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Abstract. In this lecture we introduce a mathematical model which couples the edu-
cation and labor markets, in which steady-steady competitive equilibria turn out to be
characterized as the solutions to an infinite-dimensional linear program and its dual. In
joint work with Erlinger, Shi, Siow and Wolthoff, we use ideas from optimal transport
to analyze this program, and discover the formation of a pyramid-like structure with
the potential to produce a phase transition separating singular from non-singular wage
gradients.

Wages are determined by supply and demand. In a steady-state economy, individuals
will choose a profession, such as worker, manager, or teacher, depending on their skills
and market conditions. But these skills are determined in part by the education market.
Some individuals participate in the education market twice, eventually marketing as
teachers the skills they acquired as students. When the heterogeneity amongst student
skills is large, so that it can be modeled as a continuum, this feedback mechanism has the
potential to produce larger and larger wages for the few most highly skilled individuals
at the top of the market. We analyze this phenomena using the aforementioned model.
We show that a competitive equilibrium exists, and it displays a phase transition from
bounded to unbounded wage gradients, depending on whether or not the impact of each
teacher increases or decreases as we pass through successive generations of their students.
We specify criteria under which this equilibrium will be unique, and under which the
educational matching will be positive assortative. The latter turns out to depend on
convexity of the equilibrium wages as a function of ability, suitably parameterized.
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1. Introduction

The last half century has seen much fruitful interaction between economics and
mathematics. Still, the relationship between these two subjects is far less developed
than the long standing affair between mathematics and physics. This is good news
for mathematicians, in the sense that much work remains to be done: economics
provides a ready source of interesting mathematical problems, so far only modestly
tapped, as well as an area of application where mathematical developments again
have a chance to prove transformative, as they did during the development of
the theories of gravitation and quantum mechanics in the last century, and more
recently in areas like statistical physics and string theory.

For mathematicians working in optimal transportation, it has been a source
of considerable satisfaction to discover that their work has found diverse applica-
tions in economics; see [6] [7] [9] and [3] for examples. My work with Figalli and
Kim [11] in particular suggests that curvature may have a heretofore unanticipated
role to play in economic theory. It is also the case that economists have exploited
ideas from optimal transportation in surprising ways [14] [25], and in some cases
have been ahead of mathematicians in anticipating significant developments, such
as the gradient flow framework discussed in Sonnenschein’s myopic price dynam-
ics [28], some twenty-five years before it was linked to the heat equation by Jor-
dan, Kinderlehrer and Otto [19]. (The triangle with physics is complete, in the
sense that Cullen and Purser were using Hamiltonian dynamics in the same energy
landscape as Sonnenschein to study atmospheric and oceanic flows [8].) All this is
perhaps less surprising given the fact that one of the cornerstones of optimal trans-
port — the Kantorovich-Koopmans duality theorem — lead its mathematician and
physicist-trained inventors to share the 1975 Nobel Memorial Prize in Economics.
A few years before that, future Nobel Laureate Lloyd Shapley had worked out
the fundamental results concerning stable matchings in the non-transferable and
transferable utility settings with Gale [13] and with Shubik [27], respectively. As
Shapley and Shubik discovered, the transferable utility version of this problem can
also be reformulated as a discrete optimal transport problem. This discovery was
generalized and extended to a continuum setting by Gretzky, Ostroy and Zame [18].

In the present synopsis I will sketch the results of a joint work with three
economist colleagues at the University of Toronto, and one former PhD student,
which draws inspiration from the foregoing. It concerns a matching model coupling
the education and labor sectors. For precise statements and proofs of all the ideas
discussed here, see our joint paper [10].

As is often the case in economic models, the problem is to understand how
supply equilibrates with demand to determine prices — or in this case wages –
in each of these markets. What is supplied and demanded in these markets are
skills; we focus primarily on cognitive skills for simplicity. The phenomenon of
interest to us is whether, in the limit of a large population displaying a bounded
range of skills, competition may lead to wages which display singularities: for
example, does the the ratio of the highest to the average salary tend to a finite or
an infinite number, as the size of the population tends to infinity? We investigate
this question in a competitive equilibrium model, which means individuals choose
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those teachers, occupations and partners who reward them most generously, under
the assumption that such decisions are made at the level of individuals (or groups)
too small to affect market conditions such as the wage profile v(k) as a function
of skill level k ∈ [0, ā[. Skills can be continuously distributed in this interval, as a
reflection of the large size of the population.

The education market plays a special role in our study. The output produced by
this market is the enhancement of salable skills, taking initial student and teacher
skills as its input. However, some participants match twice in the education market,
first as students, and later as teachers. This creates a feedback mechanism which
— depending the effectiveness of the educational technology — has the potential to
create a pyramid, in which there is greater and greater demand for the most skilled
teachers, who occupy positions closer and closer to the apex. Even if we assume
that wages outside the education market are bounded, in a steady-state model the
wage which a highly skilled teacher can command depends on the potential future
earnings of their students, some of whom will be teachers, who may have many
generations of students, whose wages must be determined in part by the internal
dynamics of the education market insofar as these students again will again have
the choice to become teachers — and will do so provided they can find other
students willing to pay them sufficient tuition. As adults on the labor market,
they also have alternatives to teaching: namely they could engage in production
by working or managing a team consisting of N ′ workers and one manager, whose
output is a known function N ′bL of the team members’ skills.

Our model depends on c ≥ 0 and positive parameters θ, θ′, N,N ′ and ā satis-
fying max{θ, θ} < 1 ≤ N . Here N represents the number of students each teacher
can teach, and the extent θ to which she succeeds at transmitting her cognitive
skills to her students. Similarly, N ′ represents the number of workers each manager
can manage, and θ′ represents the extent to which a manager’s skills influences
the quality of the work produced by those whom she manages. All skills lie in the
interval A = [0, ā[ or its closure Ā.

A worker of skill a ∈ Ā working with a manager of skill k ∈ Ā produces a
continuously differentiable output bL((1 − θ′)a + θ′k) given by bL ∈ C1(Ā). A
student of skill a studying with a teacher of skill k becomes an adult of skill
z(a, k) = (1− θ)a+ θk. The acquired skill z may have some external value cbE(z)
to the student — in addition to the wage v(z) it commands on the market. Both
bL and bE ∈ C1(Ā) are assumed to be fixed uniformly convex increasing functions
hereafter, satisfying

0 < bE/L = bE/L(0), (1)

0 < b′E/L = b′E/L(0), (2)

0 < b′′E/L = inf
a∈A

b′′E/L(a), (3)

where b′′E/L is defined as the largest constant for which bE/L(a) − b′′E/L|a|2/2 is

convex on Ā. A typical example would be bE(a) = ea = bL(a) as in [22].
At each period of our model, students are born into the population with cogni-

tive skills distributed randomly throughout the closure Ā of an interval A = [0, ā[⊂
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R according to some Borel probability distribution α ≥ 0. They live only for two
periods. During the first period, each student a ∈ Ā seeks to enhance his cognitive
skill by studying with whichever teacher k ∈ Ā provides the best educational value
to him. During the second period, the student becomes an adult armed with skill
z = z(a, k) = (1 − θ)a + θk, who then enters the workforce as a worker, manager
or teacher earning a wage v(z), whose steady-state value we seek to determine.

Although we cannot find v(z) explicitly, we are able to characterize it as the
solution of a variational problem: an infinite-dimensional linear program whose
non-standard form complicates its analysis considerably. What has been achieved
with Erlinger, Shi, Siow and Wolthoff [10] is an analysis of the existence, unique-
ness, and characteristics of the solutions to this linear program under suitable
technical hypotheses. These include requiring the initial distribution α of student
skills to satisfy a doubling condition at the top skill type ā, meaning there exists
C <∞ such that ∫

[ā−2∆a,ā]

α(da) ≤ C
∫

[ā−∆a,ā]

α(da) (4)

for all ∆a > 0. Under suitable assumptions, we deduce the wage profile v(k) is
strictly convex and increasing, but displays a phase transition from having bounded
to unbounded gradients as the product Nθ increases through 1. More precisely, if
Nθ > 1, so that the net impact of a teacher increases as one passes from each gen-

eration of their students to the next, then v′(a) ∼ |ā− a|−
log θ
logN−1 as a→ ā (unless

an even stranger pathology occurs — see Theorem 6.1). Since this singularity is
integrable, our analysis suggests lima→ā v(a) is finite.

Along the way, we establish various conclusions about the behavior of the model
in different parameter regimes, such as which ranges of skill types will be displayed
by workers, managers and teachers, and who will match with whom in each sector
(education and labor) of our market. Before describing our model and conclusions
more precisely, let us mention some antecedents.

The role of teachers and the individual investment required to develop human
capital has been examined in the context of a steady-growth model for specializa-
tion by Becker and Murphy, who also recognized the relevance of the long lineages
of teachers which may form [2]. The economics of superstars had been analyzed
before that by Rosen [26]; convexity of wages play a key role in his study, as they
do in ours. The formation of finite-depth pyramids (or management layers) in
the context of a labor market model has also been investigated by Garicano [16]
and followed up with Rossi-Hansberg [17], though the absence of feedback makes
their model quite different from ours. Another explanation for inflated levels of
executive compensation has been proposed by Gabaix and Landier [12]. Finally,
the possibility of allowing parameters such as θ, θ′, N and N ′ to vary endogenously
across the population to model heterogeneity of communication skills was a feature
of our original four-author model [22], which we have chosen to suppress in the log-
arithmically reparameterized five-author sequel [10]. This suppression facilitates a
more penetrating analysis of some phenomena of interest in their simplest form.
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2. A competitive equilibrium model

Fix θ, θ′, N,N ′ and ā positive with max{θ, θ′} < 1 ≤ N and A = [0, [̄, a probability
measure α on Ā, and education and labor production functions bE/L ∈ C1(Ā)
satisfying (1)–(3). Set K = [0, k̄[= A and c ≥ 0.

A competitive equilibrium requires the wage profile v(k) as a function of skill
level k ∈ Ā to be related in a certain way to other quantities which reflect the
behavior of students and adults in our model. Educational decisions of such agents
are captured by a probability measure dε(a, k) ≥ 0 on Ā2, which represents the
fraction of students with skill a who choose to study with a teacher of skill k, and
vice versa. Labor market decisions are recorded by a measure dλ(a, k) ≥ 0 on Ā2,
representing the number of workers of skill a who choose to work with a manager
of skill k, and vice versa. The net lifetime utility of a student of skill a will be
denoted by u(a).

The support of any (Borel) measure µ on Rm refers to the smallest closed set
Sptµ ⊂ Rm carrying the full mass of µ. The push-forward of any measure µ on
Rm through a Borel map f : Rm −→ Rn refers to the measure f#µ assigning
mass µ[f−1(N)] to each set N ⊂ Rn. Thus ε1 = π1

#ε and ε2 = π2
#ε denote the

marginal projections of ε through the coordinate maps πi(x1, x2) = xi.
We say ε ≥ 0 and λ ≥ 0 represent a steady-state for our model if

ε1 = α and (5)

λ1 +
1

N ′
λ2 +

1

N
ε2 = z#ε, (6)

where z(a, k) = (1− θ)a+ θk is the skill attained by a student a through studying
with teacher k. Here the first identity requires the initial distribution of student
skills to be given by α, while the second requires that the current distribution
of (worker + manager + teacher) skills in the population will be reproduced at
the next generation through education. This is the steady-state constraint. We
denote the set of non-negative measures (ε, λ) satisfying (5)–(6) by R(α) — which
of course depends also on N,N ′ and θ. Note that λ will not be a probability
measure; rather its mass coincides with the fraction (1− 1

N )/(1 + 1
N ′ ) of the adult

population who choose to become workers.
We say a pair of payoffs u, v : Ā −→]0,∞] are stable if

u(a) +
1

N
v(k) ≥ cbE(z(a, k)) + v(z(a, k)) and (7)

v(a) +
1

N ′
v(k) ≥ bL((1− θ′)a+ θ′k) on Ā× K̄, and (8)

N
N−1 (u(k)− cbE(k)) ≥ v(k) ≥ N ′

N ′ + 1
bL(k) > 0. (9)

The wage constraint (8) reflects the stability of matchings in the labor sector. If
the reverse inequality held, the output N ′bL produced by N ′ adults of skill a and
one of skill k would be sufficient to allow all N ′ + 1 of them to improve their
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wages by abandoning their occupations to collaborate by forming N ′ new worker-
manager pairs. Similarly, constraint (7) is a stability constraint on the education
market, which ensures that no N students of ability a plus one teacher of ability
k all have the incentive to abandon their institutions to form a school with each
other. Together, these two constraints imply (9) at any point a = k where v is
finite; we have included it only to show the payoffs are positive and that v cannot
diverge unless u does.

We must also specify in what class of functions the payoffs u, v must lie. Since
we wish to allow for the possibility that the payoffs u, v : A −→ [0,∞[ become
unbounded at the upper endpoint ā of the half-open interval A, we define the
feasible set F0 to consist of pairs (u, v) = (u0 +u1, v0 +v1) satisfying (7)–(9) which
differ from bounded continuous functions u0, v0 ∈ C(Ā) by non-decreasing lower
semicontinuous functions u1, v1 : Ā −→ [0,∞] which are real-valued on A.

Together, a pair of stable payoffs (u, v) ∈ F0 and steady-state matchings (ε, λ) ∈
R(α) form a competitive equilibrium if they satisfy the budget constraint

equality holds ε-a.e. in (7), and λ-a.e. in (8). (10)

In other words, the productivity of λ-a.e. worker-manager team must be sufficient
to the pay the worker’s wage plus a fraction 1

N ′ of the manager’s; similarly ε-
a.e. student-teacher pair must generate future earnings v for the student, which
together with any non-labor compensation cbE for skills acquired through educa-
tion, must be sufficient to leave utility u(a) for the student after a fraction 1

N of
his teacher’s salary has been paid.

3. A variational approach

Since it is not obvious whether such equilibria exist or how to find them, we begin
by recharacterizing them variationally. Consider the problem of minimizing the
expected net utility α(u) over the population α of students:

LP∗ := inf
(u,v)∈F0

∫
[0,ā]

u(a)dα(a). (11)

This is a linear minimization over the convex set of stable payoffs (u, v) ∈ F0. As
an infinite-dimensional linear program whose domain includes pairs of continuous
functions on Ā satisfying two stability contraints, this problem has a linear pro-
gramming dual, which turns out to be a maximization involving pairs of measures
on Ā2:

LP ∗ := max
(ε,λ)∈R(α)

∫
Ā×K̄

[cbθ(a, k)dε(a, k) + b̃θ′(a, k)dλ(a, k)], (12)

where bθ(a, k) = bE(z(a, k)) and b̃θ′(a, k) = bL((1−θ′)a+θ′k). It can be interpreted
as a social planners problem, which is to maximize the production cε(bθ) + λ(b̃θ′)
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of the two sectors in question (education and labor) over steady-state measures
(ε, λ) ∈ R(α).

If F0 consisted solely of continuous bounded functions u, v ∈ C(Ā), it would
be easy to see LP∗ ≥ LP ∗ via the argument of the proposition below; equality
would then follow from a standard application of the Fenchel-Rockafellar duality
theorem. The fact that F0 includes unbounded functions makes the ‘obvious’
inequality LP∗ ≥ LP ∗ much more subtle to prove. It is for this purpose that we
exploit the doubling condition (4) on α to establish LP∗ = LP ∗ [10].

We also assert that Shapley and Shubik’s insight [27] extends from single-sector,
single-stage matching problems to the current multisectorial steady-state setting:

Proposition 3.1 (Optima v. equilibria). The pair (u, v) ∈ F0 and (ε, λ) ∈ R(α)
constitutes a competive equilibrium (5)–(10) if and only if (u, v) minimizes the
primal problem (11) and (ε, λ) maximizes its dual problem (12).

Idea of proof. We sketch a proof here, side-stepping the subtlety mentioned above,
by assuming boundedness of u and v to ensure that all integrals in question con-
verge. Integrating the stability constraint (7) for the education market against ε
yields

α(u)− cε(bθ) ≥ (z#ε)(v)− 1

N ′
ε2(v) (13)

≥ λ1(v) +
1

N ′
λ2(v) (14)

≥ λ(b̃θ′), (15)

where (ε, λ) ∈ R(α) has been used to obtain (13)–(14), and the stability constraint
for the labor market (8) has been used in (15). This shows LP∗ ≥ LP ∗. More-
over, the conditions for equality in (13) and (15) coincide precisely with the budget
constraints (10). Thus any competitive equilibrium forces (u, v) to minimize the
primal linear program, and (ε, λ) to maximize its dual. Conversely, since we have
independently deduced LP ∗ = LP∗ using the Fenchel-Rockafellar duality theorem,
any bounded pair of optimizers (u, v) ∈ F0 and (ε, λ) ∈ R(α) must saturate the
chain of inequalities above, hence satisfy the budget constaint and form a compet-
itive equilibrium.

Having established the equivalence between equilibrium and optimality, it is
natural to want to establish the existence of minimizers for the primal problem and
maximizers for the dual. As is typically the case in Fenchel-Rockafellar duality,
existence of optimizers for the dual problem comes for free: it set in the Banach
space dual to (C(Ā2), ‖ · ‖∞), which is a space of measures whose unit ball is well-
known to be weak-∗ compact. Since ε and λ both belong to this unit ball, it is
easy to extract a subsequential limit from a maximizing sequence, and this limit is
the maximizer. To show the primal infimum is attained is much more subtle, since
the only obvious bound on u (and hence v) is in L1(Ā, α). To address it, we shall
need to learn more about what to expect in terms of the structure of any optimal
(u, v).
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4. Existence and structure of optimal wages

Given stable (u, v) ∈ F0, the convex functions bE(z), z(a, k) = (1 − θ)a + θk and
b̃θ′(k

′, k) := bL((1−θ′)k′+θ′k) can be used to define the wages implicitly available
to an individual of cognitive skill k employed as a worker, manager, or teacher,
respectively:

vw(k) := max
k′∈Ā

b̃θ′(k, k
′)− 1

N ′ v(k′), (16)

vm(k) := N ′max
k′∈Ā

b̃θ′(k
′, k)− v(k′), and (17)

vt(k) := N max
a∈Ā

cbE(z(a, k)) + v(z(a, k))− u(a) where (18)

∞−∞ :=∞. (19)

Notice that vm and vw are suprema of convex functions of k; hence inherit
uniform convexity directly from (3). It is not obvious whether or not vt is convex
— unless v is convex, in which case vt is convex and inherits uniform convexity
from bE when c > 0. Similarly, convexity of

ū(a) := max
k∈Ā

cbE(z(a, k)) + v(z(a, k))− 1
N v(k) (20)

is not obvious, unless v is convex, in which case ū is a convex function which
inherits uniform convexity when c > 0. These observations play a crucial role in
our proof that α(u) attains its minimum on F0.

Our strategy is the following: first we minimize (11) on the smaller set F0 ∩C0

consisting of pairs of convex non-decreasing functions (u, v) ∈ F0. For c > 0,
we then hope to show the minimizer over this restricted set is actually uniformly
convex and increasing, in the sense that its first two derivatives are bounded away
from zero. In this case the convexity and monotonicity constraints do not bind,
so the minimum over the smaller set F0 ∩ C0 also minimizes α(u) over the larger
set F0. (The existence of minimizers in case c = 0 can then be handled by taking
a limit c → 0+ and relying on the compactness properties of the set of convex
functions. The question of whether or not uniform convexity of u and v remains
true in this limit requires a more subtle analysis in [10]; its conclusion is appended
to Theorem 4.1 below.)

Stability (7) implies that the students’ net lifetime utility satisfies u ≥ ū, which
corresponds to the fact that, in a competitive equilibrium, every student chooses
to study with the teacher who represents the best educational investment for him.
On the other hand, since we seek to minimize the expectation α(u), it costs no
generality to assume this bound is saturated, meaning u = ū. Stability (7)–(9)
also implies v ≥ v̄ := max{vw, vm, vt}, which corresponds to the fact that, in a
competitive equilibrium, each adult chooses the most financially rewarding occu-
pation and professional partners for him or herself. Under the plausible hypothesis
v = v̄, our existence argument would be complete (at least in case c > 0). Unfortu-
nately, we can only really expect v = v̄ on the set of skills represented in the adult
population, which might form a complicated subset of A and vary considerably
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along a minimizing sequence in F0. Our strategy for circumventing this difficulty
is to perturb both the primal and dual problems artificially, to ensure that adult
skills populate the entire range A at some minimal level δ > 0, solve the perturbed
problems, and then take a limit δ → 0. In this way, we arrive at:

Theorem 4.1 (Existence of minimizing wages). Fix c ≥ 0 and positive θ, θ′, N,N ′

and ā = k̄ with max{θ, θ′} < 1 ≤ N and A = [0, ā] = K. Let α be a Borel
probability measure on Ā satisfying the doubling condition (4) at ā, and define
z(a, k) = (1 − θ)a + θk, bθ = bE ◦ z and b̃θ′(a, k) = bL((1 − θ′)a + θ′k), where
bE/L ∈ C1(Ā) satisfy (1)–(3). Then infimum (11) is attained by functions (u, v) ∈
F0 satisfying v = max{vw, vm, vt} and u = ū on Ā = [0, ā], where the vw/m/t and
ū are defined by (16)–(20); here u, v : Ā −→]0,∞] are continuous, convex, non-
decreasing, and — except perhaps at ā — real-valued. For j ∈ {1, 2}, if Nθj ≥ 1

then djv/dkj ≥ b(j)L min{(1− θ′)j , (θ′)jN ′}.

5. Who matches with whom?

We next try to understand which adults will choose to become workers, managers,
or teachers, and with whom they will collaborate. The convex wages we have just
shown to exist provide a key tool in this endeavor.

On the one hand, the slopes of vw and vm are inherited from (1 − θ′)bL and
θ′N ′bL according to (16)–(18), so if (1−θ′) is very different from θ′N ′, we will have
each worker being more skilled than each manager, or vice versa. How different
these parameters must be depends on the range of slopes possessed by bL ∈ C1(Ā),
as reflected in the ratio b̄′L/b

′
L. Here

b̄′E/L = b′E/L(ā) = sup
a∈Ā

b′E/L(a)

and b′L is from (2). Similarly, vt inherits its slopes from (cbE + v)Nθ, so taking
Nθcb′E large enough relative to the parameters mentioned above ensures that the
cognitive skills of each teacher will exceed those of all managers and workers.
However if c is small or vanishes, meaning education has little or no value outside
the labor market, things become more subtle, as in our Proposition 5.2 below. See
also the numerical simulations of [22].

The other major tool that we have at our disposal is the knowledge that the
functions

f(a, k) := u(a) +
1

N
v(k)− cbE(z(a, k))− v(z(a, k))

g(a, k) := v(a) +
1

N ′
v(k)− bL((1− θ′)a+ θ′k)

are non-negative throughout Ā2 by the stability of (u, v) ∈ F0, yet f vanishes ε a.e.
and g vanishes λ-a.e. by the budget constraint (10). In other words, ε is supported
on the set where f is minimized, and λ on the set where g is minimized. Thus we
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expect the derivatives of f and g to vanish ε-a.e. and λ-a.e. respectively, provided
these derivatives exist; that is, we expect

u′(a)

1− θ
= [cb′E + v′](1−θ)a+θk =

v′(k)

Nθ
to hold ε-a.e. and (21)

v′(a)

1− θ′
= b′L((1− θ′)a+ θ′k) =

v′(k)

N ′θ′
to hold λ-a.e. (22)

Similarly, we expect the Hessians of f and g to be non-negative definite ε-a.e. and
λ-a.e. respectively, provided these derivatives exist:

u′′(a)

(1− θ)2
≥ [cb′′E + v′′](1−θ)a+θk ≤

v′′(k)

Nθ2
should hold ε-a.e. and (23)

v′′(a)

(1− θ′)2
≥ b′′L((1− θ′)a+ θ′k) ≤ v′′(k)

N ′(θ′)2
should hold λ-a.e., (24)

plus detD2f ≥ 0 and detD2g ≥ 0 should hold ε-a.e. and λ-a.e. respectively. In
fact, for each (a, k) ∈ Spt ε we can show the first equality in (21) holds provided
a ∈ DomDu, while the second equality holds provided k ∈ DomDv; here DomDu
denotes the subset of ]0, ā[ where u is differentiable, and DomD2u denotes the
further subset where the non-decreasing function u′(a) has a derivative in the
sense of Lebesgue. (It is straightforward to see for each (a, k) ∈ Sptλ that the first
equality in (22) holds provide a ∈ DomDu, and the second equality holds provided
k ∈ DomDv.)

Assuming α has no atoms, convexity of u ensures DomDu constitutes a set
of full measure; likewise DomD2u is a set of full measure when α is absolutely
continuous with respect to Lebesgue. If c > 0 or convexity of v is strict, (21) can
be solved to identify the skill

k = kt(a) =
1

θ
(cb′E + v′)−1

(
u′(a)

1− θ

)
− 1− θ

θ
a (25)

of each teacher who teaches students of skill a ∈ DomDu. It is less transparent
to see that the convex function v is differentiable at almost every adult skill level,
since the distribution of adult skills z#α is not prescribed, but rather determined
by the model. It is therefore useful to know whether or not z#α can have atoms,
assuming α does not. The following lemma rules out atoms in z#α provided ε is
positive assortative; it also shows z#α inherits absolute continuity with respect
to Lebesgue from α in that case. Positive assortativity simply means Spt ε is a
non-decreasing subset of R2, so that the skill of each teacher cannot decrease as a
function of the skill of the students they teach.

Lemma 5.1 (Endogenous distribution of adult skills). Fix θ ∈]0, 1[ and a Borel
probability measure α ≥ 0 on Ā with A = [0, ā[. Set z(a, k) = (1−θ)a+θk. If ε ≥ 0
on Ā2 has α = ε1 as its left marginal, then for each ā−∆a ∈ A the corresponding
distribution κ = z#ε of adult skills satisfies∫

[ā−∆a,ā]

dκ(a) ≤
∫

[ā− 1
1−θ∆a,ā]

dα(a). (26)
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Thus κ has no atom at ā unless α does.
In addition, if ε is positive assortative and α has no atoms, then κ has no

atoms and ε = (id × kt)#α for some non-decreasing map kt : Ā −→ Ā. uniquely
determined α-a.e. by κ. Moreover, if dα(a) = αac(a)da is given by a density
αac ∈ L1(A), then dκ(a) = κac(a)da is given by a related density κac ∈ L1(A)
satisfying

αac(a) = (1 + θ(k′t(a)− 1))κac(z(a, kt(a))) (27)

for Lebesgue-a.e. a ∈ A. In this case ‖κac‖L∞(A) ≤ 1
1−θ‖α

ac‖L∞(A).

Our next theorem shows that positive assortativity of ε holds as long the equilil-
brium payoffs (u, v) ∈ F0 are strictly convex. It also explains when and in what
sense equilibria will be unique. Before stating it we cite a proposition which details
more elaborate consequences of the foregoing analysis concerning who will work,
manage and teach. For the phase transition which we plan to describe, it is par-
ticularly relevant to have criteria such as (c) below, ensuring that even for c = 0,
the most skilled individuals will be teachers. It is also essential for the theorem
which follows, to know that the skill levels of the academic descendants of almost
every given teacher are only finite in number. By contrast, there will certainly be
teachers whose academic ancestors populate countably many skill types.

Note that in the following proposition, (c) and (d) together imply (e), meaning
at least one of the two inequalitiesNθ ≥ 1 or c ≥ 0 is strict. Also noteN ′θ′ ≥ b̄′L/b

′
L

and Nθ ≥ b̄′L/b
′
L are sufficient for (b) and (c), respectively.

Proposition 5.2 (Specialization by type; the educational pyramid). Fix A = [0, ā[
with ā > 0, and c ≥ 0. Extend convex, nondecreasing u, v : A −→ R lower
semicontinuously to Ā and suppose v = max{vw, vm, vt}, where vw/m/t are from
(16)–(19).

If (a) Nθcb′E ≥ b̄′L max{N ′θ′, 1− θ′} then all teacher types lie weakly above all
of the manager and worker types.

If (b) N ′θ′ > (1 − θ′) supa∈A b
′
L(1 − θ′)a + θ′ā)/b′L(θ′a) then all of the worker

types lie weakly below all of the manager types.
If (c) Nθ ≥ sup0≤z≤k b

′
L((1−θ′)z+θ′ā)/(b′L(θ′z)+ c

N ′θ′ b
′
E(z)) and (b) holds, and

f(a, k) := u(a) + 1
N v(k)− cbE(z(a, k))− v(z(a, k)) vanishes at some (a, k) ∈ A×A

where v(z(a, k)) = vm(z(a, k)), then v > vm on ]k, ā]. In other words, no manager
(or worker) can have a type higher than a teacher of managers.

If (d) Nθ ≥ 1, then any student of type a ∈ A will be weakly less skilled than
his teacher, and strictly less skilled if (e) either c > 0 or Nθ > 1 in addition.

If (f) either c > 0 or v′(0) > 0, then (d)–(e) imply all academic descendants of
a teacher with skill k ∈ A will display one of at most finitely many d = d(k) distinct
skill types, unless differentiability of v fails at k. However, d(k) may diverge as
k → ā, in which case v′(k)→ +∞ at a rate we can estimate.

We are finally in a position to state our positive assortativity and uniqueness
results.

Theorem 5.3 (Positive assortative and unique optimizers). Adopting the hypothe-
ses and notation of Theorem 4.1, if (ε, λ) ∈ R(α) maximize the dual problem (12),
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then the labor matching λ is positive assortative. Moreover, there exist a pair of
maximizers (ε, λ) for which the educational matching ε is also positive assortative.

If there exist minimizing payoffs (u, v) ∈ F0 for the primal problem (11) which
are strictly convex and increasing, (as for example if either c > 0 or Nθ2 ≥ 1),
then any maximizing ε and λ are positive assortative. If, in addition, α is free
from atoms then the maximizing ε and λ are unique. If, in addition, hypotheses
(d)-(f) from Proposition 5.2 hold, then u′ and v′ exist and are uniquely determined
α-a.e. and (z#ε)-a.e. respectively. If, in addition, α dominates some absolutely
continuous measure whose support fills Ā, and (u0, v0) ∈ F0 is any other minimizer
with v0 : A −→ R locally Lipschitz then u0 = u holds α-a.e., meaning u0 is unique.

Regarding the marginals of λ as fixed, positive assortativity follows from the
fact that λ is chosen to maximize a surplus b̃θ′(a, k) = bL((1−θ)a+θk) whose cross-
partial derivatives are positive (owing to the uniform convexity of bL). Such results
have played a celebrated role in the economics literature since the work of Mirrlees
on taxation [24], Becker on marriage [1], and Spence on educational signaling in
the labor market [29]; in the mathematical literature they date to Lorentz’ earlier
work on rearrangement inequalities [20]. The positive assortativity of ε cannot be
derived in quite the same way, since it is z#ε−ε2/N rather than ε2 which is fixed in
the maximization (12). However, it is strongly suggested by (23) and (25), and can
be rigorously derived from cross-partial derivatives of the expressions appearing in
the suprema (18)–(20), whose positivity relies on the uniform convexity of the
endogenous wage profile v(k) established in Theorem 4.1. In view of (23) and
(24), one can also view this convexity as propagating from the wage of each adult
to the wage of their teacher; it takes finitely many steps to reach any teacher’s skill
level in the educational pyramid, by Proposition 5.2(f).

Uniqueness of ε and λ follow from positive assortativity once their marginal
distributions are known. My favorite proof of this fact appears in [21]. The distri-
bution of student skills ε1 = α is specified a priori, and the distribution of teacher
skills ε2 can be worked out from the equilibrium payoffs (u, v) using the student-
teacher skill correspondence k = kt(a) given by (25). This follows a strategy which
has become standard in optimal transportation since the work of Brenier [4], Caf-
farelli [5], Gangbo and myself [15]. To specify the marginals of λ uniquely requires
sorting out who will be a worker and who will be a manager, allowing for the
possibility that their skill distributions λ1 and λ2 may overlap. A precedent for
deriving uniqueness in such settings appears in work with Trokhimtchouk [23].

6. Transition to unbounded wage gradients

Finally, we are in a position to address our motivating question, which is the
possibility of singularities in the wage profile at the apex ā of the skills pyramid
A = [0, ā[. By analyzing the recursion (21) relating the wage of each teacher to
the future earnings of their students, we are able to prove the following singularity
alternative:
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Theorem 6.1 (Wage behavior and density of top-skilled adults). Adopting the
hypotheses and notation of Theorem 4.1, let α be given by a Borel probability
density αac ∈ L∞(A) which is continuous and positive at the upper endpoint of
A = [0, ā[. Suppose (ε, λ) ∈ R(α) and convex (u, v) ∈ F0 optimize the primal and
dual problems (11)–(12), and (i) ā ∈ (Spt ε2)\Spt(λ1+λ2), meaning all adults with
sufficiently high skills become teachers; (ii) the educational matching ε is positive
assortative, meaning a non-decreasing correspondence k = kt(a) relates the ability
of α-a.e. student a to that of his teacher; (iii) kt is differentiable at ā, and (iv) v
is differentiable on some interval ]ā− δ, ā[. Then for Nθ 6= 1,

v′(a) =
const

|ā− a|
logNθ
logN

− cb̄′E
1− 1

Nθ

+ o(1) (28)

as a→ ā.

In Proposition 5.2 and Theorem 5.3 we have already seen that N ′θ′, Nθ and
Nθ2 large enough guarantee (i) and (ii). We do not know conditions which guar-
antee (iii)-(iv). However (iii) follows from (25) if bE , u, v ∈ C2 near ā, so our
theorem guarantees that some nearby singularity is produced when (i)–(ii) hold.
The difference quotients whose limit defines k′t(ā) are bounded under the condi-
tions of Proposition 5.2(d), in which case we judge failure of (iii) to be less likely
that the smooth gradient blow-up predicted by (28). We judge an accumulation
(iv) of non-differentiabilities A \ DomDu at ā to be even more unlikely. On the
other hand, the leading order behavior of (28) changes, depending on whether the
influence (Nθ)d of a given teacher grows or decays as one moves through succes-
sive generations d ≥ 1 of their academic descendants. This strongly suggests a
sharp transition from bounded to unbounded wage gradients, at the critical value
Nθ = 1 where this influence remains constant from generation to generation. Note
however that the singularity (28) in the gradient is integrable, so that even when it
is present the wages v(k) tend to a finite limit as k → k̄. This answers the question
raised at the outset: at least in the context of the present model, the maximum
wage tends to a finite multiple of the average wage in the large population limit;
its sensitivity to skill level, however, can be bounded or unbounded, depending on
the effectiveness of education.
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