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Abstract

Convex solutions to the power-of-mean curvature flow, conformally invariant

inequalities and regularity results in some applications of optimal transportation

Shibing Chen

Doctor of Philosophy

Graduate Department of Mathematics

University of Toronto

2012

In this thesis we study three different problems: convex ancient solutions to the power-of-

mean curvature flow; Sharp inequalities; regularity results in some applications of optimal

transportation.

The second chapter is devoted to the power-of-mean curvature flow; We prove some

estimates for convex ancient solutions (the existence time for the solution starts from

−∞) to the power-of-mean curvature flow, when the power is strictly greater than 1
2
.

As an application, we prove that in two dimension, the blow-down of an entire convex

translating solution, namely uh = 1
h
u(h

1
1+αx), locally uniformly converges to 1

1+α
|x|1+α

as h→∞. The second application is that for generalized curve shortening flow (convex

curve evolving in its normal direction with speed equal to a power of its curvature), if

the convex compact ancient solution sweeps the whole space R2, it must be a shrinking

circle. Otherwise the solution must be defined in a strip region. In the first section of the

third chapter, we prove a one-parameter family of sharp conformally invariant integral

inequalities for functions on the n-dimensional unit ball. As a limiting case, we obtain

an inequality that generalizes Carleman’s inequality for harmonic functions in the plane

to poly-harmonic functions in higher dimensions. The second section represents joint

work with Tobias Weth and Rupert Frank; the main result is that, one can always put

a sharp remainder term on the righthand side of the sharp fractional sobolev inequality.

ii



In the first section of the final chapter, under some suitable condition, we prove that the

solution to the principal-agent problem must be C1. The proof is based on a perturbation

argument. The second section represents joint work with Emanuel Indrei; the main result

is that, under (A3S) condition on the cost and c-convexity condition on the domains, the

free boundary in the optimal partial transport problem is C1,α.

iii



Acknowledgements

I am deeply indeted to my supervisor, Robert McCann, for his constant encouragement

and support during the last four years. Robert not only suggested me many interesting

problems, but also provided me very useful insights to some problems. In particular,

it is impossible for me to have the results in the last chapter of this thesis without his

guidance. Robert also helped me a lot in polishing the writing of several papers and

supported me to travel to many places for interesting mathematical conferences, I will

never forget his kindness.

I thank my thesis committee members, Almut Burchard and Bob Jerrard for their

help during my PhD study, as well as Mary Pugh for very helpful feedback after my first

defence. I also thank my external examiner Xu-jia Wang for useful comments regarding

my thesis. Special thanks go to the staff in the Department of Mathematics at the

University of Toronto, and in particular Ida Bulat, she is always there when I need help.

Last but not the least, I thank all my friends and family members, without their

support I could have not chosen math as my career.

iv



Contents

1 Introduction 1

1.1 The power-of-mean curvature flow . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Conformally invariant inequalities and remainder terms in the fractional

Sobolev Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Carleman type conformally invariant inequalities . . . . . . . . . . 4

1.2.2 Remainder terms in the fractional Sobolev Inequality . . . . . . . 9

1.3 Regularity results in some applications of optimal transportation . . . . . 12

1.3.1 The principal-agent problem . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Regularity of the free boundary in the optimal partial transport

problem for general cost functions . . . . . . . . . . . . . . . . . . 17

2 Convex solutions to the power-of-mean curvature flow 19

2.1 Power growth estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Blow-down of an entire convex ancient solution converges to a power function 35

2.3 1-dimensional entire convex ancient solution must be a shrinking circle . 38

2.4 2-dimensional entire convex translating solution . . . . . . . . . . . . . . 39

3 Conformally invariant integral inequalities and remainder terms in frac-

tional sobolev inequality 48

3.1 Carleman type conformally invariant integral inequalities . . . . . . . . . 48

3.1.1 A family of conformally invariant integral inequalities . . . . . . . 48

v



3.1.2 The limiting case . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.3 Carleman type inequality for sub-bi-harmonic functions . . . . . . 58

3.2 Remainder terms in fractional Sobolev inequality . . . . . . . . . . . . . 61

3.2.1 Prelinimaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Proof of the remainder term inequality on the sphere . . . . . . . 66

3.2.3 The weak Lq/2 remainder term inequality for domains of finite mea-

sure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Regularity results in some applications of optimal transportation 77

4.1 Regularity of the solution to the principal-agent problem . . . . . . . . . 77

4.2 Regularity of the free boundary in the optimal partial transport problem

for general cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Regularity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



Chapter 1

Introduction

1.1 The power-of-mean curvature flow

Classifying ancient convex solution to mean curvature flow is very important in studying

the singularities of mean curvature flow. Translating solutions arise as a special case of

ancient solution when one uses a proper procedure to blow up the mean convex flow near

type II singular points, and general ancient solutions arise at general sigularities. Some

important progress was made by Wang [69], and Daskalopoulos, Hamilton and Sesum

[29]. In [69] Wang proved that an entire convex translating solution to mean curvature

flow must be rotationally symmetric which was a conjecture formulated explicitly by

White in [68]. Wang also constructed some entire convex translating solution with level

set neither spherical nor cylindrical in dimension greater than or equal to 3. In the same

paper, Wang also proved that if a convex ancient solution to the curve shortening flow

sweeps the whole space R2, it must be a shrinking circle, otherwise the convex ancient

solution must be defined in a strip region and he indeed constructed such solutions by

some compactness argument. Daskalopoulos, Hamilton and Sesum [29] showed that

apart from the shrinking circle, the so called Angenent oval(a convex ancient solution of

the curve shortening flow discovered by Angenent that decomposes into two translating

1



Chapter 1. Introduction 2

solutions of the flow) is the only other embedded convex compact ancient solution of the

curve shortening flow. That means the corresponding curve shortening solution defined

in a strip region constructed by Wang is exactly the “Angenent oval”.

The power-of-mean curvature flow, in which a hypersurface evolves in its normal

direction with speed equal to a power α of its mean curvature H, was studied by Andrews

[1], [2], [3], Schulze [61], Chou and Zhu [28] and Sheng and Wu [64] . Schulze [61] called

it Hα-flow. In the following, we will also call the one dimensional power-of-curvature

flow the generalized curve shortening flow. Similar to the mean curvature flow, when one

blows up the flow near the type II singularity appropriately, a convex translating solution

will arise, see [64] for details. It will be very interesting if one could classify the ancient

convex solutions. In the second chapter of this thesis, we use the method developed by

Wang [69] to study the geometric asymptotic behavior of ancient convex solutions to Hα-

flow. The general equation for Hα-flow is ∂F
∂t

= −Hα~v, where F : M × [0, T )→ Rn+1 is a

time-dependent embedding of the evolving hypersurface, ~v is the unit normal vector to the

hypersurface F (M, t) in Rn+1 and H is its mean curvature. If the evolving hypersurface

can be represented as a graph of a function u(x, t) over some domain in Rn, then we

can project the evolution equation to the (n+ 1)th coordinate direction of Rn+1 and the

equation becomes

ut =
√

1 + |Du|2
(

div(
Du√

1 + |Du|2
)

)α

.

Then a translating solution to the Hα-flow will satisfy the equation

√
1 + |Du|2(div(

Du√
1 + |Du|2

))α = 1,
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which is equivalent to the following equation (1.3) when σ = 1,

Lσ(u) = (
√
σ + |Du|2)

1
αdiv(

Du√
σ + |Du|2

) (1.1)

= (σ + |Du|2)
1

2α
− 1

2

n∑
i,j=1

(δij −
uiuj

σ + |Du|2
)uij (1.2)

= 1, (1.3)

where σ ∈ [0, 1], α ∈ (1
2
,∞] is a constant, n = 2 is the dimension of R2. If u is a convex

solution of (1.3), then u+ t, as a function of (x, t) ∈ R2 ×R, is a translating solution to

the flow

ut =
√
σ + |Du|2(div(

Du√
σ + |Du|2

))α. (1.4)

When σ = 1, equation (1.4) is the non-parametric power-of-mean curvature flow. When

σ = 0,(1.3) is the level set flow. That is, if u is a solution of (1.3) with σ = 0, the level

set {u = −t}, where −∞ < t < − inf u, evolves by the power-of-mean curvature.

In the following we will assume σ ∈ [0, 1], α ∈ (1
2
,∞] and the dimension n = 2,

although some of the estimates do hold in high dimension. The main results of the

second chapter are the following theorems.

Theorem 1. Let u be an entire convex solution of (1.3). Let uh(x) = h−1u(h
1

1+αx).

Then uh locally uniformly converges to 1
1+α
|x|1+α, as h→∞.

Theorem 2. Let uσ be an entire convex solution of (1.3). Then u0(x) = 1
1+α
|x|1+α up to

a translation of the coordinate system. When σ ∈ (0, 1], if |D2u(x)| = O(|x|β) as |x| →

∞, for any fixed constant β satisfying β < 3α−2, then uσ is rotationally symmetric after

a proper translation of the coordinate system.

Corollary 1. A convex compact ancient solution to the generalized curve shortening flow

which sweeps the whole space R2 must be a shrinking circle.
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Remark 1.1.1. . The condition α > 1
2

is necessary for our results. One can consider

the translating solution v(x) to (1.3) with σ = 1 in one dimension. In fact when α ≤ 1
2
,

the translating solution v(x) is a convex function defined on the entire real line ([28] page

28). Then one can construct a function u(x, y) = v(x) − y defined on the entire plane,

and u will satisfy (1.3) with σ = 0 and it is obviously not rotationally symmetric.

We would also like to point out that this elementary construction can be used to

give a slight simplification of Wang’s proof for Theorem 2.1 in [69]( corresponding to our

Corollary 3 for α = 1). Let vσ be an entire convex solution to (1.3) in dimension n with

σ ∈ (0, 1]. Then u(x, y) = vσ(x) −
√
σy will be an entire convex solution to (1.3) in

dimension n + 1 with σ = 0. Hence if one has proved the estimate in Corrollary 3 for

σ = 0 in all dimensions, the estimates for σ ∈ (0, 1] follows immediately from the above

construction.

1.2 Conformally invariant inequalities and remain-

der terms in the fractional Sobolev Inequality

1.2.1 Carleman type conformally invariant inequalities

There is a well known inequality by Carleman [17]

∫
B2

e2udx ≤ 1

4π
(

∫
∂B2

eudθ)2, (1.5)

for all harmonic functions in the unit ball B2 of R2. Equality occurs exactly for u = c

and u = −2 log |x− x0|+ c, where c is a constant and x0 ∈ R2 −B2.

Although Carleman proved (1.5) initially for harmonic functions, it follows from the

maximum principle that inequality (1.5) holds for subharmonic functions. Beckenbach

and Rado [8] used Carleman’s inequality to prove the isoperimetric inequality on a surface
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with non-positive Gauss curvature: If on a surface with non-positive Gauss curvature an

analytic curve C of length L encloses a simply-connected domain D of area A, then the

inequality

L2 ≥ 4πA

holds. This is exactly the sharp isoperimetric inequality in the plane. Their proof is

quite simple: In isothermal coordinates (x, y) for a simply-connected domain D̃ which is

slightly larger than D, then the metric on D̃ can be written as e2w(dx2 +dy2), for (x, y) in

some bounded domain Ω ∈ R2. Now, the coordinate image of D in Ω is a Jordan domain,

so by the Riemann mapping theorem we can map it to B2 conformally, which means D

with the metric induced by the metric of the surface is isometric to (B2, e
2ug), where u

is a subharmonic function (By the non-positive curvature condition). Beckenbach and

Rado’s result now follows directly from Carleman’s inequality.

The 2008 paper by Hang, Wang and Yan [45], generalized this inequality to higher

dimensions as follows. For any harmonic function u in the unit ball Bn ⊂ Rn,

‖u‖
L

2n
n−2 (Bn)

≤ n−
n−2

2(n−1)ω
− n−2

2n(n−1)
n ‖u‖

L
2(n−1)
n−2 (∂Bn)

, (1.6)

where n ≥ 3 and ωn is the volume of Bn. Any constant is an optimizer and it is unique

up to a conformal transformation (as will be explained before the proof of Theorem 4).

This is a special case of our Theorem (3) (a = 0), and again because of the maximum

principle, this inequality holds for subharmonic functions. Hang, Wang and Yan inter-

preted their inequality as the isoperimetric inequality for Bn with metric ρ
4

n−2 g, where

ρ is subharmonic (which means non-positive scalar curvature). By using the conformal

map (1.10), the equivalent form of inequality (3.17) in the upper-half space is

‖Pf‖
L

2n
n−2 (Rn+)

≤ n−
n−2

2(n−1)ω
− n−2

2n(n−1)
n ‖f‖

L
2(n−1)
n−2 (Rn−1)

, (1.7)
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for all f ∈ L
2(n−1)
n−2 (Rn−1). Here Rn−1 is the boundary of Rn

+ and Pf is the harmonic

extension of f to the upper halfspace. The optimizers are f(Y ) = c

(λ2+|Y−Y0|2)
n−2

2
, for

some constant c, positive constant λ and Y0 ∈ Rn−1.

In the first section of the third chapter of this thesis we prove an analogous result

for a one-parameter family {Pa}2−n<a<1 of Poisson-type kernels on Bn, which includes

Hang, Wang, and Yan theorem thanks to the fact that P0 = P , and which includes some

new interesting cases, like k-harmonic functions in B2k, corresponding to the choices

a = 2 − 2k, n = 2k (thus providing another direction of generalization of Carlemans

inequality).

In the following Bn denotes the n-dimensional unit ball in Euclidean space, ‖u‖Lp(Ω)

is the Lp norm of function u defined on domain Ω, |Bn| is the volume of Bn and c(n, a, p)

is some constant which depends on n, a and p. The parameter a satisfies 2− n < a < 1.

Before giving the main theorems, we will give an interesting corollary for the reason that

it is easy to state and it is clearly a natural generalization of Carleman’s inequality in

four dimension.

Corollary 2. For any u satisfying ∆2u ≤ 0 on B4 and −∂u
∂γ
≤ 1 on ∂B4, where γ is the

outer normal of ∂B4, we have

(

∫
B4

e4udx)
1
4 ≤ S(

∫
∂B4

e3udξ)
1
3 , (1.8)

The sharp constant is assumed by the solution of ∆2u = 0 in B4 with boundary values

−∂u
∂γ

= 1 and u = 0 on ∂B4.

For a function f defined on Rn−1 (thought of as the boundary of the upper half-space

Rn
+), we define a poly-harmonic extension as follows: for (X, xn) ∈ Rn

+ = Rn−1×(0,+∞),

(Paf)(X, xn) = dn,a

∫
Rn−1

x1−a
n

((X − Y )2 + x2
n)

n−a
2

f(Y )dn−1Y. (1.9)
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Here the choice of integrand guarantees independence of Pa1 on (X, xn), while a < 1

ensures Pa1 <∞, and the normalization constants dn,a are chosen so that Pa1 = 1 (and

can be expressed explicitly using Γ functions). Recalling that inversion in the unit sphere

maps the halfspace xn > 1/2 to the unit ball centered at (0, 1), we see the conformal

map

φ(X, xn) =
(X, xn + 1

2
)

|(X, xn + 1
2
)|2
− (0, 1) (1.10)

maps the upper halfspace xn > 0 to the standard ball φ : Rn
+ −→ Bn. Conformality

of this map makes it easy to compute its Jacobian J(φ) = |(X, xn + 1
2
)|−2n, and the

Jacobian J(φ|∂Rn+) = |(X, 1
2
)|−2(n−1) of its boundary trace. Indeed, φ pulls back the

Euclidean metric g on Bn to the conformally flat metric φ∗g = |(X, xn + 1
2
)|−4

∑
dx2

i on

Rn
+. Then it is not hard to check the formula

f(X, xn) = |(X, xn + 1
2
)|2−n−af̃ ◦ φ(X, xn) (1.11)

and its restriction to xn = 0 boundary trace define Banach space isometries from f̃ ∈

L
2n

n−2+a (Bn) to f ∈ L
2n

n−2+a (Rn
+) and from L

2(n−1)
n−2+a (∂Bn) to L

2(n−1)
n−2+a (Rn−1) respectively. We

define the poly-harmonic extension P̃af̃ of f̃ ∈ L
2(n−1)
n−2+a (∂Bn) implicitly by using Pa after

pulling back from the ball to the halfspace:

(P̃af̃) ◦ φ(X, xn) = |(X, xn + 1
2
)|n+a−2Pa

(
f̃ ◦ φ(Y, 1

2
)

|(Y, 1
2
)|n+a−2

)
. (1.12)

When a = 0, P̃af̃ again becomes the usual harmonic extension to the ball. Another

case of special interest is a = 2 − n, in which case the conformal factors are suppressed

so that P̃2−n1 = 1, and the isometric Banach spaces are both of L∞ type. When n =

2k the extended function turns out to be k harmonic on the 2k dimensional ball, i.e.

∆kP̃2−2kf̃ = 0.
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Theorem 3. For any f ∈ L
2(n−1)
n−2+a (∂Bn), n ≥ 2, a < 1 and n − 2 + a > 0, we have the

sharp inequality

‖P̃af‖
L

2n
n−2+a (Bn)

≤ Sn,a‖f‖
L

2(n−1)
n−2+a (∂Bn)

, (1.13)

where the sharp constant Sn,a depends only on n and a. The optimizers are unique up to

a conformal transform and include the constant function f = 1.

We now study the limiting information. Letting f = 1 + n−2+a
2

F and a→ 2− n, we

get the following inequality

Theorem 4. For any F such that eF ∈ Ln−1(∂Bn), n > 2, we have

‖eIn+P̃2−nF‖Ln(Bn) ≤ Sn‖eF‖Ln−1(∂Bn), (1.14)

where

In =

(
log(X2 + (xn +

1

2
)2)− dn,2−n

∫
Rn−1

xn−1
n

((X − Y )2 + x2
n)n−1

log(Y 2 +
1

4
)dn−1Y

)
◦φ−1.

Up to a conformal transform any constant is an optimizer.

Remark 1.2.1. We point out that the sharp inequality (1.6) combines with Brezis and

Lieb’s dual argument ([13] page10-11) to give the sharp version of inequality (1.9) in [13]

when the domain is a ball:

‖∇f‖L2(Bn) + C(n)‖f‖
L

2(n−1)
n−2 (∂Bn)

≥ Sn‖f‖
L

2n
n−2 (Bn)

,

where Sn is sharp Sobolev constant and C(n) can be determined by letting f = 1 when

the inequality becomes equality. This sharp Sobolev inequality with trace term was also

proved by Maggi and Villani in [58] by using methods from optimal transportation.
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Remark 1.2.2. When −1 < a < 1, from Caffarelli and Silvestre [16] we know u = Paf

is the unique solution to the boundary value problem

div(xan∇u(X, xn)) = 0, (X, xn) ∈ Rn
+

u(X, 0) = f,X ∈ Rn−1.

Then the fractional Laplacian can be defined by using an analogue of the Dirichlet to

Neumann map (−∆)
1−a

2 f = − lim
xn→0+

xanuy. So, our equivalent form of inequality (1.13)

on Rn
+, namely ‖Paf‖

L
2n

n−2+a (Rn+)
≤ S̃n,a‖f‖

L
2(n−1)
n−2+a (Rn)

, provides a sharp estimate for the

L
2n

n−2+a norm of solution of the above boundary value problem.

1.2.2 Remainder terms in the fractional Sobolev Inequality

In the joint work with Frank and Weth, we consider the fractional Sobolev inequality

‖u‖2
s/2 ≥ S

(∫
RN
|u|qdx

) 2
q

for all u ∈ H̊
s
2 (RN), (1.15)

where 0 < s < N , q = 2N
N−s , and H̊

s
2 (RN) is the space of all tempered distributions u

such that

û ∈ L1
loc(RN) and ‖u‖2

s/2 :=

∫
RN
|ξ|s|û|2dξ <∞.

Here, as usual, û denotes the (distributional) Fourier transform of u. The best Sobolev

constant

S = S(N, s) = 2sπ
s
2

Γ(N+s
2

)

Γ(N−s
2

)

(Γ(N
2

)

Γ(N)

)s/N
, (1.16)

i.e., the largest possible constant in (1.15), has been computed first in the special case

s = 2, N = 3 by Rosen [60] and then independently by Aubin [5] and Talenti [65] for

s = 2 and all dimensions N . For general s ∈ (0, N), the best constant has been given

by Lieb [50] for an equivalent reformulation of inequality (1.15), the (diagonal) Hardy-
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Littlewood-Sobolev inequality. In order to discuss this equivalence in some more detail,

we note that

‖u‖2
s/2 =

∫
RN
u(−∆)s/2udx (1.17)

for every Schwartz function u, where the operator (−∆)s/2 is defined by

̂(−∆)s/2u(ξ) = |ξ|sû(ξ) for a.e. ξ ∈ RN .

Moreover, H̊
s
2 (RN) is also given as the completion of smooth functions with compact

support under the norm ‖ · ‖s/2. The (diagonal) Hardy-Littlewood-Sobolev inequality

states that

∣∣∣∫
RN

∫
RN

f(x)g(y)

|x− y|λ
dx dy

∣∣∣ ≤ πλ/2
Γ(N−λ

2
)

Γ(N − λ
2
)

( Γ(N)

Γ(N/2)

)1− λ
N |f |p|g|p (1.18)

for all f, g ∈ Lp(RN), where 0 < λ < N and p = 2N
2N−λ . Here and in the following,

we let | · |r denote the usual Lr-norm for 1 ≤ r ≤ ∞. The equivalence of (1.15) and

(1.18) follows – by a duality argument – from the fact that for every f ∈ L
q
q−1 (RN) there

exists a unique solution (−∆)−s/2f ∈ H̊ s
2 (RN) of the equation (−∆)s/2u = f given by

convolution with the Riesz potential, i.e., by

[(−∆)−s/2f ](x) = 2−sπ−
N
2

Γ(N−s
2

)

Γ(s/2)

∫
RN

1

|x− y|N−s
f(y) dy for a.e. x ∈ RN . (1.19)

In [50], Lieb identified the extremal functions for (1.18), and his results imply that

equality holds in (1.15) for nontrivial u if and only if u is contained in anN+2-dimensional

submanifoldM of H̊
s
2 (RN) given as the set of functions which, up to translation, dilation

and multiplication by a nonzero constant, coincide with

U ∈ H̊
s
2 (RN), U(x) = (1 + |x|2)−

N−s
2 . (1.20)
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For the special case s = 2, i.e., the first order Sobolev inequality, Brezis and Lieb [13]

asked the question whether a remainder term – proportional to the quadratic distance of

the function u to the manifold M – can be added to the right hand side of (1.15). This

question was answered affirmatively in the case s = 2 by Bianchi and Egnell [10], and

their result was extended later to the case s = 4 in [56] and to the case of an arbitrary

even positive integer s < N in [7]. In the second section of the third chapter we prove

the corresponding remainder term inequality for all (real) values s ∈ (0, N). Our main

result is the following.

Theorem 5. Let

M :=
{
c U
( · − x0

ε

)
: c ∈ R \ {0}, x0 ∈ RN , ε > 0

}
⊂ H̊

s
2 (RN), (1.21)

where U is defined in (1.20). Then there exists a positive constant α depending only on

the dimension N and s ∈ (0, N) such that

d2(u,M) ≥
∫
RN
u(−∆)s/2(u)dx− S

(∫
RN
|u|qdx

) 2
q

≥ α d2(u,M) (1.22)

for all u ∈ H̊ s
2 (RN), where d(u,M) = min{‖u− ϕ‖s/2 : ϕ ∈M}.

As a corollary of Theorem 5, we also derive a remainder term inequality for the space

H̊
s
2 (Ω) ⊂ H̊

s
2 (RN) of all functions u ∈ H̊ s

2 (RN) which vanish in RN \Ω. In the case where

Ω is bounded and has a continuous boundary, H̊
s
2 (Ω) coincides with the completion of

C∞0 (Ω) ⊂ H̊
s
2 (RN) with respect to the norm ‖ · ‖s/2, whereas in general it may be a

slightly larger space (see e.g. [43, Theorem 1.4.2.2]). We also recall that, for 1 < r <∞,

the weak Lr-norm of a measurable function u on Ω is given by

|u|w,r,Ω = sup
A⊂Ω

|A|>0

|A|
1
r
−1

∫
A

|u| dx,
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see e.g. [46].

Theorem 6. Let, as before, q = 2N
N−s . Then there exists a constant C > 0 depending

only on N and s ∈ (0, N) such that for every domain Ω ⊂ RN with |Ω| < ∞ and every

u ∈ H̊ s
2 (Ω) we have

‖u‖2
s/2 − S

(∫
Ω

|u|qdx
) 2

q

≥ C|Ω|−
2
q |u|2w,q/2,Ω (1.23)

For fixed bounded domains Ω ⊂ RN , the existence of a weak Lq/2-remainder term is

due to Brezis and Lieb [13] in the case s = 2 and to Gazzola and Grunau [40] in the case

of an arbitrary even positive integer s < N . Bianchi and Egnell [10] gave an alternative

proof in the case s = 2 using the corresponding special case of inequality (1.22). We will

follow similar ideas in our proof of Theorem 6, using Theorem 5 in full generality. We

note that some additional care is needed to get a remainder term which only depends on

|Ω| and not on Ω itself.

1.3 Regularity results in some applications of opti-

mal transportation

Recall that in the optimal transportation problem, one is given a source domain Ω with

density f(x)dx and a target domain Λ with density g(x)dx, where f and g are nonnegative

Borel functions and satisfy the mass balance condition (
∫

Ω
f =

∫
Λ
g). Then, given a cost

function c(x, y), a central problem is to find an optimal transference plan, namely a Borel

map φ which minimizes the total cost
∫

Ω
c(x, ϕ(x))dx among all maps ϕ : Ω→ Λ pushing

f(x)dx forward to g(x)dx. Through the efforts of many authors, a rather satisfactory

theory has been developed for the existence, uniqueness and regularity of the optimal

transference plan (see [67] and references therein). However, in the two applications

below, one can not apply the existing regularity theory of classical optimal transportation
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directly to them. The main reason is that both cases involve transporting densities which

are a priori unknown. Moreover, examples show these unknown densities won’t generally

satisfy the hypotheses demanded by all of the existing theories for smoothness of optimal

maps.

1.3.1 The principal-agent problem

In economics, the principal-agent problem arises when the two parties have different

interests and asymmetric information. Knowing the distribution of different types of

agents and their preference, the principal needs to make some decision that maximizes

her total profit or minimizes her total loss. A typical example is that a monopolist

wants to market automobiles (y ∈ Y ) to a population of potential buyers (x ∈ X),

with some known information as following: preference function b(x, y) that measures

the the preference of a buyer x for the car y, the density of different types of buyers

in the population dµ(x) and the cost c(y) for manufacturing a car of type y. In order

to maximize her profit, the principal needs to decide what kind of cars to manufacture

and the price of each type of car. Recently Figalli, Kim and McCann [36] identified the

conditions that ensure the existence and uniqueness of the strategy that the principal

can use for maximizing her profit. They also discussed various interesting phenomena

that the optimal strategy may display.

For some important special preference functions, the problem was studied by Wilson

[70], Armstrong [4], and Rochet and Choné [27]. Later, for general preference function

Carlier [20] reformulated it as a minimization problem over the space of b-convex func-

tions (see Definition 1), however for general b(x, y) the space of admissible functions is

generally not convex, which is the main reason that apart from existence, he was unable

to deduce many key properties of the optimal strategy, such as its uniqueness. By adapt-

ing a strengthened version of the so called MTW condition in optimal transportation

together with the conditions bi-twist and bi-convexity which had also been used in the
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regularity theory of optimal transportation, Figalli, Kim and McCann successfully estab-

lished various convexity properties in the principal-agent problem, and those convexity

properties enable them to prove the uniqueness and some other important properties of

the solution. For a more complete discussion of the problem we refer the reader to [36]

and references therein.

In the first section of the last chapter of this thesis we study the regularity of the

solution to the principal-agent problem. For the special case when b(x, y) = x · y and

c(y) = |y|2, the C1 regularity of the minimizer was proved by Carlier and Lachand-Robert

[21]. Later Caffarelli and Lions [14] gave a very beautiful proof of C1,1 regularity. For

the general preference function, under some suitable condition we will show that the

minimizer is C1. The proof is based on a perturbation argument, which is usually more

difficult in the case of general b(x, y). Since for the bilinear case b(x, y) = x · y, the space

of admissible functions is a subset of convex functions, one can cut the graph of the

minimizer by a hyperplane and replace the part below the hyperplane with the flat one.

But for general b(x, y) when one uses the natural choice of b(·, y) + λ (λ is a constant)

instead of a hyperplane to perturb the minimizer, the shape of the domain where the

function is perturbed is hard to control except for some special y.

Before giving the main result, we will list the definitions and conditions which will be

used later. The following (B0)-(B3) conditions were introduced into the principal-agent

problem by Figalli, Kim and McCann [36].

Let X be the closure of a set X ⊂ Rn. For each fixed (x0, y0) ∈ X × Y we assume:

(B0) b ∈ C4(X×Y), where X ⊂ Rn and Y ⊂ Rn are open and bounded;

(B1) (bi-twist) both x ∈ X 7→ Dyb(x, y0) and y ∈ Y 7→ Dxb(x0, y) are diffeomorphisms

onto their ranges;

(B2) (bi-convexity) both Xy0 := Dyb(X, y0) and Yx0 := Dxb(x0,Y) are convex subsets

of Rn.
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(B3) (non-negative cross-curvature)

∂4

∂s2∂t2

∣∣∣
(s,t)=(0,0)

b(x(s), y(t)) ≥ 0 (1.24)

whenever either of the two curves s ∈ [−1, 1] 7→ Dyb(x(s), y(0)) and t ∈ [−1, 1] 7→

Dxb(x(0), y(t)) forms an affinely parameterized line segment (∈ Xy(0), or ∈ Yx0 , respec-

tively).

Now in order to formulate the principal-agent problem as a minimization problem

over some space of admissible functions, we need the definition of b-convexity.

Definition 1. A function u : X 7→ R is called b-convex if u = (ub
∗
)b, where

vb(x) = sup
y∈Y
{b(x, y)− v(y)}, and ub

∗
(y) = sup

x∈X
{b(x, y)− u(x)}. (1.25)

By the above definition and (B0), it is easy to see that a b-convex function is semi-

convex, which implies that it is differentiable almost everywhere. In the following we will

use DomDu to denote the set where u is differentiable. Then by (B1), we can define the

so called b-exponential map.

Definition 2. For each q ∈ Y x we define yb(x, q) as the unique solution to

Dxb(x, yb(x, q)) = q, (1.26)

where the uniqueness is guaranteed by (B1).

If the principal selects a price menu given by the function v(y), each agent x will try

to choose the product that maximize the quantity b(x, y)− v(y) among all y ∈ Y. Then

one can define a new function u(x) = sup
y∈Y
{b(x, y)− v(y)}, which is b-convex by definition

1. By (B1), we have u(x) = b(x, yb(x,Du(x)))− v(yb(x,Du(x))) for all x ∈ DomDu. As

discussed in section 4 of [36], the principal-agent problem is equivalent to the following
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minimization problem.

min
u∈U0

L(u), (1.27)

where U0 := {u|u(x) is b-convex and u ≥ u0(x) = b(x, y0)− c(y0)}, and

L(u) =

∫
X

[c(yb(x,Du(x))− b(x, yb(x,Du(x))) + u]dµ. (1.28)

Recall that c(yb(x,Du(x)) is the cost for the principal to manufacture the car yb(x,Du(x))

and b(x, yb(x,Du(x))− u(x) is the price of the car yb(x,Du(x)). Therefore, the quantity

L(u) exactly measures the total loss of the principal. Note that the point y0 in the

definition of U0 is the so called null product (or outside option), which the principal is

compelled to offer to all agents at zero profit. So u0(x) is a quantity below which the

agent x will reject the principal’s offer.

In the following, we will assume the density of different types of agents is given by

dµ = f(x)dx, where f ∈ C0(X) ∩W 1,∞(X) is a positive function. Below is one of the

main theorems in [36].

Theorem 7. [36] If b satisfies (B0)-(B3), and if c(y) is strictly b∗-convex, i.e., if

DomDcb = X, then there exists a unique solution to the above minimization problem.

To state our regularity result, we need the following condition on c(y).

Condition 1. c ∈ C1,1(X), and c(yb(x, q)) − b(x, yb(x, q)) is strongly convex on the

variable q ∈ Yx for x ∈ X uniformly, namely there exists a fixed δ > 0, such that

c(yb(x, q))− b(x, yb(x, q))− δ|q|2 is a convex function with respect to q.

Remark 1.3.1. By Proposition 4.4 in [36], if b satisfies (B0)-(B3), and if c(y) is

(strictly) b∗-convex, we have that c(yb(x, q))− b(x, yb(x, q)) is a (strictly) convex function

with respect to q.
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Theorem 8. If b satisfies (B0)-(B3), and if c satisfies Condition 1, then the unique

solution to the above minimization problem is in C1(X).

1.3.2 Regularity of the free boundary in the optimal partial

transport problem for general cost functions

The optimal partial transport problem is a natural extension of the classical optimal

transport problem. One has the source density fχΩ and the target density gχΩ, where

f and g are two nonnegative functions. Then given a mass m satisfying 0 < m ≤

min{‖f‖L1 , ‖g‖L1}, one wants to find an optimal transference plan between f and g

with mass m. By a transference plan we mean a nonnegative, finite Borel measure γ on

Rn × Rn with its first and second marginal controlled by f and g respectively, namely

for any Borel set A ⊂ Rn we have:

γ(A× Rn) ≤
∫
A

f(x)dx, γ(Rn × A) ≤
∫
A

g(y)dy.

An optimal transference plan is a minimizer of the following functional

γ 7→
∫
Rn×Rn

c(x, y)dγ,

where c is a nonnegative cost function.

The existence and uniqueness of the optimal transference plan have been addressed by

Caffarelli and McCann under some suitable condition on the cost. Later Figalli extended

it to more general situation with a different method. The regularity of the free boundary

in the optimal partial transport is also highly interesting. For quadratic cost with the

supports of the densities convex and separated by a hyperplane, Caffarelli and McCann

proved that the free boundary is C1,α away from some bad points. Figalli extends the C1

regularity to the situation that allows the densities to have overlap, and Indrei improved
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Figalli’s result to C1,α. Moreover, Indrei investigated the size of the bad points of the free

boundary, he proved some estimates for the Hausdorff measure of singular points. In the

second section of the last chapter of this thesis we will prove the following result for the

regularity of free boundary in optimal partial transport for costs satisfying (B0)-(B2)

and the precursor (A3) of Ma, Trudinger and Wang [57] which inspired (B3).

(A3) (Ma-Trudinger-Wang condition)

∂4

∂s2∂t2

∣∣∣
(s,t)=(0,0)

b(x(s), y(t)) > 0 (1.29)

whenever either of the two curves s ∈ [−1, 1] 7→ Dyb(x(s), y(0)) and t ∈ [−1, 1] 7→

Dxb(x(0), y(t)) forms an affinely parameterized line segment (∈ Xy(0), or ∈ Yx0 , respec-

tively) and

∂2

∂s∂t

∣∣∣
(s,t)=(0,0)

b(x(s), y(t)) = 0.

Below we establish the following result obtained in joint work with Indrei.

Theorem 9. Let f = fχΩ ∈ Lp(Rn) be a nonnegative function with p ∈ (n+1
2
,∞], and

g = gχΛ a positive function bounded away from zero, Moreover, assume that Ω and Λ are

bounded, Λ is relatively c-convex with respect to a neighborhood of Ω∪Λ, and Ω∩Λ = ∅.

Let c ∈ F0 and m ∈ (0,min{‖f‖L1 , ‖g‖L1}]. Then the free boundary ∂Um ∩Ω is locally a

C1,α graph with α = 2p−n−1
2p(2n−1)−n+1

.



Chapter 2

Convex solutions to the

power-of-mean curvature flow

In this chapter we study the convex solutions to the power-of-mean curvature flow. It

is divided into four sections. The first section is devoted to the proof of power growth

estimate of the solutions. The second section contains the proof of Theorem 1 and the

first part of Theorem 2. The third section establishes Corollary 1 and the last section

completes the proof of Theorem 2.

2.1 Power growth estimate

In this section, we prove a key estimate, which says that any entire convex solution u to

the equation (1.3) must satisfy

u(x) ≤ C(1 + |x|1+α),

where the constant C depends only on the upper bound of u(0) and |Du(0)|. When

α = 1, the estimate was proved by Wang [69]. To apply Wang’s method, the main

difficulty is that now the speed function is nonlinear in the curvature, we overcome this

19
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difficulty by further exploiting some elementary convexity properties.

For any constant h > 0, we denote

Γh = {x ∈ Rn : u(x) = h},

Ωh = {x ∈ Rn : u(x) < h},

so that Γh is the boundary of Ωh. Let κ be the curvature of the level curve Γh. We have

Lσ(u) = (σ + u2
γ)

1
2α
− 1

2 (κuγ +
σuγγ
σ + u2

γ

) (2.1)

≥ κu
1
α
γ = L0(u), (2.2)

where γ is the unit outward normal to Ωh, and uγγ = γiγjuij.

Lemma 1. Let u be a complete convex solution of (1.3). Suppose u(0) = 0 and the

infimum inf{|x| : x ∈ Γ1} is attained at x0 = (0,−δ) ∈ Γ1, for some δ > 0 sufficiently

small. Let D1 be the projection of Γ1 on the axis {x2 = 0}. Then D1 contains the interval

(−R,R), and when α ≤ 1, R satisfies

R ≥ C1(− log δ − C2)
α
α+1 , (2.3)

where C1, C2 > 0 are independent of δ; when α > 1, R ≥ C for some positive constant

C.

Note that the above lemma seems too weak when α > 1, in Remark 2.1.1, we will

show how to strengthen it for the purpose of the proof of Corollary 3.

Proof. First, we prove the lemma when 1
2
< α ≤ 1 . Suppose near x0, Γ1 is given

by x2 = g(x1). Then g is a convex function, g(0) = −δ, and g′(0) = 0. Let b > 0 be a
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constant such that g′(b) = 1. To prove (2.3) it suffices to prove

b ≥ C1(− log δ − C2)
α
α+1 . (2.4)

For any y = (y1, y2) ∈ Γ1, where y1 ∈ [0, b], let ξ = y
|y| , by convexity of u we have

uξ(y) ≥ u(y)− u(0)

|y|
=

1

|y|
.

Let θ denote the angle between ξ and the tangential vector 1√
1+g′2

(1, g′) of Γ1 at y. Then

cos θ =
ξ1 + ξ2g

′(y1)√
1 + g′2

,

sin θ =
√

1− cos2 θ =
ξ1g
′ − ξ2√

1 + g′2
.

Hence

uγ(y) ≥
√

1 + g′2

y1g′ − y2

, (2.5)

where γ is the unit normal of the sub-level set Ω1 . Since L0u ≤ 1, we obtain,

g′′

(1 + g′2)
3
2

(1 + g′2)
1

2α

(y1g′ − y2)
1
α

≤ κu
1
α
γ ≤ 1, (2.6)

where κ is the curvature of the level curve Γ1. Hence

g′′(y1) ≤ (1 + g′2)
3
2
− 1

2α (y1g
′ − y2)

1
α (2.7)

≤ 10y
1
α
1 g
′ + 10δ (2.8)

where y2 = g(y1) and g′(y1) ≤ 1 for y1 ∈ (0, b). The inequality from (2.7) to (2.8) is

trivial when y2 ≥ 0. When y2 ≤ 0, since |y2| ≤ δ, we have either y1g
′ ≤ δ or y1g

′ > δ,



Chapter 2. Convex solutions to the power-of-mean curvature flow 22

for the former (y1g
′ − y2)

1
α ≤ (2δ)

1
α ≤ 4δ, for the latter (y1g

′ − y2)
1
α ≤ (2y1g

′)
1
α ≤ 4y

1
α
1 g
′,

since g′(y1) ≤ 1. We consider the equation

ρ′′(t) = 10t
1
αρ′ + 10δ (2.9)

with initial conditions ρ(0) = −δ and ρ′(0) = 0. Then for t ∈ (0, b) we have

ρ′(t) = 10δe
10α
α+1

t
α+1
α

∫ t

0

e−
10α
α+1

s
α+1
α
ds. (2.10)

Since
∫∞

0
e−

10α
α+1

s
α+1
α
ds is bounded above by some constant C, we have

1 = ρ′(b) = 10δe
10α
α+1

b
α+1
α

∫ b

0

e−
10α
α+1

s
α+1
α
ds. (2.11)

≤ C1δe
10α
α+1

b
α+1
α
, (2.12)

from where (2.4) follows.

When α > 1, the situation is different. First, We introduce a number a such that

g′(a) = 1
2
. Then, we can follow the above proof until (2.7). For (2.8) the inequality

becomes

g′′(y1) ≤ 10y
1
α
1 g
′ + 10δ

1
α ,

for y1 ∈ [a, b]. Now (2.12) becomes

e−
10α
α+1

b
α+1
α
ρ′(b)− e−

10α
α+1

a
α+1
α
ρ′(a) ≤ C1δ,

after rearranging the terms we have

1 ≤ C1δe
10α
α+1

b
α+1
α

+
1

2
e

10α
α+1

(b
α+1
α −a

α+1
α ),

then it is easy to see that when δ is small, b ≥ C, for some fixed constant C.
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Remark 2.1.1. When α ≤ 1, It follows from Lemma 1 that when δ is sufficiently small,

by convexity and in view of Figure 1, we see that Ω1 contains the shadowed region. Then

it is easy to check that Ω1 contains an ellipse

E = {(x1, x2)| x
2
1

(R
6

)2
+

(x2 − 7δ∗−5δ
12

)2

( δ
∗+δ
4

)2
= 1}, (2.13)

where δ∗ is a positive constant such that u(0, δ∗) = 1 and R is defined in the Lemma 1.

When α > 1, if δ∗ is very large, in the part {x|u(x) ≤ 1, x1 ≥ 0}, by convexity we can

find an ellipse which has short axis bounded from below and long axis very large, and if we

let the ellipse evolve under the generalized curve shortening flow, it will take time more

than 1 to converge to a round point. When δ∗ is less than some fixed constant, we need

to consider two cases. Case 1, when the set {u ≤ 1} is not compact. In this case when

we project {u(x) = 1} to the axis {x2 = 0}, and denote the leftmost(rightmost) point as

(−l, 0)((r, 0)), then either l or r is very large, which guarantees that one can still find an

ellipse inside {x|u(x) ≤ 1, x1 ≤ 0} (or {x|u(x) ≤ 1, x1 ≥ 0}) with the similar property

as before. Case 2, when {u ≤ 1} is compact. For this case, we will always assume 0

is the minimum point of u, and u(0) = 0. We claim that when δ is very small, for the

purpose of the proof of Corollary 3, we can assume one of l and r is very large. Indeed,

if the claim is not true, we have a sequence of functions ui satisfying that {ui ≤ 1} has

width bounded by some constant independent of i, and the distance dist(0, {ui ≤ 1})→ 0,

as i → ∞. And in view of the following proof of corollary 3, we can assume ui satisfies

equation (1.3) with σi → 0 (see the first paragraph in the proof of Corollary 3). Then

by passing to a subsequence, we can assume {ui ≤ 1} converges to a convex curve C0 in

hausdorff distance, and let C0 evolves under the generalized curve shortening flow, it will

converge to a point on itself, which is clearly impossible. Once l or r is very large, we

can find the ellipse as in the case 1.

Remark 2.1.2. One can also establish similar lemma in higher dimensions, which says
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Figure 2.1: Γ1 contains the shadow part.

that D1 (convex set with dimension greater than 1) contains a ball centered at the origin

with radius R ≥ Cn(− log δ −C)
α
α+1 , where Cn is a constant depending only on n and C

is a positive constant independent of δ. The proof can be reduced to the two dimensional

case. For the details of how to reduce the situation to lower dimensional case we refer

the reader to the proof of Lemma 2.6 in [69].

Lemma 2. Let u be a complete convex solution of (1.3). Suppose u(0) = 0, δ and δ∗ are

defined as in Lemma 1 and Remark 2.1.1. Then if δ and δ∗ are sufficiently small, u is

defined in a strip region.

The proof of Lemma 2 is based on a careful study of the shape of the level curve of

u, we will give an important corollary first.

Corollary 3. Let u be an entire convex solution of (1.3) in R2, then

u(x) ≤ C(1 + |x|1+α), (2.14)

where the constant C depends only on the upper bound for u(0) and |Du(0)|.

Proof. By adding a constant to u we may suppose u(0) = 0. It suffices to prove that

dist(0,Γh) ≥ Ch
1

1+α for all large h. By the rescaling uh(x) = 1
h
u(h

1
1+αx) we need only



Chapter 2. Convex solutions to the power-of-mean curvature flow 25

to prove dist(0,Γ1,uh) ≥ C. Note that |Duh(0)| = 1

h
α

1+α
|Du(0)| → 0, as h → ∞. Hence

by convexity infBr(0) uh goes to 0 uniformly for fixed radius r. Note also that uh satisfies

equation (1.3) with σ → 0 as h→∞.

If the estimate

dist(0,Γ1,uh) ≥ C, for all large h

fails, we can find a sequence hk → ∞ such that δk = inf{|x| : x ∈ Γ1,uhk
} → 0. Now,

we take δ∗k as in Remark 2.1.1 with respect to uhk . δ∗k has a positive lower bound δ∗,

otherwise by Lemma 2 uhk can not be an entire solution for large k.

If δ∗k ≤ 1000 for all large k, since the ellipse Ek defined for uhk as in Remark 2.1.1 is

contained in Ω1,uhk
and the distance between the centerOk of Ek and the origin is bounded

above by 1000, by the previous discussion we know uhk(Ok) is bounded bellow by −1

when k is large. Let Ek(t) be the solution to the generalized curve shortening flow starting

from time t = −1 , with initial condition Ek(−1) = Ek. (1) When σ = 0, ∂Ω−t,uhk evolves

under the generalized curve shortening flow, we have the inclusion Ek(t) ⊂ ∂Ω−t,uhk for

all t > −1. Hence infB1000(0) uhk is smaller than 1 minus the time needed for Ek to shrink

to Ok. However, by the size of Ek, the time needed for it to shrink to a point goes to

infinity as k goes to infinity, which is contradictory to the discussion at the beginning of

the proof that uhk converges to 0 uniformly in the ball B1000(0) as hk goes to infinity.

(2)When σ ∈ (0, 1], we can take vk as the solution of Lσkv = 1 in Ek with v = 1 on ∂Ek,

where σk = h
− 2α

1+α

k . Passing to a subsequence and adjusting the size of Ek if necessary, we

can assume Ek converge to some ellipse E with the length of its long axis very large, the

length of its short axis bigger than some fixed positive number and the distance from its

center to the origin is less than 1000. Then vk converges to a solution of the generalized

curve shortening flow, and a contradiction can be made as for the case σ = 0

Otherwise, by the definition of b in the proof of Lemma 1 and the convexity of Ω1,uh

we can find a disc Bk with center O = (0, 50) and radius 20 inside Ω1,uhk
, obviously it

will take time more than 2 for Bk to shrink to O. We can take Bk(t) as a solution to the
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generalized curve shortening flow starting from time t = −1 with Bk(−1) = Bk, then a

similar contradiction will be made as before.

Remark 2.1.3. The estimate in Corollary 3 is also true for higher dimensions, one can

prove it by reducing the problem to the two dimensional case similar to the corresponding

part in [69].

Proof of Lemma 2. By a rotation of coordinates we assume the axial directions of E

in Remark 2.1.1 coincide with those of the coordinate system. LetMu be the graph of u,

which consists of two parts,Mu =M+ ∪M−, whereM+ = {(x, u(x)) ∈ R3 : ∂x2u ≥ 0}

and M− = {(x, u(x)) ∈ R3 : ∂x2u ≤ 0}. Then M± can be represented as graphs of

functions g± in the form x2 = g±(x1, x3), (x1, x2) ∈ D and D is the projection of Mu on

the plane {x2 = 0}. The functions g+ and g− are respectively concave and convex, and

we have x3 = u(x1, g
±(x1, x3)). Denote

g = g+ − g−. (2.15)

Then g is a positive, concave function in D, vanishing on ∂D. For any h > 0 we also

denote gh(x1) = g(x1, h), g±h (x1) = g(x1, h), and Dh = {x1 ∈ R1 : (x1, h) ∈ D}. Then

gh is a positive, concave function in Dh, vanishing on ∂Dh, and Dh = (−ah, ah) is an

interval containing the origin. We denote bh = gh(0). We will consider the case σ = 0

first.

Claim 1: suppose h large, g1(0) = δ∗ + δ small, bh ≤ 4 and ah, ah ≥ bh. Then

ah ≥ 1
1000

h
bαh

for α ≤ 1 and ah ≥ 1
1000

h
1

2α−1

b
1

2α−1
h

for α > 1.

Proof. Without loss of generality, we assume ah ≤ ah. Denote Uh = Ωh ∩ {x1 > 0}.

By the convexity of Uh and the assumption ah, ah ≥ bh, we have as, as ≥ 1
2
bh for all

s ∈ (1
2
h, h). Hence by the concavity of g we have | d

dx1
gs(0)| ≤ 2 for s ∈ (1

2
h, h), which

means the arc-length of the image of Γs ∩ {x1 > 0} under Gauss map is bigger then π
6
.

Notice that Ω1 contains E, which was defined in Remark 2.1.1. When δ and δ∗ are very
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Figure 2.2: Γs ∩ {x1 > 0} is trapped between two lines

small, E is very thin and long. The centre of E is very close to the origin, in fact for

our purpose we can just pretend E is centered at the origin. By convexity of Ωh and

in view of Figure 2, we see that Γs ∩ {x1 > 0} is trapped between two lines `1 and `2,

and the slopes of `1 and `2 are very close to 0 when E is very long and thin. Then it is

clear that the largest distance from the points on Γs ∩ {x1 > 0} to the origin can not be

bigger than 10ah. By convexity of u, we have uγ(x) ≥ h
20ah

, for x ∈ Γs ∩ {x1 > 0}. Since

Γs ∩ {x1 > 0} evolves under the generalized curve shortening flow, when α ≤ 1 we have

the following estimate

d

ds
(|Us|) =

∫
Γs∩{x1>0}

καdξ (2.16)

=

∫
Γs∩{x1>0}

u
1
α
−1

γ κdξ (2.17)

≥ 1

50
(
h

ah
)

1
α
−1π

6
, (2.18)

from (2.16) to (2.17) we used the equation κu
1
α
γ = 1. The claim follows by the simple

fact 3
2
bhah ≥ |Uh| ≥ 1

50
( h
ah

)
1
α
−1 π

6
h
2
.

When α > 1, denote ls as the arc length of Γs ∩ {x1 > 0}, by the above discussion, it



Chapter 2. Convex solutions to the power-of-mean curvature flow 28

is not hard to see that ls ≈ Cah. Then by a simple application of Jensen’s inequality, we

have

d

ds
(|Us|) =

∫
Γs∩{x1>0}

καdξ

= ls

∫
Γs∩{x1>0}

κα
1

ls
dξ

≥ ls(

∫
Γs∩{x1>0}

κ

ls
dξ)α ≥ Cl1−αs ≥ Ca1−α

h ,

then again by the simple fact that 3
2
bhah ≥ |Uh| we can finish the proof in the same way

as the previous case.

From here until (2.51) we will prove the case 1
2
< α ≤ 1, and then we will give the

detail for the case α > 1.

Claim 2: Denote hk = 2k, ak = ahk , bk = bhk , gk = ghk and Dk = Dhk . Then

gk(0) ≤ gk−1(0) + C02
−k
C for all k large, (2.19)

where C0 is a fixed constant, and C depends only on α.

Lemma 2 follows from Claim 1 and Claim 2 in the following way. Let the convex set

P be the projection of the graph of g on the plane {x3 = 0}, by Claim 2 and the fact that

P contains x1-axis (it follows from Claim 1), P must equal to I × R for some interval

I ⊂ [0, lim
k→∞

gk(0)]. Then, by (2.15) Mu is also contained in a strip region as stated in

Lemma 2.

To prove (2.19) , since g is positive and concave, gk(0) ≤ hkg0(0) ≤ 2k(δ+ δ∗). Hence,

we can start from sufficiently large k0, which satisfies gk0(0) ≤ 1 and

gk0 + C0

∞∑
j=k0

2
−j
C ≤ 2. (2.20)

Suppose (2.19) holds up to k. Then by (2.20) we have gk(0) ≤ 2. By the concavity
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of g and g ≥ 0 , we have gk+1(0) ≤ 2gk(0) ≤ 4. By claim 1 we have ak+1 ≥ 1
10000

hk. To

prove (2.19) at k + 1, we denote

Lk = {x1 ∈ R1 : −C1

4
hk < x1 <

C1

4
hk}, C1 =

1

10000
, (2.21)

Qk = Lk × [hk, hk+1] ⊂ D. (2.22)

Since g > 0, g is concave, we have the following estimates

g(x1, h) ≤ 8, (2.23)

|∂hg(x1, h)| ≤ 16

hk
, (2.24)

|∂x1g(x1, h)| ≤ 16

hk
, for all (x1, h) ∈ Qk (2.25)

We denote X± = {(x1, h) ∈ Qk : |∂x1x1g
±(x1, h)| ≥ h−βk }, here β is chosen such that

1
α
< β < 2. For any h ∈ (hk, hk+1), by (2.25) , we have

|{x1 ∈ Lk : (x1, h) ∈ X+|h−βk ≤
∫
Lk

∂x1x1g
+ (2.26)

≤
∫
Lk

∂x1x1g (2.27)

≤ 2 sup
Lk

|∂x1g| (2.28)

≤ C

hk
. (2.29)

So |X+| ≤ Chβk . Similarly we have|X−| ≤ Chβk .

For any given y1 ∈ Lk, denote X±y1 = X+ ∩ {x1 = y1}. Then by the above estimate

there is a set L̃± ⊂ Lk with measure |L̃±| ≤ Ch
β
2
k such that for any y1 ∈ Lk − L̃±, we

have |X±y1 | ≤ h
β
2
k . When k is large, we can always find y1 = Ch

β
2 ∈ Lk − L̃±, where the

constant C is under control. For such y1, we have

g(y1, hk+1)− g(y1, hk) = g+(y1, hk+1)− g+(y1, hk) + |g−(y1, hk+1)− g−(y1, hk)|. (2.30)
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We will estimate g+(y1, hk+1)− g+(y1, hk), another part can be estimated similarly.

Note that the distance from y1 = Ch
β
2 to the origin is relatively very small comparing

to the length of Lk when k is large, recall the fact that Ω1 contains an ellipse E with

center close to the origin and by taking δ, δ∗ small enough we can make E as thin and as

long as we need (note that later in the proof of case α > 1, we can only find such ellipse

with the size of short axis very small and with the size of the long axis bounded from

below by some constant, but this is enough for the argument). By these facts, we can

make the unit normal of Γs at the point (y1, gs(y1)) very close to the x2-axis direction,

and in fact we can make them as close as we want by taking δ, δ∗ enough small. By

differentiating equation u(x1, g
+(x1, h)) = h with respect to x1 and h, and using the fact

that ∂x1g
+ is small, we have


(∂hg

+)−1 = (1 + ε1)uγ

∂x1x1g
+ = (1 + ε2)κ,

(2.31)

then by the equation u
1
α
γ κ = 1 we have

∂hg
+
h (y1, h) ≤ C(∂x1x1g

+)α ≤ Ch−βαk . (2.32)

Now

g+(y1, hk+1)− g+(y1, hk) =

∫ hk+1

hk

∂hg
+(y1, h)dh (2.33)

=

∫
X+
y1

∂hg
+(y1, h)dh+

∫
[hk,hk+1]−X+

y1

dh (2.34)

≤ C1h
β
2
k

1

hk
+ C2h

−βα
k hk. (2.35)

Recall that β satisfies 1
α
< β < 2, we have η := min{1− β

2
, βα− 1} > 0. From (2.30) and
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(2.35) , we have the estimate

g(y1, hk+1)− g(y1, hk) ≤
C

hηk
,

for some fixed constant C. Then, we will assume ∂x1g(0, hk) < 0 (otherwise we can

replace x1 by −x1), therefore by the above estimate we have

g(y1, hk+1) ≤ g(y1, hk) +
C

hηk
≤ g(0, hk) +

C

hηk
.

Since g is positive, concave and defined on the interval [0, āk+1] with āk+1 ≥ Chk+1, we

have

gk+1(0)

gk+1(y1)
≤ āk+1

āk+1 − y1

≤ 1 + Ch
β
2
−1

k+1 .

Therefore, by the above two estimates we have

gk+1(0) ≤ gk(0) + Ch−ηk ,

which implies (2.19) immediately.

For the proof of Lemma 2 when σ ∈ (0, 1], we need to use (2.1) and (2.2). In fact,

by (2.2) we see that Γh is moving at a velocity greater than or equal to its curvature to

the power α. Hence, we still have the lower bound of d
ds

(|Us|) as in the proof of Claim 1.

Then we can follow the above proof for the case σ = 0 until (2.33) with the only change

that replacing the equalities “ = ” in (2.16) and (2.17) with inequalities “ ≥ ”. As in

[69], when σ = 0, in order to control the second integral in (2.34) we used the equation

κu
1
α
γ = 1. But when σ 6= 0, by (2.24) and (2.31) we have

uγ ≥ C(∂hg
+)−1 ≥ Chk, (2.36)

hence we can assume uγ as large as we want, which means in the formula (2.1) the only
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important extra term is (σ + u2
γ)

1
2α
− 1

2
σuγγ
σ+u2

γ
. To handle this term we divide the integral

(2.35) into three parts,

g+(y1, hk+1)− g+(y1, hk) =

∫ hk+1

hk

∂hg
+(y1, h)dh (2.37)

= (

∫
I1

+

∫
I2

+

∫
I3

)∂hg
+(y1, h)dh, (2.38)

where

I1 = X+
y1
, (2.39)

I2 = {h ∈ [hk, hk+1]− I1 : (σ + u2
γ)

1
2α
− 1

2
σuγγ
σ + u2

γ

≤ 1

2
}, (2.40)

I3 = [hk, hk+1]− I1 ∪ I2. (2.41)

For the first integral, we can do exactly the same thing as we have done from (2.34)

to (2.35), namely
∫
I1
∂hg

+(y1, h)dh ≤ C
hk
h
β
2
k = Ch

β
2
−1

k , note that the power β
2
− 1 is a

negative number.

Then we estimate the second integral, note that when (y1, h) ∈ I2, (σ+u2
γ)

1
2ακuγ ≥ 1

2
.

By (2.36) uγ is large, so we have κu
1
α
γ ≥ 1

4
, then by (2.31) we have

∂hg
+ ≤ C(∂x1x1g

+)α ≤ Ch−αβk . (2.42)

Hence
∫
I2
∂hg

+(y1, h)dh ≤ Ch−βαk hk = Ch1−βα
k , note that 1 − βα is a negative number.

Observe that we can assume I2 is on the right hand side of I3, since by the concavity of

g+ we know that when h ≥ inf I2, ∂hg
+(y1, h) will satisfy the estimate (2.42).

For the third integral, as in [69] we need the following observation


uγ(y1, h) = ux2(1 + ε1)

uγγ(y1, h) = ux2x2(1 + ε2) + ε3ux2 ,

(2.43)
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which can be proved by differentiating the equation u(x1, g
+(x1, h)) = h twice with

respect to x1, and combining the facts discussed before (2.31). Note that by taking δ and

δ∗ sufficiently small, when k is large, we can make εi very small, for i = 1, 2, 3. Hence,

by (2.43) we have

(σ + u2
x2

)
1

2α
− 1

2
σux2x2

σ + u2
γ

≥ 1

3
. (2.44)

Since σ ∈ [0, 1] and uγ is large, we have

u′′ = ux2x2 ≥
1

4
(u′)3− 1

α . (2.45)

By differentiating the equation u(x1, g
+(x1, h)) = h twice with respect to h, we have

(g+)′′ = −u′′(g+)′3 ≤ −1

4
(g+)′

1
α
−3(g+)′3 = −1

4
(g+)′

1
α , (2.46)

note (2.46) is for points with corresponding h ∈ I3. By the discussion after (2.42) we need

only to estimate
∫

[hk+h
β+2

4
k ,inf I2]

(g+)′dh. Therefore by (2.46) and noticing that (g+)′ ≥ 0

we have

α

α− 1
(g+)′

α−1
α (h) ≤ α

α− 1
(g+)′

α−1
α (hk)−

1

4
|I3 ∩ [hk, h]|, (2.47)

so when h ∈ [h
β+2

4
k , inf I2], we have

(g+)′(h) ≤ ((g+)′
α−1
α (hk) + C(h− hk))

α
α−1 . (2.48)
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Finally we have

∫
[hk+h

β+2
4

k ,inf I2]

(g+)′dh ≤
∫ hk+1

hk

((g+)′
α−1
α (hk) + C(h− hk))

α
α−1dh (2.49)

≤ α− 1

2α− 1
((g+)′

α−1
α (hk) + C(h− hk))

α
α−1

+1|2hkhk
(2.50)

≤ C((g+)′
2α−1
α ≤ Ch

1−2α
α

k , (2.51)

note that 1−2α
α

< 0 when α > 1
2
. Then we can complete our proof as the case σ = 0.

When α > 1, we need to choose the constants and exponents more carefully. First of

all, in view of the Lemma 2 for α > 1, in order to have properties (2.31) and (2.43) we

need only to replace the number 2 in (2.20) with some number much smaller than the

constant C in Lemma 2. The definition of Lk in (2.21) should be modified to

Lk = {x1 ∈ R1 : −C1

4
h

1
2α−1

k < x1 <
C1

4
h

1
2α−1

k }, C1 =
1

10000
,

and the definition of Qk in (2.22) remains the same. It is easy to see that we still have

the estimates (2.23)-(2.24), and (2.25) becomes

|∂x1g(x1, h)| ≤ 16

h
1

2α−1

k

, for all (x1, h) ∈ Qk.

Then for the definition of

X± = {(x1, h) ∈ Qk : |∂x1x1g
±(x1, h)| ≥ h−βk },

we need to choose the exponent β so that 1
α
< β < 2

2α−1
. By doing the same computation

as (2.26)-(2.28) we have

|{x1 ∈ Lk : (x1, h) ∈ X+}|h−βk ≤
∫
Lk

∂x1x1g
+ ≤ C

h
1

2α−1

k

.
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So we have |X+| ≤ Ch
1+β− 1

2α−1

k , and similarly we have |X−| ≤ Ch
1+β− 1

2α−1

k . Then by the

above estimate there is a set L̃± ⊂ Lk with measure |L̃±| ≤ Ch
β+ε− 1

2α−1

k such that for

any y1 ∈ Lk − L̃±, we have |X±y1| ≤ h1−ε
k , where ε is chosen such that β + ε < 2

2α−1
.

Now, (2.31)-(2.34) remain the same, and (2.35) becomes

g+(y1, hk+1)− g+(y1, hk) ≤ C1h
1−ε
k

1

hk
+ C2h

−βα
k hk.

By the choice of β, all the exponents on hk is negative. We do not need to change

anything from (2.36) to (2.45). Finally from (2.46) we need to replace the computation

in the case α ≤ 1 with the following computation.

First we have (g+)′′ ≤ −1
4
(g+)′

1
α ≤ −1

4
(g+)′, and we need only to bound

∫
[hk+h

1− 1
2 ε

k ,inf I2]
(g+)′dh.

Note that (g+)′ ≥ 0, by integrating the above differential inequality we have (g+)′(h) ≤

(g+)′(hk)e
− 1

4
|I3| ≤ (g+)′(hk)e

1
8

(h−hk), when h ∈ [hk + h
1− 1

2
ε

k , inf I2]. Therefore, we have

∫
[hk+h

1− 1
2 ε

k ,inf I2]

(g+)′dh ≤
∫ hk+1

hk

(g+)′(hk)e
1
8

(h−hk)dh

≤ C(g+)′(hk) ≤
C

hk
.

2.2 Blow-down of an entire convex ancient solution

converges to a power function

In this section we prove that the blow-down of an entire convex solution to (1.3) converges

to a power function, and then by using this and a rescaling argument in next section we

prove that, if a convex ancient solution to the generalized curve shortening flow sweeps

the whole R2, it must be a shrinking circle.

Proof of Theorem 1 and the first part of Theorem 2. First we prove that there is a

subsequence of uh, where uh(x) = h−1u(h
1

1+αx), which converges to 1
1+α
|x|1+α.

By adding a constant we may suppose u(0) = 0. Let xn+1 = a · x be the equation of
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the tangent plane of u at 0. By Corollary 3 and the convexity of u we have

a · x ≤ u(x) ≤ C(1 + |x|1+α).

Hence,

h−
α

1+αa · x ≤ uh(x) ≤ C(
1

h
+ |x|1+α).

By convexity we have that Duh is locally uniformly bounded. Hence uh sub-converges

to a convex function u0 which satisfies u0(0) = 0, and

0 ≤ u0(x) ≤ C|x|1+α.

It is easy to check that u0 is an entire convex viscosity solution to equation (1.3) with

σ = 0, and the comparison principle holds on any bounded domain.

Now we will prove {x|u0(x) = 0} = {0}. In fact, if {x|u0(x) = 0} is a bounded set,

then {x|u0(x) = h} is a closed, bounded convex curve which evolves under the generalized

curve shortening flow, from [1] it follows that {x|u0(x) = 0} = {0}. If {x|u0(x) = 0}

contains a straight line, say the line (t, 0), (t ∈ R), then by convexity, u is independent of

x1, which is impossible. So we need only to rule out the possibility that {x|u0(x) = 0}

contains a ray but no straight lines. In this case, for fixed h > 0, we can find an

ellipse E inside {x|u0(x) < h}, with the short axis bounded from below by a constant

depending only on h and with the long axis as long as we want (one needs only to

look at the asymptotic cone of {x|u0(x) = h} ), but since {x|u0(x) = h} evolves under

the generalized curve shortening flow and E ⊂ {x|u0(x) ≤ h}, which is impossible by

comparison principle.

Then since {x|u0(x) = 0} = {0}, Γ1,u0 = {x|u0(x) = 1} is a bounded convex curve,

and the level set {x|u0(x) = −t}, with time t ∈ (−∞, 0), evolves under the generalized

curve shortening flow, from [1], [2] we have the following asymptotic behavior of the
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convex solution u0 of L0u = 1

u0(x) =
1

1 + α
|x|1+α + ϕ(x), where ϕ(x) = o(x1+α), for x 6= 0 near the origin. (2.52)

In fact, if the initial level curve is in a sufficiently small neighborhood of circle, by Lemma

4 in the beginning of the fourth section, we have that |ϕ(x)| ≤ C|x|1+α+η for some small

positive η, where C is a constant depending only on the initial closeness to the circle.

Hence, given any ε > 0, for sufficiently small h′ > 0, we have

B(1−ε)r(0) ⊂ Ωh′,u0 ⊂ B(1+ε)r(0),

where r = ((1 + α)h′)
1

1+α . Hence, there is a sequence hm →∞ such that

B(1− 1
m

)rm,i
(0) ⊂ Ωhm,u ⊂ B(1+ 1

m
)rm,i

(0),

where rm,i = ((1 + α)ihm)
1

1+α , i = 1, · · · ,m. Then uhm sub-converges to 1
1+α
|x|1+α.

Since u0 is an entire convex solution to L0u = 1, from the above argument, we can

find a sequence hm, such that u0hm(x) = 1
hm
u0(h

1
1+α
m x) locally uniformly converges to

1
1+α
|x|1+α. Hence, the sublevel set Ω 1

1+α
,u0hm

satisfies

B1−εm(0) ⊂ Ω 1
1+α

,u0hm
⊂ B1+εm(0),

where εm → 0 as m→∞. By the discussion below (2.52), we have

u0hm(x) =
1

1 + α
|x|1+α + ϕ(x),

where |ϕ(x)| ≤ C|x|1+α+η for some fixed small positive η, and the constant C is indepen-
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dent of m. Replacing x by h
− 1

1+α
m x in the above asymptotic formula, we have

u0(x) =
1

1 + α
|x|1+α + hmϕ(h

− 1
1+α

m x),

where for any fixed x, hmϕ(h
− 1

1+α
m x) → 0. Hence u0(x) = 1

1+α
|x|1+α. So we have proved

Theorem 1 and the first part of Theorem 2.

2.3 1-dimensional entire convex ancient solution must

be a shrinking circle

We will follow the lines in the section 4 of [69]. It will be accomplished by the following

lemma which is also true for higher dimensions, but we will only state it for R2.

Lemma 3. Let Ω be a smooth, bounded, convex domain in R2. Let u be the solution of

(1.3) with σ = 0, vanishing on ∂Ω. Then for any constant h satisfying infΩ u < h < 0,

the level set Γh,u = {u = h} is convex. Moreover, log(−u) is a concave function.

Proof. Observe ϕ := − log(−u) satisfies

|Dϕ|
1
α
−1

2∑
i,j=1

(δij −
ϕiϕj
|Dϕ|2

)ϕij = e
1
α
ϕ.

Since ϕ(x)→ +∞ as x→ ∂Ω, the result in [49](Theorem 3.13) implies ϕ is convex. One

may notice that two of the conditions required in [49] are the strict convexity of domain

and the C2 smoothness of solution. The first one can be resolved by using strictly

convex domains to approximate the convex domain. For the smoothness condition, one

may worry about the minimum point where the gradient vanishes and the equation is

singular. Moreover, in view of the solution u = 1
1+α
|x|1+α, we see when α < 1 it is not C2

at the origin. However, by examining the proof in [49], one can see that the argument is

made away from the minimum point, which means it can still be applied to our situation.



Chapter 2. Convex solutions to the power-of-mean curvature flow 39

With the above lemma and the Lemma 4.4 in [69], we know that any convex compact

ancient solution to the generalized curve shortening flow can be represented as a convex

solution u to equation (1.3) with σ = 0, and if the solution to the flow sweeps the whole

space, the corresponding u will be an entire solution. Thus Theorem 2 implies Corollary

1 immediately.

Remark 2.3.1. We can also use the method in the section 4 of [69] to construct a non-

rotationally symmetric convex compact ancient solution for generalized curve shortening

flow with power α ∈ (1
2
, 1), and in fact the solution will be defined in a strip region. All

we need to do is replace Lemma 4.2, 4.3 and 4.4 in [69] for mean curvature flow by the

corresponding lemmas for the generalized curve shortening flow.

2.4 2-dimensional entire convex translating solution

In this section, by using the previous results and an delicate iteration argument we prove

that under some extra condition on the asymptotic behavior of the solution at infinity

the 2-d translating solution must be rotationally symmetric.

First of all, we would like to point out that instead of using Gage and Hamilton’s

exponential convergence of the curve shortening flow in [39] we need to use the corre-

sponding exponential convergence for the generalized curve shortening flow and we will

state it as a lemma which is corresponding to lemma 3.2 in [69].

Lemma 4. Let {`t} be a convex solution to the generalized curve shortening flow with

initial curve {`0} uniformly convex. Suppose {`t} is in the δ0-neighborhood of a unit circle,

{`t} shrinks to the origin at t = 1
1+α

. Let ˜̀t = (1− (1 + α)t)−
1

1+α `t be the normalization

of `t. Then ˜̀t is in the δt- neighborhood of the unit circle centered at the origin,

˜̀
t ⊂ NδtS

1,
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with

δt ≤ Cδ0(
1

1 + α
− t)ι

for some small positive constant ι.

The proof of the above lemma is similar to the proof of lemma 3.2 in [69]. Using

the condition that the initial curve is uniformly convex and the estimates in section II

of [1], we can apply Schauder’s estimates safely for α > 1
2

as in [69], which says that for

t ∈ ( 1
4α+4

, 1
2α+2

),

‖˜̀t − S1‖Ck ≤ Cδ0.

Although the constant C will depend on the lower and upper bound of the curvature

of the initial curve, it is not a problem for our purpose, since when we blow down the

solution for σ = 0, the norm of the gradient Duh on the curve {uh(x) = 1} approaches

to 1. By the equation κu
1
α
γ = 1 we see that the curvature κ is also very close to 1 on

that curve. However, the estimates in section II of [1] also shows that when α ≤ 1 the

uniformly convex condition (though the convexity is still needed) is not needed, and the

constant C in the above lemma is independent of the bound on the curvature of the initial

curve. For the exponential decay rate of the derivatives of curvature, one can imitate the

proof in Gage and Hamilton [39](5.7.10-5.7.15), and our corresponding estimate will be

|κ′(τ)| ≤ Cδ0e
−ιτ for some small positive number ι, where τ = − 1

1+α
log( 1

1+α
− t). This

estimate immediately implies our lemma.

An alternative way to see that is by writing down the normalized evolution equation

for the generalized curve shortening flow by using support function s(θ, τ) as following

sτ = −(sθθ)
−α + s,

here we still take the origin as the limiting point of the original generalized curve short-
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ening flow. Then the linearized equation of the flow about the circle solution is

sτ = α(sθθ + s) + s.

The rate of convergence is governed by the eigenvalues of the right hand side. The con-

stant eigenfunction corresponds to scaling, which is factored out, while the sin θ and cos θ

correspond to translations, which are also factored out. The next is cos(2θ), which gives

eigenvalue 1−3α. So when α > 1
3
, we have exponential convergence of the normalized so-

lution to the limiting circle with exponent 1−3α. The author learned this from professor

Ben Andrews.

In the following we will consider the case when σ = 1 and α > 1. By translating

and adding some constant we can assume u(0) = inf u. Let uh(x) = 1
h
u(h

1
1+αx). Then

uh satisfies the equation Lσuh = 1 with σ = h−
2α

1+α . By Theorem 1, uh converges to

1
1+α
|x|1+α, and the level set Γ 1

1+α
,uh

converges to the unit circle as h→∞.

Lemma 5.

u(x) =
1

1 + α
|x|1+α +O(|x|1+α−2αβ) (2.53)

where C is a fixed constant and the constant β is chosen such that 1
2α
< β < min{1, 1+α

2α
}.

For any given small δ0 > 0, taking h sufficiently large such that

Γ 1
1+α

,uh
⊂ Nδ0(S1) (2.54)

for unit circle S1 with center p0. Note that when h is large, δ0 is very close to 0. Then

we will prove the following claim,

Claim 3. For small fixed τ ,

Γτ,uh ⊂ ((1 + α)τ)
1

1+αNδτ ((1 +
a0

τ
)

1
1+αS1) (2.55)
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with

δτ ≤ C1(τ)σβ + C2δ0τ
η, (2.56)

where the constants C1 and C2 are independent of δ0 and h, and C2 is also independent

of τ , η is a small positive constant. u0 is the solution of L0(u) = 1 in Ω 1
1+α

,uh
satisfying

u0 = uh = 1
1+α

on ∂Ω 1
1+α

,uh
, a0 = | inf u0| and the center of (1 + a0

τ
)

1
1+αS1 is the minimum

point of u0 times a factor ((1 + α)τ)−
1

1+α .

Proof of Claim 3. We need only to prove

dist
(

(1 + α)
1

1+α (τ + a0)
1

1+αS1,Γτ,u

)
≤ C1(τ)σβ + C2δ0τ

1
1+α

+η, (2.57)

where η is some small positive constant, C2 is independent of τ . by Theorem 1 we know

uh converges to 1
1+α
|x|1+α uniformly on any compact subset of R2, then by the convexity

of uh, we have that when

x ∈ {x ∈ Ω 1
1+α

,uh
: τ0 ≤ uh <

1

1 + α
},

|Duh| is bounded above and below by some constants depending on τ0 for large h, by the

growth condition for D2u in Theorem 2 we have σ(uh)γγ ≤ Cσβ, where C is a constant

depending on τ0. Therefore we have κ(uh)
1
α
γ ≈ 1−Cσβ on {x ∈ Ω 1

1+α
,uh

: τ ≤ uh <
1

1+α
},

where C depends on τ0. Denote

ũ0 = (1− Cσβ)α(u0 −
1

1 + α
) +

1

1 + α
,

then

L0(ũ0) = 1− Cσβ in Ω 1
1+α

,uh

with ũ0 = uh = 1
1+α

on ∂Ω 1
1+α

,uh
. Now by comparison principle we have Ωτ,u0 ⊂ Ωτ,uh ⊂



Chapter 2. Convex solutions to the power-of-mean curvature flow 43

Ωτ,ũ0 , and by the asymptotic behavior of u0 we have

Γτ,u0 ⊂ Nζ((τ + a0)
1

1+αS1) and Γτ,ũ0 ⊂ Nζ((τ + a0 − Cσβ)
1

1+αS1),

where ζ = Cδ0(τ + a0)η. Denote `1 = (τ + a0)
1

1+αS1, `2 = (τ + a0 − Cσβ)
1

1+αS1,

both of them are centered at p1, which is the minimum point of u0. Hence dist((τ +

a0)
1

1+αS1,Γτ,uh) ≤ dist(`1, `2) + Cδ0(τ + a0)
1

1+α
+η, where dist(`1, `2) can be bounded by

C1(τ)σβ, hence (2.56) follows from the above discussion. Now we will use an iteration

argument to prove the following Claim 4, which will enable us to simplify (2.55) and

(2.56).

Claim 4 :

a0 ≤


Cσ| log(σ)| if α ≤ 1

Cσ
1+α
2α if α > 1

(2.58)

Proof of Claim 4. We fix a large constant A such that {uA
τ

= 1
1+α
} is very close to a

unit circle. Let u0,τk solve L0u = 1 with boundary condition u = τ k on {uh = τ k}.

Denote ak = | inf u0,τk |. From the proof of Claim 3 we see that {u0 < τ} ⊃ {u0,τ <

τ} ⊃ {ũ0 < τ}, by comparison principle, we have inf u0 < inf u0,τ < inf ũ0. So by the

construction of ũ0 and a simple computation, we have a0 − a1 ≤ inf ũ0 − inf u0 ≤ Cσ.

When τ k ≥ A
h

, we can iterate this argument for u0,τk and u0,τk+1 by rescaling them to

1
1+α

τ−ku0,τk

(
(1 + α)

1
1+α τ

k
1+αx

)
and 1

1+α
τ−ku0,τk+1

(
(1 + α)

1
1+α τ

k
1+αx

)
respectively, after

rescaling back, we have ak − ak+1 ≤ Cσ. Note that the choice of A and the condition

τ k ≥ A
h

ensure the uniform gradient bound needed in the above argument. Let k0 be an

integer satisfying τ k0 ≥ A
h
≥ τ k0+1, after k0 steps we stop the iteration, and notice that

{uh = A
h
} = 1

h
1

1+α
{u = A} is contained in a circle with radius Ch−

1
1+α for some constant

C, so it takes at most time Ch−1 = Cσ
1+α
2α for {uh = A

h
} shrink into a point. Claim 4

follows from the above discussion.
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By omitting the lower order term we can rewrite (2.55) and (2.56) as

Γτ,uh ⊂ ((1 + α)τ)
1

1+αNδτ (S
1)

with

δτ ≤ C1(τ)σβ + C2δ0τ
η. (2.59)

If we take τ small such that C2τ
η ≤ 1

4
, (2.59) becomes

δτ ≤ C1(τ)σβ +
1

4
δ0. (2.60)

Now we can carry out an iteration argument similar as that in [69]. We start at the

level 1
1+α

τ−k0 for some sufficient large k0. Denote Ωk = τ
k

1+αΩ 1
1+α

τ−k,u and Γk = ∂Ωk. Γk

converges to unit circle as k →∞. Suppose Γk is in the δk neighborhood of S1 centered

at yk, where δk → 0 as k → ∞ and yk is the minimum point of the solution of L0u = 1

in Ωk with u = 1
1+α

on Γk+1. By (2.60) we have

δk−1 ≤ C1(τ)τ (k−1) 2αβ
1+α +

1

4
δk (2.61)

for k = k0, k0 + 1, · · · . Then we have

Γj ⊂ Nδj(S
1) (2.62)

with

δj ≤ Cτ j
2αβ
1+α (2.63)

It follows that

Γ 1
1+α

τ−j ,u ⊂ Nδ̃j
(τ
−j

1+αS1) (2.64)



Chapter 2. Convex solutions to the power-of-mean curvature flow 45

with

δ̃j ≤ Cτ
2αβ−1
1+α

j (2.65)

where τ
−j

1+αS1 is centered at zj = τ
−j

1+αyj. From Lemma 3 and (2.60) it is not hard to see

that we have

|zj − zj−1| ≤ Cτ
2αβ−1
1+α

j (2.66)

Denote z0 = limj→∞ zj. Then

|zj − z0| ≤ Cτ
2αβ−1
1+α

j, (2.67)

which means in (2.64) we can assume the circle is centered at z0 by changing the constant

C a little bit. In fact when we choose different τ , the corresponding z0 will not change,

so we can assume z0 = 0. Hence for h = 1
1+α

τ−j,

Γh,u ⊂ Nδ

(
(1 + α)

1
1+αh

1
1+αS1

)
,

where

δ ≤ Ch
1−2αβ
1+α (2.68)

and S1 is centered at the origin. By choosing different τ , we see that the estimate holds

for all large h. Lemma 5 follows from the above estimates.

To finish the proof of Theorem 2 we need to use the following fundamental Liouville

Theorem by Bernstein [63] (p.245).

Lemma 6. Let u be an entire solution to the elliptic equation

n∑
i,j=1

aij(x)uij = 0 in R2.
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If u satisfies the asymptotic estimate

|u(x)| = o(|x|), as x→∞,

then u is a constant.

Proof of the second part of Theorem 2. Let u∗ be the Legendre transform of u. Then

u∗ satisfies equation

G(x,D2u∗) =
detD2u∗

(δij − xixj
1+|x|2 )F ij(u∗)

= (1 + |x|2)
1

2α
− 1

2 , (2.69)

where F ij(u∗) = ∂ det r
∂rij

, at r = D2(u∗). We have

u∗(x) = C(α)|x|1+α +O(|x|
1+α−2αβ

α ), (2.70)

where C(α) is a constant depending only on α. In fact, for big h, by Lemma 5 we have

uh(x) =
1

1 + α
|x|1+α +O(|h|

−2αβ
1+α )

in B1(0). Denote u∗h as the Legendre transforms of uh. Then

u∗h(x) = C(α)|x|1+ 1
α +O(|h|

−2αβ
1+α ),

where C(α) is a constant depending only on α and in fact it is comes from the Legendre

transform of the function 1
1+α
|x|1+α. Note that u∗h(x) = h−1u∗(h

α
1+αx), we obtain (2.70).

Let u0 be the unique radial solution of (1.3) with σ = 1, and let u∗0 be the Legendre

transform of u0. Similar to (2.70) we have

u∗0(x) = C(α)|x|1+α +O(|x|
1+α−2αβ

α ). (2.71)
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Since both u∗ and u∗0 satisfy equation (2.69), v = u∗ − u∗0 satisfies the following elliptic

equation
n∑

i,j=1

aij(x)vij = 0 in R2,

where

aij =

∫ 1

0

Gij(x,D2u∗0 + t(D2u∗ −D2u∗0))dt,

here Gij = ∂G(x,r)
∂rij

for any symmetric matrix r. Note that by the choice of β, 1+α−2αβ
α

< 1,

so by (2.70) and (2.71) v = O(|x| 1+α−2αβ
α ) = o(|x|), as |x| → ∞. By Lemma 6 we conclude

that v is a constant.



Chapter 3

Conformally invariant integral

inequalities and remainder terms in

fractional sobolev inequality

In the first section of this chapter we prove some Carleman type sharp conformally

invariant inequalities in unit ball. The inequalities hold for general dimensions, which

extends the original Carleman’s result in two dimension. The second section is devoted

to some results about remainder terms in the fractional sobolev inequality; this section

represents the joint work with Weth and Frank.

3.1 Carleman type conformally invariant integral in-

equalities

3.1.1 A family of conformally invariant integral inequalities

This section is devoted to the proof of Theorem 3. Since Pa enjoys very similar properties

to the special case P0 (classical harmonic extension), we are also able to use the method

48
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of symmetrization developed by Lieb [50] to prove the existence of maximizer as Hang,

Wang and Yan did in [45]. The following Lemmas are parallel to those in [45], but notice

that now we are dealing with poly-harmonic extension instead of harmonic extension.

Recall if Ω is a measurable set in Rn, p > 0 and u is a measurable function on Ω, then

‖u‖Lpw = sup
t>0

t||u| > t|
1
p .

The weak-Lp space Lpw(Ω) is defined as {u:u is measurable and ‖u‖Lpw(Ω) < ∞}. More

generally, for any 0 < p < ∞ and 0 < q ≤ ∞, we have Lorentz norm ‖ · ‖Lp,q which is

defined by ‖u‖Lp,q = p
1
q (
∫∞

0
tq||u| ≥ t|

q
p dt
t
)

1
q and Lorentz space Lp,q(Ω) . Lpw(Ω) = Lp,∞(Ω)

is a special case of such spaces.

Lemma 7. For a < 1, defining Pa as in (1.9), there exist constants cn,a and cn,a,p such

that

‖Paf‖
L

n
n−1
w (Rn+)

≤ cn,a‖f‖L1(Rn−1)

and

‖Paf‖
L
np
n−1 (Rn+)

≤ cn,a,p‖f‖Lp(Rn−1)

for all 1 < p ≤ ∞. Moreover for 1 < p <∞ we have

‖Paf‖
L
np
n−1 (Rn+)

≤ cn,a,p‖f‖
L
p,

np
n−1 (Rn−1)

.

Proof of Lemma 7. To prove the weak estimate, we may assume f ≥ 0 and ‖f‖L1(Rn−1) =

1. It is easy to see (Paf)(X, xn) ≤ dn,a

xn−1
n

for (X, xn) ∈ Rn
+ and

∫
(X,xn)∈Rn+,0<y<b

(Paf)(X, xn)dn−1Xdxn

=

∫
Rn−1

dn−1Y

(
f(Y )

∫ b

0

dxn

∫
Rn−1

dn,a
x1−a
n

((X − Y )2 + x2
n)

n−a
2

dn−1X

)
= b
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for b > 0. Hence for t > 0,

|Paf > t| = |{(X, xn) ∈ Rn
+ : 0 < xn < (d−1

n,at)
− 1
n−1 , (Paf)(X, xn) > t}|

≤ 1

t

∫
X∈Rn−1,0<xn<(d−1

n,at)
− 1
n−1

(Paf)(X, xn)dn−1Xdxn

=
1

t
(d−1
n,at)

− 1
n−1

The weak type inequality follows. The strong estimate follows from Marcinkiewicz in-

terpolation theorem (see [64], p197) and the basic fact ‖Paf‖L∞(Rn+) ≤ ‖f‖L∞(Rn−1). In

fact, the Marcinkiewicz interpolation implies that if T is a linear bounded operator from

L1(Rn−1) to Lp0
w (Rn

+) and at the same time from L∞(Rn−1) to L∞(Rn
+), we have that

for each p ∈ (1,∞), T is a bounded operator from Lp,q(Rn−1) to Lpp0,q(Rn
+), where

1 < q <∞,. To complete the proof we need only to choose p0 = n
n−1

, q = np
n−1

.

Remark 3.1.1. In fact when p = 2(n−1)
n−2

and a = 0, the second estimate was also proved

by Brezis and Lieb [13] by using some elementary dual argument.

Lemma 8. If n ≥ 2, a < 1 and 1 < p <∞, then the supremum

c
np
n−1
n,a,p = sup{‖Paf‖

np
n−1

L
np
n−1 (Rn+)

: ‖f‖Lp(Rn−1) = 1}, (3.1)

is attained by some function. After multiplying by a nonzero constant, every maximizer

f is nonnegative, radially symmetric with respect to some point, strictly decreasing in the

radial direction and it satisfies the following Euler-Lagrange equation

f(Y )p−1 =

∫
Rn+

x1−a
n

((X − Y )2 + x2
n)

n−a
2

(Paf)
np
n−1
−1(X, xn)dn−1Xdxn.

In particular, if n ≥ 2, p = 2(n−1)
n−2+a

and n−2 +a > 0, then every maximizer is of the form

f(Y ) = ±c(n, a)(
λ

λ2 + |Y − Y0|2
)
n−2+a

2 (3.2)
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for some λ > 0, Y0 ∈ Rn−1.

Proof of Lemma 8. First we recall the important Riesz rearrangement inequality. Let

u be a measurable function on Rn, the symmetric rearrangement of u is the nonnegative

lower semi-continuous radial decreasing function u∗ that has the same distribution as u.

We have

∫
Rn
dx

∫
Rn
u(x)v(y − x)w(y)dy ≤

∫
Rn
dx

∫
Rn
u∗(x)v∗(y − x)w∗(y)dy.

Using the fact ‖w‖Lp(Rn) = ‖w∗‖Lp(Rn) for p > 0 and the standard duality argument, we

see for 1 ≤ p ≤ ∞,

‖u ∗ v‖Lp(Rn) ≤ ‖u∗ ∗ v∗‖Lp(Rn).

Moreover if u is nonnegative radially symmetric and strictly decreasing in the radial

direction, v is nonnegative, 1 < p <∞ and

‖u ∗ v‖Lp(Rn) = ‖u∗ ∗ v∗‖Lp(Rn) <∞,

then for some x0 ∈ Rn, we have v(x) = v∗(x− x0).

Now, assume fi is a maximizing sequence in (3.1). Since ‖f ∗i ‖Lp(Rn−1) = ‖fi‖Lp(Rn−1) =

1 and

‖Pafi‖
np
n−1

L
np
n−1 (Rn+)

=

∫ ∞
0

‖Pa,xn ∗ fi‖
np
n−1

L
np
n−1 (Rn−1)

dy

≤
∫ ∞

0

‖Pa,xn ∗ f ∗i ‖
np
n−1

L
np
n−1 (Rn−1)

dxn

= ‖Paf ∗i ‖
np
n−1

L
np
n−1 (Rn+)

,

where Pa,xn = dn,a
x1−a
n

(X2+x2
n)

and notice that it is symmetric and strictly decreasing in the

radial direction of X variable for any fixed xn. We see fi is again a maximizing sequence.

Hence we may assume fi is a nonnegative radial decreasing function.
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For any f ∈ Lp(Rn−1) and any λ > 0, we let fλ(Y ) = λ−
n−1
p f(Y

λ
), so that is

clear that (Paf
λ)(X, xn) = λ−

n−1
p (Paf)(X

λ
, xn
λ

) and hence ‖fλ‖Lp(Rn−1) = ‖f‖Lp(Rn−1)

and ‖Pafλ‖
L
np
n−1 (Rn+)

= ‖Paf‖
L
np
n−1 (Rn+)

. For convenience, denote e1 = (1, 0, · · · , 0) ∈ Rn−1

and

ai = sup{fλi (e1)|λ > 0} = sup{λ−
n−1
p fi(

e1

λ
)|λ > 0}.

It follows that 0 ≤ fi(Y ) ≤ ai|Y |−
n−1
p , and hence ‖fi‖Lp,∞(Rn−1) ≤ |Bn−1|

1
pai.

Now

‖Pafi‖
L
np
n−1 (Rn+)

≤ c(n, a, p)‖fi‖
L
p,

np
n−1 (Rn−1)

≤ c(n, a, p)‖fi‖
n−1
n

Lp(Rn−1)‖fi‖
1
n

Lp,∞(Rn−1)

≤ c(n, a, p)a
1
n
i ,

which implies ai ≥ c(n, a, p) > 0. We may choose λi > 0 such that fλii (e1) ≥ c(n, a, p) >

0. Replacing fi by fλii we may assume f(e1) ≥ c(n, a, p) > 0. On the other hand , since

fi is nonnegative radial decreasing and ‖fi‖Lp(Rn−1) = 1, we see

|fi(Y )| ≤ |Bn−1|−
1
p |Y |−

n−1
p .

Hence after passing to a subsequence, we may find a nonnegative radial decreasing func-

tion f such that fi → f a.e. It follows that f(Y ) ≥ c(n, a, p) > 0 for |Y | ≤ 1, fi ⇀ f in

Lp(Rn−1) and ‖f‖Lp(Rn−1) ≤ 1. By Lieb [50](Lemma 2.6), we have

∫
Rn−1

||fi|p − |f |p − |fi − f |p|dn−1Y → 0.
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It follows that

‖fi − f‖pLp(Rn−1) = ‖fi‖pLp(Rn−1) − ‖f‖
p
Lp(Rn−1) + o(1)

= 1− ‖f‖pLp(Rn−1) + o(1).

On the other hand, since (Pafi)(X, xn)→ (Paf)(X, xn)) for (X, xn) ∈ Rn
+ and ‖Pafi‖

L
np
n−1 (Rn+)

≤

cn,a,p, we see

‖Pafi‖
np
n−1

L
np
n−1 (Rn+)

= ‖Paf‖
np
n−1

L
np
n−1 (Rn+)

+ ‖Pafi − Paf‖
np
n−1

L
np
n−1 (Rn+)

+ o(1)

≤ c
np
n−1
n,a,p‖f‖

np
n−1

Lp(Rn−1) + c
np
n−1
n,a,p‖fi − f‖

np
n−1

Lp(Rn−1) + o(1).

Hence

1 ≤ ‖f‖
np
n−1

Lp(Rn−1) + ‖fi − f‖
np
n−1

Lp(Rn−1) + o(1).

Let i→∞, we see

1 ≤ ‖f‖
np
n−1

Lp(Rn−1) + (1− ‖f‖pLp(Rn−1))
n
n−1 .

Since n
n−1

> 1 and f 6= 0, we see ‖f‖Lp(Rn−1) = 1. Hence fi → f in Lp(Rn−1) and f is a

maximizer. This implies the existence of an extremal function.

Assume f ∈ Lp(Rn−1) is a maximizer, then so is |f |. Hence ‖Paf‖
L
np
n−1 (Rn+)

=

‖Pa|f |‖
L
np
n−1 (Rn+)

. On the other hand , since |(Paf)(X, xn)| ≤ (Pa|f |)(X, xn) for (X, xn) ∈

Rn
+, we see |Paf | = Pa(|f |) and this implies either f ≥ 0 or f ≤ 0. Assume f ≥ 0, then

the Euler-Lagrange equation after scaling by a positive constant is given by

f(Y )p−1 =

∫
Rn+

y1−a

((X − Y )2 + x2
n)

n−a
2

(Paf)
np
n−1
−1(X, xn)dn−1Xdxn.
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On the other hand, we know for xn > 0,

‖Pa,xn ∗ f‖L np
n−1 (Rn−1)

= ‖Pa,xn ∗ f ∗‖L np
n−1 (Rn−1)

which implies f(Y ) = f ∗(Y − Y0) for some Y0. It follows from the above Euler-Lagrange

equation and Lemma 2.2 of Lieb [50] that f must be strictly decreasing along the radial

direction.

For the case when p = 2(n−1)
n−2+a

, we first observe that if f ∈ L
2(n−1)
n−2+a (Rn−1), let u = Paf ,

f̃ = 1
|Y |n−2+af( Y

|Y |2 ) and ũ = 1
|(X,xn)|n−2+af( (X,xn)

|(X,xn)|2 ), then we have ũ = Paf̃ , ‖f̃‖
L

2(n−1)
n−2+a (Rn−1)

=

‖f‖
L

2(n−1)
n−2+a (Rn−1)

and ‖ũ‖
L

2n
n−2+a (Rn+)

= ‖u‖
L

2n
n−2+a (Rn+)

. This is the conformal invari-

ance property for the particular power. As a consequence, if f is a maximizer which

is nonnegative and radial, then 1
|Y |n−2+af( Y

|Y |2 − e1) is also a maximizer. In particular,

1
|Y |n−2+af( Y

|Y |2 − e1) is radial with respect to some points. To find such f , we need the

following useful Proposition of Hang, Wang and Yan [45]( Proposition 4.1).

Lemma 9. Let n ≥ 2, u be a function on Rn which is radial with respect to the origin,

0 < u(x) < ∞ for x 6= 0, e1 = (1, 0, · · · , 0), α ∈ R, α 6= 0. If v(x) = |x|αu( x
|x|2 − e1) is

radial with respect to some point, then either u(x) = (c1|x|2 +c2)
α
2 for some c1 ≥ 0, c2 > 0

or

u(x) =


c1|x|α if x 6= 0

c2 if x = 0.

(3.3)

Proof of Lemma 8 continued. Since ‖f‖
L

2(n−1)
n−2+a (Rn−1)

= 1 and it is strictly decreasing

along the radial direction, we have 0 < f(Y ) <∞ for all Y 6= 0. Note that since f satisfies

the Euler-Lagrange equation, it is defined everywhere instead of almost everywhere. It

follows from Lemma 3 that f(Y ) = (c1|Y |2+c2)−
n−2+a

2 for some c1, c2 > 0 (since f can not

be constant function and the scalar multiple of |Y |2−n is ruled out by the integrability).

Using the condition ‖f‖
L

2(n−1)
n−2+a (Rn−1)

= 1, it is easy to see c1c2 = cn,a. Hence for some
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λ > 0,

f(Y ) = c(n, a)(
λ

λ2 + |Y − Y0|2
)
n−2+a

2 .

Proof of Theorem 3. For any f̃ ∈ L
2(n−1)
n−2+a (∂Bn), let ũ = P̃af,

f =
1

|(Y, 0) + (0, 1
2
)|n−2+a

f̃ ◦ φ,

and

u =
1

|(X, xn) + (0, 1
2
)|n−2+a

ũ ◦ φ.

By definition (1.12) we have u = Paf and by the discussion below (1.11) we have

‖f̃‖
L

2(n−1)
n−2+a (∂Bn)

= ‖f‖
L

2(n−1)
n−2+a (Rn−1)

and ‖ũ‖
L

2n
n−2+a (Bn)

= ‖u‖
L

2n
n−2+a (Rn+)

. Then, Theorem 3

follows easily from the above facts and Lemma 8.

3.1.2 The limiting case

First we will discuss some conformal invariance properties of the operator P̃a. Let τ̃ be

a conformal transform from Bn to itself, τ = τ̃ |∂Bn is the induced conformal transform

from ∂Bn to itself, J̃ is the Jacobian of τ̃ , J is the Jacobian of τ , ε = n − 2 + a. For

f ∈ L
2(n−1)
n−2+a (∂Bn), when ε 6= 0, we have

P̃a(J
ε

2(n−1)f ◦ τ) = J̃
ε

2n (P̃af) ◦ τ̃ . (3.4)

It is straightforward to check this property by using the definition of P̃a in (1.12).

Now, for smooth function f , when ε goes to 0 it is obvious that

P̃2−n(f ◦ τ) = (P̃2−nf) ◦ τ̃ . (3.5)
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By letting f = 1 and taking derivative with respect to ε at 0, we have

d(P̃a1)

dε
|ε=0 + P̃2−n(

1

2(n− 1)
log J) =

d(P̃a1)

dε
|ε=0 ◦ τ̃ +

1

2n
log J̃ (3.6)

So the inequality in the Theorem 4 is invariant when F is replaced by F ◦ τ + 1
n−1

log J .

Proof of Theorem 4. Recalling P̃2−n1 = 1, let f = 1 + εF , where F is some smooth

function defined on ∂Bn. By Theorem 3, we have the inequality

‖P̃a(1 + εF )‖
L

2n
n−2+a (Bn)

≤ Sn,a‖1 + εF‖
L

2(n−1)
n−2+a (∂Bn)

,

which means

(∫
Bn

(P̃a1)
2n
ε (1 +

εP̃aF

P̃a1
)

2n
ε dx

) 1
n

≤ S
2
ε
n,a

(∫
∂Bn

(1 + εF )
2(n−1)

ε dξ

) 1
n−1

.

Note that when F = 0 the above inequality becomes equality, then by the following

estimates we will see in this case the integrals in both sides will converge to some finite

numbers, which means the constant S
2
ε
n,a will also converge.

In order to take limit ε→ 0, we need to apply the Dominated Convergence Theorem.

we will bound the term P̃a1 from below by a constant A and bound (P̃a1)
2n
ε from above

by a constant B, both A and B are independent of ε. Let us derive the lower bound of

P̃a1 first. From (1.9) and (1.12) we know

(P̃a1) ◦ φ = (X2 + (xn +
1

2
)2)

ε
2dn,a

∫
Rn−1

x1−a
n

((X − Y )2 + x2
n)

n−a
2

1

(Y 2 + 1
4
)
ε
2

dn−1Y,
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by letting U = Y−X
xn

in the integral, we have

(P̃a1) ◦ φ = dn,a

∫
Rn−1

1

(u2 + 1)
n−a

2

(|X|2 + (xn + 1
2
)2)

ε
2

((Uxn +X)2 + 1
4
)
ε
2

dn−1U

≥ dn,0

∫
|u|≤1

1

(|U |2 + 1)n−1

(|X|2 + (xn + 1
2
)2)

ε
2

(2|X|2 + 2x2
n + 1

4
)
ε
2

dn−1U

≥ dn,0

∫
|U |≤1

1

(|U |2 + 1)n−1

1

2
dn−1U

= A.

In order to derive the upper bound of (P̃a1)
2n
ε , it is enough to prove that (P̃a1)

n−2
ε is

bounded from above by some constant B independent of ε. As in the proof of lower

bound, after the same change of variable we have

(P̃a1)
n−2
ε ◦ φ = g(X, xn)

(
dn,a

∫
Rn−1

1

(|U |2 + 1)
n−a

2

1

((Uxn +X)2 + 1
4
)
ε
2

dn−1U

)n−2
ε

≤ g(X, xn)dn,a

∫
Rn−1

1

(|U |2 + 1)
n−a

2

1

((Uxn +X)2 + 1
4
)
n−2

2

dn−1U

≤ g(X, xn)
dn,2−n
dn,0

dn,0

∫
Rn−1

1

(|U |2 + 1)
n
2

1

((Uxn +X)2 + 1
4
)
n−2

2

dn−1U

= g(X, xn)
dn,2−n
dn,0

dn,0

∫
Rn−1

xn

((X − Y )2 + x2
n)

n
2

1

(|Y |2 + 1
4
)
n−2

2

dn−1Y

=
dn,2−n
dn,0

= B,

where g(X, xn) =
(
|X|2 + (xn + 1

2
)2
)n−2

2 . For the first inequality we applied Jensen’s

inequality, since dn,a
1

(u2+1)
n−a

2
is a probability density in Rn−1 and g(t) = t

n−2
ε is convex

when t ≥ 0. The last identity holds because

dn,0

∫
Rn−1

xn

((X − Y )2 + x2
n)

n
2

1

(Y 2 + 1
4
)
n−2

2

dn−1Y

is the harmonic extension of function (Y 2 + 1
4
)−

n−2
2 which is easy to verify that it is
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exactly 1

(X2+(xn+ 1
2

)2)
n−2

2
.

Now we can take limit ε→ 0 safely. By denoting

In = 2
d(P̃a1)

dε
|ε=0

=

(
log(X2 + (xn +

1

2
)2)− dn,2−n

∫
Rn−1

xn−1
n

((X − Y )2 + x2
n)n−1

log(Y 2 +
1

4
)dn−1Y

)
◦ φ−1,

we get ‖eIn+2P̃2−nF‖Ln(Bn) ≤ Sn‖e2F‖Ln−1(∂Bn). After replacing 2F with F , the inequality

in Theorem 4 is proved. Since constant functions are optimizers for the above inequality,

conformal invariance of the inequality tells us that the functions

F = C +
1

n− 1
log J

are also optimizers.

Remark 3.1.2. The uniqueness is lost when taking limit in the proof of Theorem 4. It

would be interesting to find a suitable method to prove that the optimizer is unique up to

a conformal transform. In [9], Beckner proved the uniqueness of optimizers of the higher

dimensional Beckner-Onofri’s inequality (which is also a limiting inequality of a family of

inequalities) by establishing a logarithm inequality which is dual to the original inequality,

and for the new inequality one can use the symmetrization technique. The main difficulty

for the uniqueness of optimizers of our inequality in Theorem 4 seems to us is that how

to get a corresponding dual inequality which could enable us to use the symmetrization

technique.

3.1.3 Carleman type inequality for sub-bi-harmonic functions

Now we are in the situation where n = 4 and a = −2. By [41] we know that (P−2f)(X, xn) =

d4,−2

∫
R3

x3
n

((X−Y )2+x2
n)n−1f(Y )dY is the bi-harmonic extension of the function f(Y ) with

boundary condition ∂(P−2f)(X,xn)
∂xn

|xn=0 = 0. It is straightforward to check that under the
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conformal map φ the bi-harmonic property and the Neumann boundary condition are

preserved in dimension four, we have that P̃−2g is a bi-harmonic extension of a function

g defined on S3 to a function on B4 with boundary condition ∂P̃−2g
∂γ
|y=0 = 0. In view of

Theorem 4, in order to prove Corollary 2 we only need to verify I4 satisfies ∆2I4 = 0,

I4 = 0|S3 and −∂I4
∂γ

= 1.

From the formula for In, we have

I4 =

(
log(|X|2 + (xn +

1

2
)2)− d4,−2

∫
R3

x3
n

((X − Y )2 + x2
n)3

log(Y 2 +
1

4
)d3Y

)
◦ φ−1.

By using the explicit formula of φ one can get

I4 = 2 log |η − S| − 2C

∫
S3

(1− |η|2)3

|η − ξ|6
log |ξ − S|dξ,

where η is a point in B4, ξ is a point on S3, S is the south pole of S3 and C is the normal-

izing constant such that C
∫
S3

(1−|η|2)3

|η−ξ|6 dξ = 1. Now from [41] we have the representation

formula for bi-harmonic functions, in fact for a smooth function g on B4 we have

g(η) =

∫
B4

G(∆2,B4)(η, ς)∆
2g(ς)dς + C

∫
S3

(1− |η|2)3

|η − ξ|6
g(ξ)dξ +D

∫
S3

(1− |η|2)2

|η − ξ|4
(−∂g
∂γ

(ξ))dξ,(3.7)

where G(∆2,B4) is the the Green’s function with Dirichlet boundary condition and D

is a known constant. Note that the positivity of G(∆2,B4) (see [11],[41]) enables us to

use comparison principle to extend the inequality to sub-bi-harmonic case. Although

the function log |η − S| is singular at the south pole S, If we apply the forthcoming

approximation process we obtain

I4 = 2 log |η − S| − 2C

∫
S3

(1− |η|2)3

|η − ξ|6
log |ξ − S|dξ

= −D
∫
S3

(1− |η|2)2

|η − ξ|4
dξ,
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since −∂ log |ξ−S|
∂γ

(ξ) = −1. In the above equality −D
∫
S3

(1−|η|2)2

|η−ξ|4 dξ is the bi-harmonic

extension of constant function 0 with boundary condition − ∂g
∂γ

(ξ) = 1, so I4 satisfies all

three conditions mentioned above.

Since log |η− S| is singular, we use approximation to justify the previous formula for

I4. Take a sequence

St = (0, 0, 0,−t)→ S = (0, 0, 0,−1),

as t→ 1 + . Then log |η − St| is a smooth bi-harmonic function on B4, so we have

log(η − St) = C

∫
S3

(1− |η|2)3

|η − ξ|6
log |ξ − St|dξ +D

∫
S3

(1− |η|2)2

|η − ξ|4
1 + ty

1 + t2 + 2ty
dξ,

here we use y to denote the last coordinate of ξ. For fixed η ∈ B4, when t approximates

1 from the right, | log |ξ − St|| ≤ | log |ξ − S|| for ξ in a small neighborhood of S, since

| log |ξ − S|| is integrable on S3, by the Dominated Convergence Theorem

C

∫
S3

(1− |η|2)3

|η − ξ|6
log |ξ − St|dξ → C

∫
S3

(1− |η|2)3

|η − ξ|6
log |ξ − S|dξ,

as t→ 1+. Similarly, when t is close to 1 from right hand side, we have

| 1 + ty

1 + t2 + 2ty
| ≤ 1

2
+

10

|ξ − S|2
.

Since 1
2

+ 10
|ξ−S|2 is integrable on S3, by the Dominated Convergence Theorem again we

have

D

∫
S3

(1− |η|2)2

|η − ξ|4
1 + ty

1 + t2 + 2ty
dξ → 1

2
D

∫
S3

(1− |η|2)2

|η − ξ|4
dξ,

as t → 1+. Now by taking limit t → 1+, it is clear that we have the representation

formula for log |η − S|. Finally since the kernels in the representation formula (3.7) are

positive, we conclude that the inequality in Corollary 2 is true for sub-biharmonic function

u with boundary conditions −∂u
∂γ

= 1 and u = 0 on ∂B4. Note that the proof works due
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to the very specific fact that the Green’s function of bi-laplacian with Dirichlet boundary

condition on balls is positive, and its derivatives have the good sign which allows to apply

a point-wise comparison principle. This is an old result due to Boggio [11] and has been

extended to perturbations on ball in Grunau-Robert [44].

3.2 Remainder terms in fractional Sobolev inequali-

ty

This section is organized as follows. In Subection 3.2.1 we recall the conformal invariance

of the problem, and we discuss the framework for an equivalent version of Theorem 5 on

the sphere SN ⊂ RN+1, see Theorem 10. In Subsection 3.2.2 we prove this Theorem, thus

completing the proof of Theorem 5. In Subsection 3.2.3 we give the proof of Theorem 6.

We conclude by pointing out the open problem to find an explicit constant α > 0 in

(1.22) via a constructive proof of Theorem 5. For a local version of Theorem 5 where the

right hand side of (1.22) is replaced by αd2(u,M) + o(d2(u,M)) and only u ∈ H̊ s
2 (RN)

with d(u,M) < ‖u‖s/2 is considered, the best constant is α = 2s
N+s+2

. This follows from

Proposition 2 below.

3.2.1 Prelinimaries

In the following, we will denote the scalar product in H̊
s
2 (RN) by

〈u, v〉s/2 =

∫
RN
|ξ|sû(ξ)v̂(ξ) dξ,

so that ‖u‖2
s/2 = 〈u, u〉s/2 for u ∈ H̊ s

2 (RN). In the remainder of this section, 0 < s < N

is fixed and we abbreviate q = 2n/(N − s). We recall that the group of conformal

transformations on RN is generated by translations, rotations, dilations and the inversion

x 7→ x
|x|2 . If h is one of these transformations and Jh is the modulus of its Jacobian
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determinant, then for any functions u, v ∈ H̊ s
2 (RN) we have J

1
q

h u ◦ h, J
1
q

h v ◦ h ∈ H̊
s
2 (RN)

and

〈J
1
q

h u ◦ h, J
1
q

h v ◦ h〉s/2 = 〈u, v〉s/2. (3.8)

This property is a consequence of the conformal covariance of the operator (−∆)s/2, i.e.,

of the equality

(−∆)s/2(J
1
q

h u ◦ h) = J
N+s
2N
h [(−∆)s/2u] ◦ h (3.9)

for all conformal transformations h on RN and all Schwartz functions u. As stated in [59,

Proposition 2.1], (3.9) is most easily derived by considering the inverse operator (−∆)−s/2

given in (1.19). Indeed, the identity

(−∆)−s/2(J
N+s
2N
h u ◦ h) = J

1
q

h [(−∆)−s/2u] ◦ h (3.10)

is equivalent to (3.9), and it can be verified case by case for dilations, rotations, transla-

tions and the inversion. In the latter form related to the Riesz potential, the conformal

covariance had already been used by Lieb in [50].

Note that, if h is a conformal transformation on Rn, it follows from (3.8) that the

map u 7→ J
1
q

h u ◦ h preserves distances with respect to the norm ‖ · ‖s/2, i.e. we have

‖J
1
q

h u ◦ h− J
1
q

h v ◦ h‖s/2 = ‖u− v‖s/2 for all u, v ∈ H̊
s
2 (RN). (3.11)

Since the set M is also invariant under the transformations u 7→ J
1
q

h u ◦ h, we conclude

that d(J
1
q

h u ◦ h,M) = d(u,M) for all u ∈ H̊ s
2 (RN). We also note that

|J
1
q

h u ◦ h|q = |u|q for any u ∈ Lq(RN) (3.12)

and any conformal transformation h on RN , which follows by an easy computation. In
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the following, we consider the inverse stereographic projection

π : RN → SN ⊂ RN+1, π(x) = (
2x

1 + |x|2
,
1− |x|2

1 + |x|2
).

We recall that π is a conformal diffeomorphism. More precisely, if gRN denotes the flat

euclidian metric on RN and gSN denotes the metric induced by the embedding SN ⊂ RN+1,

then the pullback of gSN to RN satisfies

π∗gSN =
4

(1 + | · |2)2
gRN . (3.13)

Moreover, the corresponding volume element is given by

Jπ(x)dx =
( 2

1 + |x|2
)N
dx, (3.14)

For a function v : SN → R, we may now define

Pv : RN → R, [Pv](x) = Jπ(x)
1
q v(π(x)) =

( 2

1 + |x|2
)N−s

2
v(π(x)).

From (3.14), it is easy to see that P defines an isometric isomorphism between Lq(SN)

and Lq(RN). We also note that

P 1 = 2(N−s)/2U, (3.15)

where 1 stands for unit function on SN and U is defined in (1.20). Moreover, H
s
2 (SN) is

the completion of the space of smooth functions on SN under the norm ‖ · ‖∗ induced by

scalar product

(u, v) 7→ 〈u, v〉∗ = 〈Pu,Pv〉s/2.

We will always consider H
s
2 (SN) with the norm ‖ · ‖∗ induced by this scalar product
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(for matters of convenience, we suppress the dependence on s at this point). Hence, by

construction,

P is also an isometric isomorphism (H
s
2 (SN), ‖ · ‖∗)→ (H̊

s
2 (RN), ‖ · ‖s/2).

Next we note that 〈·, ·〉∗ is the quadratic form of a unique positive self adjoint operator

in L2(SN) which is commonly denoted by As in the literature. This operator is formally

given by

[Asw] ◦ π = J
−N+s

2N
π (−∆)s/2(Pw).

A key ingredient of the proof of Theorem 5 is the following representation of As as a

function of the Laplace-Beltrami Operator ∆SN on SN :

As =
Γ(B + 1+s

2
)

Γ(B + 1−s
2

)
with B =

√
−∆SN +

(N − 1

2

)2
. (3.16)

This formula is most easily derived by considering the inverse of As and using the Funk-

Hecke formula, see [9] and also [59]. It also shows that the domain of As coincides with

Hs(SN). The following statement is a mere reformulation of (3.16).

Proposition 1. The operator As is self adjoint and has compact resolvent. Its spectrum

is given as the sequence of eigenvalues

λk(s) =
Γ(N+s

2
+ k)

Γ(N−s
2

+ k)
, k ∈ N0,

and the eigenspace corresponding to the eigenvalue λk(s) is spanned by the spherical

harmonics Yk,j, j = 1, . . . ,
(
k+N
N

)
−
(
k+N−2
N

)
, of degree k.

Next, we note that, via the isometric isomorphism P , inequality (1.15) is equivalent

to

‖u‖2
∗ ≥ S|u|2q for all u ∈ H

s
2 (SN), (3.17)
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with q = 2N
N−s . Here, in accordance with the previous notation, we also write | · |r for the

Lr-norm of a function in Lr(SN), 1 ≤ r ≤ ∞. Equality is attained in (3.17) for nontrivial

u if and only if u ∈M∗, where

M∗ := P−1(M) = {v ∈ H
s
2 (SN) : Pv ∈M}.

Moreover, the remainder term inequality (1.22) is equivalent to

d2(u,M∗) ≥ ‖u‖2
∗ − S|u|2q ≥ α d2(u,M∗) for u ∈ Hs/2(SN), (3.18)

where d(u,M∗) = min{‖u − ϕ‖∗ : ϕ ∈ M}. We may therefore reformulate Theorem 5

as follows.

Theorem 10. There exists a positive constant α depending only on the dimension N

and s ∈ (0, N) such that (3.18) holds.

We will prove Theorem 10 in Section 3.2.2 below, thus completing the proof of The-

orem 5. We close this section with some comments on the conformal invariance of the

reformulated problem and the geometry ofM∗. Via stereographic projection, the confor-

mal transformations on SN are in 1-1-correspondance with the conformal transformations

on RN . So, if τ is an element of the conformal group of SN and Jτ is the modulus of its

Jacobian determinant, then (3.12) and (3.8) imply that

〈J
1
q
τ u ◦ τ, J

1
q
τ v ◦ τ〉s/2 = 〈u, v〉∗ and |J

1
q

h u ◦ h|q = |u|q (3.19)

for all u, v ∈ H s
2 (SN). From (3.15), we deduce the representation

M∗ = {cJ
1
q
τ | τ is an element of the conformal group of SN , c ∈ R \ {0}}.

The modulus of the Jacobian determinant of a conformal transformation τ on SN has
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the form Jτ (ξ) = c̃(1 − ξ · θ)−N for some θ ∈ BN+1 := {x ∈ RN+1 : |x| < 1} and some

c̃ > 0 depending on |θ| (indeed, one can show that c̃ = (1−|θ|2)N/2, but we will not need

this fact). Thus,M∗ can be viewed as an N + 2 dimensional smooth manifold embedded

in H
s
2 (SN) via the mapping

R \ {0} ×BN+1 → H
s
2 (SN), (c, θ) 7→ uc,θ, (3.20)

where uc,θ(ξ) = c(1 − ξ · θ)−N−s2 for ξ ∈ SN . This immediately implies that the tangent

space T1M∗ at the function 1 = u1,0 is generated by the spherical harmonics Y 0
0 = 1 and

Y j
1 , j = 1, . . . , N + 1, given by

Y j
1 (ξ) = ξj for ξ = (ξ1, . . . , ξN+1) ∈ SN ⊂ RN+1.

Hence T1M∗ coincides precisely with the generalized eigenspace of the operator As cor-

responding to the eigenvalues λ0(s) and λ1(s). Combining this fact with the minimax

characterization of the eigenvalue λ2(s), we readily deduce that

λ2(s) = inf
v∈T1M⊥∗

‖v‖2

|v|22
(3.21)

with

T1M⊥
∗ := {v ∈ H

s
2 (SN) : 〈v, w〉∗ = 0 for all w ∈ T1M∗}. (3.22)

The identity (3.21) will be of crucial importance for the local verification of (3.18) close

to the manifold M∗.

3.2.2 Proof of the remainder term inequality on the sphere

We briefly explain the strategy to prove this remainder term inequality which goes back

to Bianchi and Egnell [10] in the case s = 2. First, the inequality is proved in a small
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neighborhood of the optimizer U ∈ M defined in (1.20). Considering a second order

Taylor expansion of the difference functional

u 7→ Φ(u) := ‖u‖2
s/2 − S

(∫
RN
|u|qdx

) 2
q

,

at U , it is not dificult to see that (1.22) holds in a neighborhood of U with some α > 0 if

and only if the second derivative Φ′′(U) is positive definite on the (N+2)−codimensional

normal space to the manifoldM at U . This normal non-degeneracy property is the cru-

cial step in the argument. Once inequality (1.22) is established in a neighborhood of U ,

it extends to a neighborhood of the whole manifold M as a consequence of the confor-

mal invariance of all terms in (1.21). We will recall this conformal invariance in detail

in Section 3.2.1 below. Finally, to obtain the global version of (1.22), a concentration

compactness type argument is applied to show that sequences (un)n in H̊
s
2 (RN) with

Φ(un)→ 0 as n→∞ satisfy d(un,M)→ 0 as n→∞.

The general idea described here had already been used in [10, 56, 7], but the proofs of the

normal non-degeneracy property in these papers strongly rely on the assumption that s

is an even positve integer and therefore the eigenvalue problem for Φ′′(U) can be written

as a differential equation. In particular, ODE arguments are used to study the radial

part of the corresponding eigenvalue problem. This method does not apply for general

s ∈ (0, N). On the other hand, one may observe that the eigenvalue problem has a much

simpler form once inequality (1.22) is pulled back on the unit sphere SN ⊂ RN+1 via

stereographic projection. The equivalent version of Theorem 5 on SN is given in Theo-

rem 10 below. The idea of studying (1.15) in its equivalent form on SN also goes back to

Lieb’s paper [50] where the (equivalent) Hardy-Littlewood-Sobolev inequality was con-

sidered. Afterwards it has been applied in many related problems dealing with Sobolev

type inequalities and corresponding Euler-Lagrange equations, see e.g. [6, 30, 59, 9] and

the references therein. To our knowledge, its usefulness to identify remainder terms has
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not been noted so far.

About twenty years after the seminal work of Bianchi and Egnell [10], the topic of re-

mainder terms in first order Sobolev inequalities (and isoperimetric inequalities) has again

attracted a lot of attention in the last years. The recent works use techniques from sym-

metrization (see, e.g., [22, 38]), optimal transportation (see, e.g., [37]), and fast diffusion

(see, e.g., [31, 32, 48]); see also [18] for a recent application of remainder terms. However,

while these new methods lead to explicit constants and allow to treat non-Hilbertian

Sobolev norms, the estimates for the remainder terms are typically weaker than in the

result of Bianchi and Egnell. It is not clear to us whether the symmetrization and the

optimal transportation approach can be extended to give remainder terms in the higher

order case or in the case of arbitrary real powers of the Laplacian (see [48] for a fast

diffusion approach in the fractional case). We therefore think it is remarkable that the

original strategy of Bianchi–Egnell can be generalized to the full family of conformally

invariant Hilbertian Sobolev inequalities.

We first prove a local variant of Theorem 10.

Proposition 2. For all u ∈ H s
2 (SN) with d(u,M∗) < ‖u‖∗, we have

d2(u,M∗) ≥ ‖u‖2
∗ − S|u|2q ≥

2s

N + s+ 2
d2(u,M∗) + o(d2(u,M∗)). (3.23)

Proof. We consider the functional

Ψ : H
s
2 (SN)→ R, Ψ(u) = ‖u‖2

∗ − S|u|2q. (3.24)

It is easy to see that Ψ is of class C2 on H
s
2 (SN) \ {0}. Moreover,

Ψ′(u)v = 2〈u, v〉∗ − 2S|u|2−qq

∫
SN
|u|q−2uv dξ (3.25)
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and

1

2
Ψ′′(u)(v, w) = 〈v, w〉∗−S(2− q)|u|2−2q

q

∫
SN
|u|q−2uv dξ

∫
SN
|u|q−2uw dξ

−S(q − 1)|u|2−qq

∫
SN
|u|q−2vw dξ (3.26)

for u ∈ H s
2 (SN) \ {0}, v, w ∈ H s

2 (SN).

Next, let u ∈ H s
2 (SN) with d(u,M∗) < ‖u‖∗. It is easy to see that d(u,M∗) is achieved

by some function cJ
1
q
τ in M∗ with c ∈ R \ {0} and a conformal transformation τ on SN .

Replacing u with 1
c
J

1
q

τ−1u ◦ τ−1 and using (3.19), we may assume that c = 1 and τ = id,

hence we may write u = 1 + v with v ∈ T1M⊥
∗ , the normal space of M∗ at 1 defined in

(3.22), and d(u,M∗) = ‖v‖∗. We note that Ψ(1) = 0 and Ψ′(1) = 0 (since the function

1 is a global minimizer of Ψ). Moreover, the condition v ∈ T1M⊥
∗ in particular implies –

since 1 ∈ T1M∗ – that

〈1, v〉∗ = 0 and

∫
SN
v dξ = 0. (3.27)

In particular, we find that

Ψ(u) = Ψ(1 + v) = ‖1‖2
∗ + ‖v‖2

∗ − S|1 + v|2q ≤ ‖1‖2
∗ + ‖v‖2

∗ − S|SN |
2−q
q |1 + v|22

= ‖1‖2
∗ + ‖v‖2

∗ − S|SN |
2−q
q (|SN |+ |v|22) = Ψ(1) + ‖v‖2

∗ − S|SN |
2−q
q |v|22

≤ ‖v‖2
∗ = d2(u,M∗),

and this yields the first inequality in (3.23). Moreover, from (3.26) and (3.27) we infer

that

1

2
Ψ′′(1)(v, v) = ‖v‖2

∗ − (q − 1)S|SN |
2−q
q

∫
SN
v2 dξ.
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A second order Taylor expansion of Ψ at 1 thus yields

Ψ(u) = Ψ(1 + v) =
1

2
Ψ′′(1)(v, v) + o(‖v‖2

∗)

= ‖v‖2
∗ − (q − 1)S|SN |

2−q
q |v|22 + o(‖v‖2

∗).

Using (1.16) and the identity |SN | = 2π
N+1

2 Γ(N+1
2

)−1, we find by a short computation

(using the duplication formula for the Gamma function) that

(q − 1)S|SN |
2−q
q =

N + s

N − s
S|SN |−

s
N =

Γ(N+s
2

+ 1)

Γ(N−s
2

+ 1)
= λ1(s).

Noting moreover that |v|22 ≤
‖v‖2∗
λ2(s)

as a consequence of (3.21), we conclude that

Ψ(u) ≥ ‖v‖2
∗

(
1− λ1(s)

λ2(s)
+ o(1)

)
= d(u,M∗)

2
( 2s

N + s+ 2
+ o(1)

)

This shows the second inequality in (3.23).

The next tool we need is the following property of optimizing sequences for (1.15).

Lemma 10. Let (um)m ⊂ H̊
s
2 (RN) \ {0} be a sequence with lim

m→∞
‖um‖2∗
|um|2q

= S. Then

d(um,M∗)
‖um‖∗ → 0 as m→∞.

Proof. By homogeneity, we may assume that ‖um‖∗ = 1 for all m ∈ N, and we need to

show that d(um,M∗) → 0 as m → ∞. We let vm = Pum ∈ H̊
s
2 (RN) for m ∈ N; then

‖vm‖s/2 = 1 for all m, and

1

|vm|2q
→ S as m→∞. (3.28)

By the profile decomposition theorem of Gérard (see [42, Théorème 1.1 and Remarque

1.2]) , there exists a subsequence – still denoted by (vm)m – and

• a sequence (ψj)j of functions ψj ∈ H̊
s
2 (RN),
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• an increasing sequence of numbers lm ∈ N, m ∈ N,

• a double sequence of values hjm ∈ (0,∞), m, j ∈ N,

• a double sequence of points xjm ∈ RN , m, j ∈ N

such that

∣∣∣vm − lm∑
j=1

(
hjm
)− s

2q ψj
( · − xjm

hjm

)∣∣∣
q
→ 0 as m→∞, (3.29)

|vm|qq →
∞∑
j=1

|ψj|qq as m→∞ and
∞∑
j=1

‖ψj‖2
s/2 ≤ 1. (3.30)

Combining the Sobolev inequality (1.15) with (3.30) and using the concavity of the

function t 7→ t2/q, we find that

1 ≥ S
∞∑
j=1

|ψj|2q ≥ S
( ∞∑
j=1

|ψj|qq
)2/q

= S lim
m→∞

|vm|2q. (3.31)

By (3.28), equality holds in all steps in (3.31). The strict concavity of the function

t 7→ t2/q then shows that ψj ≡ 0 for all but one j ∈ N, say, j = 1, where S|ψ1|2q = 1 and

‖ψ1‖s/2 = 1 as a consequence of (3.30), (3.31) and the Sobolev inequality (1.15). Hence

Ψ1 ∈M, and from (3.29) it now follows that

∣∣∣vm − (h1
m

)− s
2q ψ1

( · − x1
m

h1
m

)∣∣∣
q
→ 0 as m→∞.

Therefore, defining

ṽm ∈ H̊
s
2 (RN), ṽm(x) =

(
h1
m

) s
2q vm(h1

mx+ x1
m) for m ∈ N,

we have ṽm → ψ1 in Lq(RN) for m→∞, but then also ṽm → ψ1 in H̊
s
2 (RN) strongly since

‖ṽm‖s/2 = ‖vm‖s/2 = 1 = ‖ψ1‖s/2 for all m ∈ N. Consequently, d(ṽm,M) → 0. By the

invariance property (3.11), we then have d(vm,M)→ 0 and therefore also d(um,M∗)→ 0

as m→∞, since P is an isometry.



Chapter 3. Conformally invariant integral inequalities and remainder terms in fractional sobolev inequality72

Remark 3.2.1. (i) In the proof given above, we do not need the full strength of Gérard’s

profile decomposition theorem. Inductively, Gérard writes vm as an infinite sum of bub-

bles, see (3.29) and [42]. For our proof it is enough to stop this procedure after the very

first step. As soon as one bubble is extracted, the strict concavity of the function t 7→ t2/q

implies the convergence.

(ii) In the case where s ∈ (0, N) is an even integer, Lemma 10 follows directly from a

classical concentration compactness result of Lions, see [52, Corollary 1]. For arbitrary

s ∈ (0, N), one could also use the duality between (1.15) and (1.18) and another con-

centration compactness result of Lions about optimizing sequences for (1.18), see [53,

Theorem 2.1]. To us it seemed more natural to use a technique directly applicable to

optimizing sequences for (1.15).

With the help of Proposition 2 and Lemma 10, we may now complete the

Proof of Theorem 10. Let u ∈ H
s
2 (SN). Since 0 ∈ M∗, we have d(u,M∗) ≤ ‖u‖∗. If

d(u,M∗) < ‖u‖∗, then the first inequality in (3.18) follows from Proposition 2, and it is

trivially satisfied if d(u,M∗) = ‖u‖∗. To prove the second inequality in (3.18) for some

α > 0, we argue by contradiction. For this we assume that there exists a sequence (um)m

in H
s
2 (SN) \M∗ with

‖um‖2
∗ − S|um|2q

d2(um,M∗)
→ 0 as m→∞. (3.32)

By homogeneity we can assume that ‖um‖∗ = 1 for all m ∈ N, then d(um,M∗) ≤ 1

for all m ∈ N and therefore (3.32) implies that lim
m→∞

|um|2q = 1
S . Hence Lemma 10 gives

d(um,M)→ 0 as m→∞. But then Proposition 2 shows that (3.32) must be false. We

conclude that there exists α > 0 such that

‖u‖2
∗ − S|u|2q ≥ α d2(u,M∗) for all u ∈ H

s
2 (SN),

as claimed.
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3.2.3 The weak Lq/2 remainder term inequality for domains of

finite measure

In this section we give the proof of Theorem 6. For this we define

Uλ,y ∈ H̊
s
2 (RN), Uλ,y(x) := λU(λ

2
N−s (x− y))

for c ∈ R \ {0}, λ > 0 and y ∈ RN , so that

M = {cUλ,y : c ∈ R \ {0}, λ > 0, y ∈ RN}.

It will be convenient to adjust the notation for the weak Lq/2-norm. We fix q = 2N
N−s from

now on, and we write

|u|w,Ω = sup
A⊂Ω

|A|>0

|A|−
s
N

∫
A

|u| dx.

for the weak Lq/2-norm of a measurable function u defined on a measurable set Ω ⊂ RN .

We note the following scaling property, which follows by direct computation:

|Uλ,y|w,RN = |Uλ,0|w,RN =
|U |w,RN

λ
for λ > 0, y ∈ RN . (3.33)

Similarly, for a fixed domain Ω ⊂ RN , u ∈ H̊ s
2 (Ω) and λ > 0, define

Ωλ := λ−2/(N−s)Ω ⊂ RN and uλ ∈ H̊
s
2 (Ωλ), uλ(x) = λu(λ

2
N−sx).

Then a direct computation shows

|Ωλ| = λ−q|Ω|, |uλ|w,Ωλ =
|u|w,Ω
λ

and d(uλ,M) = d(u,M). (3.34)

Theorem 6 will follow immediately from the following Proposition.
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Proposition 3. There exists a constant C0 depending only on N and s ∈ (0, N) such

that

|u|w,Ω ≤ C0|Ω|
1
q d(u,M) (3.35)

for all subdomains Ω ⊂ RN with |Ω| <∞ and all u ∈ H̊ s
2 (Ω).

Proof. By the scaling properties noted in (3.34), it suffices to consider a subdomain

Ω ⊂ RN with |Ω| = 1 in the sequel. In this case we have, by Hölder’s inequality and

(1.15),

|u|w,Ω ≤ ‖u‖Lq(Ω) ≤ ‖u‖Lq(RN ) ≤
1√
S
‖u‖s/2 for every u ∈ H̊

s
2 (RN). (3.36)

In the following, let ρ ∈ (0, 1) be given by

ρ√
S(1− ρ)

=
(
|SN−1|

∫ ∞
1

rN−1

(1 + r2)N
dr
) 1
q

(3.37)

Let u ∈ H̊ s
2 (Ω). If ρ‖u‖s/2 ≤ d(u,M), then

|u|w,Ω ≤
1

ρ
√
S
d(u,M) (3.38)

as a consequence of (3.36). So in the remainder of this proof we assume that

ρ‖u‖s/2 > d(u,M) . (3.39)

By homogeneity we may assume that ‖u‖s/2 = 1. Since ρ < 1, the infimum in the

definition of d(u,M) is attained as a consequence of (3.39), and we have d(u,M) =

‖u− cUλ,y‖s/2 for some c ∈ R, λ > 0 and y ∈ Rn. Moreover, (3.39) implies that

|1− c| =
∣∣‖u‖s/2 − ‖cUλ,y‖s/2∣∣ ≤ d(u,M) ≤ ρ ,
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that is, 1− ρ ≤ c ≤ 1 + ρ. We note that

d(u,M)2 = ‖u− cUλ,y‖2
s/2 ≥ S‖u− cUλ,y‖2

Lq(RN )

≥ S|c|2‖Uλ,y‖2
Lq(RN\Ω) ≥ S(1− ρ)2‖Uλ,y‖2

Lq(RN\Ω) .

Now let B ⊂ RN denote the open ball centered at zero with |B| = 1, and let r0 > 0

denote the radius of B. Since the function U in (1.20) is radial and strictly decreasing

in the radial variable, the bathtub principle [51, Theorem 1.14] implies that

‖Uλ,y‖2
Lq(RN\Ω) ≥ ‖Uλ,y‖

2
Lq(RN\(B+y)) = ‖Uλ,0‖2

Lq(RN\B) ,

and hence

‖Uλ,0‖qLq(RN\B)
≤
( d(u,M)√
S(1− ρ)

)q
≤
( ρ√
S(1− ρ)

)q
= |SN−1|

∫ ∞
1

rN−1

(1 + r2)N
dr (3.40)

by our choice of ρ in (3.37). On the other hand, we compute

‖Uλ,0‖qLq(RN\B)
= |SN−1|

∫ ∞
r0

rN−1λq[
1 + (λ

2
N−s r)2

]N dr = |SN−1|
∫ ∞
λ

2
N−s r0

rN−1

(1 + r2)N
dr

This implies that λ
2

N−s r0 ≥ 1 and therefore

‖Uλ,0‖qLq(RN\B)
= |SN−1|

∫ ∞
λ

2
N−s r0

rN−1

(1 + r2)N
dr (3.41)

≥ 2−N |SN−1|
∫ ∞
λ

2
N−s r0

dr

rN+1
=
|SN−1|
N (2r0)N

λ−q.

Combining (3.40) and (3.41), we conclude that

d(u,M) ≥ C1

λ
with C1 :=

√
S(1− ρ)

( |SN−1|
N (2r0)N

) 1
q
. (3.42)
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Using (3.33), (3.36) and (3.42), we find that

|u|w,Ω ≤ |cUλ,y|w,Ω + |u− cUλ,y|w,Ω ≤ (1 + ρ)|Uλ,y|w,RN +
1√
S
‖u− cUλ,y‖s/2

=
1 + ρ

λ
|U |w,RN +

1√
S
d(u,M) ≤ C2d(u,M)

with C2 := (1+ρ)
C1
|U |w,RN + 1√

S . Combining this with (3.38), we thus obtain the claim with

C0 := max{C2,
1

ρ
√
S}.

Finally, Theorem 6 now simply follows by combining Theorem 5 and Proposition 3

and setting C := αC−2
0 .



Chapter 4

Regularity results in some

applications of optimal

transportation

In the first section of this chapter we give the proof for the C1 regularity of the solution

to the principal-agent problem. The proof is based on a perturbation argument. The

second section represents joint work with Indrei; we obtain some regularity results of the

free boundary in optimal partial transport with general cost.

4.1 Regularity of the solution to the principal-agent

problem

Before embarking on the proof, we will give an interesting lemma that will be used later.

Lemma 11. [21] Suppose u(p) is a convex function defined on a bounded convex domain

Ω ⊂ Rn which contains the origin 0. If u is singular at 0 (namely ∂u(0) contains more

than one point) and 0 ∈ ri∂u(0), where ri∂u(0) denotes the relative interior of the set

77
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∂u(0) (a set consists of all sub-gradients of u at 0). Then we have the estimate

∫
Sε

|Du(p)|2dp ≥ C|Sε|, (4.1)

where Sε := {p ∈ Ω|u(p) ≤ ε}, |Sε| is its volume, and C is a constant independent of ε.

This lemma was first proved by Carlier and Lachand-Robert in [21] by using a blow-up

analysis and a compactness argument, because of the independent interest of this lemma,

we will provide a more direct constructive proof of it, and in particular, the constant C

can be explicitly estimated. The proof is very much inspired by [14].

Proof of Lemma 11. Since 0 ∈ ri∂u(0), by rotating the coordinate system we can assume

u(p) ≥ k|p1| for some positive k, where p = (p1, p
′), and p′ = (p2, p3, · · · , pn). In the

following, Proj(Sε) denotes the orthogonal projection of Sε on the hyperplane {p|p1 = 0},

and 1
2
Sε denotes a 1

2
-dilation of Sε with respect to the center 0. Now, we estimate the

integration of |Du|2 along the segment Ip′ := {p|Proj(p) = p′, p ∈ Sε}, where p′ ∈

Proj(1
2
Sε). Let Ĩp′ := [a, a + d] × {p′} be one of of the two components of Ip′ − 1

2
Sε,

without loss of generality we take the upper one, so by convexity we have u(a, p′) ≤ 1
2
ε,

and u(a+ d, p′) = ε. Then we have

∫
Ip′

|Du|2dp1 ≥
∫
Ĩp′

| ∂u
∂p1

|2dp1

=

∫ a+d

a

| ∂u
∂p1

|2dp1

≥ (
ε
2

d
)2d =

ε2

4d
,

the last “ ≥ ” follows from the convexity of u. Since u(p) ≥ k|p1|, we have Sε ⊂
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[− ε
k
, ε
k
]× Proj(Sε), and d ≤ 2ε

k
. Therefore

∫
Sε

|Du|2dp ≥
∫

Proj( 1
2
Sε)

ε2

42ε
k

dp′

≥ k

8
ε|Proj(

1

2
Sε)|

=
k

2n+2
ε|Proj(Sε)|

≥ k

2n+2
ε
|Sε|

2ε
k

=
k2

2n+3
|Sε|.

So the Lemma 1 is proved with the constant k2

2n+3 .

Now we start the proof of Theorem 8, the main ingredient in the argument is that

we do the change of variables as Figalli, Kim and McCann did in [36]. In the new

variables, a b-convex function u in the original variables becomes a b̃-convex function

with an extra property that it is also convex in the usual sense. Another advantage is

that constant functions are b̃-convex, which allows us to perturb the minimizer by using

constant functions safely.

Firstly, we do a change of variable exactly same as that in [36]. By (B0)-(B1), the

map x ∈ X 7→ p = Dyb(x, y0) ∈ Xy0 and its inverse p ∈ Xy0 7→ x = xb(y0, p) ∈ X

are C3 diffeomorphisms, where y0 is the null product as in the minimization problem.

Then ũ(p) := u(xb(y0, p)) − b(xb(y0, p), y0) + c(y0) is a non-negative b̃-convex function,

where b̃(p, y) := b(xb(y0, p), y)− b(xb(y0, p), y0) + c(y0). In fact, the above correspondence

between u and ũ defines a 1 − 1 map between the space U0 and the space Ũ0 of non-

negative b̃-convex function on Xy0 . By switching x and y in Remark 1.3.1, we see that

ũ(p) is a convex function. One should also notice that b̃ satisfies the same condition

(B0)− (B3) as b does, except that b̃ might be only C3 on the first variable.

Now, suppose ũ is minimizer and it is not C1 at a point p0 ∈ Xy0 , namely ∂ũ(p0)

contains more than one point. We claim that one can find a point y1 ∈ Y, such that

Dpb̃(p0, y1) ∈ ri∂ũ(p0).
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Proof of the claim. Note that ∂ũ(p0) is a bounded convex set, so it is the convex hull of

its extreme points. Since ũ is a convex function, for any extreme point ω of ∂ũ(p0) we can

find a sequence of points pi at which u is differentiable, so that pi → p0 and Dũ(pi)→ ω,

as i → ∞. By (B1), we have Dũ(pi) = Dpb̃(pi, zi) for a unique zi ∈ Y. Therefore, by

passing to a subsequence we can assume zi → y1 for some y1 ∈ Y, then by taking limit we

have ω = Dp(p0, y1). From the above discussion we see that all extreme points of ∂ũ(p0)

are contained in Dpb̃(p0,Y), which is a convex set by (B2), so ∂ũ(p0) ⊂ Dpb̃(p0,Y).

Then we perform the second change of variables. By (B1) we have that the C2

diffeomorphism p ∈ Xy0 7→ p̄ := Dy b̃(p0, y1) ∈ Xy1 and its inverse p̄ 7→ pb̃(y1, p̄) are well

defined. Then ū(p̄) := ũ(pb̃(y1, p̄)) − b̃(pb̃(y1, p̄), y1) − λ1 is a b̄-convex function, where

λ1 = ũ(p0)− b̃(p0, y1), and b̄ := b̃(pb̃(y1, p̄), y)− b̃(pb̃(u1, p̄), y1)− λ1 satisfies (B0)-(B3),

except that it might be only C2 on its first variable. By the same reason as in the first

change of variables, ū is not only b̄-convex but also convex in the usual sense. Note that

by the choice of y1 in the above claim, 0 ∈ ri∂ū(p̄0), where p̄0 = Dy b̃(p0, y1). In these new

variables, the principal’s net losses are given by

L̃(ū) =

∫
Xy1

[c(yb̄(p̄, Dū))− b̄(p̄, yb̄(p̄, Dū)) + (̄u)]f(x(p̄))det(
∂xi

∂p̄j
)dp̄,

and the space of admissible functions becomes

U0 = {ū|ū is b̄− convex and ū ≥ b̃(pb̃(y1, p̄)), y1 + λ1}.

Note that in the new variables, c(y) still satisfies Condition 1, namely there exists some

positive δ so that c(yb̄(p̄, q)) − b̄(p̄, yb̄(p̄, q)) − δ|q|2 is convex in the q variable for all

p̄ ∈ Xy1 . It is also easy to see that after the above change of variables, constant functions

are b̄-convex.

In the following, for simplicity of notations, we will use b(p, y) instead of b̄(p̄, y), p

instead of p̄, u instead of ū, and f(p)dp instead of f(x(p̄))det(∂x
i

∂p̄j
)dp̄. We will also omit
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the subscript b̄. So the functional in the minimization problem looks like

L̃(u) =

∫
Xy1

[c(y(p,Du))− b(p, y(p,Du)) + u]f(p)dp.

Now suppose u is a minimizer, by the second change of variables, we see that u ≥ 0.

Let uε := max{u, ε} and Sε := {u ≤ ε}. Since constant function ε is b-convex, uε is still

in the space of admissible functions. Denote G(p, q) = c(y(p, q)) − b(p, y(p, q)) − δ|q|2.

We have

L̃(uε)− L̃(u) = I1 + I2 + I3,

where

I1 = −δ
∫
Sε

|Du|2f(p)dp, I2 =

∫
Sε

(G(p, 0)−G(p,Du))f(p)dp,

and

I3 =

∫
Sε

(ε− u)f(p)dp.

Since 0 ≤ u ≤ ε in Sε, we have I3 ≤ C1ε|Sε|, for some constant C1. For I2, we have

I2 ≤
∫
Sε

DqG(p, 0) ·D(ε− u)f(p)dp

=

∫
∂Sε∩∂Xy1

(ε− u)f(p)DqG(p, 0) · −→n dξ

−
∫
Sε

(ε− u)f(p)divp(DqG(p, 0))dp−
∫
Sε

(ε− u)Df(p) ·DqG(p, 0)dp,

where the inequality follows from the convexity of G in q variable, and the equality follows

from the divergence theorem. Since b is at least C2 and f is W 1,∞, all the integrand in

the above three integrals are bounded by Cε, for some constant C. For the area of

∂Sε ∩ ∂Xy1 , we need to use a simple estimate

|∂Sε ∩ ∂Xy1| ≤ C|Sε|, (4.2)
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where C is a constant. This estimate was proved by Carlier and Lachand-Robert [21]

and for reader’s convenience we include their proof here.

Proof of the estimate 4.2 [21].

|Sε| =
1

n

∫
Sε

div(p− p0)dp ≥ 1

n

∫
∂Sε∩∂Xy1

(p− p0) · −→n dξ ≥ 1

n
C|∂Sε ∩ ∂Xy1|,

where p0 is the assumed singular point of u, and the last inequality follows from the

convexity of Xy1 (by the convexity, (p− p0) · −→n is bounded from below by some positive

constant).

By this estimate (4.2), we have I2 ≤ C2ε|Sε|, for some constant C2. Then by Lemma

11, we have

L̃(uε)− L̃(u) ≤ −C1δ|Sε|+ C2ε|Sε|+ C3ε|Sε|,

note that the constants C1, C2, C3 are all independent of ε. Recall that δ is a fixed positive

constant in Condition 1, so when ε is sufficiently small, we see that L̃(uε) < L̃(u), which

contradicts the fact that u is a minimizer. So u must be C1.

4.2 Regularity of the free boundary in the optimal

partial transport problem for general cost func-

tions

4.2.1 Preliminaries

Definition 4.2.1. Given an (m−1)-plane π in Rm, we denote a general cone with respect

to π by

Cα(π) := {z ∈ Rm : α|Pπ(z)| < Pπ⊥(z)},
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where π⊕π⊥ = Rm, α > 0, and Pπ(z) & Pπ⊥(z) are the orthogonal projections of z ∈ Rm

onto π and π⊥, respectively.

Definition 4.2.2. A domain D is said to satisfy the uniform interior cone condition if

there exists α > 0 and δ > 0 such that for all x ∈ ∂D there exists νx ∈ Sn−1 so that

(y + Cα(ν⊥x )) ∩Bδ(x) ⊂ D ∩Bδ(x),

for all y ∈ D∩Bδ(x). We define the profile of such domains to be the ordered pair (δ, α).

Definition 4.2.3. A domain D ⊂ Rn is said to satisfy a uniform interior ball condition if

there exists r > 0 such that for all x ∈ ∂D, there exists νx ∈ Sn−1 for which Br(x+rνx) ⊂

D.

Definition 4.2.4. We denote by F , the collection of cost functions c : Rn × Rn → R

that satisfy the following three conditions:

1. c ∈ C2(Rn × Rn);

2. c(x, y) ≥ 0 and c(x, y) = 0 only for x = y;

3. For x, p ∈ Rn, there exists a unique y = y(x, p) ∈ Rn such that ∇xc(x, y) = p;

similarly, for any y, q ∈ Rn, there exists a unique x = x(y, q) ∈ Rn such that

∇yc(x, y) = q.

We denote by F0, the set of C4(Rn × Rn) cost functions in F that satisfy:

4. det(∇(x,y)c) 6= 0 for all x, y ∈ Rn;
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5.(A3S) For x, p ∈ Rn,

Aij,kl(x, p)ξiξjηkηl ≥ c0|ξ|2|η|2 ∀ ξ, η ∈ Rn, 〈ξ, η〉 = 0, c0 > 0.

Definition 4.2.5. A set U ⊂ Rn is called c-convex with respect to another set V ⊂ Rn

if the image cy(U, y) is convex for each y ∈ V .

Lemma 4.2.6. Let c ∈ C2(Rn × Rn), and consider two domains Ω ⊂ Rn, Λ ⊂ Rn with

disjoint closures, and set

b0 = inf
x∈Ω,y∈Λ

c(x, y) > 0. (4.3)

Then for any b ≥ b0 and y ∈ Rn, the domain Eb
y := {x : c(x, y) < b} satisfies a uniform

interior cone condition with radius r = r(b0, ||c||C2) > 0.

Proof. Let

c1 := inf
x∈Ω,y∈Λ

|∇xc(x, y)|, (4.4)

and note that since c ∈ F we have c1 > 0. Indeed, suppose on the contrary that there

exists (x̄, ȳ) ∈ Ω × Λ for which ∇xc(x̄, ȳ) = 0. Let φ(x) := c(x, x̄); using condition 2 in

the definition of F , φ(x) ≥ 0 and φ(x) = 0 only for x = x̄. Therefore, ∇xc(x̄, x̄) = 0, but

by uniqueness, we must have x̄ = ȳ (using condition 3), contradicting the disjointness

assumption (hence, c1 > 0 depends on b0 > 0). Now for a fixed y0 ∈ Λ, denote φ(x) :=

c(x, y0). Then for a fixed point x0 ∈ {x : φ(x) = b}, we choose a coordinate system

such that xn is the direction of the normal to the level set pointing into the sublevel set

{x : φ(x) ≤ b} and x0 is the origin. Now let r := c1
c2

, where c2 = ||c||C2 , and consider the

ball Br centered at (0, . . . , r) with radius r. In particular ∂Br touches the origin. Now

we will show that Br ⊂ {x : φ(x) < b}: indeed, it is simple to see (by forming similar
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triangles) that cos(θ) > |x|
2r

= |x|c2
2c1

, where θ is the angle between x and en. Therefore,

φ(x) ≤ φ(0) +∇φ(0) · x+
c2

2
|x|2

= b− |∇φ(0)|en · x+
c2

2
|x|2

< b− (c1|x|)
(
|x|c2

2c1

)
+
c2

2
|x|2 = b.

Remark 4.2.7. By interchanging the roles of x and y in Lemma 4.2.6, a similar state-

ment holds for Eb
x := {y : c(x, y) < b}.

Remark 4.2.8. By the positivity of c1 in (4.4), it follows that we may take νx := cx(x,y)
|cx(x,y)|

as the direction of the ball at each point x ∈ ∂Eb
y ∩ Ω and y ∈ Λ. Thus, for c ∈ F ,

all sublevel sets with height b ≥ b0 as in Lemma 4.2.6 satisfy a uniform interior cone

condition with profile depending only on the positive separation of Ω and the norm of c,

and we may take νx as the direction of the cone.

Lemma 4.2.9. Let c ∈ C1(Rn × Rn), and suppose it satisfies Conditions 2 and 3 in

Definition 4.2.4. Let Ω and Λ be be two domains with disjoint closures, and set

b0 = inf
x∈Ω,y∈Λ

c(x, y) > 0.

Then for any b > b0 and y ∈ Rn, the domain Ey
b := {x : c(x, y) < b} satisfies a uniform

interior cone condition with the openning of the cone as close to π as we want by taking

the height of the cone sufficiently small.

Proof. First, note that since c satisfies Conditions 2 and 3,

c1 := inf
x∈Ω,y∈Λ

|∇xc(x, y)| > 0,
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(as in the proof Lemma 4.2.6). Now fix y ∈ Λ, and consider φ(x) := cx(x, y). Then Then

for a fixed point x0 ∈ {x : φ(x) = b} we choose a coordinate system such that xn is the

direction of the normal to the level set pointing into the sublevel set {x : φ(x) ≤ b} and

x0 is the origin. Let 0 < θ < π
2

and note that if x has angle θ with the xn direction, then

φ(x) = φ(0) +∇φ(0) · x+ o(|x|) ≤ φ(0)− c1|x| cos θ + o(|x|).

Now since c ∈ C1(Rn ×Rn), by the uniform continuity of cx we have o(x) ≤ 1
2
c1|x| cos θ,

for x ∈ Bδ(0) and δ > 0 (depending only on θ and the modulus of continuity of cx).

Thus, φ(x) < b when x has angle at most θ from xn direction and is in the δ-ball around

the origin.

4.2.2 Regularity theory

In this section, we will prove various regularity results on the free boundary under minimal

assumptions on the cost function.

Theorem 4.2.10. (Rectifiability) Let f = fχΩ and g = gχΛ be two nonnegative inte-

grable functions. Assume that Ω and Λ are bounded. If c : Rn×Rn 7→ R+ is semiconvex,

satisfies Condition 2 in Definition 4.2.4, and

inf
x∈Ω,y∈Λ

|∇−x c(x, y)| > 0,

where ∇−x c(x, y) is the subdifferential of c in the variable x, then ∂Um ∩ Ω is (n − 1)-

rectifiable.

Proof. First, note that our assumptions imply Conditions 1-2” in [[33], Remark 2.11].

In particular, 2” is implied by our semiconvexity assumption, see e.g. [[35], Proposition

2.3] (here the author proves that the optimal map is approximatively differentiable a.e.

but since our domains are bounded, the map is truly differentiable a.e.). Thus, utilizing
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[[33], Remark 3.2] we obtain

Um ∩ Ω :=
⋃

(x̄,ȳ)∈γm

{x ∈ Ω : c(x, ȳ) < c(x̄, ȳ)}.

Next, thanks to the semiconvexity of c combined with (3.1), we may apply the nonsmooth

implicit function theorem [[67], Theorem 10.50] to conclude that the level set

Ea := {x ∈ Rn : c(x, ȳ) = a}

is locally an (n− 1)-dimensional Lipschitz graph. Thus, for x ∈ ∂Um ∩Ω, it follows that

x ∈ ∂{x ∈ Ω : c(x, ȳ) < c(x̄, ȳ)},

for some (x̄, ȳ) ∈ γm. Hence, there exists a profile (δx, αx) such that (x + Cαx(ν
⊥
x )) ∩

Bδx(x) ⊂ (Um ∩ Ω) ∩Bδx(x), for some ν⊥x ∈ Sn−1. Now consider the sets

Axj := {z ∈ (∂Um ∩ Ω) ∩Bδx(x) : δz ≥
1

j
, αz ≤ j},

(recall that each z ∈ ∂Um∩Ω has a profile(δz, αz)). For each j ∈ N ,we may select εj > 0

so that P := {νi}
mεj
i=1 is a sufficiently fine partition of Sn−1 (i.e. for each ν ∈ Sn−1, there

exists νi ∈ P so that |ν − νi| < εj), and for all

ω ∈ Axij := {z ∈ (∂Um ∩ Ω) ∩Bδx(x) : |νz − νi| < εj, δz ≥
1

j
, αz ≤ j},

we have

(ω + Cαj(ν
⊥
i )) ∩Bδj(z) ⊂ (Um ∩ Ω) ∩Bδj(z)

for some αj > 0 and δj > 0. Thanks to this cone property, it is not difficult to show that

for each i, j ∈ N , Axij is contained on the graph of a Lipschitz function (generated by
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superema of the cones with fixed opening given by αj). Note,

∞⋃
j=1

mεj⋃
i=1

Axij = (∂Um ∩ Ω) ∩Bδx(x),

(without loss of generality, we may assume ε ↘ 0 as j → ∞). This shows that Axij is

(n − 1)-rectifiable. Next, let (∂Um ∩ Ω)s := {x ∈ ∂Um ∩ Ω : dist(x, ∂Ω) > s}. Now by

compactness, there exists {xk}n(x)
k=1 ⊂ (∂Um ∩ Ω)s ⊂ ∂Um ∩ Ω so that

(∂Um ∩ Ω)s =

n(s)⋃
k=1

(∂Um ∩ Ω)s ∩Bδxk
(xk).

From what we proved, it follows that

(∂Um ∩ Ω)s =

n(s)⋃
k=1

∞⋃
j=1

mεj⋃
i=1

Axkij ,

where each Axkij is (n− 1)-rectifiable. Thus, by taking s→ 0, we obtain the result.

Theorem 4.2.11. (Lipschitz regularity) Let f = fχΩ and g = gχΛ be a nonnegative

integrable functions. Assume that Ω and Λ are bounded with Ω∩Λ = ∅ and Λ is c-convex

with respect to Ω. If c ∈ C1(Rn×Rn) is semiconvex and satisfies Conditions 1, 2, and 3

in Definition 2.4, then ∂Um ∩ U is locally Lipschitz.

Proof. By our assumptions, we have

Um ∩ Ω :=
⋂

(x̄,ȳ)∈γm

{x ∈ Ω : c(x, ȳ) < c(x̄, ȳ)}.

Next, let x ∈ ∂Um ∩ Ω and note that since

x ∈ ∂{x ∈ Ω : c(x, ȳ) < c(x̄, ȳ)},
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By Lemma 4.2.9 there exists a profile (δ, α) so that

(x+ Cα(ν⊥x )) ∩Bδ(x) ⊂ (Um ∩ Ω) ∩Bδ(x),

where νx := − cx(x,Tm(x))
|cx(x,Tm(x))| and Tm is the optimal partial transport with mass m. Note

that as in Lemma 4.2.9 we can take α as close to 0 as we want by taking δ suitably small.

For x ∈ ∂Um ∩ Ω ∩ Bδ(x), consider the convex set Ez = cx(z,Λ) (note that convexity

follows by the c-convexity assumption of Λ). By the positive separation we see that the

origin is not in Ez, from this and the convexity of Ez we can easily find a cone Cα̃(ν⊥)

which contains Ez, where α̃ depends only on the positive separate and the C1 norm of

c. As mentioned above, we can assume α < α̃ by taking δ small. Next, note that by C1

regularity of c, cx(z,Λ)→ cx(x,Λ) as z → x; hence,we may select 0 < δx ≤ δ and αx ≥ α̃

so that Bδx(x) ⊂ Bδ(z) and Cαx(ν
⊥) ⊂ Cα̃(ν⊥z ); thus for all z ∈ ∂Um ∩Bδx(x),

(z + Cαx(ν
⊥)) ∩Bδx(x) ⊂ (Um ∩ Ω) ∩Bδx(x).

Therefore, as in the proof of Theorem 4.2.14 (see the argument below (4.9)), we obtain

that the free boundary locally coincides with the graph of a Lipschitz function (generated

by superema of the cones as above).

Remark 4.2.12. By localizing the problem as in Corollary ?, one may prove an analogous

results of Theorem 4.2.10 and 4.2.11 for non-disjoint domains.

Corollary 4.2.13. (Semiconvexity) Let f = fχΩ and g = gχΛ be a nonnegative inte-

grable functions. Assume that Ω and Λ are bounded with Ω ∩ Λ = ∅ and Λ isc-convex

with respect to Ω. If c ∈ F , then ∂Um ∩ Ω is locally semiconvex.

Proof. By Theorem 4.2.11, it follows that ∂Um ∩ Ω is locally a Lipschitz graph, and

Lemma 4.2.6 implies that each point on the graph has a ball touching it from below.

Thus, locally, the free boundary may be represented as a suprema of spherical caps, and
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this readily implies semiconvexity.

Theorem 4.2.14. Let f = fχΩ ∈ Lp(Rn) be a non-negative function with p ∈ (n+1
2
,∞],

and g = gχΛ ∈ L1(Rn) a positive function bounded away from zero. Moreover, assume

that Λ is relatively c-convex with respect to a neighborhood of Ω ∪ Λ, and separated from

Ω by a hyperplane. Let c ∈ F0 and m ∈ (0,min ||f ||L1 , ||g||L1 ]. Then for there exists an

explicit α for which ∂Um ∩ Ω is locally a C1,α graph, where Um ∩ Ω is the free boundary

arising from the partial optimal transport problem.

Proof. First, note that by [33, Remark 2.11], there exists a unique solution to the optimal

partial transport problem. Moreover, this solution has the form

γm := (Id× Tm)#fm = (T−1
m × Id)#gm.

By [33, Proposition 2.4] and [33, Remark 2.5],

γ = γm + (Id× Id)#((f − fm) + (g − gm)), (4.5)

where γ solves the classical optimal transport problem between the densities f+(g−gm),

g + (f − fm), and with the given cost function c(x, y) ∈ F0. From the classical theory,

we know that γ is supported on the graph of a function T , and there exists a potential

function Ψ which satisfies:

∇xc(x, T (x,∇Ψ(x))) = ∇Ψ(x). (4.6)

Now by [33, Theorem 2.6 and Remark 2.11], it follows that T#(fm + (g − gm)) = g (i.e.

T will not move the points in the inactive region); hence, it coincides with the partial

transport Tm in the active region Um ∩Ω. Now let f ′ := fm + (g− gm) and note that by

our assumptions,

|det(D2
xyc)|

f ′

g(Tm)
∈ Lp(Um ∩ Ω),
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(indeed, g = gm on Um ∩ Ω). Thus, we may apply [54, Theorem 1] to obtain Ψ ∈

C1,α(Um ∩ Ω). Next, we utilize [33, Remarks 3.2 and 3.3] to note that the active region

of Ω may be identified as

Um ∩ Ω :=
⋃

(x̄,ȳ)∈γm

{x ∈ Ω : c(x, ȳ) < c(x̄, ȳ)}. (4.7)

Let x̄ ∈ ∂Um∩Ω. By (4.7) it follows that x̄ ∈ ∂Ebȳ
ȳ , where (x̄, ȳ) ∈ γm and bȳ := c(x̄, ȳ) >

0. Note that since d(Ω,Λ) > 0, all level sets of c inside Ω satisfy the uniform interior

cone condition with a uniform profile depending only on d(Ω,Λ) > 0 by Lemma 4.2.6.

Thus, there exists δ = δ(dist(Ω,Λ)), α̃ = α̃(dist(Ω,Λ)) such that

(x+ Cα̃(ν⊥x )) ∩Bδ(x) ⊂ Um ∩ Ω,

where νx = ∇Ψ(x)
|∇Ψ(x)| . Moreover, choose Rx > 0 such that

BRx(x) ∩ ∂Ω = ∅,

and set rx := min{δ, Rx}. Since ∇Ψ ∈ C0,α(Um ∩ Ω), for any given ε > 0 there exists

η > 0 such that |νx− νz| < ε for any z ∈ ∂Um ∩Bη(x), where νz = ∇Ψ(z)
|∇Ψ(z)| is the direction

of the cone at z (see Remark 4.2.8 and (4.6)). Thus, we may take the same profile

(δ, α̃) for all cones touching ∂Um ∩Brx(x) by picking ηx > 0 small enough (depending on

dist(Ω,Λ) and rx), and there exists 0 < αx ≤ α̃ so that for all z ∈ ∂Um ∩Bηx(x),

(z + Cαx(ν
⊥
x )) ∩Bηx(x) ⊂ Um ∩ Ω. (4.8)

In fact, by possibly taking αx and ηx smaller, this statement holds for all z ∈ Um∩Bεx(x)

(this is due to the fact that by (4.7) all interior points of the active region lie on a level

set of the cost function and the normal to this level set is close to νx for interior points
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close to x). Indeed, let z ∈ Bηx(x)∩Um. Then (z, Tm(z)) ∈ γm and by (4.7), z ∈ ∂Eb
Tm(z)

with b = c(z, Tm(z)) > 0 (by the positive separation assumption). Now by Remark 4.2.8,

there exists νz ∈ Sn−1 so that

(y + Cα(ν⊥z )) ∩Bδ(z) ⊂ Eb
Tm(z) ∩ Ω ⊂ Um ∩ Ω,

for all y ∈ Eb
Tm(z) ∩Bδ(x). In particular,

(z + Cα(ν⊥z )) ∩Bδ(z) ⊂ Um ∩ Ω.

Thus, by possibly choosing ηx smaller, if necessary, we may assume Bηx(x) ⊂ Bδ(z)

hence, by the continuity of the gradient of the potential, |νx − νz| < ηx (as above), and

so we may choose αx small so that

Cαx(ν
⊥
x ) ⊂ Cα(ν⊥z ).

Hence,

(z + Cαx(ν
⊥
x )) ∩Bηx(x) ⊂ (z + Cα(ν⊥z )) ∩Bδ(z) ⊂ Um ∩ Ω.

Therefore, we proved that there exists ηx > 0 and 0 < αx ≤ α̃ so that for all z ∈

Bηx(x) ∩ Um,

(z + Cαx(ν
⊥
x )) ∩Bηx(x) ⊂ Um ∩ Ω. (4.9)

Now by rotating the coordinate system, we may assume that x = 0, νx = −en, π :=

ν⊥x = Rn−1, and that the cone Cα0(π) is symmetric with respect to the en axis. Define

φ : B̃η0(0) ⊂ Rn−1 → R by

φ(z′) := sup
y:=(y′,yn)∈∂Um∩Bη0 (0)

Ky(z
′),
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where Ky is the cone function at the point y on the free boundary. Note that φ is

Lipschitz since it is the supremum of Lipschitz functions with bounded Lipschitz constant

(depending on the opening of the cones). Moreover, by construction we have

∂Um ∩Bη0(0) ⊂ graphφ|B̃η0 (0). (4.10)

Now we claim that there exist constants d, d̃ ∈ (0, 1) with d̃ depending on d and d

depending on the profile of the level sets of the cost function, so that

graphφ|B̃dη0 (0) ⊂ ∂Um ∩Bd̃η0
(0). (4.11)

Indeed, pick any d̃ ∈ (0, 1); we may select a constant d = d(d̃, αx) > 0 small enough,

so that the graph of φ(Projπ(Bdη0(0))) is contained in Bd̃η0
(0) (this is possible, since φ

has a uniform Lipschitz constant in Bη0(0) which depends only on the profile of the level

sets). Let y ∈ graphφ|B̃dη0 (0) ⊂ Bd̃η0
(0). If y /∈ ∂Um ∩Bd̃η0

(0), then since y is on an open

cone with opening inward to Um ∩ Ω, it follows that y ∈ Um ∩ Ω. Since ∂Um ∩ Bd̃η0
is

compact, for θ > 0 small, it follows that Qθ(y) ∩ ∂Um ∩ Bd̃η0
= ∅, where Qθ is a small

cylinder whose interior is centered at y and whose base diameter and height is equal to

θ; in particular, Qθ ∩ graphφ|B̃dη0 (0) does not contain any free boundary points. Next we

consider a general fact: let w ∈ graphφ|B̃η0 (0) \ ∂Um, Lt(w) := w + ten, and

s(w) := sup
{t≥0:Lt(w)∈Um∩Ω}

t;

note that since w ∈ graphφ|B̃η0 (0),

s(w) ≥ s̃(w) := sup
{t≥0:Lt(w)∈Bη0 (0)}

t, (4.12)

(otherwise it would contradict the definition of φ as a suprema of cones in Bη0(0) and
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w as a point on the graph). Next, keeping the base fixed, we enlarge the height of the

cylinder along the {y + ten : t ∈ R} axis in a symmetric way (with respect to the plane

yn + π = Rn−1) so that it surpasses 4η0; we denote the resulting cylinder by Q̃θ. By

(4.12) we have Q̃θ ∩Bη0 ⊂ Um ∩Ω. Then we increase its base diameter, θ, until the first

time when Q̃θ hits the free boundary ∂Um ∩Ω inside Bη0(0), and denote the time of first

contact by θ and a resulting point of contact by yθ (note that since 0 ∈ ∂Um ∩ Bη̃0(0),

this quantity is well defined). Since φ is a continuous graph in Bη0(0), and both y and

yθ are on the graph, we may select a sequence of points yk ∈ graphφ|B̃η0 (0) ∩ Q̃θ such

that yk → yθ (by connectedness of φ|B̃η0 (0) ∩ Q̃θ). Since yθ ∈ Bη̃0(0) is an interior point,

for k sufficiently large we will have yk ∈ Bη0(0) ∩ Q̃θ. Thus, by definition of θ, we will

have that the yk are not free boundary points but on the graph of φ; thus, by (4.12),

s(yk) ≥ s̃(yk), and this implies ỹk := yk + s̃(yk)en ∈ ∂Bη0(0) ∩ Um. By (4.9) we have

(ỹk + Cα0(π)) ∩Bη0(0) ⊂ Um ∩ Ω.

However, for large k, yθ ∈ (ỹk + Cα0(π)) and this contradicts that yθ is a free boundary

point, thereby establishing (4.11). Thus, combining (4.10) and (4.11) we obtain that

in a neighborhood around the around the origin, the free boundary is the graph of the

Lipschitz function φ. Hence, the normal of its graph exists Hn−1 for a.e. z′ ∈ B̃η0(0)

and coincides with the Hölder function ∇Ψ
|∇Ψ| outside of the set of measure zero. As the

normal can be represented by (Dφ(z′),−1)√
1+|Dφ(z′)|2

at a point (z′, φ(z′)) on the graph, it is easy

to see that it is in fact Hölder, and this concludes the proof.

Remark 4.2.15. By reverse symmetry, we may interchange the roles of f and g in Theo-

rem 4.2.14 (and adjusting the assumptions accordingly) in order to obtain C1,α
loc regularity

of ∂Vm ∩ Λ.

Remark 4.2.16. (Geometry of c-convex domains) For a geometric description of c-

convex domains, see [66]. For example, based on a calculation therein, one can prove the
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following: Suppose D ⊂ Rn is a bounded domain and K a convex subset with smooth

boundary. Let

c1 := inf
x∈Ω,y∈K

det cx,y(x, y),

and c2 := ‖c(·, ·)‖C3 . Then for a fixed y, consider cy(x, y) : K → cy(K, y). If the principle

curvatures of ∂K are greater than
cn2
c1

, then cy(K, y) is convex.
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