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Abstract

We study a one parameter class of examples of optimal transport prob-
lems between a two dimensional source and a one dimensional target. Our
earlier work identified a nestedness condition on the surplus function and
marginals, under which it is possible to solve the problem semi-explicitly.
In the family of examples we consider, we classify the values of parame-
ters which lead to nestedness. In those cases, we derive an almost explicit
characterization of the solution.

1 Introduction

Given probability measures µ and ν on domains X ⊆ Rm and Y ⊆ Rn, and a
surplus function s : X × Y → R, the optimal transport problem of Monge and
Kantorovich is to maximize ∫

X×Y
s(x, y)dγ(x, y)

among probability measures on X × Y whose marginals are µ and ν.
The problem has been a vibrant and dynamic field of investigation since

the late 80’s and has a wealth of applications; it is extensively reviewed in
[6] [7] and [5]. Until recently, most research focused on the case where the
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source X and target Y have the same dimension, m = n. In this setting,
conditions are known under which a unique solution exists, and is concentrated
on a graph y = F (x) over X; the solution can then be characterized by a Monge-
Ampere type partial differential equation. Regularity of solutions is now fairly
well understood. When both dimensions are one, closed form solutions can be
derived for many choices of s, µ and ν.

On the other hand, the case where the dimensions m and n differ has thus
far received relatively little attention. However, motivated by matching prob-
lems in economics, we recently initiated the study of multi-to one- dimensional
problems, the case where m > n = 1 [2] [1]. In particular, our recent work
in this case identified a joint condition on s, µ and ν, called nestedness, under
which the optimal map F can be obtained almost explicitly, and a regularity
theory developed.

In the absence of nestedness, little is known about the structure of solutions.
As in the equal dimensional setting, general conditions on s ensure that the
solution is unique and concentrated on the graph of a function F : X → Y , but
examples in [4] imply that there exist smooth marginals µ and ν for which the
solution is discontinuous, unless s takes an index form, s(x, y) = b(I(x), y)+α(x)
for some functions I : X → R α : X → R, in which case the problem reduces
to an optimal transport problem between unidimensional domains I(X) and Y ,
with surplus b.

We expect optimal maps to often be discontinuous in the absence of nested-
ness; equivalently, we expect the Kantorovich potential on the high dimensional
side to not be C1. It is not clear what structure the singular set can be expected
to exhibit, or whether the Kantorovich potential on the lower dimensional side
will also exhibit singularities. In addition, though the concept of nestedness
is fairly straightforward to check, and we expect it to hold on a fairly wide
class of problems, there is so far a scarcity of fully worked examples where the
condition has been checked, and, if it holds, solutions to the optimal transport
problem obtained. Apart from simple examples worked out in [1] and [2], we do
not know of any examples of solutions to non-nested problems; a rich family of
these would be useful for testing conjectures.

In this short note, we study a one parameter family of models, and classify
for which parameter values nestedness holds. In the nested case, we character-
ize the solutions more or less explicitly, illustrating the utility of this concept.
In the non-nested case, we do not have an explicit solution, but note that a
singularity develops along a certain curve. We then present numerical solutions
for three values of the parameter, two for which the model is nested and one for
which it is not. In the nested case, the solutions agree qualitatively with our
analytic solution, while in the non-nested case the presence of the singularity
is confirmed. We hope that this class of examples can shed some light on the
structure of solutions, and possibly be a useful test case for numerical methods.

In what follows, we will sometimes adopt terminology from the marriage
matching problems which originally motivated our work in this area. In partic-
ular, we will sometimes refer to X as the set of wives and Y the set of husbands;
under this interpretation, the level set F−1(y) of the optimal map identifies those
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wives among whom husband y is indifferent in equilibrium and are sometimes
called iso-husband curves.

2 Background: nestedness

In this section, we recall the definition of nestedness and its implications for the
structure of optimal transport plans. We assume throughout this section that
the target Y is one dimensional, n = 1. The presentation is adapted from [2];
for ease of exposition, we do not always work under the most general possible
conditions.

Given a surplus s(x, y) ∈ C2(X×Y ), we will assume that s is non-degenerate:
Dxsy(x, y) 6= 0 throughout X × Y , where Dxsy(x, y) is the differential with
respect to x of the partial derivative sy(x, y) = ∂s

∂y (x, y) with respect to y of the
surplus. This condition, together with the implicit function theorem, implies
that for each fixed k ∈ sy(X,Y ), the level set

X=(y, k) := {x ∈ X : sy(x, y) = k}

is a C1-hypersurface of X. We note that each such level surface divides X into
sub- and super-level sets, and the sub-level sets are increasing in k. We denote
by k(y) the (unique, under mild conditions on µ and ν [2]) value of k so that
the mass of the sub-level set matches that of (−∞, y):

µ(X≤(y, k)) = ν((−∞, y)). (1)

where
X≤(y, k) := {x ∈ X : sy(x, y) ≤ k}.

We say that the model is nested if the sublevel sets selected in this way are
nested; that is, if

X≤(y0, k(y0)) ⊆ X<(y1, k(y1))

whenever y0 < y1.
Nestedness depends on the interaction between s, µ and ν, which is some-

what atypical in optimal transport; in fact, if s, µ, ν is nested for all choices of
marginals µ and ν, then s must be of index form [2].

We show in [2] that nestedness is equivalent to the following two properties:
1) disjointness of X=(y0, k(y0)) and X=(y1, k(y1)) for any y0 6= y1, and 2) the
property that for each x there is exactly one y such that x ∈ X=(y, k(y)). We
then showed that this condition allows one to characterize the solution:

Theorem 1. Assume that the model is nested. Then the mapping that takes
each x ∈ X=(y, k(y)) to y, for each y ∈ Y , is well defined. Furthermore, it is
the unique optimal map.

In the nested case, we showed that the function k(y) coincides with the
derivative of a s-convex function:

v′(y) = k(y), where v(y) = max
x∈X

[s(x, y)− u(x)]
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for some u(x). Furthermore, u can be taken to be the s-conjugate of v, u(x) =
maxy∈Y [s(x, y)− v(y)], and the pair (u, v) solve the Kantorovich dual problem:

min
(∫

X

u(x)dµ(x) +

∫
Y

v(y)dν(y)
)

(2)

among all (u, v) ∈ L1(µ)×L1(ν) such that u(x) + v(y) ≤ s(x, y) for all (x, y) ∈
X × Y .

3 A class of examples

Consider matching uniform measure on the disk {x21 + x22 ≤ 1} with uniform
measure on an arc, {(cos(θ), sin(θ)) : |θ| ≤ θ0}, to maximize the restriction of
the bi-linear surplus from R2 × R2, s(x1, x2, θ) = x1 cos(θ) + x2 sin(θ).

The following result classifies the values of the parameter θ0 for which the
model is nested.

Proposition 2. The model is nested if and only if θ0 ≤ π
4 .

The proof of the proposition requires the following lemma:

Lemma 3. The optimal map θ = F (x1, x2) satisfies:

1. F (x1, x2)x2 ≥ 0.

2. F (x1, x2) = −F (x1,−x2) for all (x1, x2).

(We note that an optimal map exists because the surplus is twisted; that is
θ 7→ Dxs(x, θ) is injective. This condition is well known to guarantee unique,
graphical solutions [6] [7] [5].)

Proof. The symmetry in point 2) follows immediately from uniqueness of the
solution, because the marginals and surplus are both symmetric under the trans-
formation (x1, x2, θ) 7→ (x1,−x2,−θ). Turning to the first property, we have
that if (x1, x2, θ = F (x1, x2)) is in the support of the optimal measure, then
so is (x1,−x2,−θ = F (x1,−x2)). Applying s-monotonicity (e.g. [5, Theorem
1.38]) to these two points yields:

s(x1, x2, θ) + s(x1,−x2,−θ) ≥ s(x1,−x2, θ) + s(x1, x2,−θ),

which reduces to x2 sin(θ) ≥ 0 (or, equivalently, x2θ ≥ 0).

We now prove the proposition.

Proof. The level curves of (x1, x2) 7→ sθ(x1, x2, θ) = −x1 sin(θ) + x2 cos(θ) are
straight lines parallel to the line segment joining the origin to (cos(θ), sin(θ))
(c.f. [3, Lemma 1.6]). The population splitting curve corresponding to θ has
the form −x1 sin(θ) +x2 cos(θ) = k(θ), where k(θ) is to be determined from the
population balance condition (1). Note that k(0) = 0. In fact, by rotational
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symmetry, µ(X≤(θ, 0)) = 1
2 for all θ; as ν((−θ0, θ)) = θ−θ0

2θ0
> 1

2 for θ > 0, we
must have k(θ) > 0 for positive θ.

Now, the mass balance condition is equivalent to 1−µ(X≤(θ, k)) = A(k, θ) 1
π =

θ0−θ
2θ0

= 1−ν(−θ0, θ), where A(k, θ) is the area of the super-level set {−x1 sin(θ)+
x2 cos(θ) ≥ k}; k(θ) is the unique solution to this equation. By rotational sym-
metry, we note that A(k, θ) = A(k) is in fact independent of θ.

Differentiating with respect to θ yields:

A′(k(θ))k′(θ) = − π

2θ0
. (3)

To determine A(k), we note that by rotational symmetry, the distance from the
line to the origin is k.

Now, note that A(k) is the area of a wedge of the circle, minus the area of a
triangle. The height of the triangle is k, and it’s base length is 2

√
1− k2. The

angle of the wedge is given by 2 arccos(k), and so its area is arccos(k). The area
of the triangle is k

√
1− k2, so

A(k) = arccos(k)− k
√

1− k2

Differentiating, we get

A′(k) = − 1√
1− k2

−
√

1− k2+
k2√

1− k2
=

1√
1− k2

(−1−(1−k2)+k2) = −2
√

1− k2.

(4)
Therefore, substituting into (3), we have

k′(θ) =
π

4θ0
√

1− k2
(5)

Now, the lemma implies that we can find the complete solution to the prob-
lem by solving the sub-problem matching the top half of the disk, {x21 + x22 ≤
1, x2 > 0} to the top half of the arc, {(cos(θ), sin(θ)) : 0 ≤ θ ≤ θ0} and then
reflecting. The overall problem will be nested provided that

1. The sub-problem is nested.

2. The level curves for the sub-problem corresponding to θ > 0 do not inter-
sect the x1 axis (as in this case, they will meet a level curve corresponding
to −θ as well.)

We consider the second point first. This is equivalent to x0(θ) ≤ −1, or equiv-

alently, k(θ) ≥ sin(θ), for all θ ∈ (0, θ0), where (x0(θ), 0) = (− k(θ)
sin(θ) , 0) is the

intersection point between the population splitting level curve corresponding to
θ and the x1 axis. We show that this holds if and only if θ0 ≤ π

4 .
Noting that k > 0 for all θ > 0, (5) implies that if θ0 ≤ π

4 , we have

k′(θ) > 1 > cos(θ),
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for all θ > 0; integrating yields k(θ) > sin(θ) as desired.
On the other hand, if θ0 > π

4 , then k′(θ) < cos(θ) for small θ, so that
x0(θ) > −1 for sufficiently small values of θ, implying that the model is not
nested.

We turn now to the first point above: the nestedness of the subproblem.
Observe that as x0(θ) > −1, the population splitting level curves for the overall
problem coincide with those for the subproblem, The sub-problem is nested
provided that x0(θ) is a monotone decreasing function of θ, in which case since
the slope tan(θ) of the (affine) level curve is monotone increasing in θ, the
fact that x0(θ1) ≤ x0(θ2) when θ1 > θ2 will imply that these two lines do not
intersect in the upper half space {x2 > 0}.

We have −x′0(θ) sin2(θ) = k′(θ) sin(θ)− k(θ) cos(θ). The right hand side is 0
at θ = 0; if suffices to show it is always non-negative. Note that it’s derivative
is

k′′(θ) sin(θ) + k(θ) sin(θ).

As k′ is monotone increasing in k by (5) and k monotone increasing in θ as
k′ > 0, we have that k′′ > 0, yielding the desired result.

As the proof shows, in the nested case one can derive an equation (5) yielding
implicitly the relationship between k and θ, and consequently the level sets of
the optimal map. We present in Figures 1 - 3 numerical solutions for three
values of θ0, which agree with the qualitative properties of our analysis.

We note here that for all values of θ0, symmetry arguments imply that
the level set F−1(0) is contained in the line segment {x2 = 0} ∩ X. In the
first two simulations, the values of θ0 are below the nestedness threshold of
π
4 . The population slitting level curves F−1(θ) for θ > 0 lie entirely above the
x1 axis and distinct level curves do not intersect. Note as well that the level
curves corresponding to the same value of θ 6= 0 in the two graphs are disjoint
from each other, illustrating a multi-market testability property from [1] (see
Proposition 18 and Corollary 20 in [1]).

In the third simulation, we take θ0 above the nestedness threshold, so that
the model is non-nested. As we show in [2], the procedure we describe in Section
2 above breaks down in this case. More precisely, if we find the k = k(θ) such
that

µ(X≤(θ, k)) = ν(−θ0, θ) (6)

it turns out that the resulting line {sθ(x, θ) = k(θ)} intersects the line {x2 =
0} ∩ X for small values of θ. Thus, the procedure to define a mapping F
described in the previous section is not consistent in this case; it attempts to
map the point of intersection to both θ and −θ.

In Figure 3, the numerical solution is presented. One can see that for small
values of θ, the level sets F−1(θ) meets the level set F−1(−θ) at a point on the
line segment {x2 = 0} ∩X (note, however, that these true level curves are not
the same level curves predicted by equation (6)). Thus, there is a discontinuity
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in the matching function along this line segment; wives on this segment are
indifferent between two husbands, of the form θ and −θ for some θ > 0.

Remark 4. Even when the overall problem is non-nested, we expect, at least for
θ0 − π

4 small, that the subproblem introduced in the proof of the proposition is
nested. In this case, the equation characterizing k for small θ is different from
(5), as the mass splitting level curves for the top half of the disc will pass through
the boundary {x2 = 0}. Nestedness of the subproblem will follow provided one
can show that x0(θ) is monotone decreasing. As above, this will be the case if
k′′(θ) + k(θ) > 0. It is not hard to show that k > 0; convexity of k would imply
the desired result. The equation governing k becomes quite complicated in this
case, and verifying this convexity looks non-trivial.

For general multi- to one-dimensional problems, it seems reasonable to ask
whether the region X divides into several subregions Xi and that the model
(s,Xi, F (Xi)) is nested, where F is the optimal map.

Remark 5. One can bootstrap from (5) to infer that k′(θ) is infinitely many
times differentiable except near the boundary θ = ±θ0, where k approaches ±1
respectively, illustrating a regularity result (Theorem 16) from [2].
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Numerical isohusband curves matching a disc to an arc of length /10 
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Figure 1: Numerical solution matching uniform measure on the disc to an arc of
length π/10 (θ0 = π/20), resulting in a nested model. The coloured curves on
the disc are the level sets of the matching function, corresponding to the point
on the arc of the same colour.

8



Numerical isohusband curves matching a disc to an arc of length 2 /5 
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Figure 2: Numerical solution matching uniform measure on the disc to an arc
of length 2π/5 (θ0 = π/5), resulting in a nested model. The coloured curves on
the disc are the level sets of the matching function, corresponding to the point
on the arc of the same colour.
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Numerical isohusband curves matching a disc to a half circle 
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Figure 3: Numerical solution matching uniform measure on the disc to an arc
of length π (θ0 = π/2), resulting in a non-nested model. The coloured curves on
the disc are the level sets of the matching function, corresponding to the point
on the arc of the same colour.
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