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Abstract

A principal wishes to transact business with a multidimensional distribution of agents whose prefer-
ences are known only in the aggregate. Assuming a twist (= generalized Spence–Mirrlees single-crossing)
hypothesis, quasi-linear utilities, and that agents can choose only pure strategies, we identify a structural
condition on the value b(x, y) of product type y to agent type x — and on the principal’s costs c(y) —
which is necessary and sufficient for reducing the profit maximization problem faced by the principal to a
convex program. This is a key step toward making the principal’s problem theoretically and computationally
tractable; in particular, it allows us to derive uniqueness and stability of the principal’s optimal strategy —
and similarly of the strategy maximizing the expected welfare of the agents when the principal’s profitability
is constrained. We call this condition non-negative cross-curvature: it is also (i) necessary and sufficient to
guarantee convexity of the set of b-convex functions, (ii) invariant under reparametrization of agent and/or
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product types by diffeomorphisms, and (iii) a strengthening of Ma, Trudinger and Wang’s necessary and
sufficient condition (A3w) for continuity of the correspondence between an exogenously prescribed distri-
bution of agents and of products. We derive the persistence of economic effects such as the desirability for
a monopoly to establish prices so high they effectively exclude a positive fraction of its potential customers,
in nearly the full range of non-negatively cross-curved models.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

The principal–agent paradigm provides a microeconomic framework for modeling non-
competitive decision problems which must be made in the face of informational asymmetry.
Such problems range from monopolist nonlinear pricing [26,36,39,2] and product line design
(“customer screening”) [31], to optimal taxation [24], labour market signalling and contract the-
ory [35,27], regulation of monopolies [4] including public utilities [28], and mechanism design
[22,25]. A typical example would be the problem faced by a monopolist who wants to market au-
tomobiles y ∈ Y to a population of potential buyers (“agents”) x ∈ X. Knowing the value b(x, y)

of car y to buyer x, the relative frequency dμ(x) of different buyer types in the population, and
the cost c(y) she incurs in manufacturing car type y, the principal needs to decide which products
(or product bundles) to manufacture and how much to charge for each of them, so as to maximize
her profits.

In the simplest models there are only a finite number of product possibilities (e.g. with air
conditioning, or without) and a finite number of buyer types (e.g. rich, middle-class, and poor);
or possibly a one-dimensional continuum of product possibilities (parameterized, say, by quality)
and of agent types (parameterized, say, by income) [24,35,26,4]. Of course, real cars depend
on more than one parameter — fuel efficiency, comfort, options, reliability, styling, handling
and safety, to name a few — as do car shoppers, who vary in wealth, income, age, commuting
needs, family size, personal disposition, etc. Thus realistic modeling requires multidimensional
type spaces X ⊂ Rm and Y ⊂ Rn, as in [27,22,32,5,10]. Although such models can often be
reduced to optimization problems in the calculus of variations [8,5], in the absence of convexity
they remain dauntingly difficult to analyze. Convexity — whether manifest or hidden — rules
out critical points other than global minima, and is often the key to locating and characterizing
optimal strategies either numerically or theoretically. The purpose of the present article is to
determine when convexity is present, assuming the dimensions m = n of the agent and product
type spaces coincide.

An archetypal model was addressed by Wilson [39], Armstrong [2], and Rochet and Choné
[31]. A particular example from the last of these studies makes the simplifying hypotheses
X = Y = [0,∞[n, c(y) = |y|2/2, and b(x, y) = 〈x, y〉. By assuming this bilinearity of the buy-
ers’ valuations, Rochet and Choné were able to show that the principal’s problem can be reduced
to a quadratic minimization over the set of non-negative convex functions — itself a convex set.
Although the convexity constraint makes this variational problem non-standard, for buyers dis-
tributed uniformly throughout the unit square in R2, they exploited a combination of theoretical
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and computational analysis to show a number of results of economic interest. Their most strik-
ing conclusion was that the profit motive alone leads the principal to discriminate between three
different types of buyers: (i) low-end customers whom she will not market cars to, because —
as Armstrong had already discovered — making cars affordable to this segment of the market
would cost her too much of her mid-range and high-end profits; (ii) mid-range customers, whom
she will encourage to choose from a one-parameter family of affordably-priced compromise ve-
hicles; (iii) high-end customers, whom she will use both available dimensions of her product
space to market expensive vehicles individually tailored to suit each customer’s desires. Whether
or not such bunching phenomena are robust is an unanswered question of considerable interest
which — due to their specificity to particular valuation functions — the techniques of the fore-
going authors remain unable to address. The possibility of non-robustness was highlighted in
[5]; below we go further to suggest which specific perturbations of the valuation function b(x, y)

are most likely to yield robust results. On the other hand, our conclusions confirm Armstrong’s
assertion that what he called the desirability of exclusion is a very general phenomenon in the
models we study (Theorem 4.8). This exclusion however, is less generic when the dimensions of
the type and allocation spaces differ [10], or when their strict convexity fails [32]: see Deneckere
and Severinov for a discussion of the case (m,n) = (2,1); see also [3].1

For general valuations b(x, y), the principal’s problem can be reformulated as a minimization
problem over the space of b-convex functions (Definition 3.1), according to Carlier [8]. Such
functions generally form a compact but non-convex set, which prevented Carlier from deducing
much more than the existence of an optimal strategy for the principal — a result which can also
be obtained using the method of Monteiro and Page [25] (for related developments see Basov [5]
or Rochet and Stole [32]). Our present purpose is to identify conditions on the agent valuations
which guarantee convexity of this feasible set (Theorem 3.2). In the setting we choose, the condi-
tions we find will actually be necessary as well as sufficient for convexity; this necessity imparts
a significance to these conditions even if they appear unexpected or unfamiliar. If, in addition, the
principal’s manufacturing cost c(y) is b∗-convex, for b∗(y, x) := b(x, y), the principal’s prob-
lem becomes a convex program which renders it much more amenable to standard theoretical
and computational techniques [11]. Although the resulting problem retains the complexities of
the Wilson, Armstrong, and Rochet and Choné’s models, we are able to deduce new results which
remained inaccessible until now, such as conditions guaranteeing uniqueness (Theorem 4.6) and
stability (Corollary 4.7) of the principal’s optimal strategy. The same considerations and results
apply also to the problem of maximizing the total welfare of the agents under the constraint that
it remain possible for the principal to operate without sustaining a loss (Remark 5.1).

2. Hypotheses: the basic framework

As in Ma, Trudinger and Wang’s work concerning the smoothness of optimal mappings [21],
let us assume the buyer valuations satisfy the following hypotheses. Let X denote the closure of
any given set X ⊂ Rn, and for each (x0, y0) ∈ X × Y assume:

1 A different robustness result concerning exclusion was found by Barelli, Basov, Bugarin and King [3], who relax
the convexity assumption on the space of agents while allowing a fairly wide class of valuations b(x, y). No hypothesis
analogous to our (B3) below appears in their work, though they relax our convexity hypothesis (B2) considerably and
work under a different hypothesis than (B1). We are grateful to an anonymous referee, for bringing this work to our
attention after the present manuscript had been submitted.
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(B0) b ∈ C4(X × Y), where X ⊂ Rn and Y ⊂ Rn are open and bounded;

(B1) (bi-twist)
x ∈ X �−→ Dyb(x, y0)

y ∈ Y �−→ Dxb(x0, y)

}
are diffeomorphisms onto their ranges;

(B2) (bi-convexity)
Xy0 := Dyb(X,y0)

Yx0 := Dxb(x0, Y )

}
are convex subsets of Rn.

Here the subscript x0 serves as a reminder that Yx0 denotes a subset of the cotangent space
T ∗

x0
X= Rn to X at x0. Note (B1) is strengthened form of the multidimensional generalization of

the Spence–Mirrlees single-crossing condition expressed in separate works from the 1990s by
Rüschendorf, Gangbo, and Levin; see e.g. [1]. It turns out to imply that the marginal utility of
buyer type x0 determines the product he selects uniquely and smoothly (cf. (4.2)), and similarly
that buyer type who selects product y0 will be a well-defined smooth function of y0 and the
marginal cost of that product; (B1) is much less restrictive than the generalized single crossing
condition proposed by McAfee and McMillan [22], since the iso-price curves in the latter context
become hyperplanes, effectively reducing the problem to a single dimension. Hypothesis (B2)
turns out to be necessary (but not sufficient) for the convexity of the principal’s optimization
problem and strategy space.2 We also assume

(B3) (non-negative cross-curvature)

∂4

∂s2∂t2

∣∣∣∣
(s,t)=(0,0)

b
(
x(s), y(t)

)
� 0 (2.1)

whenever either of the two curves s ∈ [−1,1] �−→ Dyb(x(s), y(0)) and t ∈ [−1,1] �−→
Dxb(x(0), y(t)) forms an affinely parameterized line segment (in Xy(0) ⊂ Rn, or in
Yx(0) ⊂ Rn, respectively).

If the inequality (2.1) becomes strict whenever x′(0) and y′(0) are non-vanishing, we say the
valuation function b is positively cross-curved, and denote this by (B3)u.3

2 Necessity of the convexity of Yx0 for that of Vb

Y
in Theorem 3.2 was pointed out to us by Brendan Pass in his response

to this manuscript. In the context of Spence–Mirrlees and Rochet–Choné type valuations (Examples 3.3–3.4 below), the
convexity of Yx0 permits the space Y of product types to be interpreted as representing randomized (mixed) strategies.

3 We will eventually see that condition (B3) can alternately be characterized as in Lemma 4.3 using Definition 4.1; the
convexity asserted by that lemma may appear more intuitive and natural than (B3) from point of view of applications.
Historically, non-negative cross-curvature arose as a strengthening of Trudinger and Wang’s criterion (A3w) guaranteeing
smoothness of optimal maps in the Monge–Kantorovich transportation problem [37]; unlike us, they require (2.1) only
if, in addition,

∂2

∂s∂t

∣∣∣∣
(s,t)=(0,0)

b
(
x(s), y(t)

) = 0. (2.2)

Necessity of Trudinger and Wang’s condition for continuity was shown by Loeper [19], who (like Trudinger, and inde-
pendently Kim and McCann [16]) also noted its covariance and some of its relations to the geometric notion of curvature.
Their condition relaxes a hypothesis proposed with Ma [21], which required strict positivity of (2.1) when (2.2) holds.
The strengthening considered here was first studied in a different but equivalent form by Kim and McCann, where both
the original and the modified conditions were shown to correspond to pseudo-Riemannian sectional curvature condi-
tions induced by buyer valuations on X × Y , thus highlighting their invariance under reparametrization of either X or
Y by diffeomorphism; see Lemma 4.5 of [16]. The same lemma shows it costs no generality to require both curves
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3. Results concerning the principal–agent problem

A mathematical concept of central relevance to us is encoded in the following definition.

Definition 3.1 (b-convex). A function u : X �−→ R is called b-convex if u = (ub∗
)b , where

vb(x) = sup
y∈Y

b(x, y) − v(y) and ub∗
(y) = sup

x∈X

b(x, y) − u(x). (3.1)

In other words, if u is its own second b-transform, i.e. a supremal convolution (or generalized
Legendre transform) of some function v : Y �−→ R∪{+∞} with b. The set of b-convex functions
will be denoted by Vb

Y
. Similarly, we define the set Ub∗

X
of b∗-convex functions to consist of those

v : Y �−→ R satisfying v = (vb)b
∗
.

Although some authors permit b-convex functions to take the value +∞, our hypothesis (B0)
ensures b-convex functions are Lipschitz continuous and thus that the suprema defining their
b-transforms are finitely attained. Our first result is the following.

Theorem 3.2 (b-convex functions form a convex set). Assuming b : X × Y �−→ R satisfies (B0)–
(B2), hypothesis (B3) becomes necessary and sufficient for the convexity of the set Vb

Y
of b-convex

functions on X.

To understand the relevance of this theorem to economic theory, let us recall a mathematical
formulation of the principal–agent problem based on [8] and [29,30]. In this context, each product
y ∈ Y costs the principal c(y) to manufacture, and she is free to market this product to the
population X of agents at any lower semicontinuous price v(y) that she chooses. She is aware
that product y has value b(x, y) to agent x ∈ X, and that in response to any price menu v(y) she
proposes, each agent will compute his indirect utility by combining his valuation for product y

with its price quasi-linearly

u(x) = vb(x) := max
y∈Y

b(x, y) − v(y), (3.2)

and will choose to buy a product yb,v(x) which attains the maximum, meaning u(x) =
b(x, yb,v(x)) − v(yb,v(x)). However, let us assume that there is a distinguished point y∅ ∈ Y

representing the null product (or outside option), which the principal is compelled to offer to all
agents at zero profit,

v(y∅) = c(y∅), (3.3)

s ∈ [−1,1] �−→ Dyb(x(s), y(0)) and t ∈ [−1,1] �−→ Dxb(x(0), y(t)) to be line segments for (2.1) to hold. Other vari-
ants and refinements of Ma, Trudinger, and Wang’s condition have been proposed and investigated by Figalli and Rifford
and Loeper and Villani for different purposes at about the same time; see e.g. [17].

Kim and McCann showed non-negative cross-curvature guarantees tensorizability of condition (B3), which is useful
for building examples of valuation functions which satisfy it [17]; in suitable coordinates, it guarantees convexity of
each b-convex function, as they showed with Figalli [13]; see Proposition 4.4. Hereafter we show, in addition, that it is
necessary and sufficient to guarantee convexity of the set Vb

Y
of b-convex functions. A variant on the sufficiency was

observed simultaneously and independently from us in a different context by Sei (Lemma 1 of [34]), who was interested
in the function b(x, y) = −d2

Sn (x, y), and used it to give a convex parametrization of a family of statistical densities he
introduced on the round sphere X = Y = Sn.
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either because both quantities vanish (representing the null transaction), or because, as in [6],
there is a competing supplier or regulator from whom the agents can obtain this product at price
c(y∅). In other words, u∅(x) := b(x, y∅) − c(y∅) acts as the reservation utility of agent x ∈ X,
below which he will reject the principal’s offers and decline to participate, whence u � u∅. The
map yb,v : X �−→ Y from agents to products they select will not be continuous except possibly if
the price menu v is b∗-convex; when yb,v(x) depends continuously on x ∈ X we say v is strictly
b∗-convex.

Knowing b, c and a (Borel) probability measure μ on X — representing the relative frequency
of different types of agents in the population — the principal’s problem is to decide which lower
semicontinuous price menu v : Y �−→ R ∪ {+∞} maximizes her profits, or equivalently, mini-
mizes her net losses:∫

X

[
c
(
yb,v(x)

) − v
(
yb,v(x)

)]
dμ(x). (3.4)

Note the integrand vanishes (3.3)–(3.4) for any agent x who elects not to participate (i.e., who
chooses the outside option y∅ ∈ Y ).

For absolutely continuous distributions of agents — or more generally if μ vanishes on Lips-
chitz hypersurfaces — it is known that the principal’s losses (3.4) depend on v only through the
indirect utility u = vb, an observation which can be traced back to Mirrlees [24] in one dimension
and Rochet [29] more generally; see also Carlier [8]. This indirect utility u � u∅ is b-convex, due
to the well-known identity ((vb)b

∗
)b = vb (e.g. Proposition 5.8 of [38]). Conversely, the princi-

pal can design any b-convex function u � u∅ that she wishes simply by choosing price strategy
v = ub∗

. Thus, as detailed below, the principal’s problem can be reformulated as a minimization
problem (4.5) on the set U0 := {u ∈ Vb

Y
| u � u∅}. Under hypotheses (B0)–(B3), our Theorem 3.2

shows the set Vb

Y
of such utilities u to be convex, in the usual sense. This represents substantial

progress, even though the minimization problem (3.4) still depends nonlinearly on v = ub∗
. If, in

addition, the principal’s cost c(y) is a b∗-convex function, then Proposition 4.4 and its corollary
show her minimization problem (3.4) becomes a convex functional of u on U0, so the princi-
pal’s problem reduces to a convex program. Necessary and sufficient conditions for a minimum
can in principle then be expressed using Kuhn–Tucker type conditions, and numerical examples
could be solved using standard algorithms. However we do not do this here: unless μ is taken to
be a finite combination of Dirac masses, the infinite dimensionality of the convex set Vb

Y
leads

to functional analytic subtleties even for the bilinear valuation function b(x, y) = 〈x, y〉, which
have only been resolved with partial success by Rochet and Choné in that case [31]. If the b∗-
convexity of c(y) is strict however, or if the valuation function is positively cross-curved (B3)u,
we shall show the principal’s program has enough strict convexity to yield unique optimal strate-
gies for both the principal and the agents in a sense made precise by Theorem 4.6. These optimal
strategies represent a Stackelberg (rather than a Nash) equilibrium, in the sense that no party has
any incentive to change his or her strategies, given that the principal must commit to and declare
her strategy before the agents select theirs.

Of course, it is of practical interest that the principal be able to anticipate not only her optimal
price menu v : Y �−→ R ∪ {+∞} — also known as the equilibrium prices — but the correspond-
ing distribution of goods which she will be called on to manufacture. This can be represented as
a Borel probability measure ν on Y , which we call the optimal production measure. It quantifies
the relative frequency of goods to be produced, and is the image of μ under the agents’ best
response function yb,v : X �−→ Y to the principal’s optimal strategy v. This image ν = (yb,v)#μ
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is a Borel probability measure on Y known as the push-forward of μ by yb,v , and is defined by
the formula

ν(W) := μ
[
y−1
b,v(W)

]
(3.5)

for each W ⊂ Y . Theorem 4.6 asserts the optimal production measure ν is unique and the optimal
price menu v is uniquely determined ν-a.e.; the same theorem gives a sharp lower bound for v

throughout Y . If the convex domain Xy∅ is strictly convex and the density of agents is Lipschitz
continuous on X, Theorem 4.8 goes on to assert that these prices will be high enough to drive a
positive fraction of agents out of the market, extending Armstrong’s desirability of exclusion [2]
to a rich class of multidimensional models. Thus the goods to be manufactured and their prices
are uniquely determined at equilibrium, and the principal can price the goods she prefers not to
trade arbitrarily high but not arbitrarily low. Theorem 4.6 goes on to assert that the optimal strat-
egy yb,v(x) is also uniquely determined for μ-almost every agent x by b, c and μ, for each Borel
probability measure μ on X. Apart from Theorem 4.8, these conclusions apply to singular and
discrete measures as well as to continuous measures μ, assuming the tie-breaking conventions
of Remark 4.2 are adopted whenever μ fails to vanish on each Lipschitz hypersurface.

A number of examples of valuation functions b(x, y) which satisfy our hypotheses are de-
veloped in the works by Delanoë, Ge, Figalli, Kim, Lee, Li, Loeper, Ma, McCann, Rifford,
Trudinger and Wang; see [17] and [38] for references. Here we mention a few which have rele-
vance to economics:

Example 3.3. For single dimensional type and allocation spaces n = 1, hypotheses (B1)–(B2)
are equivalent to asserting that the valuation function b(x, y) be defined on a product of two
intervals where its cross-partial derivatives D2

xyb do not vanish. Positive cross-curvature (B3)u

asserts that D2
xyb in turn satisfies a Spence–Mirrlees condition, by having positive cross-partial

derivatives: D2
xy(D

2
xyb) > 0.

Example 3.4. The bilinear valuation function b(x, y) = x · y of Armstrong, Rochet and Choné
satisfies (B0)–(B3) provided only that X,Y ⊂ Rn are convex bodies. In this case b-convexity
coincides with ordinary convexity of u together with a constraint on its gradient’s range: Du(x) ∈
Y at each point where u is differentiable. Thus Theorem 4.6 asserts that any strictly convex
manufacturing cost c(y) leads to unique optimal strategies for the principal and for μ-almost
every agent. This uniqueness is well known for absolutely continuous measures dμ  d vol
[31], and Carlier and Lachand–Robert have extended Mussa and Rosen’s differentiability result
u ∈ C1(X) to n � 1 in that case [9,26], but the uniqueness of optimal strategies under the tie-
breaking rules described in Remark 4.2 may be new results when applied, for example, to discrete
distributions μ concentrated on finitely many agent types.

Example 3.5. Ma, Trudinger and Wang’s perturbation b(x, y) = x ·y +F(x)G(y) of the bilinear
valuation function is non-negatively cross-curved (B3) provided F ∈ C4(X) and G ∈ C4(Y )

are both convex [21,16]; it is positively cross-curved if the convexity is strong, meaning both
F(x) − ε|x|2 and G(y) − ε|y|2 remain convex for some ε > 0. It satisfies (B0)–(B1) provided
supx∈X |DF(x)| < 1 and supy∈Y |DG(y)| < 1, and (B2) if the convex domains X and Y ⊂ Rn

are sufficiently convex, meaning all principal curvatures of these domains are sufficiently large
at each boundary point [21]. On the other hand, b(x, y) = x · y + F(x)G(y) will violate (B3) if
D2F(x0) > 0 holds but D2G(y0) � 0 fails at some (x0, y0) ∈ X × Y .
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Example 3.6 (On geometry in spatial economics). Consider now a valuation function such as
b(x, y) = − 1

2 |x − y|2, modeling a family of buyers X ⊂ Rn each of whom prefers to choose
products corresponding as closely as possible to their own type. Such a function might model
a geographical distribution of otherwise identical consumers who must decide whether to pay
a high fee to have a certain service (such as deliveries or waste removal) provided directly to
their home, an intermediate fee to obtain this service at a nearby depot, or no fee to obtain the
service from a more remote source y∅ = 0 (such as a centralized warehouse in the first case or a
public landfill in the second). If the monopolist’s costs for providing this service are independent
of location c(y) = const, then the problem becomes mathematically equivalent to Rochet and
Choné’s (Example 3.4 above): each b-convex strategy u satisfies D2u � −I , and corresponds to
the convex strategy u(x)+ |x|2/2 of [31]. From their results concerning product and buyer types
in the unit disc or unit square X, we infer that only buyers sufficiently far from the source y∅ can
be induced to pay a positive price for the convenience of obtaining this service nearby. In the case
of the square, there will be a strip of buyer types who select delivery points concentrated along
the diagonal, followed by a region of buyers who pay more for individually customized delivery
points. Since the products consumed lie in a subset of the square, the constraints Du ∈ [0,∞[2

of [31] are not binding, allowing us to take Y = R2 instead of Y = [0,∞[2. This in turn allows
us to reflect their solution in both the horizontal and vertical axes, to yield an example in which
the outside option y∅ lies in the center of a two-by-two square, rather than the corner of a one-by-
one square. Comparison with the case of the unit disc X centered at y∅, for which the solution is
rotationally symmetric, shows the bunching observed by Rochet and Choné depends dramatically
on the domain’s geometry, and its lack of strict convexity.

Now consider instead the possibility that the geographical region X, instead of being flat, is
situated either at the bottom of a valley, or at a pass in the mountains, and that the valuation func-
tion b(x, y) = − 1

2d(x, y)2 reflects this geography, by depending on the distance d as measured
along a spherical cap in the case of the valley or along a piece of a saddle in the case of the moun-
tain pass. Then (B0)–(B1) are both satisfied, and (B2) will be too provided the domain X = Y is
convex enough... consisting for example of all points sufficiently close to the free source y∅ in the
spherical or saddle geometry. According to results of Loeper [19,20] and Kim and McCann [17],
(B3) will be satisfied in the case of the sphere [17], but violated in the case of a saddle [19]. Thus
for a town in a valley (or on a mountain top), our results show that the screening problem remains
convex, while for a town located on a pass in the mountains the problem becomes non-convex.
This calls into question the uniqueness, stability, and structure of its solution(s) in the latter case,
and displays how geometry and geography can affect the solubility of economic problems.

In the next section we formulate the results mathematically. Let us first highlight a further im-
plication of our results concerning robustness of the phenomena observed by Rochet and Choné.
The quadratic functions b(x, y) = x · y and b(x, y) = − 1

2 |x − y|2 both lie on the boundary
of the set of non-negatively cross-curved valuations, since their cross-curvatures (2.1) vanish
identically. Our results show non-negative cross-curvature (B3) to be a necessary and sufficient
condition for the principal–agent problem to be a convex program: the feasible set Vb

Y
becomes

non-convex otherwise, and it is reasonable to expect that uniqueness of the solution among other
phenomena observed in [31] may be violated in that case. In analogy with the discontinuities
discovered by Loeper [19], we therefore conjecture that the bundling discovered by Rochet and
Choné is robust with respect to perturbations of the quadratic valuation functions which respect
(B0)–(B3), but not generally with respect to perturbations violating (B3). (See [3] however, for
a different robustness result.)
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4. Mathematical formulation

Any price menu v : Y �−→ R ∪ {∞} satisfies

vb(x) + v(y) − b(x, y) � 0 (4.1)

for all (y, x) ∈ Y × X, according to definition (3.1). Comparison with (3.2) makes it clear that
a (product, agent) pair produces equality in (4.1) if and only if selecting product y is among
the best responses of agent x to this menu; the set of such best-response pairs is denoted by
∂b∗

v ⊂ Y × X; see also (A.2). We think of this relation as giving a multivalued correspondence
between products and agents: given price menu v the set of agents (if any) willing to select
product y is denoted by ∂b∗

v(y). It turns out ∂b∗
v(y) is non-empty for all y ∈ Y if and only

if v is b∗-convex. Thus b∗-convexity of v — or of c — means precisely that each product is
priced low enough to be included among the best responses of some agent or limiting agent type
x ∈ X. As we shall see in Remark 4.2, assuming b∗-convexity of v costs little or no generality;
however, the b∗-convexity of c is a real restriction — but plausible when the product types
Y ⊂ Rn represent mixtures (weighted combinations of pure products) which the principal could
alternately choose to purchase separately and then bundle together; this becomes natural in the
context of the bilinear valuation b(x, y) = x · y assumed by Rochet and Choné [31].

Let DomDu ⊂ X denote the set where u is differentiable. If y is among the best responses of
agent x ∈ DomDvb to price menu v, the equality in (4.1) implies

Dvb(x) = Dxb(x, y). (4.2)

In other words y = yb(x,Dvb(x)), where yb is defined as follows:

Definition 4.1. For each q ∈ Yx , define yb(x, q) to be the unique product selected by an agent
x ∈ X whose marginal utility with respect to his type is q; i.e. yb is the unique solution to

Dxb
(
x, yb(x, q)

) = q (4.3)

guaranteed by (B1). The map yb (which is defined on a subset of the cotangent bundle T ∗X and
takes values in Y ) has also been called the b-exponential map [19], and denoted by yb(x, q) =
b-Expxq .

The fact that the best response function takes the form y = yb(x,Dvb(x)), and that DomDvb

exhausts X except for a countable number of Lipschitz hypersurfaces, are key observations ex-
ploited throughout both the economic and optimal transportation literature. Indeed, vb is well
known to be a b-convex function. It is therefore Lipschitz and semiconvex, satisfying the bounds∣∣Dvb

∣∣ � ‖c‖C1(X×Y), D2vb � −‖c‖C2(X×Y) inside X. (4.4)

The second inequality above holds in the distributional sense, and implies the differentiability of
vb outside a countable number of Lipschitz hypersurfaces [14].

Assuming μ assigns zero mass to each Lipschitz hypersurface (and so also to a countable
number of them), the results just summarized allow the principal’s problem (3.4) to be re-
expressed in the form min{L(u) | u ∈ U0}, where the principal’s net losses are given by

L(u) :=
∫
X

[
u(x) + c

(
yb

(
x,Du(x)

)) − b
(
x, yb

(
x,Du(x)

))]
dμ(x) (4.5)
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as is by now well known [8]. Here U0 = {u ∈ Vb

Y
| u � u∅} denotes the set of b-convex functions

on X dominating the reservation utility u∅(x) = b(x, y∅)−c(y∅), and the equality produced in
(4.1) by the response yb,v(x) = yb(x,Dvb(x)) for μ-a.e. x has been exploited. Our hypothesis on
the distribution of agent types holds a fortiori whenever μ is absolutely continuous with respect
to Lebesgue measure on X. If no such hypothesis is satisfied, the reformulation (4.5) of the
principal’s net losses may not be well defined, unless we extend the definition of Du(x) to all of
X by making a measurable selection from the relation

∂u(x) := {
q ∈ Rn

∣∣ u(z) � u(x) + q · (z − x) + o
(|z − x|) ∀z ∈ X

}
consistent with the following tie-breaking rule, analogous to one adopted, e.g., by Buttazzo and
Carlier in a similar context [6]:

Remark 4.2 (Tie-breaking rules for singular measures). When an agent x remains indifferent
between two or more products, it is convenient to reduce the ambiguity in the definition of his
best response by insisting that yb,v(x) be chosen to maximize the principal’s profit v(y) − c(y),
among those products y which maximize (3.2). We retain the result yb,v(x) = yb(x,Dvb(x)) by
a corresponding (measurable) selection Dvb(x) ∈ ∂vb(x). This convention costs no generality
when the distribution μ of agent types vanishes on Lipschitz hypersurfaces in X, since u = vb

is then differentiable μ-a.e.; in the remaining cases it may be justified by assuming the principal
has sufficient powers of persuasion to sway an agent’s choice to her own advantage whenever
some indifference would otherwise persist between his preferred products [24]. After adopting
this convention, it costs the principal none of her profits to restrict her choice of strategies to
b∗-convex price menus v = (vb)b

∗
, a second convention we also choose to adopt whenever μ

fails to vanish on each Lipschitz hypersurface.

The relevance of Theorem 3.2 to the principal–agent problem should now be clear: it guar-
antees convexity of the feasible set U0 in (4.5). Our next proposition addresses the convexity
properties of the principal’s objective functional (i.e. her net losses). Should convexity of this ob-
jective be strict, then the best response yb,v(x) selected by the tie-breaking rule above becomes
unique — which it need not be otherwise.

We precede this proposition with a lemma containing a more intuitive characterization of non-
negative cross-curvature found by two of us [17]. After (B2) and the second part of hypothesis
(B1) are used to define yb(x, q), notice the first part of (B1) becomes equivalent to the absence of
critical points for the functions (4.6) of q . Inspired by Loeper’s characterization [19] of (A3w),
the next lemma asserts (B3) is equivalent to convexity of these non-critical functions.

Lemma 4.3 (Characterizing non-negative cross-curvature [17]). A valuation b satisfying (B0)–
(B2) is non-negatively cross-curved (B3) if and only if for each x �= x1 in X,

q ∈ Yx �−→ b
(
x1, yb(x, q)

) − b
(
x, yb(x, q)

)
(4.6)

is a convex function. If the valuation is positively cross-curved, then (4.6) will be strongly convex
(meaning its Hessian will be positive definite).

This lemma plays a key role in establishing the proposition which follows.

Proposition 4.4 (Convexity of the principal’s objective). If b ∈ C4(X × Y ) satisfies (B0) –(B3)
and c : Y �−→ R is b∗-convex, then for each x ∈ X, definition (4.3) makes a(q) := c(yb(x, q)) −
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b(x, yb(x, q)) a convex function of q on the convex set Yx := Dxb(x,Y ) ⊂ Rn. This convexity
is strict (i) if c is strictly b∗-convex, i.e., if DomDcb = X, or equivalently, if the allocation
yb,c : X �−→ Y is continuous. Alternately, this convexity is strict (ii) for each fixed x ∈ DomDcb

such that

q ∈ Yx �−→ b
(
x0, yb(x, q)

) − b
(
x, yb(x, q)

)
(4.7)

is a strictly convex function of q for all x0 ∈ X \ {x}.

The strict convexity of (4.7) may subsequently be denoted by (B3)s, a condition which
Lemma 4.3 shows to be intermediate in strength between non-negative cross-curvature (B3) and
positive cross-curvature (B3)u. As an immediate corollary to Theorem 3.2 and Proposition 4.4,
we have convexity of the principal’s optimization problem.

Corollary 4.5 (Convexity of the principal’s minimization). Let the distribution of agent types
be given by a Borel probability measure μ on X ⊂ Rn. Unless μ vanishes on all Lipschitz hy-
persurfaces, adopt the tie-breaking conventions of Remark 4.2. If the value b(x, y) of product
y ∈ Y to agent x ∈ X satisfies (B0)–(B3) and the principal’s manufacturing cost c : Y �−→ R
is b∗-convex, then the principal’s problem (4.5) becomes a convex minimization over the convex
set U0.

As a consequence, we obtain criteria guaranteeing uniqueness of the principal’s best strategy.

Theorem 4.6 (Criteria for uniqueness of optimal strategies). Assume the notation and hypotheses
of Corollary 4.5. Suppose, in addition, either (i) that the manufacturing cost c is strictly b∗-
convex, or else (ii) that the valuation function b satisfies the strengthened hypothesis (B3)s of
(4.7). In case (ii) assume also μ[DomDcb] = 1 (it holds automatically unless μ concentrates
mass on some Lipschitz hypersurface). Then the equilibrium response of μ-almost every agent is
uniquely determined, as is the optimal measure ν from (3.5); (always assuming the tie-breaking
conventions of Remark 4.2 to be in effect if μ does not vanish on each Lipschitz hypersurface).
Moreover, the principal has two optimal strategies u± ∈ U0 which coincide at least μ-almost
everywhere, and sandwich all other optimal strategies u ∈ U0 between them: u− � u � u+ on X.
Finally, a lower semicontinuous v : Y �−→ R ∪ {+∞} is an optimal price menu if and only if
v � ub∗

+ throughout Y , with equality holding ν-almost everywhere.

This theorem gives hypotheses which guarantee — even for discrete measures μ correspond-
ing to finitely many agent types — that the solution to the principal’s problem is unique in the
sense that optimality determines how many of each type of product the principal should manu-
facture, what price she should charge for each of them, and which product will be selected by
almost every agent. A lower bound is specified on the price of each product which she does not
wish to produce, to ensure that it does not tempt any agent. When μ vanishes on Lipschitz hy-
persurfaces, this solution represents the only Stackelberg equilibrium balancing the interests of
the principal with those of the agents; for more singular μ, it is possible that other Stackelberg
equilibria exist, but if so they violate the restrictions imposed on the behaviour of the principal
and the agents in Remark 4.2.

The uniqueness theorem has as its corollary the following stability result concerning optimal
strategies. Recall that a sequence {μi}∞i=1 of Borel probability measures on a compact set X ⊂ Rn

is said to converge weakly-∗ to μ∞ if
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∫
X

g(x)dμ∞(x) = lim
i→∞

∫
X

g(x)dμi(x) (4.8)

for each continuous test function g : X �−→ R. This notion of convergence makes the Borel
probability measures P (X) on X into a compact set, as a consequence of the Riesz–Markov and
Banach–Alaoglu theorems.

Corollary 4.7 (Stability of optimal strategies). For each i ∈ N ∪ {∞}, let the triple (bi, ci,μi)

consist of a valuation bi : X × Y �−→ R, manufacturing cost ci : Y �−→ R, and a distribution of
agent types μi on X satisfying the hypotheses of Theorem 4.6. Let ui : X �−→ R denote a bi -
convex utility function minimizing the losses of a principal faced with data (bi, ci ,μi). Suppose
that bi → b∞ in C2(X × Y), ci → c∞ uniformly on Y , and μi ⇀ μ∞ weakly-∗ as i → ∞.
Assume finally that μ∞ vanishes on all Lipschitz hypersurfaces. For μ∞-a.e. agent x ∈ X, the
product Gi(x) := ybi

(x,Dui(x)) selected then converges to G∞(x). The optimal measures νi :=
(Gi)#μi converge weakly-∗ to ν∞ as i → ∞. And the principal’s strategies converge uniformly
in the sense that limi→∞ ‖ui − u∞‖L∞(X,dμ∞) = 0.

Finally as evidence for the robustness of bunching phenomena displayed by our models, we
show the desirability of exclusion phenomenon found by Armstrong for valuations b(x, y) =∑n

i=1 xibi(y) which are linear — or more generally homogeneous of degree one — in x [2],
extends to the full range of non-negatively cross-curved models. We assume strict convexity
on the domain Xy∅ := Dyb(X,y∅) (see Remark 4.9), and that the distribution of agent types
dμ(x) = f (x)dx has a Sobolev density — denoted f ∈ W 1,1(X) and meaning both the function
and its distributional derivative Df are given by Lebesgue integrable densities. This is satisfied
a fortiori if f is Lipschitz or continuously differentiable (as Armstrong assumed). The exclusion
phenomenon is of interest, since it confirms that a positive fraction of customers must be excluded
from participation at equilibrium, thus ensuring elasticity of demand.

Theorem 4.8 (The desirability of exclusion). Let the distribution dμ(x) = f (x)dx of agent types
be given by a density f ∈ W 1,1 on X ⊂ Rn. Assume that the value b(x, y) of product y ∈ Y

to agent x ∈ X satisfies (B0)–(B3) and the principal’s manufacturing cost c : Y �−→ R is b∗-
convex. Suppose further that the convex domain Xy∅ = Dxb(X,y∅) has no n − 1 dimensional
facets in its boundary. Then any minimizer u ∈ U0 of the principal’s losses (4.5) coincides with
the reservation utility on a set U0 := {x ∈ X | u(x) = b(x, y∅) − c(y∅)} whose interior contains
a positive fraction of the agents. Such agents select the outside option y∅.

Remark 4.9 (Facets and exclusion in different dimensions). A convex domain X ⊂ Rn fails to
be strictly convex if it has line segments in its boundary. These segments belong to facets of
dimension 1 or higher, up to n − 1 if the domain has a flat side (meaning a positive fraction of
its boundary coincides with a supporting hyperplane). Thus strict convexity of Xy∅ is sufficient
for the hypothesis of the preceding theorem to be satisfied — except in dimension n = 1. In a
single dimension, every convex domain X ⊂ R is an interval — hence strictly convex — whose
endpoints form zero-dimensional facets. Thus Theorem 4.8 is vacuous in dimension n = 1, which
is consistent with Armstrong’s observation the necessity of exclusion is a hallmark of higher
dimensions n � 2. More recently, Deneckere and Severinov [10] have argued that necessity of
exclusion is specific to the case in which the dimensions m and n of agent and product types
coincide. When (m,n) = (2,1) they give necessary and sufficient conditions for the desirability
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of exclusion, yielding a result quite different from ours in that exclusion turns out to be more
frequently the exception than the rule. However, for another setting in which exclusion is generic,
see [3].

5. Discussion, extension, and conclusions

The role of private information in determining market value has a privileged place in economic
theory. This phenomenon has been deeply explored in the principal–agent framework, where a
single seller (or single buyer) transacts business with a collection of anonymous agents. In this
context, the private (asymmetric) information takes the form of a characteristic x ∈ X peculiar to
each individual buyer which determines his valuation b(x, y) for different products y ∈ Y offered
by the principal; x remains concealed from the principal by anonymity of the buyer — at least
until a purchase is made. Knowing only the valuation function b(x, y), the statistical distribution
dμ(x) of buyer types, and her own manufacturing costs c(y), the principal’s goal is to fix a price
menu for different products which maximizes her profits.

Many studies involving finite spaces of agent and product types X and Y have been carried
out, including Spence’s initial work on labour market signalling. However for a principal who
transacts business with a one-dimensional continuum of agents X ⊂ R, the problem was solved
in Mirrlees’ celebrated work on optimal taxation [24], and in Spence’s study [35], assuming the
contract types y ∈ Y ⊂ R are also parameterized by a single real variable. (For Mirrlees, y ∈ R
represented the amount of labour an individual chooses to do facing a given tax schedule, while
for Spence it represented the amount of education he chooses to acquire facing a given range of
employment possibilities, x ∈ R being his intrinsic ability in both cases.) In the context of nonlin-
ear pricing discussed above, the one-dimensional model was studied by Mussa and Rosen [26].
The challenge of resolving the multidimensional version X,Y ⊂ Rn of this archetypal problem in
microeconomic theory has been highlighted by many authors [27,22,32,5]. When only one side
of the market displays multidimensional types, analyses have been carried out by Mirman and
Sibley [23], Roberts [28] and Spence [36], who allow multidimensional products, and by Laffont,
Maskin and Rochet [18], and Deneckere and Severinov [10] who model two-dimensional agents
choosing from a one-dimensional product line. When both sides of the market display multidi-
mensional types, existence of an equilibrium has been established by Monteiro and Page [25] and
by Carlier [8], who employed a variational formulation; see also the control-theoretic approach
of Basov [5]. However, non-convexities have rendered the behaviour of this optimization prob-
lem largely intractable [15] — unless the valuation function b(x, y) = x · G(y) is assumed to
depend linearly on agent type [39,2,31]. Moreover, the presence of convexity typically depends
on a correct choice of coordinates, so is not always easy to discern. The present study treats gen-
eral Borel probability measures μ on X ⊂ Rn, and provides a unified framework for dealing with
discrete and continuous type spaces, by invoking the tie-breaking rules of Remark 4.2 in case μ

is discrete. Assuming b∗-convexity of c, we consider valuations linear in price (3.2) (sometimes
called quasilinear), which satisfy a generalized Spence–Mirrlees single crossing condition (B0)–
(B1) and appropriate convexity conditions on its domain (B2), and we identify a criterion (B3)
equivalent to convexity of the principal’s optimization problem (Theorem 3.2). This criterion is
a strengthening of Ma, Trudinger and Wang’s necessary [19] and sufficient [21,37] condition for
continuity of optimal mappings. Like all of our hypotheses, it is independent of the choice of pa-
rameterization of agent and/or product types — as emphasized in [16]. We believe the resulting
convexity is a fundamental property which will eventually enable a more complete theoretical
and computational analysis of the multidimensional principal–agent problem, and we indicate
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some examples of valuation functions which satisfy it in Examples 3.3–3.6; the bilinear example
b(x, y) = x · y of Rochet and Choné lies on the boundary of such valuation functions. If either
the cross-curvature inequality (B3) holds strictly or the b∗-convexity of c(y) is strict — meaning
the efficient solution yb,c(x) depends continuously on x ∈ X — we go on to derive uniqueness
and stability of optimal strategies (Theorem 4.6 and its corollary). Under mild additional hy-
potheses we confirm that a positive fraction of agents must be priced out of the market when
the type spaces are multidimensional (Theorem 4.8). We conjecture that non-negative cross-
curvature (B3) is likely to be necessary and sufficient for robustness of Armstrong’s desirability
of exclusion [2] and the other bunching phenomena observed by Rochet and Choné [31].

Remark 5.1 (Maximizing social welfare under profitability constraints). Before concluding this
paper, let us briefly mention an important class of related models to which the same consider-
ations apply: namely, the problem of maximizing the expected welfare of the agents under a
profitability constraint on the principal. Such a model has been used by Roberts [28] to study
energy pricing by a public utility, and explored by Spence [36] and Monteiro and Page [25] in
other contexts. Suppose the welfare of agent x ∈ X is given by a function w(x,u(x)) of his indi-
rect utility (3.2) which is concave with respect to its second variable: ∂2w/∂u2 � 0. Introducing
a Lagrange multiplier λ for the profitability constraint L(u) � 0, the problem of maximizing the
net social welfare over all agents becomes equivalent to the maximization

W(λ) := max
u∈U0

−λL(u) +
∫
X

w
(
x,u(x)

)
dμ(x)

for some choice of λ � 0. Assuming (B0)–(B3), and b∗-convexity of c, for each λ � 0 this
amounts to a concave maximization on a convex set, as a consequence of Theorem 3.2, Proposi-
tion 4.4 and the concavity of w. Theorem 4.6 and its corollary give hypotheses which guarantee
uniqueness and stability of its solution uλ; if the concavity of w(x, ·) is strict, we obtain unique-
ness μ-a.e. of uλ more directly under the weaker hypotheses of Corollary 4.5. Either way, once
the uniqueness of uλ has been established, standard arguments in the calculus of variations show
the convex function W(λ) to be continuously differentiable, and that each value of its derivative
W ′(λ) = −L(uλ) corresponds to a possibly degenerate interval λ ∈ [λ1, λ2] on which uλ is con-
stant; see e.g. Corollary 2.11 of [7]. Uniqueness of a social welfare maximizing strategy subject
to any budget constraint in the range ]L(u0),L(u∞)[ is therefore established; this range contains
the vanishing budget constraint as long as L(u0) > 0 > L(u∞); here u0 represents the uncon-
strained maximizer whereas u∞ ∈ U0 minimizes the principal’s losses (4.5). All of our results —
except for the desirability of exclusion (Theorem 4.8) — extend immediately to this new setting.
This sole exception is in accord with the intuition that it need not be necessary to exclude any
potential buyers if one aims to maximize social welfare instead of the monopolist’s profits.

6. Proofs

The first sentence of Lemma 4.3 comes from Theorem 2.11 of [17]. We recall its proof partly
for the sake of completeness, but also to establish the second sentence, which asserts strong
convexity.

Proof of Lemma 4.3. Fixing x, x1 ∈ X and q0, q1 ∈ Yx , the second claim in (B2) guarantees
the line segment qt := (1 − t)q0 + tq1 belongs to Yx . Use (4.3) to define yt := yb(x, qt ) and
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f (·, t) := b(·, yt ) − b(x, yt ) for t ∈ [0,1]. Given t0 ∈ [0,1], use the first claims in (B1)–(B2)
similarly, to define the curve s ∈ [0,1] �−→ xs ∈ X for which

Dyb(xs, yt0) = (1 − s)Dyb(x, yt0) + sDyb(x1, yt0), (6.1)

and set g(s) = ∂2f

∂t2 (xs, t0). The convexity of (4.6) will be verified by checking g(1) � 0. Let us
start by observing s ∈ [0,1] �−→ g(s) is a convex function, as a consequence of property (B3)
and (6.1). We next claim g(s) is minimized at s = 0, since

g′(s) = ∂2

∂t2

∣∣∣∣
t=t0

〈
Dxb

(
xs, yb

(
x0, (1 − t)q0 + tq1

))
, ẋs

〉
vanishes at s = 0, since x0 = x in the definition (4.3) of yb. Thus g(1) � g(0) = 0, establishing
the convexity of (4.6). If b is positively cross-curved, then g′′(s) > 0 and the desired strong
convexity follows from g(1) > g(0) = 0 since x �= x1 implies the curve xs does not degenerate
to a single point.

Conversely, if the convexity of (4.6) fails we can find x1 ∈ X and s0, t0 ∈ [0,1] for which the
construction above yields g′′(s0) < 0. In view of Lemma 4.5 of [16], this provides a contradiction
to (2.1). �

We shall also need to recall two basic facts about b-convex functions from e.g. [14]: any
supremum of b-convex functions is again b-convex, unless it is identically infinite; and for each
y ∈ Y and λ ∈ R, the function

x ∈ X �−→ b(x, y) − λ (6.2)

is b-convex. Functions of the form either y ∈ Y �−→ b(x, y) − λ or (6.2) are sometimes called
mountains below.

Proof of Proposition 4.4. The b∗-convexity of the manufacturing cost c = (cb)b
∗

asserts

c(y) = sup
x∈X

b(x, y) − cb(x)

is a supremum of mountains, whence

a(q) := c
(
yb(x, q)

) − b
(
x, yb(x, q)

) = sup
x0∈X

b
(
x0, yb(x, q)

) − b
(
x, yb(x, q)

) − cb(x0)

for all x ∈ X and q ∈ Yx . According to Lemma 4.3, we have just expressed a(q) as a supremum
of convex functions, thus establishing convexity of a(q). The remainder of the proof will be
devoted to deducing strict convexity of a(q) under the additional hypotheses (i) or (ii).

In case (ii), (B3)s implies all but one of the functions of q ∈ Yx under the supremum above
are strictly convex, the exception being the constant function −cb(x) corresponding to x0 = x.
Thus a(q) is strictly convex, except possibly on the set {q ∈ Yx | a(q) = −cb(x)} where its lower
bound is attained. However, if q0 belongs to this set, differentiating the function under the supre-
mum with respect to x0 yields Dxb(x, yb(x, q0)) ∈ ∂cb(x). Since (ii) assumes differentiability of
cb at x, (B1) then implies the minimum of a(q) is attained uniquely at q0 = Dcb(x), to establish
strict convexity of a(q).

The remainder of the proof will be devoted to case (i): deducing strict convexity of a(q) from
strict b∗-convexity of c(y) assuming only (B3). Recall that strict b∗-convexity was defined by
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continuity of the agents’ responses yb,c : X �−→ Y to the principal’s manufacturing costs (as
opposed to the prices the principal would prefer to select). Fix x ∈ X and use the C3 change of
variables q ∈ Yx �−→ yb(x, q) ∈ Y to define b̃(·, q) := b(·, yb(x, q))−b(x, yb(x, q)) and c̃(q) :=
c(yb(x, q)) − b(x, yb(x, q)) = a(q). As in [13], it is easy to deduce that b̃ satisfies the same
hypotheses (B0)–(B3) on X × Yx as the original valuation function — except for the fact that
b̃ ∈ C3 whereas b ∈ C4. For the reasons explained in [13] this discrepancy shall not trouble us
here: we still have continuous fourth derivatives of b̃ as long as at least one of the four derivatives
is with respect to a variable in X, and at most three derivatives are with respect to variables in
Yx . Note also that c̃b̃ = cb and the continuity of the agents’ responses y

b̃,c̃
in the new variables

follows from their presumed continuity in the original variables, since y
b̃,c̃

(·) = Dxc(x, yb,c(·)).
The advantage of the new variables is that for each x0 ∈ X, the mountain q ∈ Yx �−→ b̃(x0, q)

is a convex function, according to Lemma 4.3; (alternately, Theorem 4.3 of [13]). To produce
a contradiction, assume convexity of c̃(q) fails to be strict, so there is a segment t ∈ [0,1] �−→
qt ∈ Yx given by qt = (1 − t)q0 + tq1 along which c̃ is affine with the same slope p ∈ ∂c̃(qt )

for each t ∈ [0,1]. In fact, the compact convex set ∂c̃(qt ) is independent of t ∈]0,1[, so taking
p to be an extreme point of ∂c̃(qt ) allows us to find a sequence qt,k ∈ Yx ∩ DomDc̃ converging
to qt such that p = limk→∞ Dc̃(qt,k), by Theorem 25.6 of Rockafellar [33]. On the other hand,
b∗-convexity implies c̃(q) is a supremum of mountains: thus to each t ∈ [0,1] and integer k

corresponds some xt,k ∈ X such that (xt,k, qt,k) ∈ ∂b̃∗
c̃, meaning

c̃(q) � b̃(xt,k, q) − b̃(xt,k, qt,k) + c̃(qt,k) (6.3)

for all q ∈ Yx . Since qt,k ∈ DomDc̃, saturation of this bound at qt,k implies Dc̃(qt,k) =
Dqb̃(xt,k, qt,k). Compactness of X allows us to extract a subsequential limit (xt,k, qt,k) →
(xt , qt ) ∈ ∂b̃∗

c̃ satisfying p = Dqb̃(xt , qt ). This first order condition shows the curve t ∈
[0,1] �−→ xt ∈ X to be differentiable, with derivative

ẋt = −D2
qx b̃(xt , qt )

−1D2
qq b̃(xt , qt )q̇t , (6.4)

by the implicit function theorem and (B1). On the other hand, both c̃(·) and b̃(xt , ·) are convex
functions of q ∈ Yx in (6.3), so both must be affine along the segment qt . This implies q̇t =
q1 − q0 is a zero eigenvector of D2

qq b̃(xt , qt ), which in turn implies xt = const from (6.4). On
the other hand, the efficient response qt = y

b̃,c̃
(xt ) of agent xt to price menu c̃ is not constant,

since the endpoints q0 �= q1 of the segment are distinct. This produces the desired contradiction
and establishes strict convexity of c̃. �

Combining Proposition 4.4 with the following standard lemma will allow us to establish our
necessary and sufficient criteria for convexity of the feasible set U0.

Lemma 6.1 (Identification of supporting mountains). Let u be a b-convex function on X. Assume
u is differentiable at x0 ∈ X and Dxu(x0) = Dxb(x0, y) for some y ∈ Y . Then, u(x) � m(x) for
all x ∈ X, where m(·) = b(·, y) − b(x0, y) + u(x0).

Proof. By b-convexity of u, there exists y0 ∈ Y such that u(x0) = b(x0, y0) − ub∗
(y0) and

also u(x) � b(x, y0) − ub∗
(y0) for all x ∈ X. Since u is differentiable at x0, this implies

Dxu(x0) = Dxb(x0, y0). By the assumption (B1), we conclude y = y0. This completes the proof
since m(·) = b(·, y0) − ub∗

(y0). �
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Proof of Theorem 3.2. Let us first show the sufficiency. It is enough to show that for any two
b-convex functions u0 and u1, the linear combination ut := (1 − t)u0 + tu1 is again b-convex,
for each 0 � t � 1. Fix x0 ∈ X. Since b-convex functions are defined as suprema of mountains,
there exist y0, y1 ∈ Y such that

m
x0
i (·) := b(·, yi) − b(x0, yi), i = 0,1,

satisfy ui(x) � m
x0
i (x) + ui(x0) for all x ∈ X. Clearly equality holds when x = x0. Let us con-

sider the function

m
x0
t (·) = b(·, yt ) − b(x0, yt ),

where yt defines a line segment

t ∈ [0,1] �−→ Dxb(x0, yt ) = (1 − t)Dxb(x0, y0) + tDxb(x0, y1) ∈ Rn.

Note that (i) m
x0
t (x0) = 0. We claim that (ii) ut (·) � m

x0
t (·) + ut (x0). Notice that

ut (·) � (1 − t)m
x0
0 (·) + tm

x0
1 (·) + ut (x0).

Thus the claim follows from the inequality (1 − t)m
x0
0 + tm

x0
1 � m

x0
t , which is implied by (B3)

according to Lemma 4.3. The last two properties (i) and (ii) enable one to express ut as a supre-
mum of mountains

ut (·) = sup
x0∈X

m
x0
t (·) + ut (x0),

hence ut is b-convex by the remark immediately preceding (6.2).
Conversely, let us show the necessity of (B3) for convexity of Vb

Y
. Using the same notation

as above, recall that each mountain m
x0
i , i = 0,1 is b-convex. Assume the linear combination

ht := (1 − t)m
x0
0 + tm

x0
1 is b-convex. Since Dxht (x0) = (1 − t)Dxb(x0, y0) + tDxb(x0, y1)) =

Dxmt(x0), Lemma 6.1 requires that m
x0
t � ht for every 0 � t � 1. This last condition is equiva-

lent the property characterizing non-negative cross-curvature in Lemma 4.3. This completes the
proof of necessity and the proof of the theorem. �

Let us turn now to the convexity of the principal’s problem.

Proof of Corollary 4.5. Corollary 4.5 follows by combining the convexity of the set U0 of fea-
sible strategies proved in Theorem 3.2 with the convexity of a(q) from Proposition 4.4. If μ

fails to vanish on each Lipschitz hypersurface, a little care is needed to deduce convexity of
the principal’s objective L(u) from that of a(q), by invoking the conventions adopted in Re-
mark 4.2 as follows. Let t ∈ [0,1] �−→ ut = (1 − t)u0 + tu1 denote a line segment in the convex
set U0. If q ∈ ∂ut (x) for some x ∈ X, then yb(x, q) ∈ ∂but (x) by Theorem 3.1 of Loeper [19];
(a direct proof along the lines of Lemma 4.3 may be found in [16]). So yb(x, q) is among the
best responses of x to price menu vt = ub∗

t . For each t ∈ [0,1] select Dut(x) ∈ ∂ut (x) measur-
ably to ensure min{c(yb(x, q)) − b(x, yb(x, q)) | q ∈ ∂ut (x)} is achieved at q = Dut(x). Then
a(Dut (x)) � a((1 − t)Du0(x) + tDu1(x)) since (1 − t)Du0(x) + tDu1(x) ∈ ∂ut (x). The de-
sired convexity of L(u) follows. �

Next we establish uniqueness of the principal’s strategy.
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Proof of Theorem 4.6. Suppose both u0 and u1 minimize the principal’s net losses L(u) on the
convex set U0. Define the line segment ut = (1 − t)u0 + tu1 and — in case μ fails to vanish
on each Lipschitz hypersurface — the measurable selection Dut(x) ∈ ∂ut (x) as in the proof of
Corollary 4.5. The strict convexity of a(q) asserted by Proposition 4.4 combines with the tie-
breaking rule to remove all freedom from this selection. Under the hypotheses of Theorem 4.6,
the same strict convexity implies the contradiction L(u1/2) < 1

2L(u0) + 1
2L(u1) = L(u1) unless

Du0 = Du1 holds μ-a.e. This establishes the uniqueness μ-a.e. of the agents’ equilibrium strate-
gies yb,v(x) := yb(x,Du1(x)), and of the principal’s optimal measure ν := (yb,v)#μ in (3.5).

Let sptμ denote the smallest closed subset of X containing the full mass of μ. To identify
u0 = u1 on sptμ and establish the remaining assertions is more technical. First observe that the
participation constraint u1/2(x) � b(x, y∅) − c(y∅) =: u∅(x) on the continuous function u1/2 ∈
U0 must bind for some agent type x0 ∈ sptμ; otherwise, for ε > 0 sufficiently small, u1/2 − ε

would belong to U0 and reduce the principal’s losses by ε, contradicting the asserted optimality
of u1/2. Since u1/2 is a convex combination of two other functions obeying the same constraint,
we conclude u0(x0) = u1(x0) coincides with the reservation utility u∅(x0) for type x0. Now
use the map yb,v := yb ◦ Du1 from the first paragraph of the proof to define a joint measure
γ := (id ×yb,v)#μ given by γ [U ×V ] = μ[U ×y−1

b,v(V )] for Borel U ×V ⊂ X ×Y , and denote

by sptγ the smallest closed subset S ⊂ X × Y carrying the full mass of γ . Notice sptγ does not
depend on t ∈ [0,1], nor in fact on u0 or u1; any other optimal strategy for the principal would
lead to the same γ .

Since the graph of yb,v lies in the closed set ∂bu1 ⊂ X × Y , the same is true of S :=
{(x0, y∅)} ∪ sptγ . Thus S is b-cyclically monotone (A.1) by the result of Rochet [30] discussed
immediately before Lemma A.1. Lemma A.1 then yields a minimal b-convex function u− satis-
fying u−(x0) = b(x0, y∅) − c(y∅) for which S ⊂ ∂bu−. The fact that (x0, y∅) ∈ S implies some
mountain b(·, y∅) + λ bounds u−(·) from below with contact at x0. Clearly λ = −c(y∅) whence
u− ∈ U0.

Now we have ui � u− for i = 0,1 with equality at x0. Also, yb,v(x) ∈ ∂bu−(x) for μ almost
all x, whence u− must be an optimal strategy: it is smaller in value than ui and produces at least
as favorable a response as ui from almost all agents. Finally since

L(ui) − L(u−) �
∫
X

(
ui(x) − u−(x)

)
dμ(x) � 0,

the fact that ui minimizes the losses of the principal implies the continuous integrand vanishes
μ-almost everywhere. Thus ui � u− on X, with equality holding throughout sptμ as desired.

Since u0 was arbitrary, we have now proved that all optimal u ∈ U0 coincide with u1 on
sptμ. Optimality of u also implies sptγ ⊂ ∂bu; if in addition the participation constraint
u(x) � b(x, y∅) − c(y∅) binds at x0, then u � u− on X. Although u− appears to depend on
our choice of x0 ∈ sptμ in the construction above this is not actually the case: u(x0) = u1(x0)

shows the participation constraint binds at x0 for every optimal strategy and u− is therefore
uniquely determined by its minimality among optimal strategies u ∈ U0.

Now, since any supremum of b-convex functions (not identically infinite) is again b-convex,
define u+ ∈ U0 as the pointwise supremum among all of the principal’s equilibrium strategies
u ∈ U0. The foregoing shows u+ = u− on sptμ, while (x, y) ∈ sptγ ⊂ ∂bu implies

u+(·) � u(·) � u(x) + b(·, y) − b(x, y)

= u+(x) + b(·, y) − b(x, y)
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on X, whence sptγ ⊂ ∂bu+. From here we deduce L(u+) � L(u), hence u+ is itself an optimal
strategy for the principal.

Finally, v : Y �−→ R ∪ {+∞} is an equilibrium price menu in Carlier’s reformulation [8] if
and only if u := vb minimizes L(u) on U0, in which case u− � u � u+ throughout X implies
ub∗

+ � (vb)b
∗ � ub∗

− throughout Y . Moreover, u− = u+ on sptμ implies ub∗
+ = ub∗

− on sptν,
since yb,v(x) ∈ ∂bu±(x) for μ-a.e. x implies ub∗

± (yb,v(x)) = b(x, yb,v(x))−u±(x). We therefore
conclude that if v is an equilibrium price menu, then v � (vb)b

∗ � ub∗
+ on Y , with both equalities

holding ν-a.e. Conversely, if v : Y �−→ R ∪ {+∞} satisfies v � ub∗
+ with equality ν-a.e., we

deduce the same must be true for its b-convex hull (vb)b
∗
, the latter being the largest b-convex

function dominated by v. Thus (vb)b
∗
(y∅) = c(y∅) and vb ∈ U0 and vb � u+ throughout X with

equality holding μ-a.e. If μ vanishes on Lipschitz hypersurfaces, then Dvb = Du+ agree μ-
a.e., so L(vb) = L(u+) and vb is a optimal strategy for the principal as desired. If, on the other
hand, μ does not vanish on all Lipschitz hypersurfaces, then we may assume v is its own b∗-
convex hull by Remark 4.2. Any mountain which touches ub∗

+ from below on sptν also touches
v � ub∗

+ from below at the same point, thus ∂b∗
ub∗

+ ⊂ ∂b∗
v; since v is b-convex this is equivalent

to ∂bu+ ⊂ ∂bvb. This shows the best response of x facing price menu ub∗
+ is also one of his best

responses facing price menu v: he cannot have a better response since his indirect utility vb � u+.
The constraint on the agent’s behaviour imposed by Remark 4.2 now implies L(vb) � L(u+);
equality must hold since u+ is one of the principal’s optimal strategies. This confirms optimality
of vb and concludes the proof of the theorem. �

To show stability of the equilibrium requires the following convergence result concerning
Borel probability measures P (X × Y ) on the product space.

Proposition 6.2 (Convergence of losses and mixed strategies). Suppose a sequence of triples
(b∞, c∞,μ∞) = limi→∞(bi, ci,μi) satisfy the hypotheses of Corollary 4.7. Let Li(u) denote the
net losses (4.5) by a principal who adopts strategy u facing data (bi, ci,μi). If any sequence ui of
bi -convex functions converge uniformly on X, then their limit u∞ is b∞-convex and L∞(u∞) =
limi→∞ Li(ui). Furthermore, there is a unique joint measure γ∞ ∈ P (X × Y) supported in
∂b∞u∞ with left marginal μ∞, and any sequence of joint measures γi ∈ P (X × Y) vanishing
outside ∂bi ui and with left marginal μi , must converge weakly-∗ to γ∞.

Proof. Assume a sequence ui → u∞ of bi -convex functions converges uniformly on X. Topolo-
gizing the continuous functions C(Z) by uniform convergence, where Z = X,Y or X×Y , makes
the transformation (b,u) �−→ ub∗

given by (3.1) continuous on C(X × Y) × C(X). This fact al-

lows us to take i → ∞ in the relation u
b∗
i bi

i = ui to conclude b∞-convexity of u∞. From the
semiconvexity (4.4) of u∞ we infer its domain of differentiability DomDu∞ exhausts X apart
from a countable collection of Lipschitz hypersurfaces, which are μ∞-negligible by hypothesis.
Define the map G∞(x) = yb∞(x,Du∞(x)) on DomDu∞. Since ∂b∞u∞ ∩ (DomDu∞ × Y )

coincides with the graph of G∞, any measure γ∞ supported in ∂b∞u∞ with left marginal μ∞ is
given (6.5) by γ∞ := (id × G∞)#μ∞ as in, e.g., Lemma 2.1 of Ahmad et al. [1]. This specifies
γ∞ uniquely.

Now suppose γi � 0 is a sequence of measures supported in ∂bi ui having left marginal μi .
Compactness allows us to extract from any subsequence of γi a further subsequence which con-
verges weakly-∗ to some limit γ̄ ∈ P (X × Y). Since μi ⇀ μ∞ the left marginal of γ̄ is given

by μ∞. Moreover, since ui(x) + u
b∗
i

i (y) � bi(x, y) throughout X × Y with equality on sptγi ,
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uniform convergence of this expression yields spt γ̄ ⊂ ∂b∞u∞. The uniqueness result of the pre-
ceding paragraph then asserts γ̄ = γ∞ independently of the choice of subsequence, so the full
sequence γi ⇀ γ∞ converges weakly-∗.

Finally, use the measurable selection Dui(x) ∈ ∂ui(x) of Remark 4.2 to extend Dui(x) from
DomDui to X so as to guarantee that Gi(x) := ybi

(x,Dui(x))) ∈ ∂bi ui(x). Use the Borel map
Gi : X �−→ Y to push μi forward to the joint probability measure γi := (id × Gi)#μi on X × Y

defined by

γi[U × V ] := μi

[
U ∩ G−1

i (V )
]

(6.5)

for each Borel U × V ⊂ X × Y . Notice γi is supported in ∂bi ui and has μi for its left marginal,
hence converges weakly-∗ to γ∞. Moreover, our choice of measurable selection guarantees that
the net losses (4.5) of the principal choosing strategy ui coincide with

Li(ui) =
∫

X×Y

(
ci(y) − u

b∗
i

i (y)
)
dγi(x, y). (6.6)

Weak-∗ convergence of the measures γi ⇀ γ∞ couples with uniform convergence of the inte-
grands to yield the desired limit

lim
i→∞Li(ui) =

∫
X×Y

(
c∞(y) − u

b∗∞∞ (y)
)
dγ∞(x, y) = L∞(u∞)

and establish the proposition. �
Proof of Corollary 4.7. Let U i

0 denote the space of bi -convex functions u(·) � bi(·, y∅)−ci(y∅),
and Li(u) denote the net loss of the principal who chooses strategy u facing the triple (bi, ci,μi).
The Li -minimizing strategies ui ∈ U i

0 are Lipschitz and semiconvex, with upper bounds (4.4)
on |Dui | and −D2ui which are independent of i since ‖bi − b∞‖C2 → 0. The Ascoli–Arzelà
theorem therefore yields a subsequence ui(j) which converges uniformly to a limit ū on the
compact set X. Since the functions ui have a semiconvexity constant independent of i, it is a well-
known corollary that their gradients also converge Dui(j)(x) → Dū(x) pointwise on the set of
common differentiability (DomDū) ∩ (∩∞

i=1 DomDui). This set exhausts X up to a countable
union of Lipschitz hypersurfaces — which is μ∞-negligible by hypothesis. Setting Gi(x) =
ybi

(x,Dui(x)), it is not hard to deduce yb∞(x,Dū(x)) = limj→∞ Gi(j)(x) on this set from
Definition 4.1. If we can now prove ū minimizes L∞(u) on U∞

0 , the uniqueness of equilibrium
product selected by μ∞-a.e. agent x ∈ X in Theorem 4.6 will then imply that limj→∞ Gi(j)(x) =
G∞(x) converges to a limit independent of the subsequence chosen, hence the full sequence
Gi(x) converges μ∞-a.e.

To see that ū minimizes L∞(u) on U∞
0 , observe u ∈ U∞

0 implies ub∗∞bi ∈ U i
0 is Li -feasible,

being the bi -transform of a price menu ub∗∞(·) agreeing with c∞(·) at y∅. Moreover, ub∗∞bi →
ub∗∞b∞ uniformly as i → ∞ (by continuity of the b-transform asserted in the first paragraph of
the preceding proof). The optimality of ui therefore yields Li(ui) � Li(u

b∗∞bi ). Proposition 6.2
allows us to deduce L∞(ū) � L∞(u) by taking the subsequential limit j → ∞. Since the same
proposition asserts b∞-convexity of ū, we find ū ∈ U∞

0 is the desired minimizer after taking the
limit j → ∞ in ui(j)(·) � bi(j)(·, y∅) − ci(j)(y∅). This concludes the proof of μ∞-a.e. conver-
gence of the maps G∞(x) = limi→∞ Gi(x).
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Turning to the optimal measures: as in the preceding proof, a measurable selection Dui(x) ∈
∂ui(x) consistent with the tie-breaking hypotheses of Remark 4.2 may be used to extend the
Borel map Gi(x) = yb(x,Dui(x)) from DomDui to X and define a joint measure γi :=
(id ×Gi)#μi supported on ∂bi ui as in (6.5). The left marginal of γi is obviously given by μi , and
its right marginal coincides with the unique optimal measure νi given by Theorem 4.6. Proposi-
tion 6.2 then yields weak-∗ convergence of γi ⇀ γ∞ and hence of νi ⇀ ν∞. Theorem 4.6 also
asserts the two minimizers u∞ = ū agree μ∞-a.e. In this case the uniform limit ū is independent
of the Ascoli–Arzelà subsequence, hence we recover convergence of the full sequence ui → u∞
in L∞(X,dμ∞). �

Finally, let us extend Armstrong’s desirability of exclusion to our model. Our proof is inspired
by Armstrong’s [2], but differs from his in a number of ways.

Proof of Theorem 4.8. Use the C3-smooth diffeomorphism x ∈ X �−→ p = Dyb(x, y∅) ∈ Xy∅
provided by (B0)–(B2) and its inverse p ∈ Xy∅ �−→ x = xb(y∅,p) ∈ X to reparameterize the
space of agents over the strictly convex set Xy∅ . Then ũ(p) := u(xb(y∅,p))−b(xb(y∅,p), y∅)+
c(y∅) defines a non-negative b̃-convex function, where b̃(p, y) := b(xb(y∅,p), y) −
b(xb(y∅,p), y∅) + c(y∅). In other words, the space U0 corresponds to the space Ũ0 of non-
negative b̃-convex functions on Xy∅ in the new parameterization. This subtraction of the reser-
vation utility from the valuation function does not change any agent’s response to a price menu v

offered by the principal, since valuations by different agent types are never compared. However,
it does make the valuation function b̃(p, y) a convex function of p ∈ Xy∅ , as is easily seen by

interchanging the roles of x and y in Lemma 4.3. The indirect utility ũ(p) = vb̃(p) is then also
convex, being a supremum (3.1) of such valuation functions.

In the new variables, the distribution of agents f̃ (p)dp = f (x)dx is given by f̃ (p) =
f (xb(y∅,p))det[∂xi

b(y∅,p)/∂pj ]. The principal’s net losses L̃(ũ) = L(u) are given as in (4.5)
by

L̃(ũ) =
∫

Xy∅

ã
(
Dũ(p), ũ(p),p

)
f̃ (p) dp,

where ã(q, s,p) = c(y
b̃
(p, q)) − b̃(p, y

b̃
(p, q)) + s is a convex function of q on Ỹp :=

Dpb̃(p,Y ) for each fixed p and s, according to Proposition 4.4; (recall that b̃ ∈ C3(Xy∅ × Y )

satisfies the same hypotheses (B0)–(B3) as b ∈ C4(X × Y), except for the possibility that four
continuous derivatives with respect to variables in Xy∅ fail to exist, which is irrelevant as already
discussed). This convexity implies

ã(q, s,p) � ã(q0, s,p) + 〈
Dqã(q0, s,p), q − q0

〉
for all q, q0 ∈ Ỹ p . With p still fixed, the choice q0 = Dpb̃(p, y∅) = 0 shows ã(0, s,p) = s

whence ã(q, s,p) � 〈Dqã(0, s,p), q〉 for s = ũ(x) � 0.
Now suppose ũ ∈ Ũ0 minimizes L̃(ũ). For ε � 0, define the continuously increasing family

of compact convex sets Ũε := {p ∈ Xy∅ | ũ(p) � ε}. Observe that Ũ0 must be non-empty, since
otherwise for ε > 0 small enough Ũε would be empty, and then ũ − ε ∈ Ũ0 is a better strategy,
reducing the principal’s losses by ε. We now claim the interior of the set Ũ0 — which corresponds
to agents who decline to participate — contains a non-zero fraction of the total population of
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agents. Our argument is inspired by the strategy Armstrong worked out in a special case [2],
which was to show that unless this conclusion is true, the profit the principal extracts from agents
in Ũε would vanish at a higher order than ε > 0, making ũε := max{ũ − ε,0} ∈ Ũ0 a better
strategy than ũ for the principal when ε is sufficiently small.

For ε > 0, the contribution of Ũε to the principal’s profit is given by

−L̃ε(ũ) := −
∫
Ũε

ã
(
Dũ(p), ũ(p),p

)
f̃ (p) dp

� −
∫
Ũε

〈
Dqã

(
0, ũ(p),p

)
,Dũ(p)

〉
f̃ (p) dp

=
∫
Ũε

ũ(p)∇p · (f̃ (p)Dqã
(
0, ũ(p),p

))
dp −

∫
∂Ũε

ũ(p)〈Dqã, n̂〉f̃ (p) dS(p) (6.7)

where n̂ = n̂
Ũε

(p) denotes the outer until normal to Ũε at p, and the divergence theorem has

been used. Here ∂Ũε denotes the boundary of the convex set Ũε , and dS(p) denotes the n − 1
dimensional surface (i.e. Hausdorff) measure on this boundary. (For Sobolev functions, the inte-
gration by parts formula that we need is contained in §4.3 of [12] under the additional restriction
that the vector field ũ(·)Dqa(0, ũ(·), ·) be C1 smooth, but extends immediately to Lipschitz vec-
tors fields by approximation; the operation of restricting f̃ to the boundary of Ũε is there shown
to give a bounded linear map from W 1,1(Uε, dp) to L1(∂Uε, dS) called the boundary trace.) As
ε → 0, we claim both integrals in (6.7) vanish at rate o(ε) if the interior of Ũ0 is empty. To see
this, note ũ = ε on ∂Ũε ∩ intXy∅ , so∫

∂Ũε

ũ(p)〈Dqã, n̂〉f̃ (p) dS(p)

= ε

∫
∂Ũε

〈Dqã, n̂〉f̃ (p) dS(p) +
∫

∂Ũε∩∂Xy∅

[
ũ(p) − ε

]〈Dqã, n̂〉f̃ (p) dS(p)

= ε

∫
Ũε

∇p · (f̃ (p)Dqã
(
0, ũ(p),p

))
dp +

∫
Ũε∩∂Xy∅

[
ũ(p) − ε

]〈Dqã, n̂〉f̃ (p) dS(p).

Since 0 � ũ � ε in Ũε , we combine the last inequality with (6.7) to obtain

− L̃ε(ũ)

ε
�

∫
Ũε

∣∣∇p · (f̃ (p)Dqã
(
0, ũ(p),p

))∣∣dp +
∫

Ũε∩∂Xy∅

∣∣〈Dqã, n̂〉f̃ (p)
∣∣dS(p). (6.8)

Notice that domain monotonicity implies the ε → 0 limit of the last expressions above is given
by integrals over the limiting domain Ũ0 = ∩ε>0Ũε . Assume now the interior of the convex set
Ũ0 is empty, so that Ũ0 has dimension at most n−1. Then the volume |Ũε | = o(1), hence the first
integral in the right-hand side dwindles to zero as ε → 0, (recalling that ũ is Lipschitz, f̃ ∈ W 1,1

and ã ∈ C3). Concerning the second term, if the convex set Ũ0 has dimension n − 1 then its
relative interior must be disjoint from the boundary of the convex body Xy∅ , since the latter is
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assumed to have no n−1 dimensional facets. Either way Ũ0 ∩∂Xy∅ has dimension at most n−2,
which, together with the fact that the boundary trace of f̃ is integrable, implies that∫

Ũε∩∂Xy∅

f̃ (p) dS(p) = o(1)

as ε → 0. All in all, we have shown Lε(ũ) = o(ε) as ε → 0 whenever Ũ0 has empty interior,
which — as was explained above — contradicts the asserted optimality of the strategy ũ. How-
ever, even if Ũ0 has non-empty interior, more must be true to avoid inferring the contradictory
conclusion Lε(ũ) = o(ε) as ε → 0 from (6.8): one of the two limiting integrals∫

Ũ0

∣∣∇p · (f̃ (p)Dqã
(
0, ũ(p),p

))∣∣dp > 0 or
∫

Ũ0∩∂Xy∅

∣∣〈Dqã, n̂〉∣∣f̃ (p) dS(p) > 0

must be non-vanishing. In either case, the W 1,1 density f̃ must be positive somewhere in Ũ0,
whose interior therefore includes a positive fraction of the agents. Since ũ is differentiable with
vanishing gradient on the interior of Ũ0, there is no ambiguity in the strategy of these agents:
they respond to ũ by choosing the outside option. �
Appendix A. Minimal b-convex potentials

The purpose of this appendix is to establish a mathematical result (and some terminology)
needed in the last part of the uniqueness proof, Theorem 4.6. In particular, we establish a mini-
mality property enjoyed by Rochet’s construction of a b-convex function for which ∂bu contains
a prescribed set [30]; Rochet’s construction is modeled on the analogous construction by Rock-
afellar of a convex function u whose subdifferential ∂u contains a given cyclically monotone set
[33].

Recall a relation S ⊂ X × Y is b-cyclically monotone if for each integer k ∈ N and k-tuple of
points (x1, y1), . . . , (xk, yk) ∈ S, the inequality

k∑
i=1

b(xi, yi) − b(xi+1, yi) � 0 (A.1)

holds with xk+1 := x1. For a function u : X �−→ R ∪ {+∞}, the relation ∂bu ⊂ X × Y consists
of those points (x, y) such that

u(·) � u(x) + b(·, y) − b(x, y) (A.2)

holds throughout X. Rochet’s generalization of Rockafellar’s theorem asserts that S ⊂ X × Y is
b-cyclically monotone if and only if there exists a b-convex function u : X �−→ R ∪ {+∞} such
that S ⊂ ∂bu. Here we need to extract a certain minimality property from its proof.

Lemma A.1. Given a b-cyclically monotone S ⊂ X × Y and (x0, y0) ∈ S, there is a b-convex
function u vanishing at x0 and satisfying S ⊂ ∂bu, which is minimal in the sense that u � ũ for
all ũ : X �−→ R ∪ {+∞} vanishing at x0 with S ⊂ ∂bũ.

Proof. Given a b-cyclically monotone S ⊂ X × Y and (x0, y0) ∈ S, Rochet [30] verified the
elementary fact that the following formula defines a b-convex function u for which S ⊂ ∂bu:



Author's personal copy

A. Figalli et al. / Journal of Economic Theory 146 (2011) 454–478 477

u(·) = sup
k∈N

sup
(x1,y1),...,(xk,yk)∈S

b(·, yk) − b(x0, y0) +
k∑

i=1

b(xi, yi−1) − b(xi, yi). (A.3)

Taking k = 0 shows u(x0) � 0, while the opposite inequality u(x0) � 0 follows from b-cyclical
monotonicity (A.1) of S. Now suppose ũ(x0) = 0 and S ⊂ ∂bũ. For each k ∈ N and k-tuple in S,
we claim ũ(·) exceeds the expression under the supremum in (A.3). Indeed, (xi, yi) ∈ S ⊂ ∂bũ

implies

ũ(xi+1) � ũ(xi) + b(xi+1, yi) − b(xi, yi)

and ũ(xi) < ∞, by evaluating (A.2) at xi and at x0. Summing the displayed inequalities from
i = 0, . . . , k, arbitrariness of xk+1 ∈ X yields the desired result: ũ(xk+1) � u(xk+1). �
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