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Abstract
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inequalities and regularity results in some applications of optimal transportation
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2012

In this thesis we study three different problems: convex ancient solutions to the power-of-
mean curvature flow; Sharp inequalities; regularity results in some applications of optimal
transportation.

The second chapter is devoted to the power-of-mean curvature flow; We prove some
estimates for convex ancient solutions (the existence time for the solution starts from
—0o0) to the power-of-mean curvature flow, when the power is strictly greater than %
As an application, we prove that in two dimension, the blow-down of an entire convex

L|x|1+a

translating solution, namely u; = %u(hl%ax), locally uniformly converges to

as h — oco. The second application is that for generalized curve shortening flow (convex
curve evolving in its normal direction with speed equal to a power of its curvature), if
the convex compact ancient solution sweeps the whole space R?, it must be a shrinking
circle. Otherwise the solution must be defined in a strip region. In the first section of the
third chapter, we prove a one-parameter family of sharp conformally invariant integral
inequalities for functions on the n-dimensional unit ball. As a limiting case, we obtain
an inequality that generalizes Carleman’s inequality for harmonic functions in the plane
to poly-harmonic functions in higher dimensions. The second section represents joint
work with Tobias Weth and Rupert Frank; the main result is that, one can always put

a sharp remainder term on the righthand side of the sharp fractional sobolev inequality.
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In the first section of the final chapter, under some suitable condition, we prove that the
solution to the principal-agent problem must be C'!. The proof is based on a perturbation
argument. The second section represents joint work with Emanuel Indrei; the main result
is that, under (A3S) condition on the cost and c-convexity condition on the domains, the

free boundary in the optimal partial transport problem is C'?.
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Chapter 1

Introduction

1.1 The power-of-mean curvature flow

Classifying ancient convex solution to mean curvature flow is very important in studying
the singularities of mean curvature flow. Translating solutions arise as a special case of
ancient solution when one uses a proper procedure to blow up the mean convex flow near
type 1I singular points, and general ancient solutions arise at general sigularities. Some
important progress was made by Wang [69], and Daskalopoulos, Hamilton and Sesum
[29]. In [69] Wang proved that an entire convex translating solution to mean curvature
flow must be rotationally symmetric which was a conjecture formulated explicitly by
White in [68]. Wang also constructed some entire convex translating solution with level
set neither spherical nor cylindrical in dimension greater than or equal to 3. In the same
paper, Wang also proved that if a convex ancient solution to the curve shortening flow
sweeps the whole space R?, it must be a shrinking circle, otherwise the convex ancient
solution must be defined in a strip region and he indeed constructed such solutions by
some compactness argument. Daskalopoulos, Hamilton and Sesum [29] showed that
apart from the shrinking circle, the so called Angenent oval(a convex ancient solution of

the curve shortening flow discovered by Angenent that decomposes into two translating
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solutions of the flow) is the only other embedded convex compact ancient solution of the
curve shortening flow. That means the corresponding curve shortening solution defined

in a strip region constructed by Wang is exactly the “Angenent oval”.

The power-of-mean curvature flow, in which a hypersurface evolves in its normal
direction with speed equal to a power « of its mean curvature H, was studied by Andrews
[, 2], [3], Schulze [61], Chou and Zhu [28] and Sheng and Wu [64] . Schulze [61] called
it H*-flow. In the following, we will also call the one dimensional power-of-curvature
flow the generalized curve shortening flow. Similar to the mean curvature flow, when one
blows up the flow near the type II singularity appropriately, a convex translating solution
will arise, see [64] for details. It will be very interesting if one could classify the ancient
convex solutions. In the second chapter of this thesis, we use the method developed by
Wang [69] to study the geometric asymptotic behavior of ancient convex solutions to H®-
flow. The general equation for H*-flow is %—f = —H°V, where F : M x[0,T) — R"" is a
time-dependent embedding of the evolving hypersurface, ¥ is the unit normal vector to the
hypersurface F/(M,t) in R™"! and H is its mean curvature. If the evolving hypersurface
can be represented as a graph of a function u(z,t) over some domain in R", then we

can project the evolution equation to the (n + 1)th coordinate direction of R"™! and the

equation becomes

1+ |Du|?

Then a translating solution to the H*-flow will satisfy the equation

u = /14 |Du|? <div(L)> :

Du

V' 1+ [Dul?

1+ |Dul?(div( N =1,
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which is equivalent to the following equation (|1.3) when o =1,

Lo(u) = (Vo + \Du|2)idiv(\/%) (1.1)

11 = U; Uy
= (o +1DuP)s 3 32 (5 — P 2

i,j=1

=1, (1.3)

where o € [0,1], a € (3,

oo| is a constant, n = 2 is the dimension of R?. If u is a convex
solution of (1.3]), then u + ¢, as a function of (z,t) € R? x R, is a translating solution to

the flow

/ (i DU \a
ur = /0 + |Dul| (dlv(\/m)). (1.4)

When ¢ = 1, equation (1.4]) is the non-parametric power-of-mean curvature flow. When
o = 0,(1.3]) is the level set flow. That is, if u is a solution of ([1.3)) with o = 0, the level

set {u = —t}, where —oco < t < —inf u, evolves by the power-of-mean curvature.

In the following we will assume o € [0,1], @ € (1,00] and the dimension n = 2,
although some of the estimates do hold in high dimension. The main results of the

second chapter are the following theorems.

Theorem 1. Let u be an entire convezr solution of (1.3)). Let up(x) = h_lu(hl%ax).

Then uy, locally uniformly converges to ﬁ’x|1+a7 as h — oo.

Theorem 2. Let u, be an entire convex solution of (L3). Then ug(x) = mz |z up to
a translation of the coordinate system. When o € (0,1], if |D*u(z)| = O(|z|?) as |z| —
00, for any fized constant 5 satisfying f < 3a— 2, then u, is rotationally symmetric after

a proper translation of the coordinate system.

Corollary 1. A convex compact ancient solution to the generalized curve shortening flow

which sweeps the whole space R? must be a shrinking circle.
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Remark 1.1.1. . The condition o > % 1s necessary for our results. One can consider
the translating solution v(z) to (1.3) with o =1 in one dimension. In fact when o < 3,
the translating solution v(x) is a convex function defined on the entire real line ([28] page
28). Then one can construct a function u(x,y) = v(z) — y defined on the entire plane,

and w will satisfy (1.3) with o =0 and it is obviously not rotationally symmetric.

We would also like to point out that this elementary construction can be used to
give a slight simplification of Wang’s proof for Theorem 2.1 in [69]( corresponding to our
Corollary [3| for « = 1). Let v, be an entire convex solution to in dimension n with
o € (0,1]. Then u(x,y) = v,(x) — /oy will be an entire convex solution to in
dimension n 4+ 1 with ¢ = 0. Hence if one has proved the estimate in Corrollary |3 for
o = 0 in all dimensions, the estimates for o € (0, 1] follows immediately from the above

construction.

1.2 Conformally invariant inequalities and remain-

der terms in the fractional Sobolev Inequality

1.2.1 Carleman type conformally invariant inequalities

There is a well known inequality by Carleman [17]

1
/ egudxg—(/ e"df)?, (1.5)
By A Jop,

for all harmonic functions in the unit ball B, of R%. Equality occurs exactly for u = ¢
and u = —2log |r — x| + ¢, where ¢ is a constant and x5 € R? — B,.

Although Carleman proved initially for harmonic functions, it follows from the
maximum principle that inequality holds for subharmonic functions. Beckenbach

and Rado [8] used Carleman’s inequality to prove the isoperimetric inequality on a surface
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with non-positive Gauss curvature: If on a surface with non-positive Gauss curvature an
analytic curve C of length L encloses a simply-connected domain D of area A, then the
inequality

L? > 47 A

holds. This is exactly the sharp isoperimetric inequality in the plane. Their proof is
quite simple: In isothermal coordinates (x,y) for a simply-connected domain D which is
slightly larger than D, then the metric on D can be written as e2*(da2+dy?), for (x,v) in
some bounded domain Q2 € R%. Now, the coordinate image of D in 2 is a Jordan domain,
so by the Riemann mapping theorem we can map it to By conformally, which means D
with the metric induced by the metric of the surface is isometric to (Bs, e*g), where u
is a subharmonic function (By the non-positive curvature condition). Beckenbach and

Rado’s result now follows directly from Carleman’s inequality.

The 2008 paper by Hang, Wang and Yan [45], generalized this inequality to higher

dimensions as follows. For any harmonic function « in the unit ball B, C R,

n—2

77:17:2 T 2n(n—1)
HUHL%(B,L) < n 20Dy, HUHL2(::21) (BBn)7

(1.6)

where n > 3 and w, is the volume of B,,. Any constant is an optimizer and it is unique
up to a conformal transformation (as will be explained before the proof of Theorem 4).
This is a special case of our Theorem (a = 0), and again because of the maximum
principle, this inequality holds for subharmonic functions. Hang, Wang and Yan inter-
preted their inequality as the isoperimetric inequality for B, with metric pﬁ g, where

p is subharmonic (which means non-positive scalar curvature). By using the conformal

map (|1.10)), the equivalent form of inequality (3.17)) in the upper-half space is

s TEeT)
HPfHL%(Ri) < Dy, HfHng:L:;) &1y’ (1.7)
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2(n=1)

for all f € L =

(R™1). Here R™"! is the boundary of R} and Pf is the harmonic

C

extension of f to the upper halfspace. The optimizers are f(Y) = ————— , for
(A2+Y=Yo[?) 2~

some constant ¢, positive constant A and Yy € R* L,

In the first section of the third chapter of this thesis we prove an analogous result
for a one-parameter family {P,}s_,<.<1 of Poisson-type kernels on B,,, which includes
Hang, Wang, and Yan theorem thanks to the fact that Fy = P, and which includes some
new interesting cases, like k-harmonic functions in By, corresponding to the choices
a = 2 — 2k, n = 2k (thus providing another direction of generalization of Carlemans
inequality).

In the following B,, denotes the n-dimensional unit ball in Euclidean space, ||u| s ()
is the L? norm of function u defined on domain €2, | B,| is the volume of B,, and ¢(n, a, p)
is some constant which depends on n,a and p. The parameter a satisfies 2 —n < a < 1.
Before giving the main theorems, we will give an interesting corollary for the reason that
it is easy to state and it is clearly a natural generalization of Carleman’s inequality in

four dimension.

Corollary 2. For any u satisfying A*u < 0 on By and _3_3 <1 on 0By, where 7 is the

outer normal of 0By, we have

(/34 etdz)t < 5(/834 M)} (1.8)

The sharp constant is assumed by the solution of A*u = 0 in By with boundary values

_g_::landu:() on 0B4.

For a function f defined on R"~! (thought of as the boundary of the upper half-space

R" ), we define a poly-harmonic extension as follows: for (X, z,) € R} = R" ! x (0, +00),

xlfa

X0 =t || o Y. (1.9
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Here the choice of integrand guarantees independence of P,1 on (X, x,), while a < 1
ensures P,1 < oo, and the normalization constants d,, , are chosen so that P,1 =1 (and
can be expressed explicitly using I" functions). Recalling that inversion in the unit sphere
maps the halfspace z,, > 1/2 to the unit ball centered at (0,1), we see the conformal

map

(X,xn+%)

—(0,1) (1.10)

maps the upper halfspace z,, > 0 to the standard ball ¢ : R} — B,. Conformality
of this map makes it easy to compute its Jacobian J(¢) = |(X,z, + 3)|7>", and the
Jacobian J(|ors) = |(X,3)]7"" of its boundary trace. Indeed, ¢ pulls back the
Euclidean metric g on B,, to the conformally flat metric ¢*g = |(X,z, + 3)|7* > da? on

R?. Then it is not hard to check the formula
FX @) = (X, 2o + 3P0 f 0 (X, ) (1.11)

and its restriction to x, = 0 boundary trace define Banach space isometries from f €
n n 2(n—1) 2(n—1)
L3 (B,) to f € L3%a (R%) and from L2+ (0B,,) to Lu=s%a (R™1) respectively. We
~ o~ ~ 2(n—1)
define the poly-harmonic extension P, f of f € L»—2%«(9B,) implicitly by using P, after

pulling back from the ball to the halfspace:

[V s (1.12)

. foo(Y,1
(Baf) 0 (X, 22) = (X, 20 + B[ 2P, ( foolh) ) .
When a = 0, P, f again becomes the usual harmonic extension to the ball. Another
case of special interest is a = 2 — n, in which case the conformal factors are suppressed
so that P,_,1 = 1, and the isometric Banach spaces are both of L type. When n =

2k the extended function turns out to be k harmonic on the 2k dimensional ball, i.e.

AkﬁQ—Qkf = 0.
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2(n

Theorem 3. For any f € L»-

-1
2+1a(aBn), n>2a<1andn—2+a >0, we have the

sharp inequality

1Pufll e gy S SmallFl o (113)

where the sharp constant S,,, depends only on n and a. The optimizers are unique up to

a conformal transform and include the constant function f = 1.

We now study the limiting information. Letting f =1+ %F and a = 2 —n, we

get the following inequality

Theorem 4. For any F such that e¥ € L"1(0B,), n > 2, we have
B s, < Salle”lla-1@m,), (1.14)

e

where

1 1
I, = ( log(X? n+ =) —d, n/ log(Y? + =)d" 'Y -1
<og( + (T + 2> ) 2 o1 (X =Y)2 4 a2)n-1 og(Y" + 4> °¢
Up to a conformal transform any constant is an optimizer.

Remark 1.2.1. We point out that the sharp inequality (1.6)) combines with Brezis and
Lieb’s dual argument ([13] pagel0-11) to give the sharp version of inequality (1.9)) in [15]
when the domain is a ball:

IV fllzzsa) + CONA 20zp 2 Sall Fll 2y

where S, is sharp Sobolev constant and C(n) can be determined by letting f = 1 when
the inequality becomes equality. This sharp Sobolev inequality with trace term was also

proved by Maggi and Villani in [58 by using methods from optimal transportation.
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Remark 1.2.2. When —1 < a < 1, from Caffarelli and Silvestre [10] we know u = P, f

15 the unique solution to the boundary value problem

div(zoVu(X,z,)) = 0,(X,z,) € R}

uw(X,0) = f,XeR"L

Then the fractional Laplacian can be defined by using an analogue of the Dirichlet to

l1—a . a . . .
Neumann map (—A)z f = —mgl_{%fnuy. So, our equivalent form of inequality ((1.13)

on R%, namely || P, f]|

§naHfH 2n-1) , provides a sharp estimate for the
L

2n <
Ln—2+a (Ri) - n—2+a (Rn)

La%% norm of solution of the above boundary value problem.

1.2.2 Remainder terms in the fractional Sobolev Inequality

In the joint work with Frank and Weth, we consider the fractional Sobolev inequality

Jull, > S (/ |u\qu) ' for all u € H3(RVY), (1.15)
RN
where 0 < s < N, g = ]\2,—78, and H S(RN ) is the space of all tempered distributions u

such that

Qe LL(®Y) and  ful2, = [ JeFlaPds < .
R

Here, as usual, @ denotes the (distributional) Fourier transform of u. The best Sobolev

constant

S=38(N,s) =2r2 (1.16)

D(532) (T(5) o
F(NQ*S) (F(N)) ’
i.e., the largest possible constant in , has been computed first in the special case
s =2, N = 3 by Rosen [60] and then independently by Aubin [5] and Talenti [65] for

s = 2 and all dimensions N. For general s € (0, N), the best constant has been given

by Lieb [50] for an equivalent reformulation of inequality (1.15)), the (diagonal) Hardy-
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Littlewood-Sobolev inequality. In order to discuss this equivalence in some more detail,

we note that

s = [ | u(-2)Pude (117)

for every Schwartz function u, where the operator (—A)*? is defined by
(A 2u(€) = €]a(E)  for ae. € € RV,

Moreover, H :(R") is also given as the completion of smooth functions with compact
support under the norm | - ||s/2. The (diagonal) Hardy-Littlewood-Sobolev inequality
states that

‘/RN RN | — y’)? dx dy| < 7T/\/2F<§V %) < (5\7]\/2)> 7%|f|p|g|p (1.18)

for all f,g € LP(RY), where 0 < A < N and p = % Here and in the following,
we let | - |, denote the usual L™-norm for 1 < r < oo. The equivalence of and
follows — by a duality argument — from the fact that for every f € Lt (RY) there
exists a unique solution (—A)~/2f € H5(RY) of the equation (—A)*/2u = f given by

convolution with the Riesz potential, i.e., by

[(=A) 2 f](z) = 2_57r_%r( ) / ! B -f(y) dy for a.e. z € RN, (1.19)

In [50], Lieb identified the extremal functions for ([1.18)), and his results imply that
equality holds in ((1.15]) for nontrivial u if and only if u is contained in an N +2-dimensional
submanifold M of H? (RY) given as the set of functions which, up to translation, dilation

and multiplication by a nonzero constant, coincide with

Ue H5RY), U =1+z) = (1.20)
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For the special case s = 2, i.e., the first order Sobolev inequality, Brezis and Lieb [13]
asked the question whether a remainder term — proportional to the quadratic distance of
the function u to the manifold M — can be added to the right hand side of . This
question was answered affirmatively in the case s = 2 by Bianchi and Egnell [10], and
their result was extended later to the case s = 4 in [56] and to the case of an arbitrary
even positive integer s < N in [7]. In the second section of the third chapter we prove
the corresponding remainder term inequality for all (real) values s € (0, N). Our main

result is the following.

Theorem 5. Let

M = {cU(' _8:”0) L ceR\ {0}, 20 € RV, e > o} c H3RY),  (1.21)

where U is defined in . Then there exists a positive constant o depending only on
the dimension N and s € (0, N) such that

d*(u, M) > / u(—A)*"*(u)dr — S </RN \u]qu)z > ad*(u, M) (1.22)

RN

for allw € Hz(RN), where d(u, M) = min{|lu — @llsj2 1 p € M}

As a corollary of Theorem [5| we also derive a remainder term inequality for the space
H3(Q) c H5(RN) of all functions u € H3(RY) which vanish in RN\ Q. In the case where
Q is bounded and has a continuous boundary, H () coincides with the completion of
C(Q) c H3(RYN) with respect to the norm || - ||s/2, whereas in general it may be a
slightly larger space (see e.g. [43, Theorem 1.4.2.2]). We also recall that, for 1 < r < oo,

the weak L"-norm of a measurable function u on €2 is given by

1
|t]r0 = sup |A|r_1/ lu| dz,
A
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see e.g. [46].

2N

~—5- Then there exists a constant C' > 0 depending

Theorem 6. Let, as before, ¢ =
only on N and s € (0, N) such that for every domain Q@ C RN with |Q)] < oo and every
u e H3(Q) we have

4q _2
HUH§/2—S( / \urw:c) > 10l (1.23)

For fixed bounded domains Q C R, the existence of a weak L9/2-remainder term is
due to Brezis and Lieb [13] in the case s = 2 and to Gazzola and Grunau [40] in the case
of an arbitrary even positive integer s < N. Bianchi and Egnell [10] gave an alternative
proof in the case s = 2 using the corresponding special case of inequality . We will
follow similar ideas in our proof of Theorem [0} using Theorem [f] in full generality. We
note that some additional care is needed to get a remainder term which only depends on

2] and not on (2 itself.

1.3 Regularity results in some applications of opti-
mal transportation

Recall that in the optimal transportation problem, one is given a source domain €2 with
density f(z)dz and a target domain A with density g(z)dz, where f and g are nonnegative
Borel functions and satisfy the mass balance condition ( fﬂ =/ 1 9). Then, given a cost
function ¢(x, y), a central problem is to find an optimal transference plan, namely a Borel
map ¢ which minimizes the total cost [, ¢(x, p(z))dxr among all maps ¢ : Q@ — A pushing
f(z)dz forward to g(x)dx. Through the efforts of many authors, a rather satisfactory
theory has been developed for the existence, uniqueness and regularity of the optimal
transference plan (see [67] and references therein). However, in the two applications

below, one can not apply the existing regularity theory of classical optimal transportation
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directly to them. The main reason is that both cases involve transporting densities which
are a priori unknown. Moreover, examples show these unknown densities won’t generally
satisfy the hypotheses demanded by all of the existing theories for smoothness of optimal

maps.

1.3.1 The principal-agent problem

In economics, the principal-agent problem arises when the two parties have different
interests and asymmetric information. Knowing the distribution of different types of
agents and their preference, the principal needs to make some decision that maximizes
her total profit or minimizes her total loss. A typical example is that a monopolist
wants to market automobiles (y € Y) to a population of potential buyers (z € X),
with some known information as following: preference function b(z,y) that measures
the the preference of a buyer x for the car y, the density of different types of buyers
in the population du(z) and the cost ¢(y) for manufacturing a car of type y. In order
to maximize her profit, the principal needs to decide what kind of cars to manufacture
and the price of each type of car. Recently Figalli, Kim and McCann [36] identified the
conditions that ensure the existence and uniqueness of the strategy that the principal
can use for maximizing her profit. They also discussed various interesting phenomena
that the optimal strategy may display.

For some important special preference functions, the problem was studied by Wilson
[70], Armstrong [4], and Rochet and Choné [27]. Later, for general preference function
Carlier [20] reformulated it as a minimization problem over the space of b-convex func-
tions (see Definition 1), however for general b(z,y) the space of admissible functions is
generally not convex, which is the main reason that apart from existence, he was unable
to deduce many key properties of the optimal strategy, such as its uniqueness. By adapt-
ing a strengthened version of the so called MTW condition in optimal transportation

together with the conditions bi-twist and bi-convexity which had also been used in the
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regularity theory of optimal transportation, Figalli, Kim and McCann successfully estab-
lished various convexity properties in the principal-agent problem, and those convexity
properties enable them to prove the uniqueness and some other important properties of
the solution. For a more complete discussion of the problem we refer the reader to [30]

and references therein.

In the first section of the last chapter of this thesis we study the regularity of the
solution to the principal-agent problem. For the special case when b(z,y) = x -y and
c(y) = |y|?, the C* regularity of the minimizer was proved by Carlier and Lachand-Robert
[21]. Later Caffarelli and Lions [14] gave a very beautiful proof of C''! regularity. For
the general preference function, under some suitable condition we will show that the
minimizer is C*. The proof is based on a perturbation argument, which is usually more
difficult in the case of general b(x,y). Since for the bilinear case b(z,y) = = -y, the space
of admissible functions is a subset of convex functions, one can cut the graph of the
minimizer by a hyperplane and replace the part below the hyperplane with the flat one.
But for general b(x,y) when one uses the natural choice of b(-,y) + A (A is a constant)
instead of a hyperplane to perturb the minimizer, the shape of the domain where the

function is perturbed is hard to control except for some special y.

Before giving the main result, we will list the definitions and conditions which will be
used later. The following (B0)-(B3) conditions were introduced into the principal-agent
problem by Figalli, Kim and McCann [36].

Let X be the closure of a set X C R™. For each fixed (9, y0) € X x Y we assume:
(B0) b € C*(X x Y), where X C R” and Y C R” are open and bounded;

(B1) (bi-twist) both € X +— D,b(x, ) and y € Y + D,b(zg,y) are diffeomorphisms

onto their ranges;

(B2) (bi-convexity) both X, := D,b(X,yy) and Y,, := D,b(zo,Y) are convex subsets
of R™.
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(B3) (non-negative cross-curvature)

84

> .
0s20t? (s,t):(o,O)b(x(S)’ y(®)) 2 0 (1.24)

whenever either of the two curves s € [—1,1] — D,b(x(s),y(0)) and t € [—1,1] —
D,b(x(0),y(t)) forms an affinely parameterized line segment (€ X, ), or € Y;,, respec-

tively).

Now in order to formulate the principal-agent problem as a minimization problem

over some space of admissible functions, we need the definition of b-convexity.

b*

Definition 1. A function u : X + R is called b-convex if u = (u®")®, where

o*(z) = sup{b(z,y) — v(y)}, and u" (y) = sup{b(z, y) — u(x)}. (1.25)

yeY zeX
By the above definition and (BO0), it is easy to see that a b-convex function is semi-
convex, which implies that it is differentiable almost everywhere. In the following we will
use DomDu to denote the set where w is differentiable. Then by (B1), we can define the

so called b-exponential map.

Definition 2. For each g € Y, we define 3,(z, ¢) as the unique solution to

Dzb(‘rayb('r7Q)) =4dq, (126)

where the uniqueness is guaranteed by (B1).

If the principal selects a price menu given by the function v(y), each agent = will try
to choose the product that maximize the quantity b(x,y) — v(y) among all y € Y. Then
one can define a new function u(z) = sup{b(z, y) —v(y)}, which is b-convex by definition

yeY

1. By (B1), we have u(z) = b(z, yp(x, Du(x))) — v(yp(z, Du(x))) for all z € DomDu. As

discussed in section 4 of [36], the principal-agent problem is equivalent to the following
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minimization problem.

minL(u), (1.27)

u€Up

where Uy := {u|u(z) is b-convex and u > ug(x) = b(z,yo) — c(vo) }, and

L(u) = /X (e(ys(x, Du(x)) — bz, yo(w, Du(x))) + uldp. (1.28)

Recall that ¢(yy(z, Du(x)) is the cost for the principal to manufacture the car y,(z, Du(x))
and b(z, yp(x, Du(z)) — u(zx) is the price of the car y,(x, Du(x)). Therefore, the quantity
L(u) exactly measures the total loss of the principal. Note that the point yo in the
definition of Uy is the so called null product (or outside option), which the principal is
compelled to offer to all agents at zero profit. So ug(z) is a quantity below which the
agent x will reject the principal’s offer.

In the following, we will assume the density of different types of agents is given by
dp = f(x)dz, where f € C°(X) N WH*(X) is a positive function. Below is one of the

main theorems in [30].

Theorem 7. [36] If b satisfies (BO)-(B3), and if c(y) is strictly b*-convex, i.e., if

DomDc® = X, then there exists a unique solution to the above minimization problem.

To state our regularity result, we need the following condition on ¢(y).
Condition 1. ¢ € C*(X), and c(y(z,q)) — b(z,ys(x,q)) is strongly convex on the
variable ¢ € Y, for # € X uniformly, namely there exists a fixed § > 0, such that

c(yp(z,q)) — bz, yp(z, q)) — 0|q|* is a convex function with respect to g.

Remark 1.3.1. By Proposition 4.4 in [36], if b satisfies (B0)-(B3), and if c(y) is
(strictly) b*-convex, we have that c(yy(z,q)) — b(z, yp(z, q)) is a (strictly) convex function

with respect to q.
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Theorem 8. If b satisfies (B0)-(B38), and if ¢ satisfies Condition 1, then the unique

solution to the above minimization problem is in C*(X).

1.3.2 Regularity of the free boundary in the optimal partial

transport problem for general cost functions

The optimal partial transport problem is a natural extension of the classical optimal
transport problem. One has the source density fyxqo and the target density gyq, where
f and g are two nonnegative functions. Then given a mass m satisfying 0 < m <
min{||f|lz,, lgllz, }, one wants to find an optimal transference plan between f and g
with mass m. By a transference plan we mean a nonnegative, finite Borel measure v on
R"™ x R™ with its first and second marginal controlled by f and g respectively, namely

for any Borel set A C R™ we have:

V(A xR < / f(@)dz, 4(R™ x A) < / 9(y)dy.

An optimal transference plan is a minimizer of the following functional

v = c(z,y)d,
R xR™

where ¢ is a nonnegative cost function.

The existence and uniqueness of the optimal transference plan have been addressed by
Caffarelli and McCann under some suitable condition on the cost. Later Figalli extended
it to more general situation with a different method. The regularity of the free boundary
in the optimal partial transport is also highly interesting. For quadratic cost with the
supports of the densities convex and separated by a hyperplane, Caffarelli and McCann
proved that the free boundary is C*® away from some bad points. Figalli extends the C*

regularity to the situation that allows the densities to have overlap, and Indrei improved
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Figalli’s result to C%®. Moreover, Indrei investigated the size of the bad points of the free
boundary, he proved some estimates for the Hausdorff measure of singular points. In the
second section of the last chapter of this thesis we will prove the following result for the
regularity of free boundary in optimal partial transport for costs satisfying (B0)-(B2)
and the precursor (A3) of Ma, Trudinger and Wang [57] which inspired (B3).

(A3) (Ma-Trudinger-Wang condition)

84

ostor 1.2
ds20t (s,t):(0,0)b(x(s)ay(t)) >0 (1.29)

whenever either of the two curves s € [—1,1] — D,b(z(s),y(0)) and ¢t € [-1,1] —
D,b(x(0),y(t)) forms an affinely parameterized line segment (€ X ), or € Yy, respec-

tively) and
82
050t | (s,t)=(0,0)

b(x(s),y(t)) = 0.
Below we establish the following result obtained in joint work with Indrei.

Theorem 9. Let f = fxq € LP(R") be a nonnegative function with p € ("3, 0], and
g = gxa a positive function bounded away from zero, Moreover, assume that 2 and A are
bounded, A is relatively c-convex with respect to a neighborhood of QU A, and QN A = (.

Let ¢ € Fy and m € (0, min{|| f||,, [|9llz, }]. Then the free boundary OU,, N is locally a

2p—n—1

CY* graph with o = T y——



Chapter 2

Convex solutions to the

power-of-mean curvature flow

In this chapter we study the convex solutions to the power-of-mean curvature flow. It
is divided into four sections. The first section is devoted to the proof of power growth
estimate of the solutions. The second section contains the proof of Theorem [I| and the
first part of Theorem [2] The third section establishes Corollary [I] and the last section

completes the proof of Theorem [2]

2.1 Power growth estimate

In this section, we prove a key estimate, which says that any entire convex solution u to

the equation ([1.3) must satisfy
u(w) < O(1+ Jaf™*9),

where the constant C' depends only on the upper bound of «(0) and |Du(0)|. When
a = 1, the estimate was proved by Wang [69]. To apply Wang’s method, the main

difficulty is that now the speed function is nonlinear in the curvature, we overcome this

19
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difficulty by further exploiting some elementary convexity properties.

For any constant h > 0, we denote

Iy, ={xeR":u(x)=h},

Q ={reR":u(x) < h},

so that I'j, is the boundary of €2,. Let k be the curvature of the level curve I';,. We have

Ly(u) = (o+ ui)i_%(/@u7 +

) (2.1)

> ku§ = Lo(u), (2.2)

where v is the unit outward normal to 2, and .y, = 7;7y;u;.

Lemma 1. Let u be a complete convex solution of . Suppose u(0) = 0 and the
infimum inf{|z| : x € I'1} is attained at xy = (0, —9) € I'y, for some § > 0 sufficiently
small. Let Dy be the projection of T'y on the axis {xs = 0}. Then Dy contains the interval
(=R, R), and when o < 1, R satisfies

R > Cy(—logd — Cy)a+, (2.3)

where C1,Cy > 0 are independent of §; when o > 1, R > C for some positive constant

C.

Note that the above lemma seems too weak when o > 1, in Remark [2.1.1] we will

show how to strengthen it for the purpose of the proof of Corollary [3]

Proof. First, we prove the lemma when % < a < 1. Suppose near xy, I'y is given

by x5 = g(x1). Then g is a convex function, ¢g(0) = —4, and ¢’(0) = 0. Let b > 0 be a
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constant such that ¢’(b) = 1. To prove (2.3) it suffices to prove
b > Cy(—logd — Cy)at, (2.4)

For any y = (y1,y2) € I'1, where y; € [0,0], let £ = %, by convexity of u we have

up)—u(0) 1

Y| ly|

g
o
—
s
v

|

Let 6 denote the angle between ¢ and the tangential vector \/11?(1, g') of I'; at y. Then

&1+ 629 (1)

Vit

cosf =

,_
sinf = vV1 — cos?26 = M
V1+g7?

Hence

> V1tg® (2.5)

U~ (y) = ,
Py( y19' — Y2

where 7 is the unit normal of the sub-level set €2y . Since Lou < 1, we obtain,

g (1+g?)e

1
< Rug <1, 2.6
(1+92)% (g —y?)s 28)

where k is the curvature of the level curve I'y. Hence

Q=
—~
o
\]
N—

3_ 1
(14 ¢%)2 72 (y1g' — y2)

IA

g”(yl)

< 10y; g + 106 (2.8)
1

where yo = g(y1) and ¢'(y1) < 1 for y; € (0,b). The inequality from (2.7) to (2.8)) is

trivial when y, > 0. When y, < 0, since |yo| < 0, we have either y;¢’ < 0 or 19 > 0,
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1
for the former (y,4' — yg)i < (25)§ < 44, for the latter (y19' — yg)i < (leg’)é <Adyrd,

since ¢'(y1) < 1. We consider the equation
p'(t) = 10tap + 105 (2.9)
with initial conditions p(0) = —d and p’(0) = 0. Then for ¢ € (0,b) we have
J(t) = 105t / e (2.10)

. oo _doa oFL
Since fo e ot1® % ds is bounded above by some constant C, we have

, 10a , otd 10a “—“
1=p'(b) = 10je~+1 e atl? . (2.11)
IOa atl
< Cl5ea+1 0 (2.12)

from where (2.4]) follows.

When o > 1, the situation is different. First, We introduce a number a such that
¢'(a) = . Then, we can follow the above proof until (2.7). For (2.8) the inequality
becomes

1
g"(y1) < 10y g’ + 106=,

for y; € [a,b]. Now ([2.12)) becomes

after rearranging the terms we have

a+l 1 100 7y Q1L a+1

1< Cybeati® * + éerﬂ(bTﬂT),

then it is easy to see that when 0 is small, b > C, for some fixed constant C.
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Remark 2.1.1. When « < 1, It follows from Lemmall] that when ¢ is sufficiently small,
by convexity and in view of Figure 1, we see that 21 contains the shadowed region. Then

it 18 easy to check that €2y contains an ellipse

2 g — 15582
B = (ool ity + L = 1 213

where §* is a positive constant such that u(0,0*) =1 and R is defined in the Lemma 1.
When a > 1, if * is very large, in the part {z|u(x) < 1,21 > 0}, by convezity we can
find an ellipse which has short axis bounded from below and long axis very large, and if we
let the ellipse evolve under the generalized curve shortening flow, it will take time more
than 1 to converge to a round point. When 0* is less than some fixed constant, we need
to consider two cases. Case 1, when the set {u < 1} is not compact. In this case when
we project {u(x) = 1} to the axis {xs = 0}, and denote the leftmost(rightmost) point as
(=1,0)((r,0)), then either 1 or r is very large, which guarantees that one can still find an
ellipse inside {x|u(x) < 1,21 < 0} (or {z|u(z) < 1,21 > 0}) with the similar property
as before. Case 2, when {u < 1} is compact. For this case, we will always assume 0
is the minimum point of u, and u(0) = 0. We claim that when 6 is very small, for the
purpose of the proof of Corollary[3, we can assume one of I and r is very large. Indeed,
if the claim is not true, we have a sequence of functions u; satisfying that {u; < 1} has
width bounded by some constant independent of i, and the distance dist(0, {u; < 1}) — 0,
as i — oo. And in view of the following proof of corollary 3, we can assume u; satisfies
equation with o; — 0 (see the first paragraph in the proof of Corollary @ Then
by passing to a subsequence, we can assume {u; < 1} converges to a convezr curve Cy in
hausdorff distance, and let Cy evolves under the generalized curve shortening flow, it will
converge to a point on itself, which is clearly impossible. Once | or r is very large, we

can find the ellipse as in the case 1.

Remark 2.1.2. One can also establish similar lemma in higher dimensions, which says
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(0,5 1

(] 9
(-R,-5) (0,-8) (R.-3)

Figure 2.1: I'; contains the shadow part.

that Dy (convex set with dimension greater than 1) contains a ball centered at the origin
with radius R > C,,(—logd — C)ﬁ, where C,, is a constant depending only on n and C
s a positive constant independent of 6. The proof can be reduced to the two dimensional
case. For the details of how to reduce the situation to lower dimensional case we refer

the reader to the proof of Lemma 2.6 in [69).

Lemma 2. Let u be a complete convex solution of (1.3)). Suppose u(0) =0, § and &* are
defined as in Lemma (Il and Remark|2.1.1. Then if 6 and 0* are sufficiently small, u is

defined in a strip region.

The proof of Lemma [2| is based on a careful study of the shape of the level curve of

u, we will give an important corollary first.

Corollary 3. Let u be an entire convex solution of (1.3) in R?, then
u(z) < C(1+ |z, (2.14)

where the constant C' depends only on the upper bound for w(0) and | Du(0)].

Proof. By adding a constant to u we may suppose u(0) = 0. It suffices to prove that

dist(0,T',) > Chi+s for all large h. By the rescaling u,(x) = %u(hlfa:p) we need only
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to prove dist(0,I';,,) > C. Note that |Duy(0)] = hl% |Du(0)| — 0,as h — oo. Hence
by convexity infp ) u goes to 0 uniformly for fixed radius r. Note also that u;, satisfies
equation (|1.3)) with 0 — 0 as h — oc.

If the estimate

dist(0,T'4,) > C, for all large h

fails, we can find a sequence hj, — oo such that d, = inf{|z| : @ € I'1y, } — 0. Now,
we take ¢; as in Remark with respect to uy,. 0} has a positive lower bound 6%,
otherwise by Lemma 2 wuy, can not be an entire solution for large k.

If 6; < 1000 for all large k, since the ellipse £}, defined for u, as in Remark is
contained in lehk and the distance between the center Oy, of F}, and the origin is bounded
above by 1000, by the previous discussion we know wuy, (Of) is bounded bellow by —1
when k is large. Let Ej(t) be the solution to the generalized curve shortening flow starting
from time ¢ = —1, with initial condition Ey(—1) = Ej. (1) When o =0, 9, evolves
under the generalized curve shortening flow, we have the inclusion Ey(t) C 8Q_t7uhk for
all t > —1. Hence infp,(0) tn, is smaller than 1 minus the time needed for Ej, to shrink
to Or. However, by the size of E}, the time needed for it to shrink to a point goes to
infinity as k£ goes to infinity, which is contradictory to the discussion at the beginning of
the proof that u,, converges to 0 uniformly in the ball Bjgo(0) as hy goes to infinity.
(2)When o € (0, 1], we can take vy, as the solution of L, v =1 in Ej with v =1 on 0FEj,
where o, = h,;l% Passing to a subsequence and adjusting the size of Fj, if necessary, we
can assume Ej converge to some ellipse £ with the length of its long axis very large, the
length of its short axis bigger than some fixed positive number and the distance from its
center to the origin is less than 1000. Then v, converges to a solution of the generalized
curve shortening flow, and a contradiction can be made as for the case ¢ =0

Otherwise, by the definition of b in the proof of Lemma 1 and the convexity of €2, ,,
we can find a disc By with center O = (0,50) and radius 20 inside 0, , obviously it

will take time more than 2 for By to shrink to O. We can take By(t) as a solution to the
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generalized curve shortening flow starting from time ¢ = —1 with By(—1) = By, then a

similar contradiction will be made as before.

Remark 2.1.3. The estimate in Corollary[3 is also true for higher dimensions, one can
prove it by reducing the problem to the two dimensional case similar to the corresponding

part in [69].

Proof of Lemma[g By a rotation of coordinates we assume the axial directions of E
in Remark [2.1.1] coincide with those of the coordinate system. Let M, be the graph of u,
which consists of two parts, M,, = M*UM™, where M+ = {(z,u(z)) € R*: 9,,u > 0}
and M~ = {(z,u(x)) € R® : 9,,u < 0}. Then M¥* can be represented as graphs of
functions g* in the form zy = g% (21, x3), (11, 22) € D and D is the projection of M, on
the plane {5 = 0}. The functions g and g~ are respectively concave and convex, and

we have 73 = u(z1, g (21, 23)). Denote
9=9"—g". (2.15)

Then g is a positive, concave function in D, vanishing on 0D. For any h > 0 we also
denote gp(x1) = g(x1,h), g (v1) = g(z1,h), and Dy, = {z; € R' : (z1,h) € D}. Then
g is a positive, concave function in Dy, vanishing on 0D, and Dy = (—a,,ay) is an
interval containing the origin. We denote b, = g,(0). We will consider the case o = 0
first.

Claim 1: suppose h large, ¢1(0) = 6" + § small, b, < 4 and a;,a, > b,. Then

1
for a <1and a, > 22" for a > 1.

ap = 1000,

L h
1000 b
h

Proof. Without loss of generality, we assume a;, < a,. Denote U, = Q; N {z; > 0}.
By the convexity of U, and the assumption a;,a, > b, we have a,,a, > %bh for all

s € (%h, h). Hence by the concavity of g we have ]d;j:lgs(O)] < 2 for s € (3h,h), which

™

means the arc-length of the image of I's N {z; > 0} under Gauss map is bigger then .

Notice that €2; contains F/, which was defined in Remark [2.1.1l When ¢ and ¢* are very
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Figure 2.2: I'; N {z; > 0} is trapped between two lines

small, E is very thin and long. The centre of F is very close to the origin, in fact for
our purpose we can just pretend E is centered at the origin. By convexity of €2, and
in view of Figure 2, we see that I'y N {z; > 0} is trapped between two lines ¢; and /s,
and the slopes of /1 and /5 are very close to 0 when E is very long and thin. Then it is
clear that the largest distance from the points on I's N {x; > 0} to the origin can not be
bigger than 10a;,. By convexity of u, we have u,(z) > ﬁ, for x € I'y N {x; > 0}. Since
['s N {z; > 0} evolves under the generalized curve shortening flow, when a < 1 we have

the following estimate

d
Sl = [ e (2.16)
S In{z1>0}
:/ ud " rde (2.17)
Fsﬁ{z‘1>0}
1 h 1 T
> —()all 2.1

1

from ([2.16) to (2.17) we used the equation xkuy = 1. The claim follows by the simple

fact %bhah > |Uh| > 5—10<£)é_1

h
an 2"

s
6

When a > 1, denote [, as the arc length of I'y N {x; > 0}, by the above discussion, it
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is not hard to see that [, =~ C'a;,. Then by a simple application of Jensen’s inequality, we

have

d
Loy = / Kde
dS(‘ ) {21 >0}
1
— 1 / KO = dg
Ponfei>0p s
> 0 / Egeyr > cu-e > cale,
FSQ{ZE1>0} S

then again by the simple fact that %bhﬁh > |Uy| we can finish the proof in the same way

as the previous case.

From here until (2.51)) we will prove the case % < a <1, and then we will give the

detail for the case a > 1.

Claim 2: Denote hy, = 2F, @, = ap,,, by = bn,, gx = gn, and Dy, = Dy, . Then

k
91(0) < gr-1(0) + o2 for all k large, (2.19)

where Cj is a fixed constant, and C' depends only on «.

Lemma 2] follows from Claim 1 and Claim 2 in the following way. Let the convex set
P be the projection of the graph of g on the plane {z3 = 0}, by Claim 2 and the fact that
P contains zj-axis (it follows from Claim 1), P must equal to I x R for some interval
I C o, k;h—>nolo gx(0)]. Then, by M, is also contained in a strip region as stated in
Lemma 2

To prove , since g is positive and concave, g;(0) < hpgo(0) < 2%(5+ 6*). Hence,

we can start from sufficiently large ko, which satisfies gy, (0) < 1 and

ko T COZQ% <2 (2.20)

Jj=ko

Suppose (2.19)) holds up to k. Then by (2.20) we have g(0) < 2. By the concavity
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of g and g > 0, we have gr41(0) < 2¢,(0) < 4. By claim 1 we have a1 > ﬁhk. To

prove (2.19) at k + 1, we denote

Cy Ch 1
L, = R': ——nh —h},C = —— 2.21
£ = AmE 3 e <o < ek O = g (2.21)
Qr = L x [hg, hea] C D. (2.22)
Since g > 0, g is concave, we have the following estimates

g(w,h) < 8, (2.23)

16
Ohg(@r, )] < 5, (2.24)

k

1

0w, 9(z1, )| < h—6 for all (z1,h) € Qp (2.25)

k

We denote X* = {(z1,h) € Qi : |04,0,9% (21, h)| > h;”}, here § is chosen such that

L < B <2 Forany h € (hi, hyt1), by ([2:25)) , we have

o € Ly : (w0, h) € X < /axmf (2.26)
Ly
< /(%mg (2.27)
Ly
< 2sup |0y, 9| (2.28)
Ly
c
< —. 2.29
<2 (2:20

So |X*| < ChY. Similarly we have|X~| < ChY.

For any given y; € Ly, denote X*, = X" N {x; = y1}. Then by the above estimate
- - 8 -
there is a set L* C Lj with measure |L¥| < Ch} such that for any y; € Ly — L*, we
8 -
have |X*, | < h?. When k is large, we can always find y, = Ch? € L, — L*, where the

constant C' is under control. For such y;, we have

91, hatr) — g(yis b)) = 97 (i, heer) — 9+ (1, hie) + 19~ (1, hesn) — 9~ (ya, )| (2.30)
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We will estimate g7 (y1, hrt1) — g7 (y1, hx), another part can be estimated similarly.

Note that the distance from y; = Ch? to the origin is relatively very small comparing
to the length of L, when k is large, recall the fact that {2; contains an ellipse E with
center close to the origin and by taking ¢, * small enough we can make F as thin and as
long as we need (note that later in the proof of case a > 1, we can only find such ellipse
with the size of short axis very small and with the size of the long axis bounded from
below by some constant, but this is enough for the argument). By these facts, we can
make the unit normal of 'y at the point (yi, gs(y1)) very close to the zy-axis direction,
and in fact we can make them as close as we want by taking ¢,0* enough small. By
differentiating equation u(xy, g*(x1, h)) = h with respect to 21 and h, and using the fact

that 0., g7 is small, we have

(Ong™) ' = (1 +e1)u,

(2.31)
a331271.g+ - (1 + 52)’@
then by the equation u$x = 1 we have
Ongn (91, 1) < C (e g*)* < O™ (2.32)
Now
hiy1
9 nhin) = g k) = [ ong* (s, b (23
hi
= / Ohg " (y1, h)dh + / dh (2.34)
x (At h1]— X,
81
< Cihi—+ Cohy, " hy. (2.35)
k

Recall that 3 satisfies £ < 3 < 2, we have 7 := min{1 — g,ﬁa —1} > 0. From (2.30)) and
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(2.35) , we have the estimate

9y, hesr) = 9(y1, ) < 55,
k
for some fixed constant C'. Then, we will assume 0,,¢(0,h;) < 0 (otherwise we can

replace x1 by —x), therefore by the above estimate we have

C C
91, b)) < g(yn, hae) + 7 < g(0, hy) + o
k k

Since ¢ is positive, concave and defined on the interval [0, ay1] with axy1 > Chyyq, we

have

8
£
k+1 -

9k+1(0> < - Ak41 <1+Ch
9k+1(y1) ap+1 — Y

Therefore, by the above two estimates we have
9r+1(0) < gi(0) + Ch,",

which implies ([2.19)) immediately.

For the proof of Lemma 2 when o € (0, 1], we need to use and (2.2). In fact,
by we see that I', is moving at a velocity greater than or equal to its curvature to
the power a. Hence, we still have the lower bound of 4 (|U,|) as in the proof of Claim 1.
Then we can follow the above proof for the case o = 0 until with the only change
that replacing the equalities “ = 7 in and with inequalities “ > 7. As in

[69], when o = 0, in order to control the second integral in (2.34]) we used the equation
1

kuy = 1. But when o # 0, by (2.24) and (2.31]) we have

w, > C(Ohg™) ' > Chy, (2.36)

hence we can assume u., as large as we want, which means in the formula (2.1)) the only
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i i 2\ — 1 Uy
important extra term 1s (0’ + U,y)2a 2 e

. To handle this term we divide the integral

(2.35)) into three parts,

hrt1
0 (s hesr) — g+ (s he) = / Ong ™ (y1, 1) dh (2.37)

hi
= +/ +/)8hg+(y1,h)dh, (2.38)
n Jn Ji

where

L= X, (2.39)
_ ) 2\ L1 OUyy 1

I = {h€lhghg] — L (o+ug)e 2@ = 5h (2.40)

I3 = [hk7 hk+1] - Il U IQ. (241)

For the first integral, we can do exactly the same thing as we have done from ([2.34))

1

8 8_
to ([2.35)), namely fh Ong™ (y1, h)dh < %hlj = Ch? , note that the power g —1lisa

negative number.

Then we estimate the second integral, note that when (y;, h) € I, (a—l—u%)i/@uw >

1
By (2.36) u, is large, so we have ku§ > 1, then by (2.31]) we have

N |—=

g < C(OpyargT)* < Chy P, (2.42)

Hence f12 gt (y1, h)dh < C’h,;ﬁahk = C’h,lgfﬁa, note that 1 — B« is a negative number.
Observe that we can assume I, is on the right hand side of I3, since by the concavity of

g we know that when h > inf I, 0,97 (y1, k) will satisfy the estimate (2.42]).

For the third integral, as in [69] we need the following observation

Uy (Y1, h) = Uy (1 + 1)
(2.43)

uw(ylv h) = ux2w2(1 + 52) + E3Uyg,,
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which can be proved by differentiating the equation w(zy,g" (x1,h)) = h twice with
respect to x1, and combining the facts discussed before (2.31)). Note that by taking 6 and

0* sufficiently small, when k is large, we can make ¢; very small, for i = 1,2,3. Hence,

by (2.43]) we have

2 )22 2.44
(o b e 2 g (2.44)
Since o € [0,1] and u, is large, we have
" L, 3—-1
U= Uy, > Z(u) a. (2.45)

By differentiating the equation u(xy, g™ (21,h)) = h twice with respect to h, we have

(g")'=, (2.46)

note ([2.46) is for points with corresponding h € I5. By the discussion after (2.42)) we need

only to estimate f[ pt2 }(g+)’ dh. Therefore by (2.46) and noticing that (¢%7) >0
hi+hy inf I

we have

(5" () — 7151 [ ], (247

B2
so when h € [h,* ,inf I5], we have

(g7)' (h) < ((¢")"% (hi) + C(h — hy))==. (2.48)



CHAPTER 2. Convex solutions to the power-of-mean curvature flow 34

Finally we have

hi41 o N
[ e thyan < [ )+ C- )T (249)
[hk-i-h lnflz] hy
- 1 a—1
< oo 1<<g+>’T<hk> Ol h)ETHR (250
1-2a
< C((g")s , (2.51)
note that =22 2a < 0 when « > =. Then we can complete our proof as the case o = 0.

When a > 1, we need to choose the constants and exponents more carefully. First of
all, in view of the Lemma |2 I for a > 1, in order to have properties (2.31]) and - we
need only to replace the number 2 in (2.20) with some number much smaller than the

constant C' in Lemma [2] The definition of Ly in (2.21)) should be modified to

G Ci, 1

_ Rl : 2a T “1ly 3577 _
{1 € 7 < < G = aage

and the definition of @y in (2.22)) remains the same. It is easy to see that we still have

the estimates (2.23)-(2.24)), and (2.25)) becomes

10z, 921, h)| <

——, for all (z1,h) € Q.
hi!

Then for the definition of

Xi - {(xlv ) € Qk ’ammg (xlvh)’ 2 h;6}>

we need to choose the exponent 3 so that é <fB< % By doing the same computation

as (2.26])-(2.28)) we have

‘{i[)l S Lk : (l‘l,h) S XJF}’h]:B < / ax1z1g+ < 1
Ly tha—l
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1 1
So we have |XT| < Ch,tw =1 "and similarly we have |[X~| < Ch,ljﬁ *=1_ Then by the

—~ —~ _ 1
above estimate there is a set L* C L; with measure |L*] < C’hiJFE **~! such that for

2
200—1"

any y; € L — Zi, we have |X%, | < h, ¢, where ¢ is chosen such that 8 + ¢ <

Now, (2.31))-(2.34) remain the same, and (2.35)) becomes

1 —Ba
9" (W1, hen) — " (v, hee) < Olh,ﬁ‘sh—k + Cohi P hy..

By the choice of 3, all the exponents on hj is negative. We do not need to change

anything from ([2.36)) to (2.45)). Finally from ({2.46) we need to replace the computation

in the case a < 1 with the following computation.

First we have (¢7)" < —i(g*)’i < —1(g")’, and we need only to bound f[hﬁh;%imf .

Note that (¢7)" > 0, by integrating the above differential inequality we have (¢7)'(h) <

+Ydh.
() (hi)e~ 11l < (g+) (hi)es ™) when h € [hy + hy, 2", inf I,]. Therefore, we have

hi41 L
[ @y < [ et
lhi+hy, 2% inf Io]

hy

< Clgty () < <.
D,

2.2 Blow-down of an entire convex ancient solution
converges to a power function

In this section we prove that the blow-down of an entire convex solution to (|1.3]) converges
to a power function, and then by using this and a rescaling argument in next section we
prove that, if a convex ancient solution to the generalized curve shortening flow sweeps
the whole R?, it must be a shrinking circle.

Proof of Theorem [1] and the first part of Theorem[3. First we prove that there is a

L|x|1+a.

1
_ 3,—1 Tra :
subsequence of uy, where up(z) = h™ u(h™=z), which converges to -

By adding a constant we may suppose u(0) = 0. Let x,.; = a -z be the equation of
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the tangent plane of u at 0. By Corollary [3| and the convexity of u we have

a-x <u(z) < C(1+ |z['F).

Hence,

N 1
h™Trea - o < up(z) < C(ﬁ + |z,

By convexity we have that Duy, is locally uniformly bounded. Hence u; sub-converges

to a convex function ug which satisfies uo(0) = 0, and

0 < up(z) < Ol

It is easy to check that ug is an entire convex viscosity solution to equation (1.3]) with

o = 0, and the comparison principle holds on any bounded domain.

Now we will prove {x|ug(x) = 0} = {0}. In fact, if {z|ug(z) = 0} is a bounded set,
then {x|ug(z) = h} is a closed, bounded convex curve which evolves under the generalized
curve shortening flow, from [I] it follows that {z|ug(z) = 0} = {0}. If {z|ue(x) = 0}
contains a straight line, say the line (¢,0), (¢ € R), then by convexity, u is independent of
x1, which is impossible. So we need only to rule out the possibility that {z|ug(z) = 0}
contains a ray but no straight lines. In this case, for fixed h > 0, we can find an
ellipse E inside {x|ug(x) < h}, with the short axis bounded from below by a constant
depending only on h and with the long axis as long as we want (one needs only to
look at the asymptotic cone of {x|ug(z) = h} ), but since {z|up(z) = h} evolves under
the generalized curve shortening flow and £ C {z|ug(x) < h}, which is impossible by

comparison principle.

Then since {z|ug(z) = 0} = {0}, I'1 4, = {z|uo(z) = 1} is a bounded convex curve,
and the level set {z|ug(x) = —t}, with time t € (—00,0), evolves under the generalized

curve shortening flow, from [I], [2] we have the following asymptotic behavior of the
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convex solution ug of Lou =1

1
up(z) = H—a|x|”°‘ + @(z), where ¢(z) = o(z'™*), for z # 0 near the origin. (2.52)

In fact, if the initial level curve is in a sufficiently small neighborhood of circle, by Lemma
in the beginning of the fourth section, we have that |p(x)| < Clz|'T**" for some small
positive 1, where C' is a constant depending only on the initial closeness to the circle.

Hence, given any e > 0, for sufficiently small A’ > 0, we have
B(l—e)r(o) C Qh/,uo - B(1+e)r<0)7
where r = ((1 + a)h’)“%a . Hence, there is a sequence h,,, — oo such that

B(l 1

_E)Tm,i

(O) C th,u - B(1+%)7«m,i(0)a

L’.ﬂl—i—a_

1
where ry,,; = ((1 + @)ihy,) e ;i =1,--+ ,m. Then u,, sub-converges to 1

Since ug is an entire convex solution to Lou = 1, from the above argument, we can

o
find a sequence hy,, such that uop,, (z) = =uo(hm " x) locally uniformly converges to
Tz |2['**. Hence, the sublevel set © 1, satisfies

1+a Y0hm

Blfem (0) C Q li

o sUOhym,

C Bl+€m (O)7

where €,, — 0 as m — co. By the discussion below ([2.52)), we have

1
1+«

Uoh,, () = |2 + (),

where |p(x)| < Clz|' T+ for some fixed small positive 77, and the constant C' is indepen-
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_1
dent of m. Replacing x by h,,'*® 2 in the above asymptotic formula, we have

1 1
to(w) = 7o 2l Ao (o™ ),

1

where for any fixed , Ay, (hm' ™ 2) — 0. Hence ug(z) = -

1 |1+a
14a

|z|'T*. So we have proved

Theorem [I] and the first part of Theorem [2|

2.3 1-dimensional entire convex ancient solution must
be a shrinking circle

We will follow the lines in the section 4 of [69]. It will be accomplished by the following

lemma which is also true for higher dimensions, but we will only state it for R2.

Lemma 3. Let Q be a smooth, bounded, convex domain in R%. Let u be the solution of
(1.3) with o = 0, vanishing on 9. Then for any constant h satisfying infqu < h < 0,

the level set 'y, = {u = h} is convex. Moreover, log(—u) is a concave function.
Proof. Observe ¢ := —log(—u) satisfies

2

1_ PiPj 1
| Dl 12(%’ - |Dg0|J2)90ij = ea?.

ij=1

Since p(z) — +o0 as © — OS2, the result in [49](Theorem 3.13) implies ¢ is convex. One
may notice that two of the conditions required in [49] are the strict convexity of domain
and the C? smoothness of solution. The first one can be resolved by using strictly
convex domains to approximate the convex domain. For the smoothness condition, one
may worry about the minimum point where the gradient vanishes and the equation is
singular. Moreover, in view of the solution u = ==[z|"**, we see when a < 1 it is not C*
at the origin. However, by examining the proof in [49], one can see that the argument is

made away from the minimum point, which means it can still be applied to our situation.
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With the above lemma and the Lemma 4.4 in [69], we know that any convex compact
ancient solution to the generalized curve shortening flow can be represented as a convex
solution u to equation (|1.3)) with ¢ = 0, and if the solution to the flow sweeps the whole
space, the corresponding u will be an entire solution. Thus Theorem [2| implies Corollary

immediately.

Remark 2.3.1. We can also use the method in the section 4 of [69] to construct a non-
rotationally symmetric convex compact ancient solution for generalized curve shortening
flow with power a € (%, 1), and in fact the solution will be defined in a strip region. All
we need to do is replace Lemma 4.2, 4.3 and 4.4 in [69] for mean curvature flow by the

corresponding lemmas for the generalized curve shortening flow.

2.4 2-dimensional entire convex translating solution

In this section, by using the previous results and an delicate iteration argument we prove
that under some extra condition on the asymptotic behavior of the solution at infinity
the 2-d translating solution must be rotationally symmetric.

First of all, we would like to point out that instead of using Gage and Hamilton’s
exponential convergence of the curve shortening flow in [39] we need to use the corre-
sponding exponential convergence for the generalized curve shortening flow and we will

state it as a lemma which is corresponding to lemma 3.2 in [69].

Lemma 4. Let {{;} be a convex solution to the generalized curve shortening flow with
initial curve {€o} uniformly convex. Suppose {{;} is in the dy-neighborhood of a unit circle,
{0} shrinks to the origin at t = ——. Let {, = (1 — (1 + Oz)t)fl%aét be the normalization

14+a”

of ;. Then 0, is in the 8- netghborhood of the unit circle centered at the origin,

Zﬁ C N(StSla
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with

5, < C'oof _—t

1+«

for some small positive constant t.

The proof of the above lemma is similar to the proof of lemma 3.2 in [69]. Using
the condition that the initial curve is uniformly convex and the estimates in section II

of [1], we can apply Schauder’s estimates safely for @ > 1 as in [69], which says that for

1 1
t € (37 7a12);

16, — S| < C.

Although the constant C' will depend on the lower and upper bound of the curvature
of the initial curve, it is not a problem for our purpose, since when we blow down the
solution for o = 0, the norm of the gradient Duy, on the curve {u,(x) = 1} approaches
to 1. By the equation /ﬁué = 1 we see that the curvature « is also very close to 1 on
that curve. However, the estimates in section II of [I] also shows that when o < 1 the
uniformly convex condition (though the convexity is still needed) is not needed, and the
constant C'in the above lemma is independent of the bound on the curvature of the initial
curve. For the exponential decay rate of the derivatives of curvature, one can imitate the
proof in Gage and Hamilton [39](5.7.10-5.7.15), and our corresponding estimate will be
|K/(1)| < Cdoe™' for some small positive number ¢, where 7 = —=log(;35 — t). This
estimate immediately implies our lemma.

An alternative way to see that is by writing down the normalized evolution equation

for the generalized curve shortening flow by using support function s(6, ) as following
sr = —(s09) " + 5,

here we still take the origin as the limiting point of the original generalized curve short-
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ening flow. Then the linearized equation of the flow about the circle solution is
sr = a(sgg +8) + s.

The rate of convergence is governed by the eigenvalues of the right hand side. The con-
stant eigenfunction corresponds to scaling, which is factored out, while the sin # and cos
correspond to translations, which are also factored out. The next is cos(26), which gives
eigenvalue 1 —3a. So when o > %, we have exponential convergence of the normalized so-
lution to the limiting circle with exponent 1 —3a. The author learned this from professor

Ben Andrews.

In the following we will consider the case when o = 1 and a > 1. By translating
and adding some constant we can assume u(0) = infu. Let up(z) = %u(hl%ax) Then
uy, satisfies the equation L,u, = 1 with ¢ = B~ Tra. By Theorem 1, u; converges to

—|2[** and the level set I
+o

T converges to the unit circle as h — oo.
+a h

U

Lemma 5.

1 o aA—alx
u(@) = g™ + Ol ?) (2.53)

where C'is a fized constant and the constant B is chosen such that i < [ < min{l1, 1;—;‘}
For any given small §y > 0, taking h sufficiently large such that

I, CNg(S (2.54)

1+a”

for unit circle S with center py. Note that when h is large, dy is very close to 0. Then

we will prove the following claim,

Claim 3. For small fixed 7,

Loy € (L4 a)7) 5 Ny (1 + =) s 51) (2.55)
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with
5, < Cy(1)0? + Codor™, (2.56)

where the constants C; and C5 are independent of §g and h, and C is also independent
of 7, n is a small positive constant. wug is the solution of Ly(u) =1 in Q . satisfying

ug = up = —— on I 1, ag = |infug| and the center of (1+ %)l%aSl is the minimum

1
14+a Tha Uh’

point of uy times a factor ((1 + 04)7')71%0.

Proof of Claim 3. We need only to prove
dist ((1 +a) T (1 + ag) T S, rm> < C1(1)0? + Cybgrmia™n, (2.57)

where 7 is some small positive constant, C is independent of 7. by Theorem [I| we know
uy, converges to ﬁ]m\lm uniformly on any compact subset of R?, then by the convexity

of uy, we have that when

xG{xEQﬁ T < up < ——

1+a’

yUh

| Duy| is bounded above and below by some constants depending on 7 for large h, by the
growth condition for D?*u in Theorem [2{ we have o (up,),, < Co?, where C is a constant

Z’/'Suh<L},

1
depending on 7. Therefore we have r(uy)$ ~1—Co” on {z € Q1 o

14+« YUh

where C' depends on 5. Denote

1 )+ 1
1+« 1+a’

ag = (]_ - CO’ﬁ)a(UO -

then

Lo(ug) =1—Co”in Q 1

14+« Uh

. Now by comparison principle we have Q. ,, C ., C

14+«

with @ = up, = — on 9Q 1,
Ttah
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Q- 4,, and by the asymptotic behavior of uy we have
Lrue C Ne((T+ ao)l%aSl) and I'; 5z, C Ne((7 + ap — CUB)H%Sl),

where ¢ = Co(r +ag)". Denote 1 = (7 + ao)TaSY, s = (T + ag — CoP)Ta S,
both of them are centered at p;, which is the minimum point of uy. Hence dist((7 +
ao)ﬁsl, Lru,) < dist(ly,ls) + Cdo(T + ao)ﬁﬂ, where dist(¢y, {2) can be bounded by
Cy(1)o?, hence follows from the above discussion. Now we will use an iteration
argument to prove the following Claim 4, which will enable us to simplify and
(2.56)).

Claim 4:

Co|log(o)] ifa<1
Co'oat ifaa>1
Proof of Claim 4. We fix a large constant A such that {ua = IJ%CY} is very close to a

k

unit circle. Let g+ solve Lou = 1 with boundary condition u = 7" on {u, = Tk}

Denote a, = |infug«|. From the proof of Claim 3 we see that {uy < 7} O {uo, <
7} D {uy < 7}, by comparison principle, we have infwuy < infuy, < inf@g. So by the
construction of 1y and a simple computation, we have ag — a1 < infug — infug < Co.

When 7¢ > 4

-, we can iterate this argument for g+ and ug ++1 by rescaling them to

a1k _ 1k :
T Mg ((1 + ) 1+ar1+am) and =7 g r ((1 + ) 1+ar1+am) respectively, after

rescaling back, we have a; — agy 1 < Co. Note that the choice of A and the condition

Tk > % ensure the uniform gradient bound needed in the above argument. Let kg be an

integer satisfying 7% > % > rhotl “after ko steps we stop the iteration, and notice that

: o : : : 1
{up, = 4} = ——{u = A} is contained in a circle with radius Ch™ 7= for some constant
h1ta

C, so it takes at most time Ch™ = Co 2 for {u, = 4} shrink into a point. Claim 4

follows from the above discussion.
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By omitting the lower order term we can rewrite (2.55)) and (2.56)) as
Trup C ((1+ @)7)™a N5, (S1)

with

6, < CL(1)o” 4 Cybor™. (2.59)

If we take 7 small such that Cor7 < 1, (2.59) becomes
IB 1
0, < Cy(1)o” + 150. (2.60)

Now we can carry out an iteration argument similar as that in [69]. We start at the

level H%T’ko for some sufficient large ky. Denote 2, = TH%Q% . and ', = 0Q,. Ty

T

converges to unit circle as k — oo. Suppose I'; is in the §; neighborhood of S! centered

at y,, where 9, — 0 as k — oo and y;, is the minimum point of the solution of Lou = 1

in Q with u = HL& on ['y41. By (2.60) we have

o 1
Op—1 < Cl(T)T(kil)fTi + 15k (2.61)

for k = ko, ko + 1,---. Then we have

I'; C N, (S") (2.62)
with
§; < Critea (2.63)
It follows that
FﬁTﬁ'?u C Ngj (7‘1%“;5'1) (2.64)
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with

~ 2aB—-1 .

5; < Cr iva (2.65)

where 777% 51 is centered at z; = TTie y;. From Lemma 3| and ([2.60) it is not hard to see

that we have

|2, — 2| < O 170 (2.66)
Denote zy = lim;_, 2;. Then
|z; — 20| < C’TZ?i;lj, (2.67)

which means in (2.64)) we can assume the circle is centered at zy by changing the constant
C' a little bit. In fact when we choose different 7, the corresponding z, will not change,

so we can assume zo = 0. Hence for h = —1ia77],

Th. C Ny ((1 n a)ﬁhu%y) ,

where

1—2ap

§ < ChTra (2.68)

and S! is centered at the origin. By choosing different 7, we see that the estimate holds

for all large h. Lemma 5| follows from the above estimates.

To finish the proof of Theorem [2f we need to use the following fundamental Liouville

Theorem by Bernstein [63] (p.245).

Lemma 6. Let u be an entire solution to the elliptic equation

n

Zaij(x)uij =01 RQ.

ij=1
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If u satisfies the asymptotic estimate

lu(z)| = o(|z|), as x — oo,

then u is a constant.

Proof of the second part of Theorem[3 Let u* be the Legendre transform of w. Then

u* satisfies equation

det DQU* 11
G(x, D*u*) = T = (1+ |z*)2a"2, (2.69)
(0 — T3 ) £ (u)
where F(u*) = 24%r at = D?(u*). We have
% o 1+a 1+a—2af
u'(z) = Cla)fa]** + O(|z| ); (2.70)

where C'(«) is a constant depending only on «. In fact, for big h, by Lemma [5| we have

1 o —2a8
up(x) = H—amH + O(|h]T+a")

in B1(0). Denote u; as the Legendre transforms of u;,. Then
uj(z) = C(@)la] *= + O(|h] 7).

where C'(«) is a constant depending only on « and in fact it is comes from the Legendre

transform of the function —|x|1+a Note that u(z) = h™'u*(hTa ), we obtain (2.70).

Let uy be the unique radial solution of (1.3) with ¢ = 1, and let ug be the Legendre

transform of ug. Similar to (2.70) we have

1+cx 1+a—2ap

ug(x) = C(a)]z[ + O(|z| )- (2.71)
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Since both u* and u satisfy equation (2.69), v = u* — u satisfies the following elliptic

equation
n

Zaij(x)vij =0in RZ,

ij=1
where

1
aij = / G (x, D*u} + t(D*u* — D*u))dt,
0

here G = %@ for any symmetric matrix r. Note that by the choice of 3, —1+°‘;2°‘5 <1,
ij
1+a—2ap8

so by (2.70) and (2.71)) v = O(|z| =« ) = o(|z|), as |z| = oo. By Lemma@we conclude

that v is a constant.



Chapter 3

Conformally invariant integral
inequalities and remainder terms in

fractional sobolev inequality

In the first section of this chapter we prove some Carleman type sharp conformally
invariant inequalities in unit ball. The inequalities hold for general dimensions, which
extends the original Carleman’s result in two dimension. The second section is devoted
to some results about remainder terms in the fractional sobolev inequality; this section

represents the joint work with Weth and Frank.

3.1 Carleman type conformally invariant integral in-

equalities

3.1.1 A family of conformally invariant integral inequalities

This section is devoted to the proof of Theorem 3] Since P, enjoys very similar properties

to the special case Py (classical harmonic extension), we are also able to use the method

48
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of symmetrization developed by Lieb [50] to prove the existence of maximizer as Hang,
Wang and Yan did in [45]. The following Lemmas are parallel to those in [45], but notice
that now we are dealing with poly-harmonic extension instead of harmonic extension.

Recall if €2 is a measurable set in R, p > 0 and u is a measurable function on €2, then
1
[ull Lr, = supt|[u] > t|7.
>0

The weak-LP space LE(€2) is defined as {u:u is measurable and ||ul|;z ) < oo}. More
generally, for any 0 < p < 0o and 0 < ¢ < oo, we have Lorentz norm || - || p». Which is
defined by ||ul|zra = pq (f~ t9ul > t|rd )q and Lorentz space LP9(Q)) . LP (Q2) = LP>(Q2)

is a special case of such spaces.

Lemma 7. For a < 1, defining P, as in (1.9), there exist constants ¢, and ¢y qp such

that
1P fl

L” 1(]R" >~ Cn,aHfHLl(]R”—l)

and

I1Pufl, 2 g < Cnapllf ey

for all 1 < p < 0o. Moreover for 1 < p < oo we have

[Pafll, 2 < Cnapllf]

Ln 1 Lp’nn—pT (Rnfl)'

Proof of Lemma. To prove the weak estimate, we may assume f > 0 and || f||p1gn-1) =

1. It is easy to see (P, f)(X,z,) < j,?;“l for (X, z,) € R} and

/ (P.f)(X,z,)d" ' Xdx,
(X,zn)€ERT 0<y<b

b 1—a
- 7y royy) | de, d. . Tn gty
[ (500 [ [ i)

= b




CHAPTER 3. Conformally invariant integral inequalities and remainder terms in fractional s

for b > 0. Hence for t > 0,

Pof >t = {(X,2,) €RY:0 <, < (dyht) 71, (Puf) (X, 2,) > t}
2

< - )

t X€ERn—1,0<an<(dy ht)” 7T

1
= ;(dﬁ,}lt)_ﬁ

(Pof)(X,p)d" ™' Xduy,

The weak type inequality follows. The strong estimate follows from Marcinkiewicz in-
terpolation theorem (see [64], p197) and the basic fact || P, fl|reo®n) < [|f[lzo@n-1). In
fact, the Marcinkiewicz interpolation implies that if 7" is a linear bounded operator from
LY(R™ ') to LEo(R%) and at the same time from L>®(R™"') to L=(R%), we have that

for each p € (1,00), T is a bounded operator from LP4(R"') to LPPo4(R?), where

n np

1 < ¢ < 00,. To complete the proof we need only to choose py = —*5, ¢ = .

Remark 3.1.1. In fact when p = % and a = 0, the second estimate was also proved

by Brezis and Lieb [13] by using some elementary dual argument.

Lemma 8. [fn>2,a<1 and1 < p < o0, then the supremum
= ey
Ciap = SUP{|[Paf (e 2 [ fllzeen-1) = 1}, (3.1)
n=T(R%)

is attained by some function. After multiplying by a nonzero constant, every maximizer
f is nonnegative, radially symmetric with respect to some point, strictly decreasing in the

radial direction and it satisfies the following Fuler-Lagrange equation

oy | D (p (X ) d X,
(X =Y)2+a2) T ’

2(n—1)

In particular, if n > 2, p = o

andn—24a > 0, then every maximizer is of the form

A n—2+a

XY VP

f(Y) = *e(n, a)( (3.2)
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for some A >0, Yy € R* L,

Proof of Lemma([8 First we recall the important Riesz rearrangement inequality. Let
u be a measurable function on R”, the symmetric rearrangement of u is the nonnegative

lower semi-continuous radial decreasing function u* that has the same distribution as w.

We have

[ o [ @ty -apwtay < [ do [ w@e - ey

Using the fact ||w||zo@ny = ||w*||zr@ny for p > 0 and the standard duality argument, we
see for 1 < p < oo,

[Ju UHLP(R”) < fJu” * U*HLP(R")-

Moreover if u is nonnegative radially symmetric and strictly decreasing in the radial

direction, v is nonnegative, 1 < p < oo and
||u * UHLp(Rn) = HU* * ’U*HLP(R") < 00,

then for some zy € R", we have v(z) = v*(x — x).

Now, assume f; is a maximizing sequence in (3.1). Since || f|| r@r-1) = || fill Lrn—1) =
1 and
np_ o0
|| n—1 .
P = [ P T
o
S .
0 Rn 1)
P npl
= IS
where P, ;. = dn,ao?f%i% and notice that it is symmetric and strictly decreasing in the

radial direction of X variable for any fixed z,,. We see f; is again a maximizing sequence.

Hence we may assume f; is a nonnegative radial decreasing function.
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For any f € LP(R"!) and any A > 0, we let fAY) = )\_nTtlf(g), so that is

_n-1
clear that (P, f")(X,x,) = A\~ » (Paf)(§,x7") and hence ||| zewa-1y = || f]|rp@n-1)
and || P, f’\HLn :m) = | afHLn " ) . For convenience, denote e; = (1,0,---,0) € R*!
and

= sup{f}(e1)|A > 0} = sup{A~"7 fz( S)[A > 0}
It follows that 0 < f;(Y) < a;|Y|” 7 , and hence | fill Looe (mn-1) < | By 1|Paz.
Now

1Pafill 72

IN

C(TL, a7p) HfiHLPV%(Rnfl)

n—1 1
< C(”;ayp)Hfi“Lg(Rn—l)HfiHZP’OO(R”—l)

1

C(”? a’7p)azn7

IN

which implies a; > ¢(n,a,p) > 0. We may choose \; > 0 such that fi’\i(el) > c¢(n,a,p) >
0. Replacing f; by f we may assume f(e;) > ¢(n,a,p) > 0. On the other hand , since

fi is nonnegative radial decreasing and || f;|| Lp(rn-1) = 1, we see
1 nm1
i) < [Bpal 7Y 7

Hence after passing to a subsequence, we may find a nonnegative radial decreasing func-
tion f such that f; — f a.e. It follows that f(Y) > ¢(n,a,p) >0 for |Y| <1, f; = fin

LP(R™ ') and || f||p@n—1) < 1. By Lieb [50](Lemma 2.6), we have

[ =1 =1s— iy o
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It follows that

1fi = Alpp@ey = fillzo@a-ry = 1F 2o @nry +0(1)

= 1- ||f||Lp Rn—1) +O(1)

On the other hand, since (P, f;)(X, z,,) = (P.f)(X, z,)) for (X, z,) € R} and HPafiHL%(]R”) <
+

Cn,ap, WE SEC

||sz| g = |PufI" +||Pafz Pf||”1 +o(1)

AT (RY) ﬁ( ) L)

< CnaprHLp(Rn 1y + Chabllfi - fHLp k1) T 0(1).

Hence

1< HfHLp re1y T ILfi = fHLp(Rn 1y +o().

Let ¢+ — oo, we see

n

1 < ||f||Lp Rn— 1 ( ||fHLp Rn— 1 )71

Since—"- > 1 and f # 0, we see ||f|| p@n-1y = 1. Hence f; — f in LP(R"!) and f is a

maximizer. This implies the existence of an extremal function.

Assume f € LP(R™!) is a maximizer, then so is |f|. Hence ||P, fHLﬁ &) =

| P, |f|||Ln7 . On the other hand , since |(P,f)(X,z,)| < (P.|f)(X, z,) for (X,x,) €

T(R?)
R", we see | P, f| = P,(|f|) and this implies either f > 0 or f < 0. Assume f > 0, then

the Euler-Lagrange equation after scaling by a positive constant is given by

p—1 _ y' e g eV X dr
1077 = [ iy B () K,
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On the other hand, we know for x,, > 0,

HPazn*ﬂ

Hpa,xn * f

Ln 1 ]Rn 1 L%(Rn—l)

which implies f(Y) = f*(Y —Y}) for some Yj. It follows from the above Euler-Lagrange
equation and Lemma 2.2 of Lieb [50] that f must be strictly decreasing along the radial

direction.

For the case when p = i("QJrla, we first observe that if f € Ln = (R™1), let u = P, f,

F = e () and = rsbores (85258, then we have @ = Puf, 1] s =

+a(Rn 1)
HfHLiLfZ%(RH*I) and |’€LIHL,”7272"+G(R1) = HuHLnfigﬂl(Ri) .

This is the conformal invari-
ance property for the particular power. As a consequence, if f is a maximizer which

. . . 1 . . . .
is nonnegative and radial, thenmn—,Qﬂ f( — e71) is also a maximizer. In particular,

Y
[Y[?
|Y|’+2+“ f (% — e1) is radial with respect to some points. To find such f, we need the

following useful Proposition of Hang, Wang and Yan [45]( Proposition 4.1).

Lemma 9. Let n > 2, u be a function on R™ which is radial with respect to the origin,
0 <u(z) <oo forx#0,e =(1,0,---,0), v € R, a« #0. Ifv(z) = |x|°‘u(ﬁ —ey) is

radial with respect to some point, then either u(z) = (c1|z|?+c2)2 for some c; > 0,cy > 0

or
clz]® ifx#0
Co if x = 0.
Proof of Lemmaﬁ continued. Since Hf|| 202 ety 1 and it is strictly decreasing
Rn—

along the radial direction, we have 0 < f(Y') < oo for all Y # 0. Note that since f satisfies
the Euler-Lagrange equation, it is defined everywhere instead of almost everywhere. It
follows from Lemma 3 that f(Y) = (c1|Y [2+¢2)~ "2 for some ¢y, ¢5 > 0 (since f can not
be constant function and the scalar multiple of |Y|?>~" is ruled out by the integrability).

Using the condition ||f|| 2m-1 = 1, it is easy to see cica = ¢, 4. Hence for some
Ln=2Fa (Rn—1) ’
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A >0,
)\ n—24+a

A2+ |Y—Y0|2)

fY) = c(n, a)(

Proof of Theorem 3. For any f € = (0B,), let u = P.f

1 ~
AR R T,
and
1
u =

uo .
(X, z0) + (0, 5) |2t

By definition (1.12)) we have u = P,f and by the discussion below ((1.11)) we have

Hf“Li(f{ﬁi o = HfHLi(fEJﬂ — and HuHLnanJra . Then, Theorem

= llull, e
(Ba) L7=5¥a ()

follows easily from the above facts and Lemma [8]

3.1.2 The limiting case

First we will discuss some conformal invariance properties of the operator }Nja. Let 7 be
a conformal transform from B, to itself, 7 = T|sp, is the induced conformal transform
from 0B, to itself, J is the Jacobian of 7, J is the Jacobian of 7, ¢ = n — 2+ a. For

2(n—1)

f € L»—2%(0B,,), when € # 0, we have

P.(JT T for) = Jo (P,f) o 7. (3-4)

It is straightforward to check this property by using the definition of P, in (1.12).

Now, for smooth function f, when ¢ goes to 0 it is obvious that

Py n(for)=(Pyynf)oT. (3.5)
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By letting f = 1 and taking derivative with respect to € at 0, we have

d(P,1)
de

d(P,1)
de

~ 1
le=0 + Pan(5— log J) =

1 -
—ooT+ —1 .
20— 1) le=o0 T + o™ ogJ (3.6)

So the inequality in the Theorem 4| is invariant when F' is replaced by F o7 + ﬁ log J.

Proof of Theorem 4. Recalling Py_,1 = 1, let f = 1 + ¢F, where F is some smooth

function defined on 0B,,. By Theorem 3, we have the inequality

| Py(1 4 eF)| 2 < Spalll +F||
L By) L

2 2(n—1) 5
n=2a ( "2t (OB,)

which means

~ n ﬁaF n B 2 2(n—1 ﬁ
(/ (Pa1)i(1+5}~)1 )idx> < Sia (/BB (1+eF) ™ )d§> .

Note that when F' = 0 the above inequality becomes equality, then by the following

estimates we will see in this case the integrals in both sides will converge to some finite

2
numbers, which means the constant Sy, will also converge.

In order to take limit € — 0, we need to apply the Dominated Convergence Theorem.
we will bound the term P,1 from below by a constant A and bound (P,1)%" from above

by a constant B, both A and B are independent of €. Let us derive the lower bound of

P,1 first. From (1.9) and (1.12)) we know

~ 1., - xl-e 1
Pzzl oQ = X2+ Ty + = 2 ana/ - n—a Sdn_l}/a
(Fal)og={ (on 5 )2, oot (X —Y)24+22)%5° (Y24 7)3
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by letting U = % in the integral, we have

(P,1)o¢ = d / 1 (|X|2+(%+%)2>%dn’1[f
¢ M Jrner (2 4+ 1) (Uzy + X)2+7)8
-y 0/ 1 (X2 + (2 + 2)%)% —r
= S U+ 11 (21 X2 + 222 + 1)3
1 1
> dn / —_dnflU
o wi<t (UP+ 1)t 2

A.

2n
1>

In order to derive the upper bound of (]Bal) ,

n—
5

it is enough to prove that (P,1)"% is

bounded from above by some constant B independent of €. As in the proof of lower

bound, after the same change of variable we have

1

n—2

(P,1)

n—2

1
_ dn—lU

£ O¢
U+

9(X, @) (dn,a /RTH<
1

n—a

1)

(Uzn + X)2+ 1)z

y

IA

g Xaxn dn,a/
( ) ro-t (|U]2 +1)

IN

1
n—a n—2 dnilU
2 ((U%n—i-X)Q—l—}l)T
1 1

dn 2—n /
X7 n 7—dn
g( :C ) dqu,O 70 Rnfl (|U

5 — . LﬁanilU
2+ 1% (U, + X2+
1

T

dn -n
g(X7 xn) d’Ldn,O

/]R”l ((

n,0
o dn,2—n
B dn,O
- B,
where ¢(X,z,) = (|X|2 + (z, + %)2)%

inequality, since dn,a( 1
u

when t > 0. The last identity holds because

T

X—YP+a)f (VP +1)F

. dnfly

For the first inequality we applied Jensen’s

N is a probability density in R"! and g(t) = t"=" is convex
2

1
— dn—ly

o |, (

X —Y)2+a2)s (v2 41

2

is the harmonic extension of function (Y2 + %)’%2 which is easy to verify that it is
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1 .
(X+@n+3)2) 7
Now we can take limit ¢ — 0 safely. By denoting

exactly

de le=0
xﬁ‘l

1 1
= [log(X? nt+ =) —dy n/ log(Y? 4+ ~)d" 'Y -1
(Og BTl (o & T R S 0

we get ||61”+2f)2*"F||Ln(

By < Snll€* || pa-1(o8,). After replacing 2F with F', the inequality
in Theorem 4 is proved. Since constant functions are optimizers for the above inequality,

conformal invariance of the inequality tells us that the functions

F=C+

1
1logJ

n —
are also optimizers.

Remark 3.1.2. The uniqueness is lost when taking limit in the proof of Theorem[4) It
would be interesting to find a suitable method to prove that the optimizer is unique up to
a conformal transform. In [9), Beckner proved the uniqueness of optimizers of the higher
dimensional Beckner-Onofri’s inequality (which is also a limiting inequality of a family of
inequalities) by establishing a logarithm inequality which is dual to the original inequality,
and for the new inequality one can use the symmetrization technique. The main difficulty
for the uniqueness of optimizers of our inequality in Theorem |4| seems to us is that how
to get a corresponding dual inequality which could enable us to use the symmetrization

technique.

3.1.3 Carleman type inequality for sub-bi-harmonic functions

Now we are in the situation where n = 4 and a = —2. By [41] we know that (P_of)(X, z,) =

di—o [ R W f(Y)dY is the bi-harmonic extension of the function f(Y) with
boundary condition %Wunzg = 0. It is straightforward to check that under the
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conformal map ¢ the bi-harmonic property and the Neumann boundary condition are

preserved in dimension four, we have that P_,g is a bi-harmonic extension of a function

g defined on S® to a function on B, with boundary condition 81;;29 ly=0 = 0. In view of

Theorem [}, in order to prove Corollary [2] we only need to verify I, satisfies A%l; = 0,

Iy = 0]gs and —% =1

From the formula for I,,, we have

1 a3 1
Iy = (log(IX|* + (z, + 2)%) — du— . log(Y?+ =)d*Y | o™
4 (Og(| | +(I +2) ) 4, 2/R3 ((X_Y)Q_'_x%)g Og< +4) O¢
By using the explicit formula of ¢ one can get
1— 2\3
1= 2togly - 5 -20 [ S  og]e - sjas
s |In—¢

where 7 is a point in By, £ is a point on S3, S is the south pole of S? and C is the normal-

(1—|n|*)®
[n—¢[°

izing constant such that C' [, d¢ = 1. Now from [41] we have the representation

formula for bi-harmonic functions, in fact for a smooth function g on B* we have

(1- W)Q(_@

(1= ?
S g(€)de + D >

= €P e gy @)

o) = / Gaz(n,)A%g()ds + C /
By S3

where G'(a2 p,) is the the Green’s function with Dirichlet boundary condition and D
is a known constant. Note that the positivity of G (a2 p,) (see [11],[41]) enables us to
use comparison principle to extend the inequality to sub-bi-harmonic case. Although
the function log|n — S| is singular at the south pole S, If we apply the forthcoming

approximation process we obtain

1— 2\3
I, = 210g|77—5|—20/ %logﬁ—ﬂd{
g8 In—¢
(1 —n[*)?

-D ———d£,
33 |77 - §|4
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since —M(g) = —1. In the above equality —D fsg (1=In] 4)2d£ is the bi-harmonic

Oy
extension of constant function 0 with boundary condition —8—9( ¢) =1, so I, satisfies all

three conditions mentioned above.

Since log |n — S| is singular, we use approximation to justify the previous formula for

1. Take a sequence

S =(0,0,0,—t) - S =(0,0,0,—1),
ast — 1 4. Then log |n — S| is a smooth bi-harmonic function on B4, so we have

Q—m*? 1+ty
In—¢&* 1+t2+ 2ty

1— 2\3

bmg—&wa+D/) d,
g3

here we use y to denote the last coordinate of . For fixed n € By, when ¢ approximates
1 from the right, |log|¢ — S|| < |log|¢ — S|| for £ in a small neighborhood of S, since

|log |¢ — S| is integrable on S®, by the Dominated Convergence Theorem

(1—1Inl*)? B (1—1[n*)? B
OL;WQme'w@%OLTFE;mm‘Wa

as t — 1+. Similarly, when t is close to 1 from right hand side, we have

1+t 1 10
—y|§_+—‘
T+ +2ty' =2 - SP

Since 1 5 T S|2 is integrable on S3, by the Dominated Convergence Theorem again we

have

1—|n2)2 1+t 1 1—
D (1—1nl?) + ty e lp ( |?7|)d€
g In—E&* 1+12 42ty 2 Jgs In—=¢*

as t — 14. Now by taking limit ¢ — 1+, it is clear that we have the representation
formula for log |n — S|. Finally since the kernels in the representation formula (3.7) are
positive, we conclude that the inequality in Corollary [2is true for sub-biharmonic function

u with boundary conditions —5* = 1 and u = 0 on dBy4. Note that the proof works due
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to the very specific fact that the Green’s function of bi-laplacian with Dirichlet boundary
condition on balls is positive, and its derivatives have the good sign which allows to apply
a point-wise comparison principle. This is an old result due to Boggio [I1] and has been

extended to perturbations on ball in Grunau-Robert [44].

3.2 Remainder terms in fractional Sobolev inequali-

ty

This section is organized as follows. In Subection we recall the conformal invariance
of the problem, and we discuss the framework for an equivalent version of Theorem [5| on
the sphere SV ¢ RY¥*! see Theorem . In Subsection we prove this Theorem, thus
completing the proof of Theorem [5] In Subsection [3.2.3 we give the proof of Theorem [6]

We conclude by pointing out the open problem to find an explicit constant o > 0 in
(1.22]) via a constructive proof of Theorem . For a local version of Theorem [5| where the

right hand side of (1.22) is replaced by ad?(u, M) + o(d2(u, M)) and only u € H3(RY)

2s

Niors- Lhis follows from

with d(u, M) < |luls/2 is considered, the best constant is o =

Proposition [2| below.

3.2.1 Prelinimaries

In the following, we will denote the scalar product in Hz(RY) by

(s = [ I€Fa(E) de

so that [lull?,, = (u, u)sp for u € H3(RY). In the remainder of this section, 0 < s < N
is fixed and we abbreviate ¢ = 2n/(N — s). We recall that the group of conformal

transformations on R¥ is generated by translations, rotations, dilations and the inversion

T # If h is one of these transformations and J; is the modulus of its Jacobian
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°_ s 1 1 ° s
determinant, then for any functions u,v € H2(R") we have Jiuoh, Jivoh € Hz(R")

and

(Jiwoh, Jivoh)es = (u,v). (3.8)

This property is a consequence of the conformal covariance of the operator (—A)*/2, i.e.,
of the equality
1 N+ts
(—A)2(Jiuo h) = J,7 [(~A)"u] o h (3.9)

for all conformal transformations h on R and all Schwartz functions u. As stated in [59,

Proposition 2.1], (3.9 is most easily derived by considering the inverse operator (—A)~*/2
given in ((1.19). Indeed, the identity
Nis 1
(=A) 22N woh) = JI(=A)"**u] o h (3.10)

is equivalent to (3.9), and it can be verified case by case for dilations, rotations, transla-
tions and the inversion. In the latter form related to the Riesz potential, the conformal

covariance had already been used by Lieb in [50].

Note that, if A is a conformal transformation on R, it follows from (3.8)) that the

1
map u +— J;u o h preserves distances with respect to the norm || - [|5/2, i.e. we have

1 1 o
|Jfuoh — Jlvoh|ss=|lu—2uv]s: for all u,v € H2(RY). (3.11)

1
Since the set M is also invariant under the transformations v — J; u o h, we conclude

that d(Ju o h, M) = d(u, M) for all u € H3(RN). We also note that
1
|Jfwo hl|, = |ul, for any u € LY(R") (3.12)

and any conformal transformation A on RY, which follows by an easy computation. In
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the following, we consider the inverse stereographic projection

2z 1—|xf?

T+ ]z 14 |z

7:RY =5 SN c RN+ m(x) = ( ).
We recall that 7 is a conformal diffeomorphism. More precisely, if grx denotes the flat

euclidian metric on R and ggv denotes the metric induced by the embedding SV c RV +!,

then the pullback of gsv to RY satisfies

4
* = —————=(RN. 3.13
T gsN (1 n | . |2)2gRN ( )
Moreover, the corresponding volume element is given by
Jo(x)d 2 Nd 4
i = , 3.1
(x)dx (1 n |a:|2> x ( )

For a function v : SV — R, we may now define

PuRY SR, [Pu)(z) = Ju(2)iv(r(z)) = <%\wl2> T (o).

From (3.14)), it is easy to see that P defines an isometric isomorphism between L4(SY)
and LI(R"). We also note that

P1=2W-972y (3.15)

where 1 stands for unit function on SV and U is defined in (1.20]). Moreover, H2(SV) is
the completion of the space of smooth functions on S under the norm || - ||, induced by
scalar product

(u,v) = (u,v), = (Pu, Pv)ys.

We will always consider H2(S") with the norm | - ||, induced by this scalar product
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(for matters of convenience, we suppress the dependence on s at this point). Hence, by

construction,

o

P is also an isometric isomorphism (H2(S™), || - |l.) — (H2(RY), || - ||s/2)-

Next we note that (-, ), is the quadratic form of a unique positive self adjoint operator
in L?(SY) which is commonly denoted by A, in the literature. This operator is formally
given by
_ Nis
[Agw] o = Jr 2 (=A)*2(Puw).
A key ingredient of the proof of Theorem [5| is the following representation of A, as a

function of the Laplace-Beltrami Operator Agy on SV:

A, = Sl \/—ASN + (%)2. (3.16)

This formula is most easily derived by considering the inverse of A, and using the Funk-
Hecke formula, see [9] and also [59]. It also shows that the domain of A, coincides with

H*(SY). The following statement is a mere reformulation of (3.16]).

Proposition 1. The operator A, is self adjoint and has compact resolvent. Its spectrum
1 given as the sequence of eigenvalues

_TEE+R)
L33 + k)

A (8) k € No,

and the eigenspace corresponding to the eigenvalue A\i(s) is spanned by the spherical

harmonics Yy j, 7 =1,..., (k;rVN) — (H%*Q), of degree k.

Next, we note that, via the isometric isomorphism P, inequality (1.15] is equivalent
to

Jul]? > Slul?  for all u € Hz(S"), (3.17)
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with ¢ = 1\2/_11[3 Here, in accordance with the previous notation, we also write | - |, for the
L"-norm of a function in L"(SV), 1 < r < co. Equality is attained in (3.17) for nontrivial

u if and only if u € M,, where
M, =P Y M)={ve H2(S") : Pve M}.
Moreover, the remainder term inequality is equivalent to
P (u, M,) > |ull? = Slul? > ad?(u, M,) for u e H2(SM), (3.18)
where d(u, M,) = min{||u — ¢||. : ¢ € M}. We may therefore reformulate Theorem

as follows.

Theorem 10. There exists a positive constant a depending only on the dimension N

and s € (0, N) such that holds.

We will prove Theorem |10 in Section below, thus completing the proof of The-
orem Bl We close this section with some comments on the conformal invariance of the
reformulated problem and the geometry of M,. Via stereographic projection, the confor-
mal transformations on S are in 1-1-correspondance with the conformal transformations

on R¥. So, if 7 is an element of the conformal group of SV and .J, is the modulus of its

Jacobian determinant, then (3.12) and (3.8]) imply that

1 1

1 1 1
(JfuoT,JivoT)ss = (u,v). and | S wo hl, = |ul, (3.19)
for all u,v € H>(SY). From (3.15)), we deduce the representation
1
M, = {cJ?| 7 is an element of the conformal group of SV, ¢ € R\ {0}}.

The modulus of the Jacobian determinant of a conformal transformation 7 on SV has
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the form J.(§) = ¢(1 — &£-0)™" for some § € BN := {x € RV : |z| < 1} and some
& > 0 depending on |f] (indeed, one can show that ¢ = (1 —10|?)"/2, but we will not need
this fact). Thus, M, can be viewed as an N + 2 dimensional smooth manifold embedded

in H2(SY) via the mapping
R\ {0} x BN — H2(SY),  (c,0) — uep, (3.20)

where u. (&) = (1 — € - 9)_¥ for € € SV. This immediately implies that the tangent
space Ty M., at the function 1 = u; g is generated by the spherical harmonics Yy = 1 and

Y{,j=1,...,N +1, given by
YiE)=¢  for&=(&,... ) €SV C RVFL

Hence T3 M., coincides precisely with the generalized eigenspace of the operator A, cor-
responding to the eigenvalues A\g(s) and Ai(s). Combining this fact with the minimax

characterization of the eigenvalue A\s(s), we readily deduce that

Ao(s) = inf W (3.21)
veny Mt |vl3
with
Mt = {ve H2(SY) : (v,w), =0 for all w € Ty M, }. (3.22)

The identity (3.21]) will be of crucial importance for the local verification of (3.18]) close

to the manifold M.,.

3.2.2 Proof of the remainder term inequality on the sphere

We briefly explain the strategy to prove this remainder term inequality which goes back

to Bianchi and Egnell [I0] in the case s = 2. First, the inequality is proved in a small
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neighborhood of the optimizer U € M defined in (1.20). Considering a second order

Taylor expansion of the difference functional

wr o(0) =l =5 ([ laar)”
RN

at U, it is not dificult to see that holds in a neighborhood of U with some o > 0 if
and only if the second derivative ®”(U) is positive definite on the (/N +2)—codimensional
normal space to the manifold M at U. This normal non-degeneracy property is the cru-
cial step in the argument. Once inequality is established in a neighborhood of U,
it extends to a neighborhood of the whole manifold M as a consequence of the confor-
mal invariance of all terms in (1.21). We will recall this conformal invariance in detail
in Section below. Finally, to obtain the global version of , a concentration
compactness type argument is applied to show that sequences (uy), in H 2(RN) with
®(u,) — 0 as n — oo satisfy d(u,, M) — 0 as n — occ.

The general idea described here had already been used in [10] [56, [7], but the proofs of the
normal non-degeneracy property in these papers strongly rely on the assumption that s
is an even positve integer and therefore the eigenvalue problem for ®”(U) can be written
as a differential equation. In particular, ODE arguments are used to study the radial
part of the corresponding eigenvalue problem. This method does not apply for general
s € (0, N). On the other hand, one may observe that the eigenvalue problem has a much
simpler form once inequality is pulled back on the unit sphere S c R¥*! via
stereographic projection. The equivalent version of Theorem |5 on SV is given in Theo-
rem |10| below. The idea of studying in its equivalent form on S also goes back to
Lieb’s paper [50] where the (equivalent) Hardy-Littlewood-Sobolev inequality was con-
sidered. Afterwards it has been applied in many related problems dealing with Sobolev
type inequalities and corresponding Euler-Lagrange equations, see e.g. [6l 30, 59, 9] and

the references therein. To our knowledge, its usefulness to identify remainder terms has
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not been noted so far.

About twenty years after the seminal work of Bianchi and Egnell [I0], the topic of re-
mainder terms in first order Sobolev inequalities (and isoperimetric inequalities) has again
attracted a lot of attention in the last years. The recent works use techniques from sym-
metrization (see, e.g., [22, [38]), optimal transportation (see, e.g., [37]), and fast diffusion
(see, e.g., [31], 132, 48]); see also [I8] for a recent application of remainder terms. However,
while these new methods lead to explicit constants and allow to treat non-Hilbertian
Sobolev norms, the estimates for the remainder terms are typically weaker than in the
result of Bianchi and Egnell. It is not clear to us whether the symmetrization and the
optimal transportation approach can be extended to give remainder terms in the higher
order case or in the case of arbitrary real powers of the Laplacian (see [48] for a fast
diffusion approach in the fractional case). We therefore think it is remarkable that the
original strategy of Bianchi-Egnell can be generalized to the full family of conformally

invariant Hilbertian Sobolev inequalities.

We first prove a local variant of Theorem [10]

Proposition 2. For all u € H?(SY) with d(u, M.,) < ||ul|., we have

25
2 > 2 2 S 2 2 _ .
d*(u, M) > |lul|; — S|ul; > Niso 2d (u, M) + o(d*(u, M,.)) (3.23)
Proof. We consider the functional
U:H(SY) =R, W(u) = |ull? = Slull. (3.24)

It is easy to see that W is of class C? on Hz(SV)\ {0}. Moreover,

V' (u)v = 2{(u,v), — 28|u|3_q/ |u| 7 ?uw d¢ (3.25)
SN
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and

1

5‘1’”(“)(”710) = <U7w>*—5(2—Q)\U|§2q/ |u|?*uw d§/ |u|9™ 2uw dé
SN SN

=St =Dl [l (3.26)

for u € H2(SN)\ {0}, v,w € H3(SV).

Next, let v € H2(SV) with d(u, M,) < |lu|.. It is easy to see that d(u, M,) is achieved
1
by some function ¢J; in M, with ¢ € R\ {0} and a conformal transformation 7 on SV.

L and using (3.19), we may assume that ¢ = 1 and 7 = id,

1
Replacing u with %J:_lu oT”

hence we may write u = 1 + v with v € T} M7, the normal space of M, at 1 defined in
(3-22)), and d(u, M.) = ||v]|+. We note that U(1) = 0 and ¥’'(1) = 0 (since the function
1 is a global minimizer of ¥). Moreover, the condition v € T} M7 in particular implies —

since 1 € Ty M, — that

(l,v),=0  and / vd€ = 0. (3.27)
SN
In particular, we find that

2
W(u) = U(1+0) = 12+ oll2 = S|T+ofz < L2+ [lo])2 = SIS 1+ o3
2-q 2-q
= [LZ + [ollZ = SIS™ "« (IS™] + [v) = ¥ (1) + [Jv]l = SISY| o [vf3

< [lollZ = d*(u, M.),

and this yields the first inequality in (3.23)). Moreover, from (3.26|) and (3.27) we infer

that

1

SV W) = ol = - DSV [ e
SN
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A second order Taylor expansion of ¥ at 1 thus yields

V(u) =V¥(l +0v) = %‘I’"(l)(v,v) +o(|lv]3)

= [[vl? = (¢ = DSIS™| = o3 + o(|lv]]2).

Using ((1.16) and the identity |[SV| = QW%F(%)”, we find by a short computation

(using the duplication formula for the Gamma function) that

N +s I8+ 1)

(- DSISV T = 7 SISV[F = it = Aas).
N—s DA +1)
Noting moreover that |v]3 < J\‘g—(”;) as a consequence of (3.21)), we conclude that
W) > o2 (1 - M) o(1)) = d(u, M )Z(L +o(1))
— Ao () AN+ s+ 2
This shows the second inequality in (3.23)). O]

The next tool we need is the following property of optimizing sequences for (({1.15]).

Lemma 10. Let (up), C H3(RY)\ {0} be a sequence with lim lemlf — S Then

m—r00 |UW‘§
d(um,./\/l*)

llum |«

— 0 as m — oo.

Proof. By homogeneity, we may assume that ||u,|« = 1 for all m € N, and we need to
show that d(um, M,) — 0 as m — co. We let vy, = Pu,, € H5(RY) for m € N; then

|Vm|s/2 = 1 for all m, and

1

s S as m — oo. (3.28)
|Um|q

By the profile decomposition theorem of Gérard (see [42, Théoreme 1.1 and Remarque
1.2]) , there exists a subsequence — still denoted by (vy,)m, — and

e a sequence (1);); of functions 1; € H2(RN),
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e an increasing sequence of numbers [,, € N, m € N,
e a double sequence of values hf, € (0,00), m,j € N,

e a double sequence of points 27 € RV, m,j € N

such that
’ Z T w] m) =0 as m — 0o, (3.29)
_ q
omld = Y |95l asm—o0  and Z 95112 < (3.30)
=1

Combining the Sobolev inequality (1.15) with (3.30) and using the concavity of the

function t — t%/9, we find that
(o] o0 2/[1 '
1>83 [uyf2 > S(Z wg) =S Tim_[vn2. (3.31)
j=1 j=1

By (3.28]), equality holds in all steps in (3.31). The strict concavity of the function

t — t¥/7 then shows that Y; = 0 for all but one j € N, say, j = 1, where Swlg =1 and

|41]]s/2 = 1 as a consequence of (3.30), (3.31) and the Sobolev inequality (1.15)). Hence
U, € M, and from (3.29) it now follows that

1
m)‘ — 0 as m — oo.

_ s —
’vm — (h}n) 2 ¢1( A

m

Therefore, defining
T € H3RY), () = (hL) % vm(hho+ L) form €N,

we have ¥, — 11 in LI(RN) for m — 0o, but then also @, — 11 in H (RY) strongly since
|Omlls/2 = [|vmlls)2 = 1 = ||¥1]|s/2 for all m € N. Consequently, d(0,,, M) — 0. By the
invariance property (3.11]), we then have d(v,,, M) — 0 and therefore also d(uy,, M,) — 0

as m — o0, since P is an isometry. [
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Remark 3.2.1. (i) In the proof given above, we do not need the full strength of Gérard’s
profile decomposition theorem. Inductively, Gérard writes v,, as an infinite sum of bub-
bles, see and [42]. For our proof it is enough to stop this procedure after the very
first step. As soon as one bubble is extracted, the strict concavity of the function ¢ — ¢/
implies the convergence.

(ii) In the case where s € (0,N) is an even integer, Lemma 10| follows directly from a
classical concentration compactness result of Lions, see [52, Corollary 1]. For arbitrary
s € (0,N), one could also use the duality between and and another con-
centration compactness result of Lions about optimizing sequences for , see [53]
Theorem 2.1]. To us it seemed more natural to use a technique directly applicable to

optimizing sequences for (|1.15)).

With the help of Proposition [2| and Lemma [10] we may now complete the

Proof of Theorem[10, Let u € H2(S"). Since 0 € M., we have d(u, M,) < |jull.. If
d(u, M,) < |Jul|, then the first inequality in (3.18) follows from Proposition [2] and it is
trivially satisfied if d(u, M.) = ||ul|s. To prove the second inequality in (3.18) for some

a > 0, we argue by contradiction. For this we assume that there exists a sequence (uy, )m

in H2(SY)\ M, with
Hume _S’um’g

d? (U, M)

— 0 asm — oo. (3.32)

By homogeneity we can assume that ||u,,|+ = 1 for all m € N, then d(u,, M,) < 1

for all m € N and therefore (3.32) implies that lim |um|g = % Hence Lemma (10| gives
m—r0o0

d(tp, M) — 0 as m — oco. But then Proposition [2| shows that (3.32) must be false. We

conclude that there exists « > 0 such that
Jull? = Slul? > o d?(u, M.,) for all u € H2(SV),

as claimed. 0
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3.2.3 The weak L%? remainder term inequality for domains of

finite measure

In this section we give the proof of Theorem [6] For this we define
Uny € HERY),  Uyy(z) = \UNT= (2 — y))
for c€ R\ {0}, A >0 and y € RV, so that

M ={cUy, : c€ R\ {0},\ >0,y € RV}

2N

A5 from

It will be convenient to adjust the notation for the weak L9/?-norm. We fix ¢ =

now on, and we write

U] w0 = sup ]A\N/ |u| dz.
A

ACQ
|A|>0

for the weak L%2-norm of a measurable function u defined on a measurable set  C RY.

We note the following scaling property, which follows by direct computation:

Ulw
|U)\,y|w,RN = |U)\,0’w,RN = | |)\7RN for A > 0, y e ]RN. (333)

Similarly, for a fixed domain Q C RY, w € H3(Q) and X > 0, define

2

Q) =AYV ¢ RY and  uy € H3(Q), ur(z) = Mu(A¥—2).

Then a direct computation shows

U] =271, |urlwe, = MT‘”Q and  d(uy, M) = d(u, M). (3.34)

Theorem [0 will follow immediately from the following Proposition.
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Proposition 3. There exists a constant Cy depending only on N and s € (0, N) such
that

[l < Cols d(u, M) (3.35)

for all subdomains Q C RY with |Q] < co and all u € H3(Q).

Proof. By the scaling properties noted in (3.34]), it suffices to consider a subdomain
Q C RY with |©2] = 1 in the sequel. In this case we have, by Holder’s inequality and
(1.15]),

w0 < |Jullza) < ||ull pa@yy < for every u € H3(RY). (3.36)

—=llulls2
\/— /

In the following, let p € (0,1) be given by

\/—( ISN d / Ty )‘17 (3.37)
Let u € H5(Q). If pllulls/2 < d(u, M), then
s € —d(u, M) (339)
VA
as a consequence of . So in the remainder of this proof we assume that
pllullyz > d(u, M). (3.39)

By homogeneity we may assume that [jull;2 = 1. Since p < 1, the infimum in the
definition of d(u, M) is attained as a consequence of (3.39)), and we have d(u, M) =
| — cUxyl|s/2 for some ¢ € R, A > 0 and y € R™. Moreover, (3.39)) implies that

1= = [llullsy2 = eUnylls2] < d(u, M) < p,
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that is, 1 — p < ¢ <14 p. We note that

d(u, M)* = [lu = cUxy |35 = Sllu = cUsyllza@)

> S|C| ||U>\ yHLq (RN\Q) = 3(1 - )2||U>\,y||%fJ(RN\Q) :

Now let B C RY denote the open ball centered at zero with |B| = 1, and let ry > 0
denote the radius of B. Since the function U in ([1.20) is radial and strictly decreasing

in the radial variable, the bathtub principle [5I, Theorem 1.14] implies that

||U>\7y||%q(RN\Q) > ||U/\7y||%Q(RN\(B+y)) - ||U>\,0||%Q(RN\B)>

and hence

d(u, M) )q <

q 4 ¢ every [N .
||U)‘70||LQ(RN\B) S (m <m> - |S |/1 —(1 T TQ)N d (340)

by our choice of p in (3.37). On the other hand, we compute

o) N 1 ¢
1Unol% g = 1SV / dr = V] / dr
La®RNE) o [14 (Aw=r)2]Y "5 e +r2

This implies that )\ﬁro > 1 and therefore

o] N—1
N-1 r
||U/\,0||qu(RN\B) =[S |//\N2 mdr (3.41)
sro
o0 N-1
> 2‘N|SN‘1!/ o By

Combining (3.40) and (3.41]), we conclude that

S

d(u, M) > G with €} == VS(1 — p)<W> .

(3.42)
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Using (3.33)), (3.36]) and (3.42), we find that

1
[t < |Unylwo + [t = cUrylug < (14 p)|Usylwpy + ﬁHu = cUnylls/2

_1+4p

1
LU+ —=d(u, M) < Cod(u, M)

VS

with Cy := %|U|wyﬂw + \/Lg Combining this with (3.38), we thus obtain the claim with

Cy := max{Cs, p%g} O

Finally, Theorem [6] now simply follows by combining Theorem [5] and Proposition

and setting C' := aC, 2.



Chapter 4

Regularity results in some
applications of optimal

transportation

In the first section of this chapter we give the proof for the C! regularity of the solution
to the principal-agent problem. The proof is based on a perturbation argument. The
second section represents joint work with Indrei; we obtain some regularity results of the

free boundary in optimal partial transport with general cost.

4.1 Regularity of the solution to the principal-agent

problem

Before embarking on the proof, we will give an interesting lemma that will be used later.

Lemma 11. [21] Suppose u(p) is a convex function defined on a bounded conver domain
Q C R™ which contains the origin 0. If u is singular at 0 (namely Ou(0) contains more

than one point) and 0 € ridu(0), where ridu(0) denotes the relative interior of the set

7



CHAPTER 4. Regularity results in some applications of optimal transportation78

0u(0) (a set consists of all sub-gradients of u at 0). Then we have the estimate

/ |Du(p)[Pdp > C|S| (4.1)
Se

where Se := {p € Qu(p) < €}, |S| is its volume, and C' is a constant independent of €.

This lemma was first proved by Carlier and Lachand-Robert in [21] by using a blow-up
analysis and a compactness argument, because of the independent interest of this lemma,
we will provide a more direct constructive proof of it, and in particular, the constant C'

can be explicitly estimated. The proof is very much inspired by [14].

Proof of Lemma . Since 0 € ridu(0), by rotating the coordinate system we can assume
u(p) > k|p1| for some positive k, where p = (py,p), and p' = (pa,p3,--- ,pn). In the
following, Proj(S) denotes the orthogonal projection of S, on the hyperplane {p|p; = 0},
and %SE denotes a %—dilation of S. with respect to the center 0. Now, we estimate the
integration of |Dul|? along the segment I, := {p|Proj(p) = p',p € S.}, where p' €

Proj(35.). Let Iy = [a,a + d] x {p'} be one of of the two components of I, — LS.,

1
2

without loss of generality we take the upper one, so by convexity we have u(a,p’) < %

and u(a + d,p’) = e. Then we have

/ \Duf’dp, > / 0 2,
o apl

the last “ > 7 follows from the convexity of u. Since u(p) > k|pi|, we have S, C
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[_%v %] x Proj(Se), and d < % Therefore

/ | Du|?*dp
Se

v

2
€
dp’
2e
/Proj(ése) 4?

k 1
ge\Proj(§S€)|

k )
— 2n+26\PrOJ(S€)]
EoIS) K
on+2°¢ % ~ on+3

v

| Sel.

So the Lemma 1 is proved with the constant 2’:%

Now we start the proof of Theorem [§] the main ingredient in the argument is that
we do the change of variables as Figalli, Kim and McCann did in [36]. In the new
variables, a b-convex function u in the original variables becomes a b-convex function
with an extra property that it is also convex in the usual sense. Another advantage is
that constant functions are b-convex, which allows us to perturb the minimizer by using

constant functions safely.

Firstly, we do a change of variable exactly same as that in [36]. By (B0)-(B1), the
map z € X — p = D,b(z,y0) € X,, and its inverse p € X, — = = z3(yp,p) € X
are C® diffeomorphisms, where 7 is the null product as in the minimization problem.
Then @(p) = u(xs(yo,p)) — b(xs(Yo, p); yo) + c(yo) is a non-negative b-convex function,
where b(p, y) = b(2s(yo, ), y) — b(xs (Yo, ), yo) + (yo). In fact, the above correspondence
between u and @ defines a 1 — 1 map between the space U, and the space ao of non-
negative b-convex function on X,,- By switching z and y in Remark , we see that
u(p) is a convex function. Omne should also notice that b satisfies the same condition

(B0) — (B3) as b does, except that b might be only C* on the first variable.

Now, suppose @ is minimizer and it is not C! at a point py € X,,, namely du(po)
contains more than one point. We claim that one can find a point y, € Y, such that

Dpl;(po, Y1) € ridu(po).



CHAPTER 4. Regularity results in some applications of optimal transportation80

Proof of the claim. Note that 0u(py) is a bounded convex set, so it is the convex hull of
its extreme points. Since @ is a convex function, for any extreme point w of du(py) we can
find a sequence of points p; at which w is differentiable, so that p; — po and Du(p;) — w,
as i — co. By (B1), we have Di(p;) = Dyb(p;, z) for a unique z; € Y. Therefore, by
passing to a subsequence we can assume z; — y; for some y; € Y, then by taking limit we
have w = D,(po, y1). From the above discussion we see that all extreme points of 0 (po)
are contained in D,b(pg, Y), which is a convex set by (B2), so di(pe) C D,yb(po, Y).
Then we perform the second change of variables. By (B1) we have that the C?
diffeomorphism p € X, — p := Dyg(po, y1) € X, and its inverse p — pz(y1,p) are well
defined. Then @(p) := @
A = (po) — b(po,y1), and b := b(p;(y1, D), y) — b(pg(u1, B), 1) — A1 satisfies (B0)-(B3),

except that it might be only C? on its first variable. By the same reason as in the first

(ps(y1,P)) — b(py(y1,P),y1) — A1 is a b-convex function, where

change of variables, @ is not only b-convex but also convex in the usual sense. Note that
by the choice of y; in the above claim, 0 € ridu(pg), where py = Dyg(po, y1). In these new

variables, the principal’s net losses are given by

E@) = [ (el D) = b5 o D) + ()} ap))det (G )dp

Y1

and the space of admissible functions becomes
Uy = {u|u is b — convex and u > l;(pg(yl,ﬁ)), Y1+ A}

Note that in the new variables, c(y) still satisfies Condition 1, namely there exists some
positive & so that c(y;(p,q)) — b(p, y5(P,q)) — d|q|* is convex in the ¢ variable for all
D € X,. It is also easy to see that after the above change of variables, constant functions

are b-convex.

In the following, for simplicity of notations, we will use b(p, %) instead of b(p,y), p

instead of p, u instead of @, and f(p)dp instead of f(:z:(p))det(g%;)dp We will also omit
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the subscript b. So the functional in the minimization problem looks like

Eu) = /X (e(y(p. Du)) — b(p, y(p, D)) + ulf(p)dp.

Y1

Now suppose u is a minimizer, by the second change of variables, we see that u > 0.
Let ue := max{u,e} and S := {u < €}. Since constant function € is b-convex, u, is still

in the space of admissible functions. Denote G(p,q) = c(y(p,q)) — b(p,y(p,q)) — d|q|*.

We have
Z(ue) - Z(’U,) = Il + IQ + [3,
where
L= =5 [ \DuPf)dp, 1= [ (G10.0) - Glo. Du)f ()
S( €
and

L= (e w)f)ip

Since 0 < u < € in S, we have I3 < Ci¢€|S,|, for some constant Cy. For I, we have

L < /S D,G(p.0) - D(e — u) f(p)dyp
- / (e — ) F(p) DyG(p, 0) - 7 de
9S.NOX,,

- / (¢ — ) F(p)divy (Do G (p. 0))dp — / (e —w)Df(p) - DyG(p, 0)dp.

Se

where the inequality follows from the convexity of ¢ in ¢ variable, and the equality follows
from the divergence theorem. Since b is at least C? and f is W, all the integrand in
the above three integrals are bounded by Ce, for some constant C'. For the area of

0S. N 0X,,, we need to use a simple estimate

95.MX,,| < CIS.|, (4.2)
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where C' is a constant. This estimate was proved by Carlier and Lachand-Robert [21]

and for reader’s convenience we include their proof here.

Proof of the estimate 4.2 [21].

I 1 1
|Sel = —/ div(p — po)dp > —/ (p—po) - WdE > =C|DS. N X, |,
nJs. N Jos.noxX,, n

where pg is the assumed singular point of u, and the last inequality follows from the

convexity of X, (by the convexity, (p — po) - 7 is bounded from below by some positive

constant).
By this estimate (4.2), we have Iy < Cye|S.|, for some constant Cy. Then by Lemma

[11], we have

L(ue) — L(u) < —C16]Se| + CaelSe| + Csel S|,

note that the constants C7, Cs, C3 are all independent of €. Recall that ¢ is a fixed positive
constant in Condition 1, so when ¢ is sufficiently small, we see that L(u.) < L(u), which

contradicts the fact that u is a minimizer. So v must be C.

4.2 Regularity of the free boundary in the optimal
partial transport problem for general cost func-

tions

4.2.1 Preliminaries

Definition 4.2.1. Given an (m—1)-plane 7 in R™, we denote a general cone with respect
to ™ by
Co(m) :={z € R" : | Pr(2)| < P,1(2)},
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where 17T =R™, a > 0, and P(z) & P,.(2) are the orthogonal projections of z € R™

onto ™ and T, respectively.

Definition 4.2.2. A domain D is said to satisfy the uniform interior cone condition if

there exists o > 0 and 6 > 0 such that for all x € D there exists v, € S so that

(y + Co(vF)) N Bs(z) € DN Bs(x),

for ally € DN Bs(x). We define the profile of such domains to be the ordered pair (0, ).

Definition 4.2.3. A domain D C R" is said to satisfy a uniform interior ball condition if
there exists v > 0 such that for all x € OD, there exists v, € S for which B,(z+rv,) C

D.

Definition 4.2.4. We denote by F, the collection of cost functions ¢ : R® x R* — R

that satisfy the following three conditions:

1. c € C*(R™ x R");

2. c(x,y) >0 and c(x,y) = 0 only for x = y;

3. For x,p € R", there exists a unique y = y(z,p) € R" such that V.c(z,y) = p;
similarly, for any y,q € R", there exists a unique x = x(y,q) € R"™ such that
Vyc(xa y) = q

We denote by Fy, the set of C*HR™ x R™) cost functions in F that satisfy:

4. det(V(zyc) # 0 for all v,y € R;
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5.(A8S) For x,p € R™,

Aij,kl(ﬂiap)fz’fj??k’fh > Co|f’2‘77|2 vV §neR", <§777> =0,c0 > 0.

Definition 4.2.5. A set U C R" is called c-convex with respect to another set V.C R"™

if the image ¢, (U, y) is convex for eachy € V.

Lemma 4.2.6. Let ¢ € C*(R™ x R"), and consider two domains Q C R", A C R™ with
disjoint closures, and set

bo= inf c(z,y)>0. (4.3)

zeQyeA
Then for any b > by and y € R", the domain Ez = {x : c(x,y) < b} satisfies a uniform

interior cone condition with radius v = r(by, ||c||c2) > 0.

Proof. Let
¢ = inf |V,e(z,y), (4.4)

zeQyeN
and note that since ¢ € F we have ¢; > 0. Indeed, suppose on the contrary that there
exists (7,7) € Q x A for which V,c(z,7) = 0. Let ¢(z) := c(x,Z); using condition 2 in
the definition of F, ¢(z) > 0 and ¢(z) = 0 only for & = z. Therefore, V,c(z,z) = 0, but
by uniqueness, we must have Z = ¢ (using condition 3), contradicting the disjointness
assumption (hence, ¢; > 0 depends on by > 0). Now for a fixed yo € A, denote ¢(x) :=
c(x,yp). Then for a fixed point zy € {x : ¢(z) = b}, we choose a coordinate system
such that x,, is the direction of the normal to the level set pointing into the sublevel set
{z : ¢(x) < b} and x is the origin. Now let 7 := &, where ¢; = [|c|[c2, and consider the
ball B, centered at (0,...,r) with radius . In particular 0B, touches the origin. Now

we will show that B, C {x : ¢(z) < b}: indeed, it is simple to see (by forming similar
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triangles) that cos(6) > o] _ |xle

r 2cq

, where 6 is the angle between x and e,,. Therefore,

(x) < $(0) + V(0) - & + Z|af?

= b |V(0)|en - 7 + Zaf?

Remark 4.2.7. By interchanging the roles of x and y in Lemma |4.2.0, a similar state-

ment holds for E? := {y : c(z,y) < b}.

TR ; ; . ca(zyy)
Remark 4.2.8. By the positivity of ¢1 in , it follows that we may take v, = e (2]
as the direction of the ball at each point x € 8E§ NQ andy € A. Thus, for c € F,
all sublevel sets with height b > by as in Lemma satisfy a uniform interior cone

condition with profile depending only on the positive separation of Q and the norm of c,

and we may take v, as the direction of the cone.
m
Lemma 4.2.9. Let ¢ € CY(R" x R"), and suppose it satisfies Conditions 2 and 3 in

Definition 4.2.4. Let Q and A be be two domains with disjoint closures, and set

bp = inf c(x,y) > 0.
e yeEA

Then for any b > by and y € R", the domain E; := {z : ¢(x,y) < b} satisfies a uniform
interior cone condition with the openning of the cone as close to ™ as we want by taking

the height of the cone sufficiently small.

Proof. First, note that since ¢ satisfies Conditions 2 and 3,

¢ := inf |V,e(z,y)| >0,
e yEA
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(as in the proof Lemma4.2.6). Now fix y € A, and consider ¢(z) := ¢,(z,%). Then Then
for a fixed point zy € {z : ¢(x) = b} we choose a coordinate system such that z,, is the
direction of the normal to the level set pointing into the sublevel set {z : ¢(x) < b} and

7 is the origin. Let 0 < 6 < § and note that if z has angle 6 with the z,, direction, then
¢(x) = ¢(0) + V¢(0) - 2 + o(|z]) < ¢(0) — c1]x| cos 0 + of|x]).

Now since ¢ € C*(R™ x R™), by the uniform continuity of ¢, we have o(z) < 1¢;|z|cos b,
for z € Bs(0) and 6 > 0 (depending only on # and the modulus of continuity of ¢,).
Thus, ¢(x) < b when x has angle at most  from x,, direction and is in the J-ball around

the origin.

4.2.2 Regularity theory

In this section, we will prove various regularity results on the free boundary under minimal

assumptions on the cost function.

Theorem 4.2.10. (Rectifiability) Let f = fxq and g = gxa be two nonnegative inte-
grable functions. Assume that Q and A are bounded. If ¢ : R™ x R" — R™* is semiconver,

satisfies Condition 2 in Definition 4.2.4, and

inf |V, c(z,y)| >0,

zeﬁ,yeA

where V,c(x,y) is the subdifferential of ¢ in the variable x, then OUy,, N QY is (n — 1)-

rectifiable.

Proof. First, note that our assumptions imply Conditions 1-2” in [[33], Remark 2.11].
In particular, 2” is implied by our semiconvexity assumption, see e.g. [[35], Proposition
2.3] (here the author proves that the optimal map is approximatively differentiable a.e.

but since our domains are bounded, the map is truly differentiable a.e.). Thus, utilizing
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[[33], Remark 3.2] we obtain

UpNQ:= U {r e Q:c(x,y) < c(z,9)}.
(

Next, thanks to the semiconvexity of ¢ combined with (3.1), we may apply the nonsmooth

implicit function theorem [[67], Theorem 10.50] to conclude that the level set
E,:={x e R": ¢(z,y) = a}
is locally an (n — 1)-dimensional Lipschitz graph. Thus, for x € 9U,, N, it follows that
xed{reQ:c(x,y) <c(z,y)},

for some (Z,7) € 7,,. Hence, there exists a profile (d,, a,) such that (x + C,, (vF)) N

B;s, (x) € (U, N Q) N B, (), for some v- € 8"~ 1. Now consider the sets

1 :
A7 ={2 € (0U,,NQ) N Bs, () : 6, > ;,az <j},

(recall that each z € 9U,, N2 has a profile(d,, o, )). For each j € N,we may select ¢; > 0

Me
1=

so that P := {v;},_{ is a sufficiently fine partition of S"~! (i.e. for each v € 8", there

exists v; € P so that |[v — 14| < ¢;), and for all
1
we Af; ={2 € (U, N Q)N Bs, () : [v. —vi| < €,0. > 3,0@ <7},

we have

(w+ Co, (") N Bs,(2) C (U, N Q) N By, (2)

7

for some o; > 0 and d; > 0. Thanks to this cone property, it is not difficult to show that

for each i,5 € N, Aj; is contained on the graph of a Lipschitz function (generated by
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superema of the cones with fixed opening given by «;). Note,

UUA (8U,, N Q) N By, (x),

Jj=11i=1

(without loss of generality, we may assume € N\, 0 as j — o0). This shows that Af; is
(n — 1)-rectifiable. Next, let (OU,, N Q)5 := {z € U, N Q : dist(z,0Q) > s}. Now by

compactness, there exists {z;}/") C (9U,, N ), C AU, N Q so that

3

(s)
(OUm N Q) (OUm N Q)s N By, (1)
k=1

From what we proved, it follows that

n(s) oo

(OUn N ), UUUAZ",

k=1 j=11=1

where each A} is (n — 1)-rectifiable. Thus, by taking s — 0, we obtain the result.

Theorem 4.2.11. (Lipschitz reqularity) Let f = fxq and g = gxa be a nonnegative
integrable functions. Assume that Q and A are bounded with QNA = 0 and A is c-convex
with respect to Q. If c € CY(R" x R") is semiconvex and satisfies Conditions 1, 2, and 3

in Definition 2.4, then OU,, NU is locally Lipschitz.

Proof. By our assumptions, we have

UnN§Q = ﬂ {r e Q:c(x,y) <c(z,y)}

(Z,9)€vm

Next, let x € 9U,, N ) and note that since

red{re:c(r,y) <c(z,y)},
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By Lemma there exists a profile (J, @) so that

(z + Cu(vH)) N Bs(x) € (U, N Q) N Bs(),

co(x,Tm(z))

e le T @] and T,, is the optimal partial transport with mass m. Note

where v, =
that as in Lemma[4.2.9 we can take « as close to 0 as we want by taking § suitably small.
For z € 9U,, N QN Bs(z), consider the convex set E, = ¢,(z,A) (note that convexity
follows by the c-convexity assumption of A). By the positive separation we see that the
origin is not in E,, from this and the convexity of E, we can easily find a cone Cj(v+)
which contains E,, where & depends only on the positive separate and the C' norm of
c. As mentioned above, we can assume o < & by taking § small. Next, note that by C*

regularity of ¢, ¢, (z,A) = c,(x,A) as z — x; hence,we may select 0 < 0, < and o, > &

so that Bs,(z) C Bs(z) and C,, (v*) C Cs(vi); thus for all z € dU,, N B, (z),

(2 + Co, (v5)) N B, (z) C (U N Q) N By, ().

Therefore, as in the proof of Theorem {4.2.14] (see the argument below (4.9)), we obtain
that the free boundary locally coincides with the graph of a Lipschitz function (generated

by superema of the cones as above).

Remark 4.2.12. By localizing the problem as in Corollary ?, one may prove an analogous

results of Theorem 4.2.10 and 4.2.11 for non-disjoint domains.

Corollary 4.2.13. (Semiconvexity) Let f = fxq and g = gxa be a nonnegative inte-
grable functions. Assume that Q and A are bounded with QN A = () and A isc-convex

with respect to Q. If ¢ € F, then 0U,, N is locally semiconvex.

Proof. By Theorem 4.2.11, it follows that 0U,, N2 is locally a Lipschitz graph, and
Lemma 4.2.6 implies that each point on the graph has a ball touching it from below.

Thus, locally, the free boundary may be represented as a suprema of spherical caps, and
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this readily implies semiconvexity.

Theorem 4.2.14. Let f = fxq € LP(R") be a non-negative function with p € (", ool
and g = gxa € LY(R™) a positive function bounded away from zero. Moreover, assume
that A is relatively c-convex with respect to a neighborhood of QU A, and separated from
Q by a hyperplane. Let ¢ € Fy and m € (0,min ||f||z1,||g]|z:]. Then for there exists an
explicit o for which OU,, N Q is locally a CY* graph, where U,, N Q is the free boundary

arising from the partial optimal transport problem.

Proof. First, note that by [33, Remark 2.11], there exists a unique solution to the optimal

partial transport problem. Moreover, this solution has the form

Y = (Id X T) g fn = (T X Id)4Grm.-

By [33] Proposition 2.4] and [33] Remark 2.5],

Y= Ym + (Ld X Id)((f — fm) + (9 — gm)), (4.5)

where v solves the classical optimal transport problem between the densities f+ (g — gm),
g+ (f — fm), and with the given cost function ¢(x,y) € Fo. From the classical theory,
we know that 7 is supported on the graph of a function 7', and there exists a potential

function ¥ which satisfies:

Vee(z, T(x, VU(z))) = V¥(x). (4.6)

Now by [33, Theorem 2.6 and Remark 2.11], it follows that T (fm + (9 — gm)) = g (i-e.
T will not move the points in the inactive region); hence, it coincides with the partial
transport 7}, in the active region U, N Q. Now let f":= f,, + (9 — gm) and note that by

our assumptions,
f/
9(Tn)

|det(DZ,c)| e L”(U,NQ),
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(indeed, g = ¢, on U, N Q). Thus, we may apply [54, Theorem 1] to obtain ¥ €
CY*(U,, N Q). Next, we utilize [33, Remarks 3.2 and 3.3] to note that the active region

of 2 may be identified as

UnnQi= ] {zeQ:cx,y) <@y} (4.7)

(2,9)€vm
Let & € 9U,,NQ. By (4.7) it follows that & € JEY’, where (Z,§) € Y and by := ¢(Z,7) >
0. Note that since d(€2,A) > 0, all level sets of ¢ inside 2 satisfy the uniform interior

cone condition with a uniform profile depending only on d(£2, A) > 0 by Lemma {4.2.6]
Thus, there exists § = 6(dist(Q2, A)), & = a(dist(€2, A)) such that

(z + Cx(vH)) N Bs(x) C U, NQ,

where v, = %. Moreover, choose R, > 0 such that

Bg,(z) N 0Q =0,

and set r, := min{d, R, }. Since V¥ € C**(U,, N Q), for any given € > 0 there exists

VU(z)

NU()] 1S the direction

n > 0 such that |v, —v.| < € for any z € 0U,,, N B, (x), where v, =
of the cone at z (see Remark and (4.6)). Thus, we may take the same profile
(0, &) for all cones touching OU,, N B, (z) by picking 1, > 0 small enough (depending on

dist(2,A) and r;), and there exists 0 < o, < @& so that for all z € 0U,, N B, (),

(z+ Co, (vF)) N By, (z) C Uy N (4.8)

In fact, by possibly taking c, and 7, smaller, this statement holds for all z € U,, N B,, ()
(this is due to the fact that by (4.7) all interior points of the active region lie on a level

set of the cost function and the normal to this level set is close to v, for interior points
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close to x). Indeed, let z € B, (x) NU,,. Then (2,T,,(2)) € v, and by 1) Z € 3E:‘}m(z)
with b = ¢(z,T,,,(2)) > 0 (by the positive separation assumption). Now by Remark [4.2.8|

there exists v, € S*! so that

(y 4+ Co(vH)) N Bs(2) C Efbpm(z) NQcU,NnQ,

for all y € E,f}m(z) N Bs(x). In particular,
(z 4+ Co(vH)) N Bs(2) € U, N AL

Thus, by possibly choosing 7, smaller, if necessary, we may assume B, (z) C Bj(z)
hence, by the continuity of the gradient of the potential, |v, — v,| < 1, (as above), and
so we may choose a, small so that

Ca, (V) C Co(v7).

T z

Hence,

(z+ Co, (1)) N B, (2) C (2 + Cu(vy)) N Bs(2) C Uy, N

Therefore, we proved that there exists 77, > 0 and 0 < «a, < @ so that for all z €

B%(x) ﬂUmu
(z+ Cam(l/j)) N B, (z) C Uy, N (4.9)

Now by rotating the coordinate system, we may assume that x = 0, v, = —e,, ™ =
vt = R" ! and that the cone Cy,(7) is symmetric with respect to the e, axis. Define

¢ : B,y(0) CR™! — R by

(2 = sup K,(7),
y:=(y',yn) €0UmNBy, (0)
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where K, is the cone function at the point y on the free boundary. Note that ¢ is
Lipschitz since it is the supremum of Lipschitz functions with bounded Lipschitz constant

(depending on the opening of the cones). Moreover, by construction we have
oU,, N B,,(0) C graph ¢\Bn0 (0)- (4.10)

Now we claim that there exist constants d,d € (0,1) with d depending on d and d

depending on the profile of the level sets of the cost function, so that

graph (b\];dno ©0) € Uy N By, (0). (4.11)

Indeed, pick any d € (0,1); we may select a constant d = d(d, a,) > 0 small enough,
so that the graph of ¢(Proj.(Bay,(0))) is contained in By, (0) (this is possible, since ¢
has a uniform Lipschitz constant in B,,(0) which depends only on the profile of the level

sets). Let y € graph ¢|Bdn0(0) C By, (0). If y ¢ 0U,, N By, (0), then since y is on an open
cone with opening inward to U,, N (2, it follows that y € U,, N ). Since U, N Ed% is
compact, for # > 0 small, it follows that Qg(y) N U, N EJWO = (), where @y is a small
cylinder whose interior is centered at y and whose base diameter and height is equal to

0; in particular, Qy N graph ¢| Bung (0) does not contain any free boundary points. Next we

consider a general fact: let w € graph (b\éno © \ OUn, Li(w) :=w + te,, and

s(w) = sup t;
(£>0:Le(w) EUmNQY}

note that since w € graph ¢| By (0)

s(w) > §(w) := sup t, (4.12)
{t20: Ly (w)€ By, (0)}

(otherwise it would contradict the definition of ¢ as a suprema of cones in B,,(0) and
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w as a point on the graph). Next, keeping the base fixed, we enlarge the height of the
cylinder along the {y + te, : t € R} axis in a symmetric way (with respect to the plane
yn +m = R™"71) so that it surpasses 479; we denote the resulting cylinder by Q. By
(4.12) we have Qg N B,, C U, N€) Then we increase its base diameter, 0, until the first
time when Qy hits the free boundary 9U,, N inside B,,(0), and denote the time of first
contact by 6 and a resulting point of contact by ys (note that since 0 € 9U,, N By, (0),
this quantity is well defined). Since ¢ is a continuous graph in B,,(0), and both y and
ye are on the graph, we may select a sequence of points y; € graph ¢| By (0) N Qp such
that yx — yp (by connectedness of ¢| By (0) 1 Qg). Since yp € Bj,(0) is an interior point,
for k sufficiently large we will have y, € B,,(0) N Qp. Thus, by definition of 6, we will
have that the y; are not free boundary points but on the graph of ¢; thus, by ,

s(yr) > 5(yk), and this implies Jx := yi, + 5(yx)en € 0B, (0) N Uy, By (4.9) we have
(i + Cuap (7)) N By, (0) € U,y N Q.

However, for large k, yp € (gx + Ca, (7)) and this contradicts that y, is a free boundary

point, thereby establishing (4.11). Thus, combining (4.10) and (4.11) we obtain that
in a neighborhood around the around the origin, the free boundary is the graph of the

Lipschitz function ¢. Hence, the normal of its graph exists H"~! for a.e. 2’ € B,,(0)

\A'Z
IV

normal can be represented by —22C0=1_ 4t o point (2/,¢(z')) on the graph, it is easy
VDG ()2 ’ ’

and coincides with the Holder function outside of the set of measure zero. As the

to see that it is in fact Holder, and this concludes the proof. O

Remark 4.2.15. By reverse symmetry, we may interchange the roles of f and g in Theo-
rem (and adjusting the assumptions accordingly) in order to obtain C’llo’s‘ reqularity
of OV, NA.

Remark 4.2.16. (Geometry of c-conver domains) For a geometric description of c-

conver domains, see [66]. For example, based on a calculation therein, one can prove the
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following: Suppose D C R"™ is a bounded domain and K a conver subset with smooth
boundary. Let

cp:= inf dete,,(z
2eQyeK GO

and co := ||c(+, )||cs. Then for a fixed y, consider c,(x,y) : K — ¢,(K,y). If the principle

curvatures of OK are greater than %, then c,(K,y) is convex.
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