) +

Z

⌦0

h�, ⇣i .

Using the divergence theorem,

�1

2
M

t

=

Z

�⌦0

(p⇣) · ~n+

Z

⌦0

h�, ⇣i

=

Z

�⌦0

p h⇣,~ni+
Z

⌦0

h�, ⇣i

=

Z

⌦0

h�, ⇣i ,

since h⇣,~ni = 0 on �⌦
0

.

From this, the easy logical choice is ⇣ = �. Now all that remains is finding the Helmholtz
Decomposition of ut.
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Helmholtz Decomposition The Helmholtz Decomposition of u can be found by setting
up a Neumann boundary problem (Haker et al., 2004). Knowing that div(⇣) = 0 and
h⇣,~ni = 0 on �⌦

0

,

ut = rp+ ⇣

) div(ut) = div(rp) + div(⇣),

div(ut) = �p.

Hence, the Neumann Boundary problem that we solve is

�p = div(ut), (17)

hrp,~ni =
⌦
ut,~n

↵
on �⌦

0

.

and we set � = ut�rp. Consider ut = div�1(rp) from (17). So, � = div�1(rp)�rp. Plug
this into our evolution equation (7) to get:

ut

t

= � 1

m
0

Dut(ut �r��1div(ut)). (18)

Note that, if ũ is the optimal mapping, it is given by ũ = rp, and we have

ũ�r��1div(ũ) = rp�r��1div(rp)

= rp�r��1�p

= rp�rp

= 0.

So, ũ
t

= 0 and we say that the process has achieved steady state (Haker et al., 2004).

Algorithm Summary Find the initial mapping u0 using the process described and let s
initially be the identity mapping. Let ut = u0 � (st)�1. Decompose ut into it’s Helmholtz
decomposition, ut = rp + � by solving (17). Use the � found to update ut according to
ut

t

= �1

m0
Dut�.

3.2 Reallocation Measures Approach

In this section, we generalize the notion of a mapping from u : ⌦
0

! ⌦
1

by identifying the
measure preserving map u by it’s Borel measure �

u

on ⌦
0

⇥ ⌦
1

(Angenent et al., 2003).

Suppose we have two borel measures µ
0

, µ
1

on ⌦
0

,⌦
1

with density functions m
0

and m
1

respectively, ie.

dµ
0

= m
0

(x)dx,

dµ
1

= m
1

(x)dx.

We want the same total mass associated with ⌦
0

and ⌦
1

, so

11



µ
0

(⌦
0

) = µ
1

(⌦
1

),

or
R
⌦0

m
0

(x)dx =
R
⌦1

m
1

(x)dx.

Given a map u : (⌦
0

, µ
0

) ! (⌦
1

, µ
1

) that satisfies the MP property (4), we introduce the
Borel measure �

u

on ⌦
0

⇥ ⌦
1

which is defined by

�
u

(E) = µ
0

({x 2 ⌦
0

: (x, u(x)) 2 E}).

This measure is the pushforward of µ
0

under the map (id⇥ u) so we write �
u

= (id⇥ u)
#

µ
0

(Angenent et al., 2003).
Since we want the map u to be measure preserving, we consider

⌅ = { Borel measures � � 0 on ⌦
0

⇥ ⌦
1

|(p
j

)
#

� = µ
j

, j = 0, 1},

where p
j

: ⌦
0

⇥ ⌦
1

! ⌦
j

is the canonical projection. Then, if the measure � has a density
m, ie. d�(x, y) = m(x, y)dxdy, � 2 ⌅ when

Z

⌦0

m(x, y)dx = m
1

(y),

Z

⌦1

m(x, y)dy = m
0

(x).

Finally, all measures � 2 ⌅ have total mass

�(⌦
0

⇥ ⌦
1

) = µ
0

(⌦
0

) = µ
1

(⌦
1

).

With respect to this measure, the MK functional is given by

M(�) = h�,�i =
Z

⌦0⇥⌦1

�(x, y)d�(x, y), (19)

where � : ⌦̄
0

⇥ ⌦̄
1

! R is a positive C1 cost function.
Also, we will need the following: for any bounded Borel measurable function � : ⌦

0

⇥⌦
1

! R,
we write

E (�(x, y)|x) =
R
⌦1

�(x, y)dP
x

(y)

for the expectation of �(x, ·) with respect to the probability measure P
x

(Angenent et al.,
2003).

As before, given an initial map u0, let ut = u0 � (st)�1 for a family of di↵eomorphisms
st : ⌦

0

! ⌦
0

. Note that since u0 sends µ
0

to µ
1

and st preserves the measure µ
0

then
ut = u0 � (st)�1 also sends µ

0

to µ
1

(Angenent et al., 2003).
This can be extended to an action on ⌅ by
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s · � = (s⇥ id
⌦1)#�.

The family of di↵eomorphisms st : ⌦
0

! ⌦
0

will be determined by it’s velocity defined by
@
t

st = vt � st (Angenent et al., 2003). We choose the velocity field such that we minimize
the MK functional (19).

Assume we have a single parameter family of µ
0

preserving C1 di↵eomorphisms st : ⌦
0

!
⌦

0

with velocity field vt and �t = st · � for some � 2 ⌅ (Angenent et al., 2003). Then,

dM(�t)

dt
=

d

dt

Z

⌦0⇥⌦1

�(x, y)d(st ⇥ id)
#

�(x, y)

=
d

dt

Z

⌦0⇥⌦1

�(st(x), y)d�(x, y)

=

Z

⌦0⇥⌦1

@
t

st · �
x

(st(x), y)d�(x, y)

=

Z

⌦0⇥⌦1

vt(st(x)) · �
x

(st(x), y)d�(x, y)

=

Z

⌦0⇥⌦1

vt(x) · �
x

(x, y)d�t(x, y). (20)

We need the following lemma to proceed.

Lemma 1. (Angenent et al., 2003) For any bounded measurable function F : ⌦
0

⇥ ⌦
1

! R
there exists a bounded measurable function F̃ : ⌦

0

! R for which
Z

⌦0⇥⌦1

�(x)F (x, y)d�(x, y) =

Z

⌦0

�(x)F̃ (x)dµ
0

(x) (21)

holds for all � 2 L1(⌦
0

; dµ
0

).

We denote F̃ by

F̃ (x) = E
�

(F (x, y)|x).

If � has density m(x, y) then

F̃ (x) = E
�

(F |x) =
Z

⌦1

F (x, y)
m(x, y)

m
0

(x)
dy. (22)

So, directly from (21), (20) becomes

dM(�t)

dt
=

Z

⌦0

vt(x) ·W t(x)dµ
0

(x), (23)

where
W t(x) = E

�

t(�
x

(x, y)|x), (24)

(Angenent et al., 2003). We use the notation P to denote the helmholtz projection. It
just means that div(P(�)) = 0 for any vector field �. We split W t by using the Helmholtz
decomposition to get
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W t = rpt + P(W t),

where div(P(W t)) = 0 (Angenent et al., 2003). Plugging this into (23), we get

dM(�t)

dt
=

Z

⌦0

m
0

(x)vt(x)P(W t)dx. (25)

The velocity field we choose (Angenent et al., 2003) is

vt =
�1

m
0

(x)
PA2P(W t), (26)

where A is an operator on the Hilbert space

~ = L2(⌦
0

)⌦ Rd.

See appendix for more details on operators and tensor products. We assume that A is a
bounded, symmetric, and injective operator on ~ (Angenent et al., 2003). We now state the
evolution equations for the measure �t, map ut, and st.

Evolution Equations Let �t = (st ⇥ id)
#

�0 for some initial �0 2 ⌅. The evolution
equation for �t (Angenent et al., 2003) is

@�t

@t
= r

x

·
✓

1

m
0

(x)
PA2P (E

�

t(�
x

|x)) �t

◆
. (27)

To derive the evolution equation of st, we assume that the operator PA2P can be represented
as an integral operator with kernel K(x, ⇠) (Angenent et al., 2003). So, for a vector field
W 2 L2(⌦

0

;Rd), we can write

(PA2PW ) (x) =
R
⌦0

K(x, ⇠)W (⇠)d⇠,

where dy is the Lebesgue measure, K(x, y) is an n⇥n matrix and K(x, y) ·W (y) is pointwise
matrix multiplication. Rewriting the velocity field by replacing PA2P with the integral
kernel, we get

vt(x) =
�1

m
0

(x)

Z

⌦0

K(x, ⇠)E
�

t (�
x

(⇠, ⌘)|⇠) d⇠

=
�1

m
0

(x)

Z

⌦0⇥⌦1

K(x, ⇠) · �
x

(⇠, ⌘)
d�t(⇠, ⌘)

m
0

(⇠)
from Lemma 1,

= �
Z

⌦0⇥⌦1

K(x, ⇠)

m
0

(x)m
0

(⇠)
· �

x

(⇠, ⌘)d�t(⇠, ⌘).

Recalling that @
t

st = vt � st and combining it with this velocity field, we get

@st

@t
= �

Z

⌦0⇥⌦1

K(st(x), ⇠)

m
0

(st(x))m
0

(⇠)
· �

x

(⇠, ⌘)d�t(⇠, ⌘). (28)

14



Using �t = (st ⇥ id)
#

�0, we get

@st

@t
= �

Z

⌦0⇥⌦1

K(st(x), st(⇠))

m
0

(st(x))m
0

(st(⇠))
· �

x

(st(⇠), ⌘)d�0(⇠, ⌘). (29)

Finally, if the measure �t is given by �t = �
u

t for ut : (⌦
0

, µ
0

) ! (⌦
1

, µ
1

), then u0 = ut � st.
The family of di↵eomorphisms ut satisfy the transport equation (Angenent et al., 2003)

@ut

@t
+ vt ·rut = 0. (30)

The velocity field is given by (26). However, for �t = �
u

t , we can take W t = �
x

(x, ut(x))
(Angenent et al., 2003) so we have

vt =
�1

m
0

(x)
PA2P{�

x

(x, ut(x))}. (31)

Plugging this into (30), we get our equation

@ut

@t
� 1

m
0

(x)
PA2P{�

x

(x, ut(x))} ·rut = 0. (32)

Now that we have our evolution equations set up, let’s discuss the notion of weak solutions.

Weak Solutions Let �t = (st⇥id)
#

�0 for a smooth family of di↵eomorphisms st : ⌦̄
0

! ⌦̄
0

whose velocity field is (26).

Definition 1. (Angenent et al., 2003) A weak solution to (27) is a map t 2 [0, T ) 7�! �t 2 ⌅
which is weak continuous and which satisfies

Z
t1

t0

(APE
�

t ('
x

|x) ,APE
�

t (�
x

|x))~ (33)

for all test functions ' 2 C1(⌦̄
0

⇥ ⌦̄
1

) and for all 0  t
0

< t
1

< T .

Definition 2. (Angenent et al., 2003) A classical solution is a family of measures {�t, t 2
[0, T )} of the form �t = (st ⇥ id)

#

�0 for some family of C1 di↵eomorphisms st : ⌦
0

! ⌦
0

whose velocity field vt = (@
t

st) � (st)�1 satisfies vt = �1

m0
PA2P{E

�

t (�
x

|x)}.

From (33), if we let ' = �, we get the energy identity:

Lemma 2. (Angenent et al., 2003)(Energy Identity) For any weak solution {�t, t 2 [0, T )}
and any 0  t

0

< t
1

< T , we have

Z
t1

t0

kAPE
�

t (�
x

|x) k2~dt = M(�t0)�M(�t1). (34)
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From this, we get the result

Lemma 3. (Angenent et al., 2003) For any weak solution {�t, t 2 [0, T )} the Monge-
Kantorovich cost functional is nonincreasing. It is constant if and only if PE

�

t (�
x

|x) = 0
for almost all t 2 [0, T ).

Proof. To show nonincreasing is simple: from the energy identity (34), M(�t0)�M(�t1) � 0
with 0  t

0

< t
1

< T . So, M(�t) is nonincreasing.
We now prove the if and only if statement.

) Assume the MK functional is constant. So, M(�t0) = M(�t1), t
0

< t
1

.
Then APE

�

t (�
x

|x) = 0 from the energy identity.
But, A is injective so PE

�

t (�
x

|x) = 0.

( This direction is trivial:
0 = M(�t0)�M(�t1) from the energy identity (34) for any 0  t

0

< t
1

< T .
M(�t0) = M(�t1).
Hence, M(�t) is constant.

Notice that when PE
�

t (�
x

|x) = 0, we get that E
�

t (�
x

|x) = rpt when we break
E

�

t (�
x

|x) into it’s Helmholtz decomposition. This is relevant because a critical point is
a measure � 2 ⌅ for which E

�

(�
x

|x) = rp for a lipschitz continuous function p : ⌦
0

! R
(Angenent et al., 2003).

Existence and Uniqueness of Solutions Recall the evolution equation of st. We can
construct classical solutions �t = (st ⇥ id)

#

�0 (Angenent et al., 2003) by adding an initial
condition (Angenent et al., 2003) and solving the initial value problem

@st

@t
= �

Z

⌦0⇥⌦1

K(st(x), st(⇠))

m
0

(st(x))m
0

(st(⇠))
· �

x

(st(⇠), ⌘)d�0(⇠, ⌘), (35)

s0(x) = x, x 2 ⌦
0

. (36)

We will write

F (s, �; ⇠, ⌘) =
K(st(x), st(⇠))

m
0

(st(x))m
0

(st(⇠))
· �

x

(st(⇠), ⌘). (37)

So, F is a map from ⌦
0

⇥ ⌦
0

⇥ ⌦
0

⇥ Rd to Rd (Angenent et al., 2003).

Theorem 1. (Angenent et al., 2003) Let the cost function � be C1. Assume the integral
kernel K of the smoothing operator A is C1,1. Then, for any initial measure �0 2 ⌅ the
initial value problem (35) has a solution {st 2 C1,1(⌦̄

0

; ⌦̄
0

) : 0 < t < 1}.
If the cost function � is C2 then the solution {st : t � 0} is unique.

We first prove the existence of a solution. To do this, we set up a fixed point argument
(Angenent et al., 2003). In order to use the argument, we will require to extend F. Then,
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we can define a solution to the initial value problem by a mapping with will have certain
properties that will allow us to use the Ascoli-Arzela theorem. Once we have all that, we
can apply the fixed point theorem. Let’s begin.

Theorem 2. (McOwen, 2003) Formulation of Fixed Point Theorem Let A be a closed
convex set in a Banach space X and T : A ! A be continuous such that T(A) is compact in
X. Then T has a fixed point.

In order to use the argument, we need the space of maps {st : ⌦
0

! ⌦
0

, 0  t < T} to be
linear. So, we instead regard the space of maps st : ⌦

0

! Rd. Hence, we extend F (s, �, ⇠, ⌘)
to include all (s, �, ⇠, ⌘) 2 Rd ⇥ Rd ⇥ ⌦

0

⇥ ⌦
1

(Angenent et al., 2003).
The following lemma states some important properties of our extended F , denoted F⇤.

Lemma 4. (Angenent et al., 2003) The extension F⇤ : Rd ⇥ Rd ⇥ ⌦
0

⇥ ⌦
1

! Rd of F is
continuous in (s, �), and uniformly Lipschitz in s 2 Rd,ie. 8� 2 Rd and ⌘ 2 ⌦

0

, ⌘ 2 ⌦
1

, we
have

|F⇤(s, �, ⇠, ⌘)� F⇤(s
0, �, ⇠, ⌘)|  M |s� s0|, (38)

for some M < 1. Also, F⇤ is uniformly bounded,

|F⇤(s, �, ⇠, ⌘)|  M 0, (39)

for some M 0 < 1 and 8s, � 2 Rdand⇠ 2 ⌦
0

, ⌘ 2 ⌦
1

.
If the cost function � is C2 then F⇤(s, �, ⇠, ⌘) is uniformly Lipschitz in (s, �) 2 Rd, ie.,

|F⇤(s, �, ⇠, ⌘)� F⇤(s
0, �0, ⇠, ⌘)|  M 00{|s� s0|+ |� � �0|}, (40)

for M 00 < 1, 8s, s0, �, �0 2 Rd and ⇠ 2 ⌦
0

,⌘ 2 ⌦
1

.

Before we can prove existence, we need the following definition in order to state the
Ascoli-Arzela theorem.

Definition 3. (Scheidemann, 2005) Let (X, d) be a compact metric space, (E, k · k
E

) a
Banach space, U ⇢ X an open subset and F a family of functions f : U ! E. The family F
is called equicontinuous if for every ✏ > 0 9� = �

✏

> 0 such that kf(x) � f(y)k < ✏ 8f 2 F
and x, y 2 U satisfying d(x, y) < �

Now we can state the Ascoli-Arzela theorem which will we will need in order to use the
fixed point argument.

Theorem 3. (Schlumprecht)(Generalized Ascoli-Arzela Theorem) Assume F ⇢ C(X, Y ) =
{f : X ! Y continuous}. Then F is compact if and only if

•
S

f2F f(X) is totally bounded,

• F is closed,

• F is equicontinuous.
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We are now ready to set up our fixed point problem. Given F⇤, let CT

(Angenent et al.,
2003) be the Banach space

C
T

= C0

�
[0, T ]⇥ ⌦

0

;Rd

�
.

Lemma 5. (Angenent et al., 2003) Let � 2 C
T

be given. Define s = F(�) to be the solution
of

@st

@t
=

Z

⌦0

F⇤(s
t(x), �t(⇠); ⇠, ⌘)d�0(⇠, ⌘), s0(x) = x. (41)

Then, ����
@st

@t

����  M 0|⌦
0

|, (42)

and ��st(x)� st(x0)
��  eM |⌦0|t|x� x0|. (43)

Note that (42),(43) imply that F(�) is compact by Ascoli-Arzela. Hence, F maps all of
C
T

into a compact subset of C
T

. So, by the fixed point theorem, there exists a fixed point
s
T

2 C
T

for F (Angenent et al., 2003). Therefore, the initial value problem (33) has a
solution on a finite time interval 0  t < T .

Finally, we can discuss uniqueness.

Theorem 4. (Angenent et al., 2003) If the cost function � is C2 then there is only one
solution.

Proof. Let st, s̄t 2 C
T

be any two solutions to the IVP and consider wt(x) = st(x) � s̄t(x)
(Angenent et al., 2003). Let

vt(s) =

Z

⌦0

F⇤(s, �
t(⇠); ⇠, ⌘)d�0(⇠, ⌘). (44)

So, @
t

st = vt(st) and @
t

s̄t = vt(s̄t). Then, by (40), it follows that

|vt(s)� vt(s̄)|  M |⌦
0

| sup
⇠2⌦0

|s(⇠)� s̄(⇠)|. (45)

Since |vt(s)� vt(s̄)| = |@
t

wt| and |s(⇠)� s̄(⇠)| = wt(⇠), we get

|@
t

wt|  M |⌦
0

| sup
⇠2⌦0

|wt(⇠)|. (46)

Then, by standard theorems for ODEs (Angenent et al., 2003), (46) implies

sup |wt|  eM
00|⌦0|tsup|w0|. (47)

Since w0 = s0 � s̄0 = x � x = 0 (since we have the same initial condition), we have that
wt = 0. Hence, st = s̄t.
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4 Conclusion

The optimal transport problem has many applications in areas such as image registration,
fluid dynamics, and economics (Angenent et al., 2003). We discussed two possible methods
of finding a solution to the optimal transport problem. We start by discretizing the domain
and so the transport problem becomes a matching problem. The brute force method of
using linear programming becomes computationally complex once we get into larger domains
(Haker et al., 2004).

We then introduce the approach of solving partial di↵erential equations. This becomes
the equivalent of finding the polar factorization of a measure preserving mapping. Compared
to the linear programming approach, this method is a lot more e�cient in terms of speed of
finding a solution (Haker et al., 2004).

5 Appendix

Tensor Products The tensor product of two vector spaces V and W, denoted V ⌦W , is
analogous to multiplication of integers. For example, Rn ⌦Rk = Rnk. Let {~e

1

, ..., ~e
n

} be the
basis for the V and {~f

1

, ..., ~f
n

} be the basis for W. Then, the basis for V ⌦ W is given by
~e
i

⌦ ~f
j

for i = 1, ..., n,j = 1, ...,m (Murayama).
The vector space V ⌦W is spanned by elements of the form V ⌦W (Rowland) such that

for v
1

, v
2

2 V , w
1

, w
2

2 W , and any scalar �

• (v
1

+ v
2

)⌦ w = v
1

⌦ w + v
2

⌦ w,

• v ⌦ (w
1

+ w
2

) = v ⌦ w
1

+ v ⌦ w
2

,

• ↵(v ⌦ w) = (↵v)⌦ w = v ⌦ (↵w).

Note that every element of V ⌦W can be written as
P

a
ij

v
i

⌦ w
j

,

where a
ij

are scalars.
Let’s give a simple example. Let V

1

, V
2

be independent spaces of real valued quadratic
functions on [0, 1] (McCullagh,1987). So,

V
1

= span{1, x
1

, x2

1

},
V
2

= span{1, x
2

, x2

2

}.

The tensor product W = V
1

⌦ V
2

is the space of functions on the unit square:

W = V
1

⌦ V
2

= span{1, x
1

, x2

1

, x
2

, x
1

x
2

, x2

1

x
2

, x2

2

, x
1

x2

2

, x2

1

x2

2

}.
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Smoothing Operators For the topic in this paper, the smoothing operators A have
to satisfy the assumptions made previously (Angenent et al., 2003). Here, we state some
possible smoothing operators as well as properties of the operators.

Lemma 6. (Angenent et al., 2003) Let ⌦
0

be a domain with C1,↵ boundary and let A
✏

be
the operator

A
✏

= e✏�N , ie. A
✏

w = (e✏�Nw
1

, ..., e✏�Nw
d

),

where �
N

is the Neumann Laplacian on ⌦
0

.
The operator PA2P is bounded from ~ to C1,↵(⌦;Rd) for any 0 < ↵ < 1.
The operator PA2P has an integral kernel K 2 C1,↵(⌦

0

⇥ ⌦
0

).

When ⌦
0

is a rectangle, so ⌦
0

= [0, ⇡]d, we can define another smoothing operator.

Lemma 7. (Angenent et al., 2003) Let A
✏

be the operator

A
✏

w = (e✏�1w
1

, ..., e✏�dw
d

),

where �
j

is the laplacian with Neumann boundary conditions on the sides x
j

= 0 and x
j

= ⇡
and Dirichlet boundary conditions on the other sides of the rectangle ⌦

0

.
The operator PA2P is bounded from ~ to C1,↵(⌦;Rd) for any 0 < ↵ < 1.
The operator PA2P has an integral kernel K 2 C1,↵(⌦

0

⇥ ⌦
0

).
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