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A GEOMETRIC APPROACH TO APRIORI ESTIMATES

FOR OPTIMAL TRANSPORT MAPS

SIMON BRENDLE, FLAVIEN LÉGER, ROBERT J. MCCANN, AND CALE RANKIN

Abstract. A key inequality which underpins the regularity theory of
optimal transport for costs satisfying the Ma–Trudinger–Wang condi-
tion is the Pogorelov second derivative bound. This translates to an
apriori interior C1 estimate for smooth optimal maps. Here we give a
new derivation of this estimate which relies in part on Kim, McCann and
Warren’s observation that the graph of an optimal map becomes a vol-
ume maximizing spacelike submanifold when the product of the source
and target domains is endowed with a suitable pseudo-Riemannian ge-
ometry that combines both the marginal densities and the cost.
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1. Introduction

Apriori second-derivative estimates for solutions of the Monge–Ampère
equation date back to Pogorelov [28, 29], who combined them with a third-
derivative estimate of Calabi [4] to deduce the regularity of solutions to
Minkowski’s problem. Such estimates have a rich history [30, 31]. They
play a key role in the regularity theory of optimal transportation, which in-
volve Monge–Ampère type equations whose exact form depends on the cost
optimized. For the quadratic cost function, this theory was developed by De-
lanoë [8] in the plane and by Urbas [36] in higher dimensions, parallel results
being obtained using different techniques by Caffarelli [1, 2, 3]. At the same
time, a regularity theory for reflector antenna design was developed by X.-
J. Wang [39], which can also be seen as an optimal transport problem with
the restriction of a logarithmic cost to the sphere [40]. For more general cost
functions, Ma, Trudinger and Wang [24, 33] identified a sufficient condition
for the regularity of optimal maps, whose necessity was deduced by Loeper
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[22]. Although challenging to interpret, Ma, Trudinger and Wang’s condi-
tion (A3) (and its weak variant (A3w)) were subsequently understood by
Kim and McCann as the positivity (respectively non-negativity) of certain
sectional curvatures of a pseudo-Riemannian metric induced on the prod-
uct of the source and target domains by the transportation cost [16]. With
Warren [18], Kim and McCann discovered that the graph of an optimal map
becomes a volume maximizing spacelike submanifold when the same metric
is conformally rescaled so that its volume gives the product of the source
and target densities.

The purpose of the present article is to exploit this geometric perspective
to give a new derivation of Pogorelov type apriori estimates for optimal maps
with respect to costs satisfying the Ma–Trudinger–Wang condition. Our
approach is different but related to the strategy developed for m = 2 = n
by Warren [41], who was indirectly inspired [20] by the same sources [38, 35]
as us. It yields new insights, which we hope may lead to further progress:
in particular, it allows us to separate the general structure of the maximum
principle estimate from the particulars of the application.

Although it will not be shown here, interior Pogorelov estimates persist
even under the weaker variant (A3w) of the Ma–Trudinger–Wang condition,
but the argument is more involved [21]; regularity of the optimal trans-
port map follows from appropriate domain convexity conditions [33]. For
the quadratic cost, 2-uniformity of the convexity required [3, 36, 33] was
recently relaxed by Chen, Liu and Wang [6, 7], though some smoothness
remains necessary [15]. Finally, it is interesting to note that for the qua-
dratic cost, Kim and McCann’s metric [16] restricted to the graph of optimal
map coincides with the Hessian metric of the solution of the Monge–Ampère
equation, introduced by Calabi [4].

The next section of this note gives a general estimate for maximal space-
like submanifolds in a fixed pseudo-Riemannian background. The last sec-
tion explains how to use this to recover and apply Ma, Trudinger and Wang’s
local C2 estimate for optimal maps.

2. Estimates for maximal spacelike submanifolds

Our ambient space will be a fixed manifold M̂ of dimension n+m. Let ĝ
be a pseudo-metric on M̂ of signature (n,m). Let D̂ denote the Levi-Civita

connection on M̂ , and let R̂ denote its Riemann curvature tensor. We adopt
the sign convention where

R̂(X,Y,Z,W ) = −ĝ(D̂XD̂Y Z − D̂Y D̂XZ − D̂[X,Y ]Z,W )

for all vector fields X,Y,Z,W on M̂ . Let Ê1, . . . , Ên+m denote a local frame

of vector fields on M̂ which are linearly independent at each point. At each
point on M̂ , the matrix ĝ(Êα, Êβ) is invertible; we denote its inverse by σ̂αβ .

We will also fix a smooth symmetric (0, 2)-tensor field Ŝ on M̂ .



APRIORI ESTIMATES FOR OPTIMAL TRANSPORT MAPS 3

We are interested in studying n-dimensional spacelike submanifolds of M̂ .
Given such a submanifold M , let g and S denote the respective restrictions
of ĝ and Ŝ to M . Since M is spacelike, g is positive definite. As in [27], let
D denote the Levi-Civita connection on M , and let D⊥ denote the connec-
tion on the normal bundle of M . We denote by II : TM × TM → T⊥M
the second fundamental form of M . In other words, if X and Y are two
tangential vector fields on M , then

II(X,Y ) = D̂XY −DXY.

The mean curvature vector of M is defined as the trace of II, which we
assume vanishes identically.

We will use the notation

(D̂V II)(X,Y ) = D̂V (II(X,Y ))− II(DV X,Y )− II(X,DV Y )

and

(D⊥
V II)(X,Y ) = D⊥

V (II(X,Y ))− II(DV X,Y )− II(X,DV Y )

for all tangential vector fields X,Y, V on M (compare [27], p. 114). Both
expressions are tensorial in X,Y, V . Moreover, (D⊥

V II)(X,Y ) ∈ T⊥M is the

normal component of (D̂V II)(X,Y ) ∈ TM̂ .
In the following, we assume that {e1, . . . , en} is a local orthonormal frame

on M and {e⊥1 , . . . , e
⊥
m} is a local orthonormal frame for the normal bundle

of M . Then ĝ(ek, el) = δkl, ĝ(e
⊥
p , e

⊥
q ) = −δpq, and ĝ(ek, e

⊥
p ) = 0.

Given (M̂ , ĝ, Ŝ), we consider an n-dimensional spacelike submanifoldM ⊂

M̂ with zero mean curvature. We will show that the restriction S of Ŝ
to M satisfies an elliptic partial differential equation with coefficients and
inhomogeneities given by ĝ and Ŝ and their first two derivatives. This
identity contains quadratic terms in the second fundamental form. Since
II(X,Y ) ∈ T⊥M and the metric on the normal space T⊥M is negative def-
inite, these quadratic terms have a favorable sign, allowing us to apply the
maximum principle. This calculation is inspired in part by identities found
for hypersurfaces by Calabi [5], and in the split geometry of the next section
by Mealy [26], Harvey and Lawson [14].

Proposition 1 (An elliptic identity for zero mean curvature submanifolds).

Let R̂ denote the Riemann curvature tensor and D̂ the Levi-Civita connec-

tion of a signature (n,m) pseudo-Riemannian manifold (M̂, ĝ). Let M ⊂ M̂
be an n-dimensional spacelike submanifold whose second fundamental form

II : TM × TM → T⊥M has vanishing trace. Let Ŝ be a symmetric (0, 2)-

tensor field on M̂ , and let S denote its restriction to M . Let Ê1, . . . , Ên+m

denote a local frame on M̂ , and e1, . . . , en denote a local orthonormal frame
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on M . Finally, let X,Y be tangential vector fields on M . Then

(∆S)(X,Y )

=
n
∑

l=1

(D̂2
el,el

Ŝ)(X,Y )

+ 2
n
∑

l=1

(D̂elŜ)(II(el,X), Y ) + 2
n
∑

l=1

(D̂elŜ)(X, II(el , Y ))

+ 2
n
∑

l=1

Ŝ(II(el,X), II(el, Y ))

−
n
∑

k,l=1

ĝ(II(el,X), II(el, ek))S(ek , Y )−
n
∑

k,l=1

ĝ(II(el, Y ), II(el, ek))S(X, ek)

−

n+m
∑

α,β=1

n
∑

l=1

σ̂αβ R̂(el,X, el, Êα) Ŝ(Êβ, Y )−

n+m
∑

α,β=1

n
∑

l=1

σ̂αβ R̂(el, Y, el, Êα) Ŝ(X, Êβ)

+

n
∑

k=1

n
∑

l=1

R̂(el,X, el, ek)S(ek, Y ) +

n
∑

k=1

n
∑

l=1

R̂(el, Y, el, ek)S(X, ek)

at each point on M , where σ̂αβ denotes the inverse of the matrix ĝ(Êα, Êβ).

Proof. In the following, X,Y, V,W will denote tangential vector fields on M .
By definition,

S(X,Y ) = Ŝ(X,Y ).

Differentiating this identity in direction W gives

(DWS)(X,Y ) = (D̂W Ŝ)(X,Y ) + Ŝ(II(W,X), Y ) + Ŝ(X, II(W,Y )).

Differentiating this identity in direction V , we obtain

(D2
V,WS)(X,Y ) = (D̂2

V,W Ŝ)(X,Y ) + (D̂II(V,W )Ŝ)(X,Y )

+ (D̂W Ŝ)(II(V,X), Y ) + (D̂W Ŝ)(X, II(V, Y ))

+ (D̂V Ŝ)(II(W,X), Y ) + (D̂V Ŝ)(X, II(W,Y ))

+ Ŝ(II(W,X), II(V, Y )) + Ŝ(II(V,X), II(W,Y ))

+ Ŝ((D̂V II)(W,X), Y ) + Ŝ(X, (D̂V II)(W,Y ))

at each point on M . We decompose the term (D̂V II)(W,X) into its tangen-
tial and normal components:

(1) (D̂V II)(W,X) = (D⊥
V II)(W,X) +

n
∑

k=1

ĝ((D̂V II)(W,X), ek) ek.
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Using the Codazzi equation, we obtain

(2) (D⊥
V II)(W,X) = (D⊥

XII)(V,W ) +

m
∑

p=1

R̂(V,X,W, e⊥p ) e
⊥
p

(see [27], p. 115). Note that the curvature term on the right hand side in (2)
comes with a plus sign, due to the fact that the metric on the normal space is
negative definite. Moreover, differentiating the identity ĝ(II(W,X), ek) = 0
in direction V gives

(3) ĝ((D̂V II)(W,X), ek) = −ĝ(II(W,X), II(V, ek)).

Substituting (2) and (3) into (1), we obtain

(D̂V II)(W,X) = (D⊥
XII)(V,W )−

n
∑

k=1

ĝ(II(W,X), II(V, ek)) ek

+
m
∑

p=1

R̂(V,X,W, e⊥p ) e
⊥
p(4)

at each point on M . Therefore,

(D2
V,WS)(X,Y )

= (D̂2
V,W Ŝ)(X,Y ) + (D̂II(V,W )Ŝ)(X,Y )

+ (D̂W Ŝ)(II(V,X), Y ) + (D̂W Ŝ)(X, II(V, Y ))

+ (D̂V Ŝ)(II(W,X), Y ) + (D̂V Ŝ)(X, II(W,Y ))

+ Ŝ(II(W,X), II(V, Y )) + Ŝ(II(V,X), II(W,Y ))

+ Ŝ((D⊥
XII)(V,W ), Y ) + Ŝ(X, (D⊥

Y II)(V,W ))

−

n
∑

k=1

ĝ(II(W,X), II(V, ek))S(ek, Y )−

n
∑

k=1

ĝ(II(W,Y ), II(V, ek))S(X, ek)

+

m
∑

p=1

R̂(V,X,W, e⊥p ) Ŝ(e
⊥
p , Y ) +

m
∑

p=1

R̂(V, Y,W, e⊥p ) Ŝ(X, e⊥p )

at each point on M . Next, we take the trace over V,W and use the fact
that the mean curvature vanishes to eliminate (derivatives of) the trace of



6 SIMON BRENDLE, FLAVIEN LÉGER, ROBERT J. MCCANN, AND CALE RANKIN

II. Thus,

(∆S)(X,Y )

=
n
∑

l=1

(D̂2
el,el

Ŝ)(X,Y )

+ 2
n
∑

l=1

(D̂elŜ)(II(el,X), Y ) + 2
n
∑

l=1

(D̂el Ŝ)(X, II(el , Y ))

+ 2
n
∑

l=1

Ŝ(II(el,X), II(el, Y ))

−
n
∑

k,l=1

ĝ(II(el,X), II(el, ek))S(ek, Y )−
n
∑

k,l=1

ĝ(II(el, Y ), II(el, ek))S(X, ek)

+
m
∑

p=1

n
∑

l=1

R̂(el,X, el, e
⊥
p ) Ŝ(e

⊥
p , Y ) +

m
∑

p=1

n
∑

l=1

R̂(el, Y, el, e
⊥
p ) Ŝ(X, e⊥p )

at each point on M . Using the identity

n+m
∑

α,β=1

σ̂αβ Êα ⊗ Êβ =

n
∑

k=1

ek ⊗ ek −

m
∑

p=1

e⊥p ⊗ e⊥p ,

the assertion follows. �

In the remainder of this section, we assume that Ŝ is positive definite. In
other words, Ŝ is a Riemannian metric on the ambient manifold M̂ .

Proposition 2. Under the hypotheses of Proposition 1, assume that Ŝ is

a positive definite symmetric (0, 2)-tensor field on M̂ , and let S denote its

restriction to M . Suppose that p0 is a point on M and {e1, . . . , en} ⊂ Tp0M
is an orthonormal basis with respect to g that diagonalizes S. Then there

exists a constant C = C(‖ĝ, ĝ−1, Ŝ‖C2({p0})) such that

(∆S)(en, en) ≥ 2

n
∑

l=1

(R̂(el, en, el, en)− CS(el, el))S(en, en)

at the point p0.
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Proof. Proposition 1 implies

(∆S)(en, en)

=

n
∑

l=1

(D̂2
el,el

Ŝ)(en, en) + 4

n
∑

l=1

(D̂elŜ)(II(el, en), en)

+ 2

n
∑

l=1

Ŝ(II(el, en), II(el, en))− 2

n
∑

l=1

ĝ(II(el, en), II(el, en))S(en, en)

− 2
n+m
∑

α,β=1

n
∑

l=1

σ̂αβ R̂(el, en, el, Êα) Ŝ(Êβ, en) + 2
n
∑

l=1

R̂(el, en, el, en)S(en, en)

at the point p0, where σ̂αβ denotes the inverse of the matrix ĝ(Êα, Êβ).
Since the preceding formula does not depend on the choice of the frame
Ê1, . . . , Ên+m, we may assume that the frame Ê1, . . . , Ên+m is chosen to

be orthonormal with respect to the fixed Riemannian metric Ŝ on ambient
space.

Clearly, II(el, en) is a normal vector for each l = 1, . . . , n. Since the metric
on the normal space is negative definite, it follows that

ĝ(II(el, en), II(el, en)) ≤ 0

for each l = 1, . . . , n. Therefore,

−2

n
∑

l=1

ĝ(II(el, en), II(el, en))S(en, en) ≥ 0.

We estimate the following multilinear expressions using the fixed Riemann-
ian metric Ŝ on ambient space (which reduces to S on the tangent space to
M):

n
∑

l=1

(D̂2
el,el

Ŝ)(en, en) ≥ −C

n
∑

l=1

S(el, el)S(en, en),

−2
n+m
∑

α,β=1

n
∑

l=1

σ̂αβ R̂(el, en, el, Êα) Ŝ(Êβ , en) ≥ −C
n
∑

l=1

S(el, el)S(en, en),

and

4
n
∑

l=1

(D̂el Ŝ)(II(el, en), en)

≥ −C
n
∑

l=1

S(el, el)
1

2 S(en, en)
1

2 Ŝ(II(el, en), II(el, en))
1

2
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at the point p0. Putting everything together, we obtain

(∆S)(en, en) ≥ −C

n
∑

l=1

S(el, el)S(en, en)

− C

n
∑

l=1

S(el, el)
1

2 S(en, en)
1

2 Ŝ(II(el, en), II(el, en))
1

2

+ 2

n
∑

l=1

Ŝ(II(el, en), II(el, en))

+ 2

n
∑

l=1

R̂(el, en, el, en)S(en, en)

at the point p0. The assertion now follows from Young’s inequality. �

Corollary 3. Under the hypotheses of Proposition 1, assume that Ŝ is a

positive definite symmetric (0, 2)-tensor field on M̂ , and let S denote its

restriction to M . Let ϕ̂ be a nonnegative smooth function on M̂ , and let ϕ
denote the restriction of ϕ̂ to M . Suppose that p0 is a point on M where

the largest eigenvalue of ϕ2n−2S with respect to the metric g attains its

maximum. Suppose that {e1, . . . , en} ⊂ Tp0M is an orthonormal basis with

respect to g that diagonalizes S, and S(en, en) is the largest eigenvalue of S
with respect to g at the point p0. Then

n
∑

l=1

R̂(el, en, el, en) ≤ Cϕ−2 S(en, en)

at the point p0. Here C = C(‖ĝ, ĝ−1, Ŝ, ϕ̂‖C2({p0})).

Proof. Since the largest eigenvalue of ϕ2n−2S with respect to the metric g
attains its maximum at p0, we know that

(5) (Del(ϕ
2n−2S))(en, en) = 0

for l = 1, . . . , n and

(6) (∆(ϕ2n−2S))(en, en) ≤ 0

at the point p0. Combining (5) and (6), we obtain

0 ≥ ϕ−2n+2 (∆(ϕ2n−2S))(en, en)

− (4n − 4)ϕ−2n+1
n
∑

l=1

dϕ(el) (Del(ϕ
2n−2S))(en, en)

= (∆S)(en, en) + (2n− 2)ϕ−1 (∆ϕ)S(en, en)(7)

− (2n − 2)(2n − 1)ϕ−2
n
∑

l=1

(dϕ(el))
2 S(en, en)
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at the point p0. On the other hand, Proposition 2 gives

(8) (∆S)(en, en) ≥ 2

n
∑

l=1

(R̂(el, en, el, en)− CS(el, el))S(en, en)

at the point p0. Since the mean curvature of M vanishes, we obtain

(9) ∆ϕ =

n
∑

l=1

(D̂2ϕ̂)(el, el) ≥ −C

n
∑

l=1

S(el, el)

Moreover,

(10)

n
∑

l=1

(dϕ(el))
2 =

n
∑

l=1

(dϕ̂(el))
2 ≤ C

n
∑

l=1

S(el, el)

at the point p0. Substituting (8), (9), and (10) into (7), we conclude that

0 ≥ 2
n
∑

l=1

(R̂(el, en, el, en)− Cϕ−2S(el, el))S(en, en)

at the point p0. Since S(el, el) ≤ S(en, en) for l = 1, . . . , n, the assertion
follows. �

3. Application to optimal transport.

Let X and X̄ be connected orientable manifolds having the same dimen-
sion n, equipped with nowhere vanishing smooth volume forms ρ and ρ̄
satisfying

∫

X
ρ = 1 =

∫

X̄
ρ̄. Although we shall often take M̂ = X × X̄,

it is useful to allow M̂ ⊂ X × X̄ to be any open domain equipped with a
bounded smooth cost function c ∈ C∞(M̂ ), and extend c to (X × X̄) \ M̂
lower semicontinuously (and boundedly). The optimal transportation prob-
lem of Kantorovich is to minimize

(11)

∫

X×X̄

c dγ

among joint measures γ ≥ 0 on X× X̄ having ρ and ρ̄ as their left and right
marginals. The basic insight gleaned from linear programming duality is the
existence of a pair of functions u ∈ L1(X, ρ) and ū ∈ L1(X̄, ρ̄) satisfying

(12) u(x) + ū(x̄) + c(x, x̄) ≥ 0 for all (x, x̄) ∈ X × X̄

such that γ minimizes (11) if and only if it vanishes outside the zero set of
(12), e.g. Theorem 5.10 of [37].

Monge’s version of the same problem is to find a Borel map F : X → X̄

which pulls ρ̄ back to ±ρ (depending on the sign of det(− ∂2c
∂xi∂x̄j )), such that

γ = (id × F )#ρ attains the minimum (11). We assume that the matrix
∂2c

∂xi∂x̄k dx
i ⊗ dx̄k is invertible at each point of M̂ , which is hypothesis (A2)

of Ma, Trudinger and Wang [24].
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We define a function χ : M̂ → (0,∞) so that
(13)

χ(x, x̄)n det
( ∂2c

∂xi∂x̄k
(x, x̄)

)

dx1 ∧ . . . dxn ∧ dx̄1 ∧ . . . ∧ dx̄n = ±ρ(x) ∧ ρ̄(x̄).

Note that χ is independent of the choice of coordinates. With this under-
stood,

(14) ĝ = −χ

n
∑

i,k=1

∂2c

∂xi∂x̄k
(dxi ⊗ dx̄k + dx̄k ⊗ dxi)

becomes the Kim–McCann–Warren [18] pseudo-metric on M̂ ⊂ X×X̄. The
induced volume form of ĝ is given by ±ρ ∧ ρ̄. In its original (strong) form,
the Ma–Trudinger–Wang condition (A3) is locally equivalent to the assertion
that

(15) R̂(ξ ⊕ 0̄, 0⊕ ξ̄, ξ ⊕ 0̄, 0⊕ ξ̄) > 0

for all points (x, x̄) ∈ M̂ and all tangent vectors ξ ∈ TxX and ξ̄ ∈ Tx̄X̄
satisfying ĝ(ξ ⊕ 0̄, 0 ⊕ ξ̄) = 0. Here, 0 ∈ TxX and 0̄ ∈ Tx̄X̄ denote zero
vectors, by Remark 4.2 of [18].

We next define a Riemannian metric Ŝ on M̂ . It is convenient to choose
the Riemannian metric Ŝ in a particular way. To explain this, let us fix a
Riemannian metric h on X and let volh denote its associated volume form.
We define a symmetric (0, 2)-tensor field h̄ on M̂ by

(16) h̄ = χ2
n
∑

k,l,p,q=1

hpq
∂2c

∂xp∂x̄k
∂2c

∂xq∂x̄l
dx̄k ⊗ dx̄l.

For each point x ∈ X, h̄ defines a Riemannian metric on X̄; denote its
volume form by volh̄. In view of (13), the volume forms of h and h̄ are related
by volh∧volh̄ = ±ρ∧ρ̄. With this understood, we define a Riemannian metric

Ŝ on M̂ by

(17) Ŝ = h+ h̄.

Note that Ŝ is not a product metric, as h̄ depends on x ∈ X. The induced
volume form of Ŝ, like ĝ, is given by ±ρ ∧ ρ̄.

Suppose that a diffeomorphism F : X → X̄ solves Monge’s transport
problem, so that the minimizer γ of (11) vanishes outside Graph(M) :=

{(x, F (x)) : x ∈ X}. Denote by g and S the restrictions of ĝ and Ŝ to

M := M̂ ∩ Graph(F ). Kim, McCann and Warren [18] show that M is
locally volume maximizing with respect to the metric ĝ, hence has zero
mean curvature with respect to ĝ.

Theorem 4 (Apriori local estimates for optimal diffeomorphisms). Let M̂ ⊂

X × X̄ be an open domain. Suppose that 0 ≤ ϕ̂ ∈ C∞(M̂ ) has compact
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support spt ϕ̂ ⊂ M̂ . Assume the Ma–Trudinger–Wang conditions (A2)-(A3)

hold on M̂ . Let κ be a positive constant with the property that

(18) R̂(ξ ⊕ 0̄, 0⊕ ξ̄, ξ ⊕ 0̄, 0⊕ ξ̄) ≥ κh(ξ, ξ) h̄(ξ̄, ξ̄)

for all points (x, x̄) ∈ spt ϕ̂ and all tangent vectors ξ ∈ TxX and ξ̄ ∈ Tx̄X̄
satisfying ĝ(ξ ⊕ 0̄, 0 ⊕ ξ̄) = 0. Let F : X → X̄ be a diffeomorphism that

minimizes Monge’s cost c between ρ and ρ̄. Then there is a constant C,

depending on ‖ĝ, ĝ−1, Ŝ, ϕ̂‖C2(spt ϕ̂) and ‖ log( ρ
volh

)‖C0(spt ϕ̂), such that

κn−1ϕ2n−2S ≤ Cg

on M . Here, ϕ denotes the restriction of ϕ̂ to M = M̂ ∩ Graph(F ), and g

and S denote the restrictions of ĝ and Ŝ from (14) and (17) to M .

Proof. We consider a point p0 = (x0, F (x0)) ∈ M where the largest eigen-
value of ϕ2n−2S attains its maximum. Such a point exists by the smoothness
of the objects in question and the compact support of ϕ̂. Let (x1, . . . , xn) be
a local coordinate system on X such that hij = δij at x0 and let (x̄1, . . . , x̄n)
denote a local coordinate system on X̄ such that h̄kl = δkl at (x0, F (x0)).

Recall there exist u ∈ L1(X, ρ) and ū ∈ L1(X̄, ρ̄) satisfying the inequality
(12) with equality on M :

(19) u(x) + ū(F (x)) + c(x, F (x)) = 0.

From smoothness of c at (x, F (x)) it follows that u is continuous and semi-
convex in a neighbourhood of x, as in [25]. The first and second-order
conditions for (12),(19) assert

(20)
∂u

∂xi
+

∂c

∂xi

∣

∣

∣

x̄=F (x)
= 0 i = 1, . . . , n,

and symmetric nonnegative definiteness of (Bij)1≤i,j≤n given by

(21) Bij :=
∂2u

∂xi∂xj
+

∂2c

∂xi∂xj

∣

∣

∣

x̄=F (x)
.

A priori these conditions hold almost everywhere, but smoothness of u then
follows from the hypothesized smoothness of F and (20), whence both con-
ditions actually hold everywhere. Differentiating (20) yields

(22) Bij = −

n
∑

k=1

∂2c

∂xi∂x̄k
∂F k

∂xj
.

Since F#ρ̄ = ±ρ by hypothesis, we find

det(B) dx1∧· · ·∧dxn∧ ρ̄
∣

∣

∣

x̄=F (x)
= ± det

( ∂2c

∂xi∂x̄k

)
∣

∣

∣

x̄=F (x)
ρ∧dx̄1∧· · ·∧dx̄n

As (A2) ensures the last term is non-vanishing on M̂ , nonnegative definite-
ness of the symmetric matrix B improves to positive definiteness on M .
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In the coordinates we have chosen, volh = ±dx1 ∧ · · · ∧ dxn and volh̄ =
±dx̄1 ∧ · · · dx̄n at the point (x0, F (x0)). Therefore,

det(B)
ρ̄

volh̄
= ± det

( ∂2c

∂xi∂x̄k

) ρ

volh

at the point (x0, F (x0)). Moreover, (13) implies χn det( ∂2c
∂xi∂x̄k ) = ± ρ

volh

ρ̄
volh̄

at the point (x0, F (x0)). This gives

χn det(B) =
( ρ

volh

)2

at the point x0. Hence, if we put A := χB, then

(23) det(A) =
( ρ

volh

)2

at the point x0. In the next step, we relate the eigenvalues of A with respect
to h to the eigenvalues of S with respect to g. By a suitable choice of the
coordinates (x1, . . . , xn), we can arrange that Aij = λi δij as well as hij = δij
at x0. We define

(24) ξi =
∂

∂xi
∈ Tx0

X, ξ̄i = λ−1
i

n
∑

k=1

∂F k

∂xi
∂

∂x̄k
∈ TF (x0)X̄

for i = 1, . . . , n. Then

(25) ĝ(ξi ⊕ 0̄, 0 ⊕ ξ̄j) = −λ−1
j χ

n
∑

k=1

∂2c

∂xi∂x̄k
∂F k

∂xj
= λ−1

j Aij = δij

for i, j = 1, . . . , n. Moreover, h(ξi, ξj) = δij and

h̄(ξ̄i, ξ̄j) = λ−1
i λ−1

j χ2
n
∑

k,l,p,q=1

hpq
∂2c

∂xp∂x̄k
∂2c

∂xq∂x̄l
∂F k

∂xi
∂F l

∂xj

= λ−1
i λ−1

j

n
∑

p,q=1

hpq ApiAqj(26)

= δij

for i, j = 1, . . . , n. We next define

ei = (2λi)
− 1

2 (ξi ⊕ λi ξ̄i) ∈ T(x0,F (x0))M

and

µi =
1

2
(λi + λ−1

i )

for i = 1, . . . , n. Then

ĝ(ei, ej) = (2λi)
− 1

2 (2λj)
− 1

2 (λj ĝ(ξi ⊕ 0̄, 0⊕ ξ̄j) + λi ĝ(0⊕ ξ̄i, ξj ⊕ 0̄)) = δij

and

S(ei, ej) = (2λi)
− 1

2 (2λj)
− 1

2 (h(ξi, ξj) + λiλj h̄(ξ̄i, ξ̄j)) = µi δij
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for i, j = 1, . . . , n. Thus, {e1, . . . , en} ⊂ T(x0,F (x0))M is an orthonormal
basis with respect to g which diagonalizes S. Moreover, the eigenvalues of
S with respect to g at the point p0 are given by µ1, . . . , µn. Without loss of
generality, we may assume that µi ≤ µn for i = 1, . . . , n − 1, so that µn is
the largest eigenvalue of S with respect to g at the point p0.

Note that ĝ(ξi ⊕ 0̄, 0 ⊕ ξ̄j) = ĝ(ξn ⊕ 0̄, 0 ⊕ ξ̄j) = 0 for i = 1, . . . , n − 1.
Moreover, it follows from (24) and (26) that h(ξi, ξi) = h(ξn, ξn) = h̄(ξ̄i, ξ̄i) =
h̄(ξ̄n, ξ̄n) = 1 for i = 1, . . . , n − 1. Therefore, the uniform Ma–Trudinger–
Wang condition (18) yields

R̂(ξi ⊕ 0̄, 0⊕ ξ̄n, ξi ⊕ 0̄, 0⊕ ξ̄n) ≥ κh(ξi, ξi) h̄(ξ̄n, ξ̄n) = κ

and

R̂(ξn ⊕ 0̄, 0⊕ ξ̄i, ξn ⊕ 0̄, 0 ⊕ ξ̄i) ≥ κh(ξn, ξn) h̄(ξ̄i, ξ̄i) = κ

for i = 1, . . . , n − 1. Using the special structure of the curvature tensor R̂
described in Remark 4.2 of [18] and Lemma 4.1 of [16], we obtain

R̂(ξi ⊕ 0̄, ξn ⊕ 0̄, ξi ⊕ 0̄, ξn ⊕ 0̄) = 0

and

R̂(0⊕ ξ̄i, 0⊕ ξ̄n, 0⊕ ξ̄i, 0⊕ ξ̄n) = 0.

This implies

R̂(ξi ⊕ λi ξ̄i, ξn ⊕ λn ξ̄n, ξi ⊕ λi ξ̄i, ξn ⊕ λn ξ̄n)

≥ R̂(ξi ⊕ 0̄, ξn ⊕ 0̄, ξi ⊕ 0̄, ξn ⊕ 0̄) + λ2
n R̂(ξi ⊕ 0̄, 0⊕ ξ̄n, ξi ⊕ 0̄, 0⊕ ξ̄n)

+ λ2
i R̂(0⊕ ξ̄i, ξn ⊕ 0̄, 0⊕ ξ̄i, ξn ⊕ 0̄) + λ2

i λ
2
n R̂(0⊕ ξ̄i, 0⊕ ξ̄n, 0⊕ ξ̄i, 0⊕ ξ̄n)

− Cλn − Cλi −Cλiλn − Cλiλ
2
n − Cλ2

iλn

≥ κ (λ2
n + λ2

i )− Cλn − Cλi −Cλiλn − Cλiλ
2
n − Cλ2

iλn

for i = 1, . . . , n − 1. This implies

R̂(ei, en, ei, en) ≥
κ

4
(λ−1

i λn + λiλ
−1
n )− C (λn + λ−1

n )− C (λi + λ−1
i )− C

for i = 1, . . . , n − 1. In the next step, we sum over i = 1, . . . , n − 1. Since
1 ≤ µi ≤ µn for i = 1, . . . , n− 1, it follows that

(27)

n−1
∑

i=1

R̂(ei, en, ei, en) ≥
κ

4

n−1
∑

i=1

(λ−1
i λn + λiλ

−1
n )− Cµn.

Using (23), we obtain
∏n

i=1 λi = detA =
(

ρ
volh

)2
at (x0, F (x0)). Using the

arithmetic-geometric mean inequality, we obtain

(28)

n−1
∑

i=1

λ−1
i ≥ (n − 1)

( n−1
∏

i=1

λ−1
i

)
1

n−1

≥
1

C
λ

1

n−1

n
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and

(29)
n−1
∑

i=1

λi ≥ (n− 1)

( n−1
∏

i=1

λi

)
1

n−1

≥
1

C
λ
− 1

n−1

n .

Substituting (28) and (29) into (27) gives

(30)

n−1
∑

i=1

R̂(ei, en, ei, en) ≥
κ

C
µ

n
n−1

n − Cµn.

On the other hand, Corollary 3 implies

(31)

n−1
∑

i=1

R̂(ei, en, ei, en) ≤ Cϕ−2µn.

Combining (30) and (31), we conclude that κµ
n

n−1

n ≤ Cϕ−2µn +Cµn. Since
ϕ ≤ C, it follows that κn−1ϕ2n−2µn ≤ C. This shows that the largest
eigenvalue of κn−1ϕ2n−2S is uniformly bounded from above at the point
(x0, F (x0)), and hence on all of spt ϕ̂. �

Remark 5 (Quantitatively spacelike, slope, recovery of C1 bounds). We
may view the apriori lower bound κn−1ϕ2n−2S ≤ Cg given by Theorem 4
as quantifying the spacelikeness of Graph(F ). Since ĝ vanishes on the hor-
izontal fibres X × {x̄} and vertical fibres {x} × X̄, a fortiori this quantifies
the transversality with which F intersects these fibres, thus translating to a
C1 bound for F−1 and for F . More explicitly, the estimate in Theorem 4 is
equivalent to the inequality

(32) λi + λ−1
i ≤ Cκ1−nϕ2−2n

for i = 1, . . . , n, where λ1, . . . , λn denote the eigenvalues of A = χB with
respect to the metric h. The inequality (32) implies two separate bounds for
λi and for λ−1

i . The bound for λi quantifies the transversality with which the
graph of F intersects the vertical fibers {x}×X̄; it corresponds to an interior
C1-estimate for F . The bound for λ−1

i quantifies the transversality with
which the graph of F intersects the horizontal fibers X×{x̄}; it corresponds
to an interior C1-estimate for F−1. In the setting of Ma–Trudinger–Wang,
we may take X,X as open subsets ofRn and h as the usual Euclidean metric;
the definition (21) of B then implies the Ma–Trudinger–Wang estimates as
they appear in [24].

Remark 6 (Optimal maps and dual potentials). The potentials u ∈ L1(X, ρ)
and ū ∈ L1(X̄, ρ̄) from (12) which certify optimality of γ in (11) can be inter-
preted as Lagrange multipliers for the marginal constraints ρ and ρ̄. When
M̂ = X × X̄ , then u is well-known to become continuous and semiconvex
if the second x derivatives of c are bounded locally on X uniformly with
respect to x̄ ∈ X̄; similarly ū is semiconvex if the corresponding condition
holds under the interchange x ↔ x̄, e.g. [25]. A sufficient condition for
existence of a Borel solution F : X → X̄ to Monge’s problem is then that
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x ∈ X 7→ c(x, x̄)−c(x, x̄′) be free from critical points for all x̄′ 6= x̄ ∈ X̄. Un-
der hypothesis (A1) of [24], which asserts that both c and c̃(x̄, x) = c(x, x̄)
satisfy this restriction, the solution F is injective outside a ρ-negligible set.
If, in addition, F happens to be continuously differentiable, then it follows
from non-degeneracy (A2) that F is a diffeomorphism, arguing as in the
second paragraph of the proof of Theorem 4. Higher regularity can be boot-
strapped by applying Evans [11] or Krylov [19] and then standard elliptic
theory [13].

Remark 7 (Regularity of weak solutions). Diffeomorphisms F : X → X̄
solving Monge’s problem may or may not exist [1, 22], depending on the
choice of volume forms ρ, ρ̄ and the cost c. Under an additional hypothesis
— equivalent to geodesic convexity of the vertical fibers {x}×X̄ with respect
to the Kim-McCann metric [16], or equivalently the Kim-McCann-Warren
metric ĝ — Ma, Trudinger and Wang construct a diffeomorphism by starting
from a c-convex potential u which solves the dual problem and showing it
uniquely solves the associated Monge–Ampère type equation in the sense of
Alexandrov. To establish interior regularity of u, Ma, Trudinger, and Wang
use the continuity method to construct a smooth solution of the Monge–
Ampère type equation which is defined on a small ball and agrees with u
on the boundary of the ball a priori, and a posteriori on its interior. This
involves deforming the boundary data given by u to a new set of boundary
data which is smooth and c-convex; this argument was extended to generated
Jacobian equations in [34]. Independently of the regularization parameter,
the C2-estimate ensures the solution of the Monge–Ampère type equation
is uniformly elliptic, hence c-convex [32, 16], after which higher regularity
follows from Evans–Krylov and standard elliptic theory as in Remark 6.

Remark 8 (Boundary behaviour, global regularity, compact manifolds).
Theorem 4 only addresses interior regularity. Studying the boundary regu-
larity requires additional techniques, as in e.g. [2, 3, 36, 33, 7].

If X and X̄ are compact manifolds without boundary, taking M̂ = X×X̄
is inconsistent with global non-degeneracy (A2) of ĝ. However, in some

situations it is possible to identify an open subset M̂ ⊂ X × X̄ , where the
conditions (A2)-(A3) are satisfied. If we know that Graph(F ) is contained

in such a subset M̂ , then Theorem 4 yields a global estimate, extending [41]
to dimensions n > 2.

As an example, suppose that we take X and X̄ to be the round sphere
Sn and define the cost function c by c(x, x̄) = d2(x, x̄)/2. In this case, we

may take M̂ to be the set where c is smooth (i.e. the complement of the
cut locus). If the densities ρ and ρ̄ are bounded from above and below, it
is known [10] that Graph(F ) is disjoint from the cut locus. Regularity then
follows [23]. This line of reasoning can be generalized to perturbations [9],
submersions [17] or products [12] of round spheres.



16 SIMON BRENDLE, FLAVIEN LÉGER, ROBERT J. MCCANN, AND CALE RANKIN

References

[1] Luis A. Caffarelli. The regularity of mappings with a convex potential. J. Amer.
Math. Soc., 5(1):99–104, 1992.

[2] Luis A. Caffarelli. Boundary regularity of maps with convex potentials. Comm. Pure
Appl. Math., 45(9):1141–1151, 1992.

[3] Luis A. Caffarelli. Boundary regularity of maps with convex potentials. II. Ann. of
Math. (2), 144(3):453–496, 1996.

[4] Eugenio Calabi. Improper affine hyperspheres of convex type and a generalization of
a theorem by K. Jörgens. Michigan Math. J., 5:105–126, 1958.

[5] Eugenio Calabi. Examples of Bernstein problems for some nonlinear equations. In
Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif.,
1968), Proc. Sympos. Pure Math., XIV-XVI, pages 223–230. Amer. Math. Soc., Prov-
idence, RI, 1970.

[6] Shibing Chen, Jiakun Liu, and Xu-Jia Wang. Global regularity of optimal mappings
in non-convex domains. Sci. China Math., 62(11):2057–2072, 2019.

[7] Shibing Chen, Jiakun Liu, and Xu-Jia Wang. Global regularity for the Monge-Ampère
equation with natural boundary condition. Ann. of Math. (2), 194(3):745–793, 2021.
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