
Mean Field Games in Asset Price
Coordination

Andrei Dranka

Student Number: 999766132

Supervisor: Robert McCann

April, 2017



Abstract

The purpose of this thesis is to model asset price dynamics when considering the
effects of herd behaviour and trend following. This is done using mean field games
which attempts to capture the interactions between market participants. This is
achieved by providing a reference trajectory for all the market participants, as well
as penalizing market participants who stray too far from the average price seen
by all participants. The model is tested on data from an asset price coordination
experiment performed in 2004 by Hommes et al. [1]. The model provides insights
into how the importance of predicting prices close to the average price affects the
average price path.
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Chapter 1

Introduction

1.1 Background

An important topic in behavioural finance is the study of trend following. Trend

following occurs when market participants predict future expected prices using re-

cent historical prices and price changes. According to Hommes et al. [1], trend

following is one of the main driving forces towards coordination of expectations in

asset pricing experiments. Understanding the dynamics of these simple asset pric-

ing experiments is crucial to fully understanding how trend following affects more

complicated systems.

A possible explanation of trend following is herd behaviour. Herd behaviour

describes how individuals in a group can act collectively without centralized direc-

tion. Individuals herd when knowledge of what others are investing changes their

decisions [2]. Essentially, the investors copy what others are doing.

One way to model this behaviour is to use agent based modeling with game the-

ory. Game theory is the study of mathematical models of interactions of intelligent

rational decision makers. When working with multi-agent systems, game theory

models can become very complex and difficult to solve. Mean field game (MFG)

theory, a class of problems discovered in 2006, models a large number of interact-

ing individuals by only considering the interactions of a single individual with the

‘mean field’ (an average of the population). This greatly reduces the complexity of
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1.2. OBJECTIVES

the system and allows for easy computation of solutions. For this reason, this thesis

will use mean field game theory to model the coordination of expectations in asset

pricing experiments.

The significance of this research is that it will show that when participants in

simple asset price prediction experiments coordinate on a price, the price path is

affected. The model will also assume that the particpants are acting rationally by

fulfilling an approximate Nash equilibrium (known as an ε-Nash equilibrium, i.e. no

agent can improve their objective by greater than ε without changing their strategy),

despite predicting prices that vary considerably from the fundamental price. As the

number of participants approaches infinity (N → ∞), the error ε, will approach

zero (ε→ 0) and the ε-Nash equilibrium becomes a regular Nash equilibrium. This

means that no participant or agent can improve their objective without changing

their strategy. A rational agent is defined as an agent that has clear preferences,

models uncertain outcomes with expectations of their utility function (from expected

utility theory [3]), and always performs actions with the optimal expected outcome

in mind.

1.2 Objectives

The objective of this thesis is to model asset price evolution. This will be done by

modeling coordination of asset prices using mean field game theory. Specifically, the

thesis will study how the price path evolves according to different model parameters.

Connections with other techniques used to model behavioural finance will also be

included.

1.3 Approach and methods

To achieve this goal, this research will use the model described in Mean Field LQG

Games in Leader-Follower Stochastic Multi-Agent Systems: Likelihood Ratio Based

Adaptation [4]. Once the model has been developed, a verification and validation

2



CHAPTER 1. INTRODUCTION

process will be completed. Proofs for all theoretical results will be formulated and

discussed, as well as the implications of certain formulations. This model will be

tested using data from Coordination of Expectations in Asset Pricing Experiments

[1], provided by Hommes et al. In this article, individuals predict the next period

price and the price is then calculated based on the individual’s predictions. This

is necessary to make sure that this model is not only mathematically and logically

sound, but can actually provide useful results.

The rest of this report will be organized as follows: in section 2, a literature

review will be discussed. The literature review will provide further background

knowledge into the subject matters as well as summarize current research and find-

ings. In section 3, the mean field game (MFG) model will be set up. In section 4,

the results will be shown as well as discussed. In section 5, the discussion about the

MFG model will be expanded on and possible future work will be outlined.
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Chapter 2

Literature Review

The literature review will be separated into three sections: behavioural finance re-

search, game theory research, and optimal stochastic control research. Each section

will introduce the relevant research in a top-down approach, i.e. concepts will be

drilled down from the most broad topic, to the most specific and needed in the

thesis.

2.1 Behavioural Finance

2.1.1 Background

A central issue in behavioural finance is explaining why market participants (such

as real investors) make systematic, irrational errors [5]. It has been observed that

market participants (e.g. in stock markets) do not adhere to the efficient market

hypothesis (EMH), which states that an asset price fully reflects all available infor-

mation [6]. This would imply that these market participants are not rational as they

make irrational systematic errors. It has also been shown that there are significant

autocorrelations in stock returns [7] [8], further invalidating EMH.

The study of behavioural finance attempts to explain many phenomena that

are observed in markets. This report will focus on two such phenomena: herd

behaviour and trend following. Herd behaviour occurs when market participants
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CHAPTER 2. LITERATURE REVIEW

act collectively without a centralized direction [9]. It occurs when investors change

their investment decisions when they have knowledge of what are others are doing

[2]. Herding behaviour is often used to partially explain asset price bubbles and

crashes [10] and has been identified in the collective irrationality of investors [11].

Trend following is an investment strategy that aims to take advantage of recent

changes in asset prices. Simply put, prices that have recently moved upwards tend

to continue to increase and prices that have recently decreased will continue to

do so [12]. Trend following strategies have also been shown to perform well with

strong positive returns and a low realized correlation [13]. There is evidence that the

herding behaviour prolongs trends as market participants often join the bandwagon

[14]. Trends often start from the self-confirming expectation feedback mechanism in

the market [1].

Another important concept in behavioural finance is the Keynesian beauty con-

test [15]. The idea is that individuals will price shares in the market by what they

believe everyone else thinks the price is, not by the fundamental value. Allen et al.

[16] formalized this concept and concluded the following two observations from their

research. First, the average price path will diverge from the market consensus of the

expected fundamental value of the asset. Second, prices from beauty contests react

more sluggishly to changes in the fundamental value of the asset (exhibiting a form

of inertia).

In order to study these phenomena, controlled experiments must be set up. This

is necessary because certain parameters (such as fundamental stock price, available

liquidity, etc.) must be controlled for. This allows for powerful tests on the robust-

ness of certain theories, which may not be possible with field data because of the

existence of many hidden parameters.

2.1.2 Coordination of Asset Prices

An asset pricing experiment was conducted by Hommes et al. and published in an

article called Coordination of Expectations in Asset Pricing Experiments [1]. In the

research, Hommes et al. created a simple asset pricing experiment: a one asset mar-
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2.1. BEHAVIOURAL FINANCE

ket was created and market participants were asked to predict the next period asset

price. Participants act as advisors to a pension fund, the higher their prediction,

the greater the demand for the asset by the pension fund. Market participants are

given their own past predictions, as well as the past prices of the asset determined

during the experiment. Participants are aware that the asset price is determined

by market equilibrium, but they do not know the underlying market equilibrium

equation. Participants are also not aware of the investment strategy of the pension

funds, the number of pension funds, and the identities of the other members of the

group. Participant earnings are inversely proportional to the prediction error, which

is known.

The market clearing price at period t in the experiment was determined by a

risk-free discounted weighted combination of the asset price predictions and the

fundamental price.

The results showed that market participants seemed to coordinate on a price

path. Price predictions do not deviate largely period to period compared to the

average price predicted. The market clearing price also has specific patterns and

trends, such as oscillating movements, exponentially decreasing oscillating move-

ments, and almost monotonic convergence towards the fundamental asset price.

This experiment is very similar in nature to the Keynesian beauty contest because

participants are successful in predicting what the future average price will be.

Hommes et al. model market participants using simple rules-based, linear fore-

casting strategies. These forecasting strategies are linear recurrence relations with

constant coefficients. In particular, recurrence relations of degree-2, 3 and 4 are

highlighted. These relations are shown to model individual forecasting strategies

very well in the experiments. A degree-2 recurrence relation can have the following

form

peh,t+1 = αh + βhpt−1 + δh(pt−1 − pt−2) (2.1)

where peh,t+1 is the predicted next period price, pt is the actual asset price at time

t, and αh, βh, δh ∈ R are the agent parameters.

6
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As explained in [1], this equation has a nice behavioural interpretation. The first

two terms on the right hand side show that the expected future price depends on the

last price observed. The third term shows that agents will also use the trend in the

their predictions. If δ > 0, a positive feedback occurs and individuals are considered

trend extrapolators. If δ < 0, the agent is considered a contrarian, predicting in the

opposite direction of the trend.

2.1.3 Other Asset Price Prediction Models

In Asset Pricing Under Endogenous Expectations in an Artificial Stock Market [17],

a theory of asset pricing is proposed. In it, heterogenous agents continually adapt

their expectations to the the market, which the market aggressively creates. Agents

therefore continuously make expectational models which they update depending on

which models are the most successful. This model is very similar to the model

proposed by Hommes et al. because individuals create their prediction strategies

based on price changes, specifically moving averages. Strategies of individuals also

change to the most optimal strategies, where most optimal is defined as the best

predicting strategy for the next period price (thus suggesting a Keynesian beauty

contest). This model differs from Hommes et al. as it incorporates the fundamental

price into the individuals’ price predictions. The model also is intended to be used

in a more general setting (predicting and acting on prices), whereas the previous

model is more focused on just price predictions (not necessarily acting upon them).

When modeling Keynesian beauty contests, it may be beneficial to determine

whether or not the model satisfies a Nash equilibrium. This is shown in Information

aggregation in a beauty contest game[18], where players try to approach a certain

state, while gathering information from other agents. Nash equilibriums and their

relevance to economics will be looked at more closely in the next section.
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2.2. GAME THEORY

2.2 Game Theory

2.2.1 Background

Game theory is the study of mathematical models of interacting intelligent rational

decision makers [19]. In this context a game is a system which players engage in with

rules, strategies and outcomes that are defined by clear mathematical parameters.

Games can be divided into two groups: cooperative and non-cooperative games [20].

A non-cooperative game is one in which only self-enforcing agreements are possible

[21]. A self-enforcing agreement is one in which an alliance is made between two

individuals and is enforced by only those two individuals, i.e. no third party can

interfere. This means that alliances and coalitions cannot be formed because the

agreement is between more than two players. Cooperative games are ones in which

groups of players can form alliances and coalitions due to the possibility of external

enforcement cooperative behaviour. Coordination games are a special subset of

cooperative games where players choose the same or corresponding strategies [22].

An important idea in game theory is the Nash equilibrium. A Nash equilibrium is

defined as a solution concept, a formal set of rules for predicting how a certain game

will be played. Here, all players know each other’s equilibrium strategy and no player

has anything to gain by changing their own strategy, if all others remain constant.

If agents act such that their actions can be predicted with a Nash equilibrium, it

provides strong evidence for agents acting rationally. This is because every Nash

equilibrium is also a rationalizable equilibrium [23]. A rationalizable equilibrium is a

solution concept that provides the weakest constraints on agents while maintaining

that agents are rational and this rationality is common knowledge to every agent.

A rational agent has three main characteristics: they have clear preferences, they

model uncertainty with expectations of their utility function (from expected utility

theory [3]), and they always perform actions with the optimal expected outcome.

A Nash equilibrium satisfies the third characteristic; agents will make decisions to

optimize their expected outcome, however it may be defined.
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CHAPTER 2. LITERATURE REVIEW

2.2.2 Multi-agent Systems

For many behavioural economic models, such as the coordination of asset prices, it

is appropriate to define a multi-agent system. This model must consist of rational,

intelligent agents, therefore satisfying the three characteristics from section 2.2.1.

In multi-agent systems, the agents’ decisions depend on their own actions, how

their actions influence others’ actions, and how others’ actions influence their own.

Modeling multi-agent systems in this way can be very difficult. This is because it can

be challenging to verify and confirm whether or not a certain model satisfies a Nash

equilibrium. The number of interactions increases exponentially as the number of

agents increases, further adding to the complexity. Analytical solutions are difficult

to find. Oftentimes, only computer simulations can solve such problems.

2.2.3 Mean Field Game Theory

In 2006 a new field of game theory was developed independently by two groups which

has since been titled mean field game theory. Each group took different approaches

to the development of mean field game theory, but the two are related and have a

direct correspondence. Mean field game theory is used to study strategic decision

making between very large populations of agents. The central idea behind mean

field game theory is that each interacting agent alone is insignificant compared to

the very large population, but are significant when aggregated together. This creates

only two relationships: interactions between an agent and a population, and how

the population changes considering these interactions.

Work by Lasry and Lions

From Lasry and Lions [24], these relationships can be described with a coupled

system of equations, one evolving forward in time and one evolving backward in

time. The backward in time equation is a Hamilton-Jacobi-Bellman (HJB) equa-

tion. It describes the interactions between an individual agent and the population

distribution.

9



2.2. GAME THEORY

The HJB equation is a partial differential equation that is central to optimal

control theory. Given a cost function, the solution of the HJB is a value function

which gives the minimum cost for a defined dynamical system. It can be thought of

as the integral of Newton’s second law. In mean field game theory, the HJB equation

is used to represent the agent’s optimal decisions based on where they wish to be in

the future. It is stated as such

∂J

∂t
−∆J +H(x,∇J) = V (x,m), J |t=0= V0(x,m(x, 0)) (2.2)

where J is a scalar function associated with the cost, x is the state of the agent,

H(x, p) is a given convex function (typically a Legendre transform). m > 0,
∫
mdx =

1,∀t ∈ [0, T ] in this context is the mass of the population, a probability distribution

of the states of all the agents. V (x,m) is the marginal cost for being at state x and

mass distribution m. Precise definitions are given in [24].

The forward in time equation is the Fokker-Planck (FP) equation. The FP

equation is a partial differential equation that describes the time evolution of a

probability density function of the “velocity” of a particle while under drag and

other random forces. It is a kind of continuity equation. In mean field game theory,

this equation represents where the agents actually end up based on their initial

position. This can be summarized with the following equation

∂m

∂t
+ ∆m+∇ · (∂H

∂p
(x,∇u) ·m) = 0, m|t=T= m0 (2.3)

Solving these two equations together is highly non-trivial. In many cases, exis-

tence and uniqueness break down, suggesting the mean field approximation of the

system is not even a valid approach [24]. This thesis will focus specifically on the

cases where existence and uniqueness do exist, which offers some validity to the

approximation. An excellent summary of this approach of mean field games can be

found from Cardaliaguet [25].

10
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Work from Huang et al.

From Huang et al. came the second approach to mean field game theory [26]. This

approach considers the problem from an optimal stochastic control perspective. This

paper defines the Nash-Certainty Equivalence (NCE) Methodology, a technique used

to solve mean field games. This technique requires that the problem be set up using

a controlled stochastic process of the McKean-Vlasov type (coefficients of process

depend on distribution of agents) and a corresponding control performance. The

McKean-Vlasov process described has the following form for an n-agent dynamic

game

dxt = f [xt, ut, µ
1
t , · · · , µKt ]dt+ σdwt (2.4)

where xt is the agent’s state at time t, f(·) is the drift coefficient, ut is the input

control at time t, and µit, 1 ≤ i ≤ K ≤ n is the probability distribution of agent i

at time t. K agents are used as an approximation of the n agents, which should be

sufficient if K is large enough and n→∞. This equation is coupled to the following

cost function

J(u, µ1
t , · · · , µKt ) := E(

∫ T

0

L[xt, ut, µ
1
t , · · · , µKt ]dt) (2.5)

where L(·) is a nonlinear function that maps to R+ = [0,∞). These two ap-

proaches are in essence explaining the same concept. The first method from Lasry

and Lions is more general, it allows a greater number of problems to be modeled.

However, this generality comes at the price of making the problems very difficult to

solve analytically and even numerically. On the other hand, the second approach

from [26] provides an easier method to solve both analytically and numerically mean

field games, at the cost of restricting the number of problems that can be modeled.

For this reason, the second method will be the primary technique that will be used

in the present study.

An extension of [26] was done and titled Mean Field LQG Control in Leader-

Follower Stochastic Multi-Agent Systems: Likelihood Ratio Based Adaptation [4].

11



2.3. OPTIMAL STOCHASTIC CONTROL

Many of the results applied in this paper were also discovered by Li and Zhang in

[27]. The initial model in [26] is now extended to include multi-dimensional states

for each agent, two kinds of agents (leaders and followers), as well as define a so-

called adaptive follower that can change trajectories depending on the mean field

path. This thesis will use the results from [4] extensively.

2.3 Optimal Stochastic Control

Optimal stochastic control theory is widely in used in the finance literature [28]. Op-

timal stochastic control theory is concerned with minimizing the cost of a dynamical

stochastic system. The focus in this thesis will be on a Linear-Quadratic-Gaussian

(LQG) regulator. An LQG regulator is a feedback controller with a continuous-time

linear stochastic system, with a quadratic cost function. It can be described with

two equations [29]. The first is the Itô process:

dz = (az + bu)dt+ cdW

where z is the system state, u is the control input, W is the standard Wiener

process, and a, b, and c are all constants.

The second equation is the quadratic cost function defined as:

J(z(t), u(t)) =

∫ t1

t0

qz(t)2 + ru(t)2dt+ fz(t)2

where q, r, and f are all constants.

12



Chapter 3

Setting Up the MFG Model

3.1 Problem Formulation

The goal of this thesis is to model rational, intelligent agents that coordinate on

asset prices, as found by [1]. To do this, we model the system using mean field

(MF) linear-quadratic-Gaussian (LQG) stochastic control theory. As we will see,

the mean field comes from coupling between the stochastic dynamics of each agent

and the cost function. The linear-quadratic term appears because the cost function

is a linear-quadratic regulator, and the term Gaussian is present because we will use

the Wiener process, which has a Gaussian distribution.

The stochastic dynamics of each of the n agents will given by the following Itô

process:

dzi = (aizi + biui)dt+ cidWi (3.1)

where {zi ∈ R : 1 ≤ i ≤ n} is the state of agent i, {ui ∈ R : 1 ≤ i ≤ n} is the

control input for agent i, and {Wi : 1 ≤ i ≤ n} is the standard Wiener process for

agent i. The terms ai, bi and ci ∈ R are constant parameters defined for each agent

i. The initial states of each agent are given as {zi(0) ∈ R : 1 ≤ i ≤ n} which are

assumed to be independent of each other and independent of Wi.

The control input must have certain bounds and restrictions in order to make

13
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intuitive sense. For example, control input should not have any information about

future random processes, hence they should be non-anticipating. Restrictions will

be applied using an admissible control set. This control set will be defined as such:

Ui := {ui : ui(t) is adapted to sigma-field σ(zj(s), s ≤ t, 1 ≤ j ≤ n), ‖zi(T )‖=

o(
√
T ),
∫ T
0
‖zi(t)‖2dt = O(T )(a.s.)}. These conditions ensure that the control input

is both feasible and realistic.

The formulation of the control input of each agent will entirely depend on the

cost function that is chosen. For the cost function, we would like the agents to

coordinate towards some defined path, however, we also want some penalty towards

changing an agent’s strategy. This path must depend on what state each agent is

currently in, as well as future states the agents can traverse. The cost function

should also be indifferent as to whether or not the agent is approaching from above

or below. The model should assume that there is no terminal time for the game,

thus prompting the model to be a long-run average cost function. The following

cost function will be used

Ji(ui;u−i) := lim sup
T→∞

1

T

∫ T

0

q(zi(t)− φ(t, zi, z−i))
2 + rui(t)

2dt (3.2)

where Ji(·) is the cost function we wish to minimize, q > 0 is the weight given

to keep the agents close to φ, the trajectory function, r > 0 is the weight given

to cost of increasing the control in magnitude, and φ is the trajectory function the

agents try to approach. For notational purposes, u−i and z−i will be defined as

such: u−i := (u1, · · · , ui−1, ui+1, · · · , un) and z−i := (z1, · · · , zi−1, zi+1, · · · , zn). The

trajectory function will be given the following convex combination form

φ(t, zi, z−i) := λh(t) + (1− λ)ψ(t, zi, z−i) (3.3)

where λ ∈ (0, 1) is a scalar, h(·) ∈ Cb, where Cb := {f ∈ C : supt≥0‖f(t)‖<∞},

C is the family of all continuous functions. h(·) is the reference function that all

agents are aware of and each agent tries to follow with weight λ. ψ(t, zi, z−i) :=∑n
i=1 z̄i(t)/n is the centroid of all the agents. This term couples the cost function
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CHAPTER 3. SETTING UP THE MFG MODEL

to the dynamics equation for each agent.

For this thesis, a simplification will be made. ai and bi will be the same value

for each agent, denoted by a and b. This constraint may be relaxed in future work.

3.2 Mean Field Game Approach using Nash Cer-

tainty Equivalence Principle

According to [27], the following theorem is known (simplified for scalars):

Theorem 1 For the LQG optimal control problem (3.1) - (3.2), assume (i) [a, b] is

stabilizable, (ii) [a,
√
q] is detectable, and (iii) φ(·) ∈ Cb. Then we have:

(a) The algebraic Riccati equation 2aP − b2

r
P 2 + q = 0 has a unique solution P

(b) γ := a− b2

r
P is asymptotically stable

(c) The differential equation ds/dt = −γs+ qφ has a unique solution in Cb:

s(t) = −
∫ ∞
t

eγ(τ−t)qφ(τ)dτ (3.4)

(d) The optimal control law: uo(·) := arg infu(·)∈U J(u(·)) = − b
r
(Pz(·) + s(·))

Proof: See Theorem 3.1 in [27]. �

The term stabilizable means that all uncontrollable state variables can be made

to have stable dynamics [29]. The term detectable means that all unobserved state

variables are stable, where unobserved means that the internal states of the system

cannot be inferred by system outputs. These conditions on the chosen parameters

[a, b,
√
q] ensure that the agent states will remain bounded.

This theorem allows us to calculate the optimal control input for each agent,

given the parameters of the system. The algebraic Riccati equation mentioned in

the theorem is a connection between Lasry and Lions method and Nourian et al.

method. Simply put, the HJB equation can be restated using the algebraic Riccati

equation.
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3.3. ε-NASH EQUILIBRIUM

The optimal control is a function of several inputs, all of which can be obtained

or calculated. b, r, and z can be easily gathered, and P is just the solution to a

quadratic equation. The only input that needs to be solved for is s(t).

s(t) can be viewed as a Laplace transform of φ(t), with a scaling parameter of

q. At each time instance t, s(t) contains information about the entire path of φ(t)

exponentially weighted. This means the further in the future, the less weight it will

have currently. In this way s(t) can anticipate some future movements that may

occur along the path of φ(t). s(t) can be considered like a mass tracking equation.

In order to solve for s(t), we need to solve ψ(t), t ∈ [0,∞). To do this, we must

express the problem through a system of mean field equations.

The following mean field system of equations can be derived, as shown in [4]

dsi
dt

= −γs+ qφ (3.5)

dz̄i
dt

= γz̄ − b2

r
s (3.6)

ψ(t) =

∑n
i=1 z̄i(t)

n
(3.7)

φ(t) = λh(t) + (1− λ)ψ(t) (3.8)

3.3 ε-Nash Equilibrium

An ε-Nash equilibrium can be defined as follows [4]

Definition 1 Given ε > 0, a set of controls uok ∈ Uk, 1 ≤ k ≤ n if for any i, 1 ≤ i ≤

n

Jni (uoi , u
o
−i)− ε ≤ inf

ui∈Ui
Jni (uoi , u

o
−i) ≤ Jni (uoi , u

o
−i) (a.s.)

where uoi = arg infui∈Ui J(ui).
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CHAPTER 3. SETTING UP THE MFG MODEL

In our system, ε depends on the number of agents in the system. It can be

defined as such

(εn)2 := lim sup
T→inf

1

T

∫ T

0

(ψ(t))− 1

n

n∑
i=1

zi(t))
2dt (3.9)

The above equation can be interpreted as the distance between the calculated

mean price path and the actual mean price path that is observed. These two will

differ because the state dynamics for each agent is a random process. The smaller

the coefficient c from (3.1), the smaller the ε. Increasing the number of agents will

also reduce ε. According to [4] (Theorem 6.1), as n increases, ε begins to approach

zero. In other words, limn→∞ εn = 0 (a.s.).

Showing that an ε-Nash equilibrium exists in the system helps justify that the

agent is behaving intelligently and rationally.

3.4 Rules-based Decisions to Continuous Func-

tion

3.4.1 From Discrete to Continuous

In order to determine a reference path h(t), we must analyze what strategies agents

are using. According to [1], forecasting strategies of agents are simple linear recur-

rence relations. The majority of participants in their experiment use second order

recurrence relations, or explained another way, a linear autoregressive prediction

strategy with two lags (uses previous two historical prices). This can expressed with

the following rule:

peh,t+1 = α + βpt−1 + δ(pt−1 − pt−2) (3.10)

where peh,t+1 is the predicted next period price, pt is the actual asset price at time

t, and αh, βh, δh ∈ R are the agent parameters.

Participants will coordinate on one of these simple models in the majority of
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3.4. RULES-BASED DECISIONS TO CONTINUOUS FUNCTION

cases. Hommes et al. mentions that all participants seem to use this rule with at

most four lags, and all groups coordinate to rules with at most three lags. If these

rules were made continuous, they could be used as an approximation of the reference

function. To do this, we must solve the recurrence relation.

We will solve an order-2 nonhomogeneous linear recurrence relation with constant

coefficients with the following form:

bt = β1bt−1 + β2bt−2 + α (3.11)

To simplify, the above equation needs to be converted to a homogeneous recur-

rence relation, i.e. there should be no constant α term. We do this by setting the

equation to steady state, i.e. bt = bt−1 = bt−2 = b∗. Using this, we obtain

b∗ =
α

1− β1 − β2
(3.12)

We can then rewrite the recurrence equation into the following homogenous form:

(bt − b∗) = β1(bt−1 − b∗) + β2(bt−2 − b∗) (3.13)

Setting at = bt − b∗ gives us:

at = β1at−1 + β2at−2 (3.14)

To solve the recurrence relation we will make the following ansatz: at = rt. This

gives us:

rt = β1r
t−1 + β2r

t−2 (3.15)

Dividing by rt−2 gives us the following quadratic equation:

r2 − β1r − β2 = 0 (3.16)

This will give us the following solution for at
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CHAPTER 3. SETTING UP THE MFG MODEL

at =

 αλt1 +Dλt2, for λ1 6= λ2

αλt +Dtλt, for λ1 = λ2 := λ
(3.17)

where λ1, λ2 are the characteristic roots or eigenvalues of the characteristic equa-

tion.

From [30] it can be shown that a solution, given initial conditions a1 and a2, will

have the following form:

a(t) = (−β2)
t
2 (E cos(θt) + F sin(θt)), (3.18)

E =
−β1a1 + a2

β2
(3.19)

F = −iβ
2
1a1 − β1a2 + 2β2a1

β2
√
β2
1 + 4β2

(3.20)

θ = arccos(
β1

2
√
−β2

) (3.21)

Allowing t to be any real number greater than zero allows us to extend our

rules-based decisions as a continuous function.

3.4.2 Estimating Parameters

In order to verify that the model represents the experiment accurately, statistical

tests will be performed between experiment data and simulations produced by the

model. Experimental data was generously provided by professor Cars Hommes.

To complete the model, a reference function h must be provided. For the statis-

tical tests, the reference function will be chosen based on the data provided. The

method of least squares will be performed on the data to best estimate the parame-

ters. The least squares method in vector form was provided by [31]. The continuous

reference function will then be derived from the chosen parameters, using equations

(3.18) - (3.21).
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3.4. RULES-BASED DECISIONS TO CONTINUOUS FUNCTION

To perform the method of least squares,the parameter vector Q and data vector

dt will be defined as such:

Q :=


α

β1

β2

 , dt :=


1

pt−1

pt−2


This allows the model recurrence relation to be expressed as such:

p̂t = QTdt (3.22)

where p̂t is the predicted next period price. Let QT denote the transpose of Q.

To perform least squares, the following function VM must be minimized.

VM(Q) =
1

M

M∑
t=1

(pt − p̂t)2 (3.23)

Where M is the number of periods. Substituting and expanding gives us:

VM(Q) =
1

M

M∑
t=1

(pt −QTdt)
2

VM(Q) =
1

M

M∑
t=1

p2t −
1

M

M∑
t=1

2QTdtpt +
1

M

M∑
t=1

QTdtd
T
t Q

Define fM and RM to simplify:

fM :=
1

M

M∑
t=1

dtpt

RM :=
1

M

M∑
t=1

dtd
T
t

Replacing these definitions into our objective gives:

VM(Q) =
1

M

M∑
t=1

p2t − 2QTfM +QTRMQ
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Assume that RM is invertible. Then we can rewrite the equation as:

VM(Q) =
1

M

M∑
t=1

p2t − fTMR−1M fM + (Q−R−1M )TRM(Q−R−1M )

To perform least squares, we want to select the parameters Q that will minimize

the cost VM . Only the third term is a function of Q, and it is always positive because

RM is a positive semi-definite matrix. Therefore to minimize the cost, the following

Q must be selected:

Qo := arg min
Q

VM(Q) = R−1M fM (3.24)

By experimentation conducted during the thesis, it has been determined that this

formulation for parameter estimation is good when data is monotonically converging

to a single asset price. However, for sinusoidal patterns, this parameter estimation

is not sufficient. It fails to capture the constant sinusoidal movements, often pre-

dicting parameters that produce sinusoidal patterns with increasing or decreasing

amplitude. In order to have a non-increasing and non-decreasing (stationary) pat-

tern, or persistent oscillations, the parameter β2 must be equal to −1.

One way to capture the sinusoidal pattern is to force the parameter β2 equal to

−1. When this is done, RM and fM are redefined as:

RM :=
1

M

M∑
t=1

 1

pt−1

(1 pt−1

)
, fM :=

1

M

M∑
t=1

 1

pt−1

 · (pt + pt−2)

Solving the equation for Q will give us α and β2. It will be shown in the results

that forcing β2 equal to −1 will not change the cost from equation (3.23) by a

significant amount.

Python code was written to calculate the parameters. See Appendix A for the

code.
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3.5. SOLVING THE MEAN FIELD SET OF EQUATIONS

3.5 Solving the Mean Field Set of Equations

Solving this system of equations for z̄i(t) gives the following expression, as deter-

mined by [4]

z̄i(t) = eγitz̄i(0) +

∫ t

0

eγi(t−s)
b2

r
× (

∫ ∞
s

eγ(τ−ω)q(λh(τ) + (1− λ)ψ(τ))dτ)dω (3.25)

Substituting this equation into 3.7 and reducing gives the following solution:

ψ(t) =

∑n
i=1 e

γitz̄i(0)

n
+

∫ t

0

eγi(t−s)
b2

r
× (

∫ ∞
s

eγ(τ−ω)q(λh(τ) + (1− λ)ψ(τ))dτ)dω

(3.26)

It can be shown using a contraction mapping argument that a unique solution

exists for ψ(t) as long as λ ∈ (0, 1) [27].

Taking a derivative of both sides and simplifying yields:

−γe−γtψ(t) + e−γt
dψ(t)

dt
=
b2

r
qe−2γt

∫ ∞
t

eγτ (λh(τ) + (1− λ)ψ(τ))dτ (3.27)

Taking a second derivative with respect to time and simplifying once more gives

us the following second order linear differential equation:

d2ψ(t)

dt2
+ 2γ

dψ(t)

dt
− (a2 +

b2

r
qλ)ψ(t) = −b

2

r
qλh(t) (3.28)

The general solution of the nonhomogeneous equation has the form ψ(t) =

c1y1(t) + c2y2(t) + Y (t) where y1 and y2 are the fundamental set of solutions of

the corresponding homogeneous equations (y1(t) = er1t y2(t) = er2t where r1,2 are

the roots of the characteristic equation), c1 and c2 are the constants that need to be

solved for, and Y is the specific solution to the nonhomogeneous equation.

This differential equation must also have two conditions to generate a unique

solution and solve for the constants c1 and c2. The first is the initial condition of ψ,
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which is

ψ(0) =

∑n
i=1 z̄i(0)

n
(3.29)

The second condition is that the solution must be bounded. Below are the

solutions to r1 and r2, the roots of the characteristic equation of the corresponding

homogenous equation:

r1 =

√
a2 +

b2

r
q +

√
2a2 +

b2

r
q(λ+ 1) (3.30)

r2 =

√
a2 +

b2

r
q −

√
2a2 +

b2

r
q(λ+ 1) (3.31)

It is easy to see that r1 is strictly positive and r2 is strictly negative. This forces

c1 = 0 because our solution must be bounded.

Depending on the reference function h, an analytical solution to the differential

equation can be determined.

Python code was written to solve the MFG set of equations in the three regimes.

Code can be found in Appendix B.
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Chapter 4

MFG Model Results

4.1 Comparison with Hommes et al.

Hommes et al. classify their groups into three categories: monotonic convergence,

converging oscillations, and persistent oscillations. All three will be modeled and

statistically tested against the experimental data.

4.1.1 Monotonic Convergence Price Path

For the monotonic convergence price path, group 2 from Hommes et al. will be used.

The group appears to converge towards the fundamental asset price equal to 60.

Figure 4.1 shows group 2 from [1]. Hommes et al. obtained this graph by

doing the experiment outlined in Section 1 of [1]. As a reminder to the reader, the

experiment involves asking participants to predict the next period prices given their

historical predictions and the historical market prices during the experiment. The

market price is then determined by the participants’ predictions.

Applying least squares to the data provided, the parameters are obtained for the

recurrence relation, summarized in Table 4.1.

Converting this recurrence relation using equations (3.18) - (3.21), it is then used

as the reference function h.

Simulations are done using the parameters determined for group 2. The time
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Table 4.1: Monotonic Convergence Least Squares Parameters

Group # Parameter Least Squares Value

2
α 7.463
β1 0.918
β2 -0.050

step that will be used will be equal to ∆t = 1 and will the simulation will commence

at t = 0 and end at t = 50.
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Figure 4.1: Group 2 from [1]. 6 participants were asked to predict future asset
prices.
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Figure 4.2: Simulation of price predictions for 6 participants using group 2 data.

Figure 4.2 shows the result of one simulation. By observation, the period as well

as amplitude of the oscillations are very similar to the ones observed by Hommes et

al. in [1].

Simulations provide a good prediction for the average price path. It also captures

the behaviour of the market participants well. This is validated by calculating the
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Figure 4.3: Average simulation price path vs average price path of group 2 from [1]

mean squared error, mean absolute error and the correlation between the two average

price paths. The correlation is very high at 0.941 between the experimental and

simulation data. The mean squared error and mean absolute error are both very

low at 0.746 and 0.648 respectively.

The reason for comparing the actual data against the simulated data is to show

that the proper behaviour is captured, not necessarily for predictive purposes.

Table 4.2: Monotonic convergence - statistics comparing group 2 from [1] to simu-
lation from MFG model.

Parameter Value
Mean Squared Error 0.746
Mean Absolute Error 0.648

Correlation 0.941

4.1.2 Converging Oscillations Price Path

For the converging oscillations price path, group 7 from Hommes et al. will be used.

This centers around the fundamental asset price equal to 60.

Figure 4.4 shows group 7 from [1]. Applying least squares to the data provided,

the following parameters are estimated for the recurrence relation:

Converting this recurrence relation using equations (3.18) - (3.21), it is then used

as the reference function h.

Simulations are done using the parameters determined for group 7. The time
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Table 4.3: Monotonic Convergence Least Squares Parameters

Group # Parameter Least Squares Value

7
α 46.276
β1 1.027
β2 -0.8120

step that will be used will be equal to ∆t = 1 and the simulation will commence

at t = 15 and end at t = 50. The reason why the simulation will start at t = 15 is

because the converging oscillations do not begin until this time period.

Table 4.4: Monotonic Convergence MFG Parameters

Parameter Value
a 0.01
b 1
c 8
q 1
r 0.01
λ 0.8
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Figure 4.4: Group 7 from [1]. 6 participants were asked to predict future asset
prices.

The simulations show a similar pattern to the actual data: both display converg-

ing oscillations. However, the period, amplitude and phase are all slightly skewed.

The reason behind this is that in most data, the period is non-constant. It varies

from cycle to cycle, but very slightly. This is difficult to capture in the 2 step re-
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Figure 4.5: Simulation of price predictions for 6 participants using group 7 data.

currence relation. It is stressed that the model is not predictive, only descriptive of

the dynamics of the price predictions.
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Figure 4.6: Average simulation price path vs average price path of group 7 from [1]

Table 4.5: Converging oscillations - statistics comparing group 7 from [1] to simu-
lation from MFG model.

Parameter Value
Mean Squared Error 20.034
Mean Absolute Error 3.488

Correlation 0.404

Although the model does not predict the price path exactly, it does predict the

shape well. The correlation is positive at 0.404 with a mean absolute error of 3.488.

This is much smaller than the mean squared error of 20.034. Mean squared error

heavily weights outliers, which shows when comparing the mean squared error and

mean absolute error. This means that the model predicted follows the path fairly
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well, but diverges for some cycles causing large outliers.

4.1.3 Persistent Oscillations Price Path

For the converging oscillations price path, group 1 from Hommes et al. will be used.

The price path oscillates around the fundamental asset price equal to 60.

Figure 4.7 shows group 1 from [1].

When least squares is applied, the predicted parameters almost never result in

a sinusoidal pattern. This is because least squares tends to overfit the errors in the

data. The only solution that gives sinusoidal patterns is when β2 = −1. Estimating

the parameter to be exactly equal to a specific value is very challenging unless the

data is near perfect.

To overcome this obstacle, a modified least squares will be performed. This

modified least squares will force β2 = −1. More details can be found in Section

3.4.2. Applying least squares to the data provided, the following parameters are

estimated for the recurrence relation:

Table 4.6: Persistent Oscillations Least Squares Parameters

Group # Parameter Least Squares Value

1
α 25.094
β1 1.555
β2 -1

Converting this recurrence relation using equations (3.18) - (3.21), it is then used

as the reference function h.

Simulations are done using the parameters determined for group 1. The time

step that will be used will be equal to ∆t = 1 and the simulation will commence

at t = 1 and end at t = 30. The reason why the simulation will end at t = 30

is because the persistent oscillations briefly change the period length for one cycle.

Once again, the model proposed is not predictive. It is difficult to account for small

changes such as a slightly shorter period length.
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Table 4.7: Persistent Oscillations MFG Parameters

Parameter Value
a 0.01
b 1
c 4
q 1
r 0.01
λ 0.8
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Figure 4.7: Group 1 from [1]. 6 participants were asked to predict future asset
prices.
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Figure 4.8: Simulation of price predictions for 6 participants using group 1 data.
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The simulations show a similar pattern to the actual data: both show persistent

oscillations. The period and amplitude are both well predicted.
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Figure 4.9: Average simulation price path vs average price path of group 1 from [1]

Table 4.8: Persistent oscillations - statistics comparing group 1 from [1] to simulation
from MFG model.

Parameter Value
Mean Squared Error 4.996
Mean Absolute Error 1.895

Correlation 0.846

The correlation between the experimental data and the model prediction is high,

at 0.846. The mean squared error and mean absolute error are both low at 4.996

and 1.895 respectively. This provides further justification that the model gives a

good description of the underlying price dynamics in the system.

4.2 Sensitivity Analysis of Reference Weight λ

The weight on the reference function λ determines how much focus the market

participant gives on the reference signal h(t), versus how much focus the market

participant puts on the average price ψ(t). Understanding how the weight on the

reference function changes the average price path is important in determining how

herd behaviour impacts the average price path.
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Figure 4.10: Comparing the mean price path when changing the weight on the
reference trajectory.

It is expected that the lower the value of the weight on the reference function,

the lower the correlation will be between the average price path and the reference

function.

This hypothesis will be tested over 5 different values for the weight on the refer-

ence function, i.e. λ ∈ {0.1, 0.2, 0.3, 0.5, 0.7}.

The following figure will show the mean price path ψ versus the reference tra-

jectory h for varying weights on the reference.

Figure 4.10 shows that as the weight on the reference λ decreases, the mean

price path starts to lag behind the reference trajectory. The amplitude also starts

to decrease as the market participants do not want to follow the reference trajectory

to its bounds. This can be interpreted as the mean price having inertia. It does not

want to change drastically because the weight on it has increased. The mean price

starts to diverge significantly at λ = 0.1, where the phase shift is 3 periods and the

amplitude has decreased to 58.3% of the reference function h.

4.3 Relation to Other Mean Field Game Theory

Approach

The problem stated in this thesis takes the mean field game theory approach from

Huang et al. However, the problem can be expressed as a coupled set of partial
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differential equations, as describe in Section 2. This section will cover convert-

ing from one form to another by deriving both partial differential equations: the

Hamilton-Jacobi-Bellman equation and the Fokker-Planck equation.

4.3.1 Cost Function to Hamilton-Jacobi-Bellman Equation

Let zi(t) be the state of agent i at time t. The dynamics of agent i will follow the

following Itô process:

dzi = f(zi(t), ui(t))dt+ cdWi

where f(zi(t), ui(t)) is the drift term, c > 0 is the volatility term and Wi is a

standard Wiener process for agent i. Letting f(zi(t), ui(t), t) = azi(t) + bui(t) will

recover the original problem.

The cost function Ji(zi(t), ui(t)) will be defined as such:

Ji(zi(t), ui(t)) := lim sup
T→∞

1

T
Vi(zi(t), ui(t))

Vi(zi(t), ui(t)) := E{
∫ T

t

g(zi(τ), ui(τ))dτ}

The cost function defined above is the same as the original cost function, except

there is now a dependence on t in the lower bound of the integral, and there is an

expectation of the cost function (as it appears to be a random variable).

When T →∞, the cost function does not have a dependence on t. Without loss

of generality, t can be set to t = 0.

When T →∞, the expectation of the cost function is also equivalent to the cost

function without the expectation. Put simply, the cost function can be separated

into two terms, one a random variable, and the other not a random variable. The

random variable term has an order of O(T 1/2+ε),∀ε > 0 (where ε is defined in

Section 3.3), whereas the non random variable has an order of O(T ). As T → ∞

and assuming ε is sufficiently small, the random term becomes insignificant. This
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allows the expectation to be dropped in the original formulation. This idea is more

fully described in the proof of Theorem 1 in [27]. Letting g(zi(t), ui(t)) = q(zi(t)−

φ(t))2 + rui(t)
2 gives us the original problem formulation.

4.3.2 Relation between Average-Cost and Discounted Cost

One more change will be made to formulation before a link can be made to the

Lasry and Lions method. Currently, the cost function is an average-cost function

in an infinite time horizon. This form is very difficult to work with. Fortunately,

the cost function can be rewritten as an infinite horizon discounted cost, with the

discount factor approaching zero, under certain conditions and assumptions.

Define V ρ
i as:

V ρ
i (zi(t), ui(t)) := E{

∫ ∞
t

e−ρτgi(zi(τ), ui(τ))dτ}

The infinite horizon discounted cost function currently has a dependence on t

within the integral. The equation can be rearranged to remove the dependency:

V ρ
i (zi(t), ui(t), t) := E{e−ρt

∫ ∞
t

e−ρ(τ−t)gi(zi(τ), ui(τ))dτ} (4.1)

Taking the derivative with respect to time on equation 4.1 gives the following:

∂V ρ
i

∂t
= E{−ρe−ρt

∫ ∞
t

e−ρ(τ−t)gi(zi(τ), ui(τ))dτ}

∂V ρ
i

∂t
= −ρV ρ

i (4.2)

Using Theorem 2 from [32], it can be shown that the average-cost problem can

be expressed as a discounted cost with the discounting factor approaching zero:

lim sup
ρ→0

ρV ρ
i (zi(t), ui(t)) = lim sup

T→∞

1

T
Vi(zi(t), ui(t)) = µ (4.3)
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4.3.3 Obtaining the Optimal Cost

The optimal cost function can be written as:

J∗i (zi(t)) := inf
ui∈U

Ji(zi(t), ui(t)) (4.4)

This can be expressed as follows. The integral in Ji can be split up into two parts

at arbitrary time t1. The purpose of this split is to set up for a Taylor expansion.

(4.5)
J∗i (zi(t))

= inf
ui∈U

lim sup
ρ→0

E{ρ
∫ t1

t

e−ρtgi(zi(τ), ui(τ))dτ}+ρ

∫ T

t1

e−ρt(gi(zi(τ), ui(τ))dτ}

J∗i (zi(t)) = inf
ui∈U

lim sup
ρ→0

E{ρ
∫ t1

t

e−ρτ (gi(zi(τ), ui(τ))dτ}+ J∗i (z(t1))

Let t1 = t+ ∆t. Using Taylor expansion and Itô’s lemma:

(4.6)

J∗i (zi(t)) = inf
ui∈U

lim sup
ρ→0

E{ρ∆tgi(zi(t+ α∆t), ui(t+ α∆t))}

+ J∗i (z(t)) +
∂J∗i
∂z

dz(t)

dt
∆t+

∂J∗i
∂t

∆t+
c2

2

∂2J∗i
∂z2

∆t

and α ∈ (0, 1). Rearrange and let ∆t go to zero to obtain:

(4.7)0 = inf
ui∈U

lim sup
ρ→0

E{ρ(gi(zi(τ), ui(τ))}+
∂J∗i
∂z

fi(zi(t), ui(t)) +
∂J∗i
∂t

+
c2

2

∂2J∗i
∂z2

Replace J∗i with infui∈U lim supρ→0 ρV
ρ
i .

(4.8)
0 = inf

ui∈U
lim sup
ρ→0

E{ρ(gi(zi(τ), ui(τ), τ)}+ lim sup
ρ→0

ρ
∂ infui∈U V

ρ
i

∂z
fi(zi(t), ui(t))

+ lim sup
ρ→0

ρ
∂ infui∈U V

ρ
i

∂t
+
c2

2
lim sup
ρ→0

ρ
∂2 infui∈U V

ρ
i

∂z2

Divide by ρ, let ρ→ 0 on the left hand side and rearrange to obtain:

(4.9)lim sup
ρ→0

ρV ρ
i = inf

ui∈U
E{gi(zi(t), ui(t))}+

∂V ∗i
∂z

fi(zi(t), ui(t)) +
c2

2

∂2V ∗i
∂z2

where V ∗i will be defined as:
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4.3. RELATION TO OTHER MEAN FIELD GAME THEORY APPROACH

V ∗i (zi(t)) := inf
ui∈U

E{
∫ ∞
t

g(zi(τ), ui(τ))dτ}

Substituting f and g for our initial problem gives us the desired Hamilton-Jacobi-

Bellman equation:

µ = inf
ui∈U

E{q(zi(t)− φ(t))2 + rui(t)
2}+

∂V ∗i
∂z

(azi(t) + bui(t)) +
c2

2

∂2V ∗i
∂z2

(4.10)

In this equation, µ can be thought of as the average cost which does not depend

on the initial conditions, and V ∗i is the differential cost-to-go.

4.3.4 Itô Process to Fokker-Planck Equation

The second partial differential equation to derive is the Fokker-Planck equation.

This will be done using n agents that all follow the same Itô process as equation

(3.1). If the number of agents approach infinity, the collective mass will approach

a certain probability distribution. Let m(t) be the probability distribution of the

agents at time t. Using [33], the probability distribution has the following dynamics:

∂m

∂t
= − ∂

∂z
(m(t) · (az(t) + bu(t))) +

c2

2

∂2m

∂z2
(4.11)

Define ψ(t) := E{m(t)}. Since φ(t) is defined as a function of ψ(t), the two

partial differential equations are coupled.
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Chapter 5

Discussion on MFG Model

Throughout this thesis the objective was to model the dynamics of asset prices

when market participants tried their best to predict the next period price. This has

been shown to lead to asset price coordination, which was modeled by Hommes et

al. However, it was not clear how the price dynamics would change if the market

participants focused their attention more on the current price and put more weight

into it when making their decisions. This presented a problem similar to Keynes’s

beauty contest, where individuals make decisions based on what others are doing.

Using mean field game theory, the model for asset price coordination amongst

individuals was set up using an Itô process, which describes how individuals’ pre-

dicted prices changed in time, and the cost function, which determined how much

the individual should change their current predicted price to minimize the distance

between the average price predicted and the reference trajectory known to all market

participants.

The model was tested using experimental data from [1], which was generously

given by professor Cars Hommes. Three regimes of interest were tested on: mono-

tonic convergence, converging oscillations and persistent oscillations. The MFG

model produced results that looked very similar to the experimental data, espe-

cially in capturing the general shape. Some differences were noted as the average

price from experiment did not line up exactly with the data that was produced by

the model. This was explained as the data having a few irregularities that the par-
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ticular model chosen could not capture, such as changing period lengths. It should

be noted that the MFG model is not a predictive model, but rather a descriptive

model attempting to represent price dynamics with participant’s focusing some at-

tention on the mean price. The reference function can be any function the modeler

chooses. This can include leading economic indicators, such as interest rate spread,

index of consumer expectations, etc., or a certain trajectory that the modeler has

determined from a predictive model.

A sensitivity analysis was also performed on the weight of importance placed on

following the reference function. The weight can vary between, but not including,

0 and 1. It was expected that as the weight decreased, the correlation between the

average price and the reference function would decrease. This was indeed observed

and shown using the persistent oscillations. The results can be found in Figure 4.10.

In addition to the correlation between the reference and the mean price decreasing,

the mean price also lagged and the amplitude decreased as the weight on the refer-

ence decreased and the weight placed on the current mean price increased. These

two observations are important as they relate closely to the framework developed by

Allen et al. [16] for Keynes’s beauty contests and iterated expectations in asset mar-

kets. Allen et al. list two main themes of their result: mean prices diverging from

some fundamental price, and mean prices in beauty contests reacting more slug-

gishly to changes in the fundamental price. Both of these results are very similar to

the one’s shown by the sensitivity analysis in the MFG model. This provides further

validation that the MFG model is accurately portraying asset price dynamics.

Finally a link between the two fields for mean field games, one provided by

Lasry and Lions, the other by Huang et al., was shown. To the best knowledge of

the author, no link between the two has ever been explicitly demonstrated. This

link could provide some problems to be converted from one form to the other, in

order to simplify solving them.
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CHAPTER 5. DISCUSSION ON MFG MODEL

5.1 Future Work

The MFG model proposed in this thesis can be expanded in a variety of different

ways. Firstly, when modeling the market participants, the parameters in the Itô

process can vary from individual to individual. This would result in heterogeneous

market participants. The method to do this is outlined in [26]. Another improvement

is to provide the market participants with several different reference functions, and

let the market participant decide which reference function they wish to follow. The

reference function is chosen by using a likelihood estimation. More details about

this process can also be found in [26].

To improve on the model simulations, a higher order recurrence relation can be

derived. This would allow for a much larger variety of possible functions that would

be more accurate in describing what the experimental data is doing.
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Appendix A

Parameter Estimation Code

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3

4 import numpy as np

5

6 # Number of parameters to estimate for

7 numParam = 2

8

9 ## Data extraction and set up

10 pFile = open(’price -history.txt ’, ’r’)

11

12 pInter = pFile.readlines ();

13

14 ## Get number of terms in time series

15 M = len(pInter)

16

17 p = []

18

19

20 for i in range(0, M):

21 p.append(np.float64(pInter[i]))

22

23

24 ## If estimating 3 parameters , alpha , beta_1 , beta_2

25 if(numParam == 3):

26

27 # f_M column calculation

28

29 f_M = np.zeros(numParam)

30

31 for t in range(2, M):

32 f_M = f_M + np.array ([p[t], p[t-1]*p[t],
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APPENDIX A. PARAMETER ESTIMATION CODE

33 p[t-2]*p[t]])

34

35 f_M = 1 / (M - 2) * f_M

36

37

38 # R_M matrix calculation

39

40 r_M = np.zeros ((numParam , numParam ))

41

42 for t in range(2, M):

43 r_M = r_M + np.outer(

44 np.array([1, p[t-1], p[t-2]]) ,

45 np.array([1, p[t-1], p[t -2]]). transpose ())

46

47 r_M = 1 / (M - 2) * r_M

48

49 # Calculate optimal parameters

50

51 theta = np.linalg.inv(r_M).dot(f_M)

52

53

54 ## If estimating 2 parameters , alpha and beta_1

55 ## Gamma set to -1 (forces sinusoid)

56 if(numParam == 2):

57

58 # f_M column calculation

59

60 f_M = np.zeros(numParam)

61

62 for t in range(2, M):

63 f_M = f_M + np.array ([p[t] + p[t-2],

64 p[t-1]*(p[t] + p[t -2])])

65

66 f_M = 1 / (M - 2) * f_M

67

68

69 # R_M matrix calculation

70

71 r_M = np.zeros (( numParam ))

72

73 for t in range(2, M):

74 r_M = r_M + np.outer(

75 np.array([1, p[t-1]]) ,

76 np.array([1, p[t -1]]). transpose ())

77

78 r_M = 1 / (M - 2) * r_M

79

80 # Calculate optimal parameters
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81

82 theta = np.linalg.inv(r_M).dot(f_M)
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Appendix B

Solving the MFG Code

1 #!/ usr/bin/env python3

2 # -*- coding: utf -8 -*-

3

4 import numpy as np

5 import scipy as sc

6 import matplotlib.pyplot as plt

7 from scipy.stats import norm

8

9

10 #######################################################

11 # Solve recurrence relation #

12 #######################################################

13

14 a1 = 53.05

15 a2 = 56.45

16

17 # Parameters obtained from parameter -estimation.py

18 beta_1 = 1.554936488826228924

19 beta_2 = -1

20 alpha = 25.09430966263607843

21

22 # Caluculate continuous parameters

23 pStar = alpha / (1 - beta_1 - beta_2)

24

25 a1 = a1 - pStar

26 a2 = a2 - pStar

27

28 E = (-beta_1 * a1 + a2) / beta_2

29 F = 1j * (np.power(beta_1 , 2) * a1 - beta_1 * a2 + \

30 2 * beta_2 * a1) / (beta_2 * np.sqrt(

31 np.power(beta_1 , 2) + 4 * beta_2 + 0j))

32 theta = np.arccos(beta_1 /(2 * np.sqrt(-beta_2 + 0j)))

47



33

34 if(F.imag == 0):

35 F = float(F.real)

36

37 if(theta.imag == 0):

38 theta = float(theta.real)

39

40

41 #######################################################

42 # Solve homogenous differential equation for psi #

43 #######################################################

44

45 # Input parameters for homogenous system

46 a = 0.01

47 b = 1

48 c = [4, 4, 4, 4, 4, 4]

49 q = 1

50 r = 0.01

51 lam = 0.8

52

53 zNaught = [55.87 , 50, 30, 50, 50, 50]

54 n = len(zNaught)

55

56

57 # Simulation time inputs

58 totalT = 50

59 deltaT = 0.1

60 T = int(totalT / deltaT)

61 t = np.linspace(0, 50, num = T)

62

63 # Calculate values in ODE

64

65 P = (a + np.sqrt(a**2 + b**2/r * q))/(b**2/r)

66

67 # Calculate gamma (rate of convergence)

68 gam = - np.sqrt(np.power(a, 2) + np.power(b, 2) / r * q)

69

70 # Calculate coefficients for 2nd order ODE

71 aODE = 1

72 bODE = 2 * gam

73 cODE = -(np.power(a, 2) + np.power(b, 2)/ r * lam * q)

74 refCoeff = - np.power(b, 2) / r * q * lam

75

76 # Solution to homogoenous 2nd order exponential coefficients

77 r1 = (-bODE + np.sqrt(np.power(bODE , 2) - 4 * aODE * cODE ))\

78 / (2 * aODE)

79 r2 = (-bODE - np.sqrt(np.power(bODE , 2) - 4 * aODE * cODE ))\

80 / (2 * aODE)
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81

82

83 ########################################################

84 # Note: Particular solutions were solved analytically #

85 # outside of this code. #

86 ########################################################

87

88 #######################################################

89 # Solve heterogenous DE for sinusoidal solutions #

90 #######################################################

91

92

93 sinMatrix = np.array ([[ cODE - np.power(theta , 2), -bODE * theta],

94 [bODE * theta , cODE - np.power(theta , 2)]])

95 solutionSin = np.array ([ refCoeff * F, refCoeff * E])

96

97 # Coefficents for sin and cos of the solution.

98 x = np.linalg.solve(sinMatrix , solutionSin)

99

100 psiPart = x[0] * np.sin(theta * t) + x[1] * np.cos(theta * t)\

101 + pStar

102

103 h = F * np.sin(theta * t) + E * np.cos(theta * t) + pStar

104

105 # Coefficent of the homogenuous exponential solution

106 homoC = np.average(zNaught) - psiPart [0]

107

108 psi = x[0] * np.sin(theta * t) + x[1] * np.cos(

109 theta * t) + pStar + homoC * np.exp(r2 * t)

110

111

112

113 #####################################################

114 # Solve heterogenous DE for exponential solutions #

115 #####################################################

116

117

118 refA1 = ((E - F*1j)/2). real

119 refA2 = ((E + F*1j)/2). real

120

121 refGam1 = ((1j * theta + np.log(-beta_2 )/2))

122 refGam2 = ((-1j * theta + np.log(-beta_2 )/2))

123

124 # Solution of the exponential case

125 def psiExpSol(t):

126 return (refCoeff * refA1 / (np.power(refGam1 , 2) -\

127 bODE * refGam1 + cODE) * np.exp(refGam1 * t) +\

128 refCoeff * refA2 / (np.power(refGam2 , 2) \
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129 - bODE * refGam2 + cODE) * np.exp(refGam2 * t) \

130 + refCoeff * pStar / cODE).real

131

132 def hExp(t):

133 return (np.power((-beta_2), t/2) * ((E - F*1j)/2 *\

134 np.exp(1j * theta * t) + (E + F*1j)/2 *\

135 np.exp(-1j * theta * t)) + pStar ).real

136

137 homoCExp = np.average(zNaught) - psiExpSol (0)

138

139

140

141 #############################################################

142 # Solve heterogenous DE for exponential sinusoidal solutions#

143 #############################################################

144

145 # Solution of the converging oscillations case

146

147 rSin = np.log(-beta_2) / 2

148

149 sinExpMatrix = np.array(

150 [[np.power(rSin , 2) - np.power(theta , 2) + bODE * rSin\

151 + cODE , 2* theta*rSin + bODE*theta],

152 [-2*theta*rSin - bODE*theta , np.power(rSin , 2)\

153 - np.power(theta , 2) + bODE * rSin + cODE ]])

154

155 solutionSinExp = np.array ([ refCoeff * F, refCoeff * E])

156

157 # Coefficents for sin and cos of the solution.

158 xSinExp = np.linalg.solve(sinExpMatrix , solutionSinExp)

159

160 psiSinExpPart = np.exp(rSin * t) * (

161 x[0] * np.sin(theta * t) + x[1] * np.cos(theta * t)) + pStar

162

163 hSinExp = np.exp(rSin * t) * (F * np.sin(theta * t) + \

164 E * np.cos(theta * t)) + pStar

165

166 # Coefficent of the homogenuous exponential solution

167 homoCSinExp = np.average(zNaught) - psiSinExpPart [0]

168

169 psiSinExp = np.exp(rSin * t) * (x[0] * np.cos(theta * t) + \

170 x[1] * np.sin(theta * t)) + pStar + homoC * np.exp(r2 * t)

171

172

173 #######################################################

174 # Simulations #

175 #######################################################

176
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177

178 # Integrals to compute s variable

179

180 def sIntegralSin(tau , tConst ):

181 return np.exp(gam * (tau - tConst )) * q *\

182 ((1-lam) * (x[0] * np.sin(theta * tau) + \

183 x[1] * np.cos(theta * tau) + pStar + \

184 homoC * np.exp(r2 * tau)) + lam * (

185 F * np.sin(theta * tau) + \

186 E * np.cos(theta * tau) + pStar ))

187

188

189 def sIntegralExp(tau , tConst ):

190 return np.exp(gam * (tau - tConst )) * q * (

191 (1 - lam) * (psiExpSol(tau)+ homoCExp *\

192 np.exp(r2 * tau)) + lam * hExp(tau))

193

194

195 def sIntegralSinExp(tau , tConst ):

196 return np.exp(gam * (tau - tConst )) * q * ((1-lam) * (

197 np.exp(rSin * tau) * (xSinExp [0] *\

198 np.sin(theta * tau) + xSinExp [1] * np.cos(theta * tau)) \

199 + pStar + homoCSinExp * np.exp(r2 * tau)) + lam * (

200 np.exp(rSin * tau) * (F * np.sin(theta * tau) +\

201 E * np.cos(theta * tau)) + pStar ))

202

203

204 s = []

205 for timeStep in range(0, T):

206 tea = deltaT * timeStep

207 integral ,err = sc.integrate.quad(

208 sIntegralSin , tea , np.inf , args=tea)

209 s.append(-integral)

210

211 dz = []

212 zAll = []

213 uAll = []

214

215 delta = 1

216

217 for i in range(0, n):

218 dz = []

219 z = []

220 z.append(zNaught[i])

221 u = []

222

223 # Initial condition.

224 w = []
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225 w.append(np.float64 (0))

226

227 # Iterate to compute the steps of the Brownian motion.

228 for timeStep in range(1, T):

229 w.append(w[timeStep -1] + np.float64(

230 norm.rvs(scale=delta **2*np.sqrt(deltaT ))))

231

232 # Compute the predicted prices of n agents

233 for timeStep in range(0, T-1):

234 tea = deltaT * timeStep

235 u.append(-b/r * (P * z[timeStep] + s[timeStep ]))

236 dz.append ((a * z[timeStep] + b * u[timeStep ]) * deltaT + \

237 c[i] * (w[timeStep + 1] - w[timeStep ]))

238 z.append(z[timeStep] + dz[timeStep ])

239 uAll.append(u)

240 zAll.append(z)

241

242

243 for i in range(0, n):

244 zAll[i] = np.asarray(zAll[i])

245

246

247 # Plot results

248

249 plt.ylabel(’Price ’)

250 plt.xlabel(’Time ’)

251

252

253 plt.subplot(2, 1, 1)

254 plt.plot(t, psi , ’-’, label="psi")

255 plt.plot(t, h, ’-’, label="h")

256

257

258 axes = plt.gca()

259 axes.set_ylim ([30 ,70])

260 plt.legend(bbox_to_anchor =(1.05 , 1), loc=2, borderaxespad =0.)

52


