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Abstract

In this paper, we study causal spaces, i.e. spaces equipped with a time separation function. We

introduce some natural topologies on this space and study their properties. We study how causal

path-connectedness simplifies the topologies, and induces desirable properties such as first count-

ability. We also study the compatibility of these topologies with subspaces and products. Finally we

introduce an analog of the Hausdorff distance for metric spaces, called the Hausdorff time separation.
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Chapter 1

Introduction

1.1 History and Motivation

This body of work is contained in a field which may be called non-smooth geometry. A C2-smooth

pseudo-Riemannian manifold (M, g) is a C2 manifold M equipped with a metric g, ie a symmetric

non-degenerate 2-form. The central objects of study in non-smooth geometry are spaces which have

(in some abstract sense) the same properties as pseudo-Riemannian manifolds, but which are not

necessarily C2-smooth, or even smooth at all.

In principle we are concerned with Lorentzian manifolds, where the metric has one negative

eigenvalue and all others positive. However there is a wealth of knowledge for Riemannian manifolds.

Like many problems in Lorentzian geometry, one might like to appeal to well-established ideas in

the Riemannian world, and transplant them into the Lorentzian setting. In non-smooth Riemannian

geometry, the program is as follows. Let (M, g) be a Riemannian manifold, and let γ : [0, 1] → M

be an arclength parametrized C1 curve on M . The length of the curve γ as measured by g is defined

to be

Lg(γ) :=

∫ 1

0

√
g(γ′(t), γ′(t))dt

Then one can define a distance function dg, via

dg(x, y) := inf{Lg(γ) : γ a C1 curve joining x to y}

which makes (M,dg) a metric space. The idea is to "forget" the manifold structure of M , and view

it purely as a metric space with distance function dg. It is a theorem of Toponogov [Top59] that a
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CHAPTER 1. INTRODUCTION 2

lower bound on the sectional curvature on M can be described by dg using so called "comparison

triangles". That is, in every small neighbourhood of M , one embeds a triangle. The side lengths of

the triangle are measured, and an equivalent triangle is embedded in a manifold M(k) of constant

sectional curvature k. One then compares the median of the triangles. The median is the distance

from a vertex to the midline on the opposite edge. If the median of the triangle in M is larger than

that in M(k), for every embedding in the neighbourhood, then the curvature must be higher than

k. If this holds in every small neighbourhood of M , then M has curvature at least k. In a similar

way, triangle comparison characterizes upper sectional curvature bounds as well. Using comparison

triangles, one can define a synthetic notion of sectional curvature bounds for any metric space in

which triangles can be embedded. Such metric spaces are called length spaces. This was the work

of A.D. Alexandrov in [Ale51]. These spaces with sectional curvature bounded below are called

Alexandrov spaces.

Remark 1.1.1. There is some disagreement on the original contributors to triangle comparison

geometry. See [PZ11].

Among the main contributors to the modern theory of Alexandrov spaces are [GLP81], [Per95]

and [BGP92]. A detailed course on non-smooth Riemannian geometry can be found in [BBI01].

Crucially in [GLP81], Gromov introduced two distance functions, the Lipshitz and Gromov-Hausdorff

distances (although in the text this latter function is called a Hausdorff distance), on the collection

of all length spaces. In particular these are distances on the collection of Riemannian manifolds,

and the collection of Alexandrov spaces. These tools give us a notion of convergence for these

spaces, which in turn give rise to stability properties, i.e those properties of length spaces which are

stable under limits. This gives a language to speak of spaces which are ’approximately’ Riemannian

manifolds.

Kunzinger and Sämann introduced a Lorentzian analog to these ideas in [KS18]. Here they intro-

duce the notion of a Lorentzian pre-length space which, broadly speaking, is a space (X,≤,≪, τ, d)

consisting of two preorders ≤ and ≪, a metric d, and a function τ known as a time separation which

is compatible with the preorders. Under some additional topological and causal properties, these

pre-length spaces become what Kunzinger and Sämann call Lorentzian length spaces, which serve

as an analog to Gromov’s length spaces; the time separation serves as a Lorentzian analog to the

metric in a length space. However in the Lorentzian setting, a metric d is still necessary to generate

a useful and well-understood topology. In [BS22], Sämann and Beran develop a Lorentzian analog

of comparison triangles, and to curvature bounds. However, there are elements which are as of yet
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missing. One major element is the lack of a ’Lorentzian Gromov-Hausdorff distance’, i.e a lack of a

meaningful notion of convergence for these spaces.

This is one instance of borrowing ideas from the Riemannian world. Another is the following.

Much like the metric on a Riemannian manifold induces a distance function, the Lorentzian metric

η on a time orientable Lorentzian manifold (M,η) induces a number of preorders (≤, ≪, and →).

They are defined as follows. M is said to be time orientable if, broadly speaking, there is a choice

of orientation, called the future, for every tangent plane of M , and furthermore that this choice can

be made "smoothly" across the manifold. A tangent is called future directed if it is oriented towards

the future. Given points x, y ∈ M , we then say that:

• x ≤ y if there is a future directed curve γ joining x to y such that η(γ′(t), γ′(t)) ≤ 0 ∀t

• x < y if there is a future directed curve γ joining x to y such that η(γ′(t), γ′(t)) < 0 ∀t

• x → y if there is a future directed curve γ joining x to y such that η(γ′(t), γ′(t)) = 0 ∀t

≤ is called causality, ≪ is called chronology and → is called horismos. Kronheimer and Penrose

showed in [KP67] that much of the causal structure of time orientable Lorenztian manifolds can be

recovered from these three orders, in the same way that the distance dg recovers geometric properties.

Hence in some sense it is sufficient to study the space (X,≤,≪,→), under some additional axioms.

These are called causal spaces. The depth of research in such spaces is broad. See [GS05] for a

general synopsis.

1.2 Present Work and Results

In this work we consider a pair (X, τ) consisting of a set and a time separation, in the same vein

as [KS18]. We drop the assumption of a metric compatible with the time separation, and instead

consider topologies arising from τ itself. In section 2.2, we identify several such topologies, and

especially consider a class of three topologies Hi for i = 0, 1, 2, which are suitable to generate

interesting results.

In section 3.2, we show that under additional assumptions, the finest of our topologies, H2,

imposes desirable topological properties on the causal space. In section 3.3 we consider the analog

of path metric spaces of [GLP81], which first appear in [KS18].

In chapter 4, we compare our Hi topologies to the standard subspace, product and quotient

topologies, and show that H2 is in general finer, while H0,H1 are in general coarser.
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Finally, in chapter 5, we introduce a causal space analog of the Hausdorff metric for metric

spaces. The conclusion of our work introduces three main questions for further study:

• Under what conditions are these causal spaces metrizable, and therefore become Lorentzian

pre-length spaces, in the sense of [KS18]?

• What can one say about the collection of maps between causal spaces? Is there a notion of

precompactness, or the Arzela-Ascoli theorem?

• Can the Hausdorff time separation induce a "Gromov-Hausdorff time separation", in the spirit

of the metric case in [GLP81]?



Chapter 2

Causal Spaces

2.1 Definitions, Conventions, and Notations

Definition 2.1.1. A causal space is a pair (X, τ) consisting of a set X and a function

τ : X ×X → {−∞} ⊔ [0,∞]

called a time separation, which satisfies the following axioms of causality:

1. τ(x, x) ≥ 0 ∀x ∈ X

2. τ(x, y) ≥ 0 =⇒ τ(y, x) = −∞ ∀x ̸= y ∈ X

3. τ(x, z) ≥ τ(x, y) + τ(y, z) if τ(x, y) + τ(y, z) ≥ 0

with the convention that −∞+ a = a+ (−∞) = −∞ for all a ∈ {−∞} ⊔ [0,∞].

The time separation induces a relation ≤, given by x ≤ y ⇐⇒ τ(x, y) ≥ 0. This relation is

reflexive by (a) and transitive by (c), and so is a preorder. We say x < y ⇐⇒ τ(x, y) > 0. ≤ is

called a causality, and < is called a chronology.

Remark 2.1.1. By axioms 1 and 3, τ(x, x) = 0 or τ(x, x) = ∞ for all x ∈ X.

Using causality and chronology, we distinguish points using the same language as [KP67].

Definition 2.1.2. Given x, y ∈ X, we say:

• x is causal with y if x ≤ y or y ≤ x

5
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• x is timelike with y if x < y or y < x

• x is horismal with y if τ(x, y) = 0 or τ(y, x) = 0.

• x is acausal with y if x is not causal with y.

We also define the following sets, which will be the central sets of study in our topologies:

Definition 2.1.3. Let x ∈ X and r ≥ 0. We say

• I+r (x) := {y ∈ X : τ(x, y) > r} is the r-chronological future of x

• I−r (x) := {y ∈ X : τ(y, x) > r} is the r-chronological past of x

• J+
r (x) := {y ∈ X : τ(x, y) ≥ r} is the r-causal future of x

• J−
r (x) := {y ∈ X : τ(y, x) ≥ r} is the r-causal past of x

For convenience we denote I±(x) := I±0 (x), and J±(x) := J±
0 (x).

Given a, b ∈ X, we say

• I(a, b) := I+(a) ∩ I−(b) is the chronological diamond of a and b

• J(a, b) := J+(a) ∩ J−(b) is the causal diamond of a and b.

Next, we distinguish four classes of points in a causal space.

Definition 2.1.4. Let x ∈ X. We call x. . .

• inclusive if I±(x) ̸= ∅

• a (resp. true) root if I−(x) = ∅ (resp. and I+(x) ̸= ∅)

• a (resp. true) tip if I+(x) = ∅ (resp. and I−(x) ̸= ∅)

• exclusive if I±(x) = ∅.

For some clarity later in the paper we define some notations. Given A ⊂ X, we define

∂+
τ (A) = {x ∈ X : I−(x) ∩A = ∅}

∂−
τ (A) = {x ∈ X : I+(x) ∩A = ∅}

Therefore ∂±
τ (X) denotes the set of roots/tips of X respectively.
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Lastly, we define the useful notion of the reduced time separation, τ̂ which is given by

τ̂(x, y) :=


τ(x, y) x ≤ y

0 otherwise

Remark 2.1.2. In [KS18], (X,≤, <) is a causal space, following [KP67], and (X,≤, <, τ̂ , d) is a

Lorentzian pre-length space.

We now present some examples of causal spaces. These examples serve to illustrate two points:

that causal spaces are in some sense ubiquitous, and that they are in some sense non-trivial.

Example 2.1.1. (R, τ) is a causal space, with

τ(x, y) =


y − x x ≤ y

−∞ otherwise

Similarly, for all intervals I ⊂ R, (I, τ) is a causal space.

Example 2.1.2. Let (M,η) be a time orientable Lorentzian manifold with no closed causal curves.

For all future causal piecewise C1 curves γ : [0, 1] → M , define

Lη(γ) :=

∫ 1

0

√
−η(γ′(t), γ′(t))dt

Then

τη(x, y) = sup{Lη(γ) : γ future causal piecewise C1 joining x to y}

is a time separation, when sup∅ := −∞. Thus (M, τη) is a causal space.

Example 2.1.3. Let G = (V,E) be a directed graph with no directed loops. For x, y ∈ V , define

τ(x, y) = sup{n : ∃{ai}ni=1 ⊂ V such that (x, a1), (ai, ai+1), (an, y) ∈ E for all i = 1, . . . , n− 1}

Again if we define sup∅ = −∞, then τ is a time separation. Then (V, τ) is a causal space. Concep-

tually, τ measures the maximal number of vertices on any directed path from x to y. If there is no

path from x to y, it returns −∞. This is simply a discrete version of the example above.
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2.2 Topologies on Causal Spaces

Here is a list of topologies on (X, τ), which are defined as the coarsest topologies on which the

following sets are open.

1. The Alexandrov topology A generated by {I(a, b) : a, b ∈ X}

2. The quasi-uniform topology Q generated by {J+(a) : a ∈ X}

3. The chronological topology H0 generated by {I±(a) : a ∈ X}

4. The fine chronological topology H1 generated by {I±r (a) : a ∈ X, r ≥ 0}

5. The superfine chronological topology H2 generated by {I±r (a) : a ∈ X, r ≥ 0} ∪ {J±(a) : a ∈

∂±
τ (X)}

Remark 2.2.1. The term "Alexandrov topology" is attached to many of these. Q is an Alexandrov

topology in the sense that every point has a minimal neighbourhood. This is the convention of

[Spe07], and has nothing to do with A.D Alexandrov. In [KS18], A is the Alexandrov topology.

Others, including [GS05] denote H0 as the Alexandrov topology. We prefer to follow the conventions

of [KS18] whenever possible, so A is called the Alexandrov topology. We prefer to call Q quasi-

uniform in the sense of uniform spaces, see [Kel75].

It is easy to see that A ⊂ H0 ⊂ H1 ⊂ H2. Note that H1 is the coarsest topology such that the

reduced time separation τ̂ is lower-semicontinuous in each argument, i.e for each a ∈ X:

lim inf
x→y

τ̂(x, a) ≥ τ̂(y, a)

lim inf
x→y

τ̂(a, x) ≥ τ̂(a, y)

Lower semicontinuity is a desirable property. In a smooth spacetime (M,η), the standard time

separation is lower-semicontinuous with respect to the topology induced by the background Rieman-

nian metric. This may be why lower-semicontinuity is axiomatic in the construction of Lorentzian

length spaces in [KS18]. In our case, it is essential to a large part of our proofs. Thus H1 is the

coarsest topology necessary for our purposes. We will see in the following chapter that H0 is sufficent

under suitable hypotheses. This omits A and Q from our discussion, but A may be reinserted under

additional hypothesis; this is the content of corollary 3.2. One might wonder what the use of H2 is.

In some sense, roots and tips are ’poorly covered’ by H1. Indeed, the only neighbourhood of any
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exclusive point is the space itself, and the only neighbourhoods covering roots/tips are chronological

pasts/futures respectively. This is insufficient for our needs. H2 is the simplest remedy for this

situation.

Remark 2.2.2. One can choose to work in the quasi-uniform topology Q. This is the topology

which is compatible with the preorder ≤. There are many useful properties under this topology:

every causal space is locally compact and locally path connected, and maps between causal spaces

are continuous iff they are monotone. However, there are some undesirable properties. Namely, the

image of a continuous curve may be finite and the space is metrizable only if it is discrete. See

[Spe07].

Considering this discussion, we single out the Hi topologies as most useful, in particular H1, and

H2 when it is necessary.

Example 2.2.1. (1 + 1)-Minkowski space R1,1 is a causal space with time separation

τ((t, x), (s, y)) =


√
(t− s)2 − (x− y)2 (t− s)2 ≥ (x− y)2

−∞ otherwise

The standard topology on R1,1 is the Euclidean topology E of R2. Notice that A coincides with this

topology, since within every point in a chronological diamond, one can inscribe a ball around that

point within the diamond, and for every point within a ball, one can inscribe a diamond around

that point within the ball. H0 coincides with A since every chronological past/future is a union of

diamonds; this is a consequence of the fact that R1,1 has no roots/ tips. H1 coincides with H0 since

every r-chronological past/future can be written as a union of chronological pasts/futures. This

is the contents of corollary 3.2. Finally H2 coincides with H1 since R1,1 has no roots or tips. In

summary,

E = A = H0 = H1 = H2

Example 2.2.2. Consider a subspace of D ⊂ R1,1, D := J((−1, 0), (1, 0)), the causal diamond of

(−1, 0) and (1, 0). This is a causal space as it inherits the time separation from Minkowski space.

For the same reason as in the previous example, H0 = H1. However, A is strictly coarser than

H0. For instance, (1, 0) is a tip in D, and therefore there is no open set in A which contains it.

However, I+((−1, 0)) is an open set in H0 which contains (1, 0). Every open set in H0 is open

in the Euclidean subspace topology, since the H0 topology on R1,1 coincides with the Euclidean

topology on R1,1, and elements of H0 in D are simply intersections of elements of H0 in R1,1 with D.



CHAPTER 2. CAUSAL SPACES 10

Therefore they are open in the Euclidean subspace topology on D. However H0 is strictly coarser

than the Euclidean subspace topology. This is because (0, 1) is a exclusive point in D, so there is

no open set in H0 which contains it. But there clearly is an open set in the Euclidean subspace

topology which contains it: a ball of small radius centred at that point, for instance. Finally, the

Euclidean subspace topology is coarser than the H2 topology. This is a consequence of the fact that

the Euclidean topology coincides with the H1 topology on R1,1, and corollary 4.1. However it is

strictly coarser. This is again because (0, 1) is exclusive. Therefore J((0, 1), (0, 1)) = {(0, 1)} is open

in H2, while it is not open in the Euclidean subspace topology. Therefore we have the chain

A ⊊ H0 = H1 ⊊ E ⊊ H2

Example 2.2.2 illustrates how the introduction of roots, tips and exclusive points can distinguish

the various topologies, even away from a standard topology like E .



Chapter 3

Path spaces and timelike curves

3.1 Curves

Definition 3.1.1. A curve is a continuous map γ : [a, b] → X. It is causal (resp. timelike) if it

is (resp. strictly) monotone with respect to the preorder on X. It is future causal (resp. future

timelike) if it is (resp. strictly) monotone increasing, and past causal (resp. past timelike) if it is

(resp. strictly) monotone decreasing.

When we require γ to be continuous, we typically refer to H1-continuity. This is necessary in

order for the composition of τ̂(a, ·) with a curve and τ̂(·, a) with a curve to be lower-semicontinuous,

which is a fact we use often. Of course we could just as easily use H2 to achieve this, so we leave

the definition of continuity ambiguous.

Definition 3.1.2. The length of a causal curve γ is defined as

Lτ (γ) = inf

{
n∑

i=1

τ(γ(ti−1), γ(ti)) : n ∈ N, a = t0 ≤ · · · ≤ tn = b

}

whenever γ is future causal, and similarly defined when γ is past causal.

Theorem 3.1.1. (Properties of Length) Let γ : I = [a, b] → X be a causal curve. Then:

1. Lτ (γ ◦ ϕ) = Lτ (γ) for any homeomorphism ϕ : I ′ → I

2. If σ : I ′ = [c, d] → X is another causal curve of the same causality, and γ(b) = σ(c), then

Lτ (γ ⊕ σ) = Lτ (γ) + Lτ (σ), where γ ⊕ σ is the concatenation of γ and σ.

11
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3. If γ is H1-continuous, fγ(t) := Lτ (γ|[a,t]) is lower-semicontinuous. If in addition L(γ) is finite,

then gγ(t) := Lτ (γ|[t,b]) is upper-semicontinuous.

Proof. WLOG assume γ is future causal.

(a) First assume ϕ is order preserving. Let {ti}ni=0 be a partition of I ′. Then {si} = {ϕ(ti)} is a

partition of I, and
n∑

i=1

τ(γ ◦ ϕ(ti−1), γ ◦ ϕ(ti)) =
n∑

i=1

τ(γ(si−1), γ(si))

Which implies Lτ (γ ◦ ϕ) ≥ Lτ (γ). On the other hand, if {ti}ni=1 is a partition of I, then {s′i} =

{ϕ−1(ti)} is a partition of I ′, and

n∑
i=1

τ(γ(ti−1), γ(ti)) =

n∑
i=1

τ(γ ◦ ϕ(s′i−1), γ ◦ ϕ(s′i))

So Lτ (γ ◦ ϕ) ≤ Lτ (γ). Hence Lτ (γ ◦ ϕ) = Lτ (γ).

If ϕ is order reversing, then {sn−i} is a partition of I, {s′n−i} is a partition of I ′, and

n∑
i=1

τ(γ ◦ ϕ(ti), γ ◦ ϕ(ti−1)) =

n∑
i=1

τ(γ(si−1), γ(si))

n∑
i=1

τ(γ(ti−1), γ(ti)) =

n∑
i=1

τ(γ ◦ ϕ(s′i), γ ◦ ϕ(s′i−1))

Which again implies Lτ (γ ◦ ϕ) = Lτ (γ).

(b) Let σ : I ′ → X be a future causal curve, and WLOG assume I ′ = [b, c] for some c ≥ b, so

that γ ⊕ σ : [a, c] → X. Otherwise, γ ⊕ σ can always be transformed to such a curve through a

homeomorphism, and by (a), the length is invariant under such transformations. Now, any pair of

partitions {ti}ni=0 and {t′i}mi=0 of I and I ′ respectively can be concatenated into a partition {si}n+m+1
i=0

of [a, c] in an obvious way. Hence Lτ (γ ⊕ σ) ≤ Lτ (γ) + Lτ (σ). On the other hand, let {ti} be a

partition of [a, c] which does not decompose into a pair of partitions of I and I ′, ie there is k such

that tk ≤ b ≤ tk+1. Then

τ(γ ⊕ σ(tk), γ ⊕ σ(tk+1)) ≥ τ(γ ⊕ σ(tk), γ ⊕ σ(b)) + τ(γ ⊕ σ(b), γ ⊕ σ(tk+1))

And hence
n∑

i=1

τ(γ ⊕ σ(ti−1), γ ⊕ σ(ti)) ≥
n+1∑
i=1

τ(γ ⊕ σ(si−1), γ ⊕ σ(si))

where {si} is the partition given by si = ti for i ≤ k, sk+1 = b, and si = ti−1 for i > k. Therefore
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Lτ (γ ⊕ σ) ≥ Lτ (γ) + Lτ (σ). Hence Lτ (γ ⊕ σ) = Lτ (γ) + Lτ (σ).

(c) To show that fγ(t) is lower semicontinuous, we must show that the preimage of every open

ray (r,∞] is open. First note that fγ(t) is increasing. It follows that f−1
γ ((r,∞]) = ∅ for r ≥ fγ(b),

and f−1
γ ((r,∞]) ⊃ (s, b] otherwise, where s = inf{t : fγ(t) > r}. If s = a, then f−1

γ ((r,∞]) must be

open, since it is either equal to (a, b] which is open, or [a, b], which is also open. So assume s > a.

We want to show that s /∈ f−1
γ ((r,∞]), and therefore that f−1

γ ((r,∞]) = (s, b].

Since a < s, (a, s) ̸= ∅. For every t∗ ∈ (a, s), consider the map [t∗, s] ∋ t 7→ τ̂(γ(t∗), γ(t)). Since

γ is H1-continuous, and τ̂ is lower-semicontinuous in H1, τ̂(γ(t∗), γ(t)) is lower-semicontinuous

at t = s. Since γ is causal, τ(γ(t∗), γ(t)) ≥ 0, and therefore τ̂(γ(t∗), γ(t)) = τ(γ(t∗), γ(t)), so

τ(γ(t∗), γ(t)) is lower-semicontinuous. Note that it is also increasing. Hence

lim inf
t→s

τ(γ(t∗), γ(t)) = τ(γ(t∗), γ(s))

Therefore for every ε > 0, there is t∗ < tε < s such that

τ(γ(t∗), γ(tε)) > τ(γ(t∗), γ(s))−
ε

2

On the other hand, for each ε′ > 0 and each interval [a, t], there is a partition {ti} such that

fγ(t) ≤
n∑

i=1

τ(γ(ti−1), γ(ti)) ≤ fγ(t) +
ε′

2

Choose ε′ = ε and interval [a, tε]. Then there is a partition {ti} of this interval, so that tn = tε

WLOG we can assume tn−1 = t∗, since if not we may refine the partition to include this point and

the sum may only decrease. Then:

n∑
i=1

τ(γ(ti−1), γ(ti)) ≤ fγ(tε) +
ε

2
≤ r +

ε

2

Then

fγ(s) ≤
n−1∑
i=1

τ(γ(ti−1), γ(ti)) + τ(γ(t∗), γ(s)) <

n−1∑
i=1

τ(γ(ti−1), γ(ti)) + τ(γ(t∗), γ(tε)) +
ε

2
≤ r + ε

From which it follows that fγ(s) ≤ r. So s /∈ f−1
γ ((r,∞]). Hence fγ(t) is lower semicontinuous.

By (b), Lτ (γ) = fγ(t) + gγ(t). Since fγ(t) ≤ L(γ) < ∞, gγ(t) = Lτ (γ) − fγ(t) is well-defined.
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Since fγ(t) is lower-semicontinuous, gγ(t) is upper-semicontinuous.

3.2 Causal Path Connection

We would like to embed triangles in our causal spaces, in the same sense as [Ale51] and [KS18]. To

begin, we should want to embed curves, i.e we should look at spaces which have a path-connectedness

like property. However, we should embed in a way which respects the causal structure of our spaces.

A first guess it to have causal curves between causally related points. Unfortunately, the existence

of only causal curves is insufficient for our purposes. In fact, we would like these causal curves to be

timelike whenever possible.

Definition 3.2.1. Let (X, τ) be a causal space. We say X is causally path connected if for every

a, b ∈ X:

• If a ≤ b, then there is a causal curve joining a and b

• If a < b then there is a timelike curve joining a and b

Once we impose this condition, the structure of our spaces is both enriched and simplified. We

begin by simplifying their topology.

Lemma 3.2.1. Let (X, τ) be a H1-causally path connected space. For any x ∈ X and r ≥ 0,

I±r (x) =
⋃

y∈I±
r (x)

I±(y)

Proof. It is clear that I±r (x) ⊃
⋃

y∈I±
r (x) I

±(y). We will show that I+r (x) ⊂
⋃

y∈I+
r (x) I

+(y), as the

other case is similar. Let y ∈ I+r (x). We want to show that there is a z ∈ I+r (x) such that y ∈ I+(z).

Since x < y, there is a future timelike curve joining γ : [a, b] → X joining x and y. From the

lower-semicontinuity of τ̂(x, ·),

lim inf
t→b

τ̂(x, γ(t)) ≥ τ̂(x, y) > r

Therefore there is t < b such that τ̂(x, γ(t)) > r =⇒ τ̂(x, γ(t)) = τ(x, γ(t)). Let z = γ(t). Then

z ∈ I+r (x), and since γ is timelike and t < b, z < y, so y ∈ I+(z).

Corollary. If X is a causally path connected space, then H0 = H1
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Proof. We know already that H0 ⊂ H1. Lemma 3.2.1 establishes that the subbasis elements of H1

topology are open in H0, and hence H1 ⊂ H0. So H0 = H1.

The remainder of this section deals with H2-causally path connected spaces, and some results

about their structure. First we show that roots and tips are restricted in such spaces.

Lemma 3.2.2. Let X be H2-causally path connected. Then every point in the future horismos of a

root is a root and every point in the past horismos of a tip is a tip.

Proof. We will prove this for roots only, as the proof for tips is similar. Let a be a root, and let x

be in the future horismos of a, i.e. τ(a, x) = 0. Suppose x is not a root, so there is y < x. Then

there is a H2-continuous timelike curve γ : [0, 1] → X joining y to x. Note that a ̸≤ y, since if it

were, a ≤ y < x =⇒ a < x, which contradicts the fact that x is future horismal with a. Then

by continuity, γ−1(J+(a)) is open, contains 1 and does not contain 0. So γ−1(J+(a)) = (t, 1] for

some t < 1. Therefore for any t < s ≤ 1, γ(s) ∈ J+(a). But γ is timelike, so for t < s < 1,

a ≤ γ(s) < γ(b) = x and again a < x. Hence x must be a root.

Corollary. Let X be H2-causally path connected. Let x ∈ X. Then x is a root/tip iff it is horismal

with a root/tip.

Lemma 3.2.2 and its corollary are instrumental for the remaining results in this section. Next

we show that intersection of chronological futures also contain chronological futures, which gives a

simpler description of the topology.

Lemma 3.2.3. Let X be H1-causally path connected. If z ∈ I±(x) ∩ I±(y), then there is w such

that z ∈ I±(w) ⊂ I±(x) ∩ I±(y).

Proof. We will only prove one case, as the other is similar. Let z ∈ I+(x) ∩ I+(y). Then x < z, so

there is timelike curve γ : [a, b] → X joining x to z. By the lower semicontinuity of τ(y, γ(t)), there

is t < b such that τ(y, γ(t)) > 0. Let w = γ(t) < γ(b) = z. Then

z ∈ I+(w) ⊂ I+(x) ∩ I+(y)

as desired.

Theorem 3.2.1. Let X be H2-causally path connected. Let x ∈ X.

1. If x is inclusive, every neighbourhood about x contains an element of the form I(a, b), where

a < x < b
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2. If x is a true root, every neighbourhood about x contains an element of the form J+(x)∩ I−(a)

for some x < a.

3. If x is a true tip, every neighbourhood about x contains an element of the form I+(a)∩ J−(x)

for some a < x.

Proof. Let x be inclusive, and let x ∈ U be a basis element containing x. A basis of H2 topology

is given by a finite intersection of subbasis elements, i.e a finite intersection of the sets I±(a) for

inclusive a, and J±(b) for true roots/tips b. In general we have

x ∈
n⋂

i=1

I+(ai) ∩
m⋂
j=1

I−(bj) ∩
n′⋂
k=1

J+(ck) ∩
m′⋂
ℓ=1

J−(dℓ) =: U

where ai, bj are inclusive, ck are roots and dℓ are tips. Firstly, by lemma 3.2.2, x must be timelike

related to any such ck, dℓ, and therefore there is inclusive c′k, d
′
ℓ such that ck < c′k < x and x < d′ℓ <

dℓ. Hence after relabelling we have

x ∈
n+n′⋂
i=1

I+(ai) ∩
m+m′⋂
j=1

I−(bj)︸ ︷︷ ︸
=:V

⊂ U

Then by lemma 3.2.3, there is w, z such that ai < w < x < z < bj , and hence

x ∈ I(w, z) ⊂ V ⊂ U

The case with x being a true root or true tip is similar.

It is not hard to see that Lemma 3.2.3 combined with theorem 3.2.1 imply that the collection of

the above sets, together with the collection of all singleton sets of all exclusive points, form a basis

for the H2 topology. Notably, these basis elements are not far from chronological diamonds.

Corollary. Let X be a timelike path connected causal space with no roots or tips. Then A = H0 =

H1 = H2, and the basis for any of these topologies is {I(a, b) : a, b ∈ X}.

Finally we present some results about limit points for timelike path connected spaces.

Theorem 3.2.2. Let X be a H2-causally path connected causal space. Then X is first countable.

Proof. Let x ∈ X. We want to show that there is a countable collection of open neighbourhoods of

x such that any open neighbourhood of x contains an element of this collection. Such a collection is
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called a neighbourhood basis of x. If x is exclusive, then {x} suffices. Now suppose x is inclusive.

Let a < x < b, and let γ, σ : [0, 1] → X be timelike curves joining a to x and x to b respectively. Let

an = γ
(
1− 1

n

)
and let bn = σ

(
1
n

)
. We claim that {I(an, bn) : n ∈ N} is a neighbourhood basis.

By theorem 3.2.1 any basis element containing x is of the form x ∈ I(c, d) for some c, d ∈ X. By

lower semicontinuity of τ̂(c, γ(t)), we have that there is t∗ < 1 such that for all t > t∗, τ̂(c, γ(t)) > 0,

and therefore c < γ(t). Therefore there is N = 1
1−t∗

such that for all n > N , c < an. By a similar

argument, there is M such that for all m > M , bm < d. Then take n > max{N,M}, so that

c < an < x < bn < d. Then x ∈ I(an, bn) ⊂ I(c, d). By a similar argument, one can show that

{J+(x)∩ I−(bn)} is a neighbourhood basis of x whenever x is a true root, and {I+(an)∩ J−(x)} is

a neighbourhood basis whenever it is a true tip.

Remark 3.2.1. A similar version of theorem 3.2.1 can be proven using the H1 topology, and

therefore theorem 3.2.2 holds in the H1 topology as well. We omit these proofs as they are practically

identical to the H2 case.

First countable spaces are known to be sequential, meaning the limit point of any set is a limit

point of a convergent sequence contained in that set. This is the first result on limit points we

would like to present. The second is on the closure of future and past chronologies. In Minkowski

space, I±(x) = J±(x). One might wonder how close this equality is in a general causal space. If τ

is continuous in the H0 product topology, then J±(x) is closed, so the closure of I±(x) is no larger

than J±(x). We now present a converse for H2-causally path connected spaces. In these spaces, the

closure of I±(x) is no smaller than J±(x). The proof relies primarily on the following result and

lemma 3.2.2.

Lemma 3.2.4. Let X be H2-causally path connected. Let x ∈ X. If I±(x) ̸= ∅, then x is a limit

point of I±(x).

Proof. We will only prove this for I+(x) ̸= ∅. A basis element about x is of the form I(a, b) or

J+(x) ∩ I−(b). In either case, the element contains the set I(x, b). Since x < b, and X is causally

path connected, I(x, b) ̸= ∅. Hence every open set containing x must intersect I+(x), so x is a limit

point of I+(x).

Theorem 3.2.3. Let X be H2-causally path connected and let x ∈ X. Then J±(x) ⊂ I±(x),

whenever I±(x) is non-empty.

Proof. As usual, we will only prove the claim for I+(x) ̸= ∅. Let y ∈ J+(x). If y ∈ I+(x), then

y ∈ I+(x), so suppose τ(x, y) = 0. By lemma 3.2.2, I+(y) ̸= ∅. If not, then x would be past horismal
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with a tip, and therefore must be a tip, which contradicts I+(x) ̸= ∅. Then by the previous lemma

y ∈ I+(y) ⊂ I+(x)

Therefore J+(x) ⊂ I+(x).

Remark 3.2.2. Although there are variations of theorems 3.2.1 and 3.2.2 for H1-causally path

connected spaces, the above theorem cannot be reproduced in this setting. The reason is that, given

x ∈ X, there may be a tip z ∈ X which is in the horismal future of x. Furthermore, there could be

y ∈ I−(z) such that I+(y) ∩ I+(x) = ∅, and therefore z fails to be a limit point of I+(x), despite

the fact that z ∈ J+(x). Lemma 3.2.2 omits this possibility for H2-causally path connected spaces.

Lastly, we can fully characterize the closure of I±(x):

Theorem 3.2.4. Let X be H2-causally path connected and let x ∈ X. Then

I±(x) = I±(x) ∪ {y ∈ X : ∅ ̸= I±(y) ⊂ I±(x)}

whenever I±(x) is non-empty.

Proof. We will only prove this for I+(x). Let y be a limit point of I+(x) ̸= ∅. If y is a tip, then

J−(y) ∩ I+(x) ̸= ∅, which implies x ≤ y. By lemma 3.2.2, τ(x, y) ̸= 0, so x < y, so y ∈ I+(x). If

y is not a tip, then for all y < a, I−(a) ∩ I+(x) ̸= ∅, and therefore x < a. Hence I+(y) ⊂ I+(x).

Therefore the LHS set is contained in the RHS set in the above expression.

Now let y be such that ∅ ̸= I+(y) ⊂ I+(x). Let y be inclusive. Then a basis element containing

y is of the form y ∈ I(a, b), with b ∈ I+(x). Note that b ∈ I+(x)∩I+(y). Then by lemma 3.2.3, there

is c such that x < c < b, and a < y < c < b. Therefore c ∈ I(a, b), so I(a, b)∩ I+(x) ̸= ∅. Hence y is

a limit point of I+(x). If y is a root, then a basis element is of the form J+(y) ∩ I−(b), with y < b.

Then by the same principle, there is c such that x < c and y ≤ c < b. Hence c ∈ J+(y) ∩ I−(b), so

y is a limit point of I+(x). Hence the RHS is contained in the LHS.

3.3 Path Spaces

Definition 3.3.1. The path time separation is defined as:

τ∗(x, y) = sup {Lτ (γ) : γ : [a, b] → X future causal, γ(a) = x, γ(b) = y}
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Proposition 1. The path time separation is a time separation.

Proof. First note that Lτ (·) is a non-negative function. Hence if there exists future timelike curve

from x to y, then τ∗(x, y) ≥ 0. Otherwise, τ∗(x, y) = sup{∅} = −∞. Hence the image of τ∗ is

{−∞} ∪ [0,∞].

Next, for any x ∈ X, the constant curve γ(t) = x is causal, and so τ∗(x, x) ≥ Lτ (γ) ≥ 0. Now

suppose τ∗(x, y) ≥ 0. Then x ≤ y. If x ̸= y, then y ̸≤ x, so there cannot be a future causal curve

from y to x. Hence τ∗(y, x) = −∞.

Finally, suppose τ∗(x, y) and τ∗(y, z) are non-negative. Let γ, σ be causal curves from x to y

and y to z respectively. Then γ ⊕ σ is a causal curve from x to z, and

Lτ (γ ⊕ σ) = Lτ (γ) + Lτ (σ)

Then we have:

τ∗(x, z) = sup{Lτ (γ) : γ future casual from x to z}

≥ sup{Lτ (γ ⊕ σ) : γ future casual from x to y, σ future causal from y to z}

= sup{Lτ (γ) + Lτ (σ) : γ future casual from x to y, σ future causal from y to z}

= sup{Lτ (γ) : γ future casual from x to y}+ sup{Lτ (σ) : σ future causal from y to z}

= τ∗(x, y) + τ∗(y, z)

We call (X, τ∗) the path causal space of X and denote it X∗.

Remark 3.3.1. Of course, the definition of τ∗ depends on causal curves, and continuity of those

curves depends on the topology on X. Therefore there are two useful path spaces: one for (X,H1)

and one for (X,H2). Again, by default we use H1.

Given that τ∗(x, y) ≤ τ(x, y), one might wonder about the converse case. When is τ(x, y) ≤

τ∗(x, y)?

Definition 3.3.2. A causal space (X, τ) is intrinsic if τ∗(x, y) = τ(x, y) for any x, y ∈ X. It is

strongly intrinsic if there is a curve γ from x to y such that τ(x, y) = Lτ (γ).

One would hope that X∗ is intrinsic, but to prove this requires some technical steps. The content

of the proof is showing that X∗ = X∗∗ := (X∗)∗, which is equivalent to showing that τ∗ = τ∗∗.
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τ∗(x, y) is the maximal τ -length of causal curves in X which join x to y, while τ∗∗(x, y) is the

maximal τ∗-length of causal curves in X∗ which join x to y. To prove the above claim, we should

relate these ideas: how are causal curves in X related to causal curves in X∗, and how are their

respective lengths related? Lemma 3.3.2 below shows that Lτ = Lτ∗ , so there is no difference

between τ -length and τ∗-length. Similarly lemma 3.3.1 shows that there is no difference between

τ -causality of curves and τ∗-causality. It is left to deal with the ’curve’ part. Specifically, how

does continuity differ in X and X∗? One would like to relate the topology of these spaces via their

respective time separations. That is, endow X with the H1 topology, and X∗ with the H∗
1 topology.

The issue is that, a priori, there is no relation between the two. A possible solution is to fix the

same topology on all three spaces X, X∗, and X∗∗. It needn’t be H1, even, since we do not need

the lower-semicontinuity of τ̂ at all. Once fixing a topology on X, the result follows.

Lemma 3.3.1. Fix a topology on X. A curve γ on X is τ -causal iff it is τ∗-causal.

Proof. Let γ be a curve, and WLOG let γ be future causal (either τ or τ∗). Let 0 ≤ s ≤ t ≤ 1.

If γ is τ∗-causal, then γ(s) ≤∗ γ(t). Then since τ∗ ≤ τ , γ(s) ≤ γ(t). Hence γ is τ -causal. If

γ is τ -causal, then γ(s) ≤ γ(t). Furthermore, γ|[s,t] is a future τ -causal curve from γ(s) to γ(t).

Therefore τ∗(γ(s), γ(t)) ≥ Lτ (γ|[s,t]) ≥ 0. Hence γ(s) ≤∗ γ(t), so γ is τ∗-causal.

Lemma 3.3.2. Fix a topology on X. For all causal curves γ on X, Lτ (γ) = Lτ∗(γ).

Proof. By lemma 3.3.1, we need not distinguish between τ -causal curves and τ∗-causal curves. Let

γ : [a, b] → X be a future causal curve on X, and let {ti}ni=0 be a partition of [a, b]. Then since

τ∗ ≤ τ ,
n∑

i=1

τ∗(γ(ti−1), γ(ti)) ≤
n∑

i=1

τ(γ(ti−1), γ(ti))

From which it follows that Lτ∗(γ) ≤ Lτ (γ). On the other hand, let partition {ti}ni=1 be a partition

of [a, b]. For each i = 1, . . . , n, and each ε > 0, there is a partition {si,j}ni
j=0 of [ti−1, ti], such that

τ∗(γ(ti−1), γ(ti)) ≥ Lτ (γ|[ti−1,ti]) >

ni∑
j=1

τ(γ(si,j−1), γ(si,j))− ε

It follows that

n∑
i=1

τ∗(γ(ti−1), γ(ti)) >

n∑
i=1

ni∑
j=1

τ(γ(si,j−1), γ(si,j))− ε ≥ Lτ (γ)− ε (3.1)
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Since this holds for all partitions {ti} of [a, b], it follows that

Lτ∗(γ) ≥ Lτ (γ)

Hence Lτ∗(γ) = Lτ (γ)

Theorem 3.3.1. Fix a topology on X. Then X∗ is intrinsic.

Proof. Once we fix a topology, the definition of a causal curve in X and X∗ is unambiguous, and

equivalent. Then for all x, y ∈ X:

τ∗∗(x, y) = {Lτ∗(γ) : γ future causal curve from x to y} = {Lτ (γ) : γ future causal curve from x to y} = τ∗(x, y)

Following this discussion, one might wonder how to relate the Hi topologies with the H∗
i . In

the metric case this is immediate. Passing from a metric d to the path metric d∗ always refines

the topology. In the causal case the situation is more delicate. One issue is that passing from

X to X∗ ensures there is always a causal curve between causally related points. However it does

not guarantee that there is a timelike curve between timelike related points. The second issue is

that passing to the path causal space can produce more roots and tips, which are not well-covered

by H∗
1. Therefore, one should work with path spaces X∗ which are H1-causally path connected,

and endow these spaces with the H∗
2-topology. In the following lemmas, we use I±(x) to denote

the chronological future/past of x with respect to the τ time separation, and (I∗)± to denote the

chronological future/past with respect to the τ∗ time separation. J±(x) and (J∗)±(x) are similarly

defined.

Lemma 3.3.3. Suppose X∗ is H1-causally path connected. For every x ∈ X∗ and r ≥ 0:

I±r (x) =
⋃

y∈I
±
r (x)

y/∈∂±
τ∗ (X∗)

(I∗)±(y) ∪
⋃

y∈I
±
r (x)

y∈∂±
τ∗ (X∗)

(J∗)±(y)

whenever I±r (x) ̸= ∅.

Proof. We only prove this for I+r (x), as the other case is similar. It is clear that the RHS is contained

in the LHS, since τ∗ ≤ τ . Let y ∈ I+r (x). If y ∈ ∂+
τ∗(X∗) then y ∈ (J∗)+(y). Suppose y /∈ ∂+

τ∗(X∗).

Then there is z <∗ y. Then there is a H1-continuous future timelike curve γ : [a, b] → X∗ from z to
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y. Then by the lower semicontinuity of τ̂(x, ·):

lim inf
t→b

τ̂(x, γ(t)) ≥ τ̂(x, y) > r

Therefore there is t < b such that τ̂(x, γ(t)) > r. Let z′ = γ(t). Then z′ ∈ I+r (x), and y ∈ I+(z′).

Corollary. If X∗ is H1-causally path connected, then H1 ⊂ H∗
2.

Lemma 3.3.4. Suppose X∗ is H2-causally path connected. For every x ∈ ∂±
τ (X):

J±(x) =
⋃

y∈J±(x)

y/∈∂±
τ∗ (X∗)

(I∗)±(y) ∪
⋃

y∈J±(x)

y∈∂±
τ∗ (X∗)

(J∗)±(y)

whenever J±(x) ̸= ∅.

Proof. We only prove this for x ∈ ∂+
τ (X), as the other case is similar. It is clear that the RHS is

contained in the LHS, since τ∗ ≤ τ . Let y ∈ J+(x). If y ∈ I+(x), then the LHS is contained in the

RHS by lemma 3.3.3. So suppose τ(x, y) = 0. If y ∈ ∂+
τ∗(X∗), then y ∈ (J∗)+(y).

Now suppose further that y /∈ ∂+
τ∗(X∗). Then there is z <∗ y. Then there is a H2-continuous

future timelike curve γ : [a, b] → X∗ from z to y. Then γ−1(J+(x)) is open since γ is H2 continuous

and x is a roots, and does not contain z. Therefore γ−1(J+(x)) = (s, b] for some a < s or equals

[a, b]. Either way, there is t < b such that γ(t) ∈ J+(x). Then x ≤ γ(t) < γ(b) = y, which contradicts

τ(x, y) = 0. Hence y ∈ ∂+
τ∗(X∗).

Corollary. If X∗ is H2-causally path connected, then H2 ⊂ H∗
2.



Chapter 4

Constructing Causal Spaces

There are three standard ways of constructing new spaces from old ones: restrictions, products,

and quotients. In this chapter, we investigate all three methods, and the correlation between their

respective topologies and the Hi topologies induced by their time separations.

4.1 Subspaces

Proposition 2. Let (X, τ) be a causal space, and let A ⊂ X. Then (A, τA) is a causal space, where

τA = τ |A×A.

The fact that τA is a time separation is obvious. Once X is endowed with a topology, A is given

the corresponding subspace topology. On the other hand, the time separation τA induces its own

topology HA
i . In general HA

1 is coarser than the subspace topology. The issue is that roots/tip of

A are not necessarily roots/tips of X. Therefore they may be poorly covered in HA
1 , while they are

well covered in the subspace topology. The issue is resolved by passing to HA
2 , which covers roots

and tips well.

Lemma 4.1.1. Let (X, τX) be a causal space with the H1 topology, and A ⊂ X. Suppose (A, τA) is

causally path connected in the subspace topology. Then for all x ∈ X

I±r (x) ∩A =
⋃

y∈I
±
r (x)∩A

y/∈∂±
τA

(A)

I±(y) ∩A ∪
⋃

y∈I
±
r (x)∩A

τ∈∂±
τA

(A)

J±(y) ∩A

whenever I±r (x) ∩A ̸= ∅.

23
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Proof. We will only prove the case for I+(x), as the other case is similar. If y ∈ I+r (x) ∩A, then

I+(y) ⊂ J+(y) ⊂ I+r (x) =⇒ I+(x) ∩A ⊂ J+(y) ∩A ⊂ I+r (x) ∩A

Which shows that the RHS is contained in the LHS. On the other hand, let y ∈ I+r (x) ∩ A. If

y ∈ ∂+
τA(A), then y ∈ J+(y)∩A. Suppose y /∈ ∂+

τA(A), so there is z ∈ A, with z < y. Then since A is

causally path connected, there is γ : [0, 1] → A future timelike joining z and y, which is continuous

in the H1 subspace topology. Then τ̂(x, γ(t)) is lower-semicontinuous at t = 1, so there is s < 1 such

that τ̂(x, γ(s)) > r. Let w = γ(s). Then w ∈ I+r (x)∩A, w /∈ ∂+
τA(A), and y ∈ I+(w)∩A. Therefore

the LHS is contained in the RHS, so they must be equal.

Corollary. Let A ⊂ X be causally path connected in the H1-subspace topology. Then HA
2 is finer

than the subspace topology.

We can find a similar result for the subspace topology induced by H2, as long as we assume some

stronger path connected properties.

Lemma 4.1.2. Let (X, τX) be a causal space, and A ⊂ X. Suppose (A, τA) is causally path connected

in the H2 subspace topology. Let x be a root/tip. Then

J±(x) ∩A =
⋃

y∈J±(x)∩A

y/∈∂±
τA

(A)

I±(y) ∩A ∪
⋃

y∈J±(x)∩A

y∈∂±
τA

(A)

J±(y) ∩A

Proof. Again, we will only prove the claim for J+(x) ∩ A. It is clear that the RHS is contained in

the LHS. Let y ∈ J+(x)∩A. If x < y, then y is contained in the RHS, by lemma 4.1.1. Now suppose

τ(x, y) = 0. If y is τA-inclusive, i.e there is w < y, then there is future timelike curve γ : [0, 1] → X

from w to y. Then since x is a root, τ(x, γ(t)) is lower semi-continuous, which implies that there is

s < 1 such that τ(x, γ(t)) = 0. Hence x ≤ γ(t) < y, which contradicts that τ(x, y) = 0. Hence y

must be a root of A. Then y ∈ J+(y)∩A. Hence the RHS contains the LHS, so they are equal.

Corollary. Let A ⊂ X be causally path connected in the H2-subspace topology. Then HA
2 is finer

than the subspace topology.

Proof. The combination of lemmas 4.1.1 and 4.1.2 mean that I±r (x) ∩ A, which is open in the

subspace topology, is also open in the H2 topology. Similarly J±(x) ∩ A is open in H2 whenever x

is a root/tip. It follows that the subspace topology is coarser than the HA
2 topology.
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It may be difficult to show that A which are causally path connected in a subspace topology.

However, the matter can be simplified by asking for path connectedness of X, and ’convexity’ of A.

Definition 4.1.1. Let (X, τ) be a causal space. A subset A ⊂ X is called causally convex if for all

a, b ∈ A with a ≤ b, J(a, b) ⊂ A. The causally convex hull of a set is

convτ (A) =
⋃

a,b∈A

a≤b

J(a, b)

It is the smallest causally convex set containing A. We denote the set of all causally convex subsets

of X by J (X).

Corollary. Let (X, τ) be a Hi-causally path connected space, and A ⊂ X be causally convex. Then

HA
2 is finer than the Hi-subspace topology, for i = 1, 2.

Proof. Fix i = 1, 2. Let a, b ∈ A with a < b. Since X is Hi-causally path connected, there is a

Hi-continuous, future timelike path γ joining a to b. Since A is causally convex, γ ⊂ J(a, b) ⊂ A.

It follows that γ is continuous in the Hi subspace topology. Hence A is causally path connected

in the Hi subspace topology. Then by corollary 4.1 or 4.1, the HA
2 is finer than the Hi subspace

topology.

4.2 Products

Proposition 3. (Product) Let {(Xα, τα)}α∈Λ be a collection of causal spaces, where Λ is some index

set. Then (X, τ) is a causal space, where X =
∏

α Xα, and

τ((xα), (yα)) = inf
α
{τα(xα, yα)}

Proof. Let (xα)α∈Λ ∈ X. Then

τ((xα), (xα)) = inf
α
{τα(xα, xα)︸ ︷︷ ︸

≥0

} ≥ 0

Which verifies the first axiom of causality.

Next let (yα) ∈ X, with (xα) ̸= (yα), and τ((xα), (yα)) ≥ 0. Then by definition, τα(xα, yα) ≥ 0

for all α. Therefore since (xα) ̸= (yα), there is α ∈ Λ such that xα ̸= yα, and thus τα(yα, xα) = −∞.

It follows that τ((yα), (xα)) = −∞. This verifies the second axiom of causality.
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Finally, let (zα) ∈ X, and suppose τ((xα), (yα)) ≥ 0 and τ((yα), (zα)) ≥ 0. Then for all α,

τα(xα, yα) ≥ 0 and τα(yα, zα) ≥ 0. Hence τα(xα, zα) ≥ τα(xα, yα) + τα(yα, zα). Then

τ((xα), (zα)) = inf
α
{τα(xα, zα)}

≥ inf
α
{τα(xα, yα) + τα(yα, zα)}

≥ inf
α
{τα(xα, yα)}+ inf

α
{τα(yα, zα)} = τ((xα), (yα)) + τ((yα), (zα))

Which proves the third axiom of causality.

Similarly to the case of subsets of X, we want to compare the product topology (once a topology

is fixed on Xi), and the Hi topology induced by τ . For this we must restrict to finite products. We

will see that, like for subspaces, H1 is coarse, and H2 is fine.

Lemma 4.2.1. Let {(Xi, τi)}ni=1 be a finite collection of causal spaces, and let (X, τ) be the product

space. Then for all x = (xi) ∈ X, and all r ≥ 0:

I±r (x) =

n∏
i=1

I±r (xi)

Proof. The result is a consequence of the fact that τ(x, y) > r ⇐⇒ τi(xi, yi) > r for all i. This is

evident from the definition of τ and the fact that the collection is finite.

Corollary. Let {(Xi, τi)}ni=1 be a finite collection of causal spaces with the H1 topology, and let

(X, τ) be the product space. Then the H1 topology on X is coarser than the product topology.

Lemma 4.2.2. Let {(Xi, τi)}ni=1 be a finite collection of causal spaces, and let (X, τ) be the product

space. Then for all x = (xi) ∈ X:

J±(x) =

n∏
i=1

J±(xi)

Proof. The result is a consequence of the fact that τ(x, y) ≥ 0 ⇐⇒ τi(xi, yi) ≥ 0 for all i. Again,

this is evident from the definition of τ and the fact that the collection is finite.

Lemma 4.2.3. Let {(Xi, τi)}ni=1 be a finite collection of causal spaces, and let (X, τ) be the product

space. Then x = (xi) ∈ X is a root/tip iff at least one xi is a root/tip.

Proof. This is a consequence of lemma 4.2.1. Since I±(x) =
∏

I±(xi), I±(x) = ∅ ⇐⇒ I±(xi) = ∅

for some xi.
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Theorem 4.2.1. Let {(Xi, τi)}ni=1 be a finite collection of H2-causally path connected spaces. Let

(X, τ) be the product. Then the H2 topology on X is finer than the product topology.

Proof. We need only show that the preimage of a subbasis element in Xi under the i-th projection

map πi is open in H2, for every i. Since each Xi is H2-causally path connected, the subbasis elements

are I±(x) for inclusive x, and J±(x) for roots/tips x.

First we show that U = π−1
i (I+(xi)) is open for every inclusive xi. Let y = (yi) ∈ U . If

y is a root, then y ∈ J+(y) which is open in H2. Furthermore, for every z = (zi) ∈ J+(y),

0 ≤ τ(y, z) ≤ τi(yi, zi). Therefore yi ≤ zi. Then xi < yi ≤ zi hence z ∈ U . Hence

y ∈ J+(y) ⊂ π−1
i (I+(xi))

Now suppose y is not a root. Then by lemma 4.2.3, yj is not a root for every j. Then there is

zj < yj for each j. In particular, there is zi < yi. Then since Xi is causally path connected and

lemma 3.2.3, there is zi < wi < yi such that xi < wi. Define z = (z1, . . . , zi−1, wi, zi+1, . . . , zn).

Then z ∈ U , since xi < wi, and y ∈ I+(z), since zj < yj for all j, and wi < yi. Therefore

y ∈ I+(z) ⊂ π−1
i (I+(xi))

Hence π−1
i (I+(xi)) is open in H2. Similarly, π−1

i (I−(xi)) is open.

Now we consider U = π−1
i (J+(xi)), where xi is a root. Let y = (yi) ∈ U . If y is a root, then

y ∈ J+(y), and J+(y) ∈ U . Suppose y is not a root. Then yi is not a root, and therefore by lemma

3.2.2, xi < yi. By the process as above, we have zj < yj for all j, and xi < wi < yi. Defining

z = (z1, . . . , zi−1, wi, zi+1, . . . , zn), we have

y ∈ I+(z) ∈ π−1
i (J+(xi))

So π−1
i (J+(xi)) is open in H2 for all roots x, and similarly π−1

i (J−(xi)) is open for all tips x.

4.3 Quotients

In this section we ask the question of when a space can be made into a causal space. The axioms of

causality imply the following properties: the first axiom asserts that every point be causally related

to itself, the second asserts that there are no closed causal loops, and the third asserts that time

separation between points is maximal. It is relatively easy to construct functions which relate points
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to themselves and are maximal. It is harder to ensure that no causal loops are present. A possible

solution is to identify causal loops as equivalence classes and pass to the quotient. In some sense,

we take causal loops and ’shrink them to a point’.

Definition 4.3.1. A set (X, τ) is a precausal space if τ satisfies the first and third axioms of causality,

ie

1. τ(x, x) ≥ 0 ∀x ∈ X

2. τ(x, z) ≥ τ(x, y) + τ(y, z) if τ(x, y) + τ(y, z) ≥ 0

τ is called a pre-time separation.

A pre-time separation defines a reflexive and transitive order ≤ in a similar manner to a standard

time separation. However, this order is not necessarily asymmetric. Still, we can endow a precausal

space (X, τ) with the same topologies as a causal space.

Given a precausal space (X, τ), we define a relation x ∼ y ⇐⇒ y ≤ x ≤ y. This relation is

reflexive since ≤ is reflexive, and it is both symmetric and transitive since ≤ is transitive. Therefore

it is an equivalence relation.

Lemma 4.3.1. Let x ∼ y ∈ X, and let z ∈ X. Then τ(x, z) = τ(y, z) and τ(z, x) = τ(z, y).

Proof. We will only prove τ(x, z) = τ(y, z), as the other claim is symmetric. First observe that

x ≤ z ⇐⇒ y ≤ z. Hence if x ̸≤ z, then y ̸≤ z, and τ(x, z) = −∞ = τ(y, z). Now assume x ≤ z and

y ≤ z. Then y ≤ x ≤ z and x ≤ y ≤ z, so

τ(x, z) ≥ τ(x, y) + τ(y, z) ≥ τ(y, z)

τ(y, z) ≥ τ(y, x) + τ(x, z) ≥ τ(x, z)

Which implies τ(x, z) = τ(y, z).

By lemma 4.3.1, τ respects the equivalence relation ∼, and therefore there is a well-defined map

τ̃ on the quotient X̃ = X/ ∼, given by:

τ̃ : X̃ × X̃ → {−∞} ⊔ [0,∞] ([x], [y]) 7→ τ(x, y)

Theorem 4.3.1. (X̃, τ̃) is a causal space.
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Proof. τ̃ inherits the first and third axioms of causality from τ . It is left to show that it satisfies the

second. Suppose τ̃([x], [y]) ≥ 0 and τ̃([y], [x]) ≥ 0. Then:

τ(x, y) = τ̃([x], [y]) ≥ 0 =⇒ x ≤ y

τ(y, x) = τ̃([x], [y]) ≥ 0 =⇒ y ≤ x

Hence x ∼ y =⇒ [x] = [y]. Therefore for all [x] ̸= [y],

τ̃([x], [y]) ≥ 0 =⇒ τ̃([y], [x]) = −∞

Finally we give a simple result relating the topology on the precausal space with that of the

causal space.

Remark 4.3.1. From the fact that τ(x, y) = τ̃([x], [y]), we have that the Hi topology on (X̃, τ̃)

coincides with the quotient topology.



Chapter 5

Hausdorff time separation

In this short section, we introduce a causal variation of the Hausdorff distance, called a Hausdorff

time separation. We will see that this induces a precausal structure on the power set P(X) of a

causal space X, and a causal structure on J (X).

We begin by defining the following:

Definition 5.0.1. Given A ⊂ X and r ≥ 0, we write

I±r (A) :=
⋃
a∈A

I±r (a) J±
r (A) :=

⋃
a∈A

J±
r (a)

Definition 5.0.2. Let (X, τ) be a causal space. For A,B ⊂ X, we define the Hausdorff time

separation to be:

τH(A,B) := sup{r ≥ 0 : A ⊂ J−
r (B), B ⊂ J+

r (A)}

with the convention sup(∅) = −∞

Proposition 4. (P(X), τH) is a precausal space.

Proof. First it is clear that τH : P(X) × P(X) → {−∞} ⊔ [0,∞], since τH is only negative if the

supremum is empty, in which case it is −∞. Next, for any A ∈ P(X), A ∈ J±(A), since τ(x, x) ≥ 0

for all x ∈ X. Hence τH(A,A) ≥ 0. This verifies the first axiom of causality.

Now let τH(A,B) = r, τH(B,C) = s, and suppose r, s ≥ 0. Then for each ε > 0,

A ⊂ J−
r−ε(B); B ⊂ J+

r−ε(A)

B ⊂ J−
s−ε(C); C ⊂ J+

s−ε(B)

30
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Let a ∈ A. Then there exists b ∈ B such that τ(a, b) ≥ r − ε. Furthermore there is c ∈ C such that

τ(b, c) ≥ s− ε. Then

τ(a, c) ≥ τ(a, b) + τ(b, c) ≥ r + s− 2ε (5.1)

And therefore A ⊂ J−
r+s−2ε(C). Similarly, for each c ∈ C, there is b ∈ B such that τ(b, c) ≥ s − ε

and there is a ∈ A such that τ(a, b) ≥ r − ε. Then

τ(a, c) ≥ τ(a, b) + τ(b, c) ≥ r + s− 2ε (5.2)

And therefore C ⊂ J+
r+s−2ε(A). This holds for all sufficiently small ε > 0, and therefore A ⊂ J−

r+s(C)

and C ⊂ J+
r+s(A). Hence:

τH(A,C) ≥ r + s = τH(A,B) + τH(B,C) (5.3)

This verifies the third axiom of causality, so (P(X), τH) is a precausal space.

We then know that (
∼

P(X), τ̃H) is a causal space, but in this case we can say more.

Lemma 5.0.1. Let A be causally convex. Then B ∼ A =⇒ B ⊂ A.

Proof. Let B ∼ A. Then for every b ∈ B, there is a, a′ ∈ A such that a ≤ b ≤ a′. Then b ∈ J(a, a′),

and hence b ∈ A, since A is causally convex. Then B ⊂ A.

Lemma 5.0.2. For all A ⊂ X, A ∼ convτ (A).

Proof. Since A ⊂ convτ (A), A ⊂ J±
0 (convτ (A)). It is left to show that convτ (A) ⊂ J±

0 (A). Let

a ∈ convτ (A). Then either a ∈ A ∩ S, or a ∈ J(b, b′) for some b, b′ ∈ A. If the former is true,

then a ∈ A, so a ∈ J±
0 (A). If the latter is true, then b ≤ a ≤ b′, so thus a ∈ J±

0 (A). Hence

convτ (A) ⊂ J±
0 (A). Hence A ∼ conv(A).

Recall that J (X) denotes the collection of all causally convex subsets of X. The above lemmas

give the following result.

Theorem 5.0.1. (J (X), τH) is a causal space.

Proof. Let A ∼ B. By lemma 5.0.2, convτ (A) ∼ A ∼ B ∼ convτ (B). By lemma 5.0.1, convτ (A) ⊂

convτ (B) ⊂ convτ (A). Therefore A ∼ B =⇒ conv(A) = conv(B). On the other hand, if

convτ (A) = convτ (B), then by lemma 5.0.2, A ∼ convτ (A) = convτ (B) ∼ B. Therefore A ∼
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B ⇐⇒ convτ (A) = convτ (B). It follows that on J (X), every equivalence class contains a single

set.
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