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2017

This thesis combines two major projects: a dynamic and a two-dimensional extension of an existing

coupled labour and education matching market ([13] and [27]).

The first extension addresses the dynamics of the distribution of skills in a population over many

generations. Two overlapping generation models are proposed: the first assumes complete information,

which allows (and requires) all generations to be solved simultaneously, while the second assumes in-

complete information, forcing the competitive equilibrium at each subsequent generation to be found

iteratively. Both models combine a labour and an education matching problem. The skill distribution

for each generation of adults is determined from that of the previous generation by the educational

matching market.

We present conditions for the sequence of adult skills to converge. Next, we study the asymptotic

which is specific to each model. For the incomplete information model we prove that, if the sequence of

wage functions over the generations converges, the limiting steady state solves the steady state model

of [13], which allows for an explicit formulation for solutions of [13]. To study the limiting society of

the complete information model, we introduce a new steady state model, which includes a discounting

factor to reduce the impact of future generations relative to how far in the future they are.

The second extension provides proofs for certain results stated in the study of the steady state model

when individuals’ skills are two dimensional [27] and presents more rigorous proofs for some of their

results. In particular, we prove strong duality and existence of solutions, following [13].
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Chapter 1

Introduction

Optimal transportation has so many applications to economic theory that Galichon devoted a book to the

subject [15]. This work concerns an economic application of optimal transportation, namely two-sided

matching. Two-sided matching was first formulated in terms of matching medical residents to hospitals

in the first half of the 20th century [33]. A solution to this problem is to centralize the assignment.

In the middle of the 20th century, scientists came up with algorithms to stabilize the matching [14].

Another important advancement in two-sided matching theory is the formulation of the problem as a

linear problem by Shapley and Shubik [35]. This new formulation uses linear optimization theory to

solve matching problems, including the dual formulation of the problem. Shapley and Shubik’s model

takes the shape of a transportation problem.

In this thesis, we study the coupling of two matching markets: one for education and one for labour

production, following the models of McCann, Shi, Siow, and Wolthoff [27], and of the same group of

authors plus Erlinger [13].

Coupling education and labour in the same model allows us to study economic growth. Economic

growth quantifies the increase of the growth of production of a fixed economy over time. Before the

1980s, economic growth was typically modelled and explained using exogenous factors (see [6, Section

I.4] for a historical review). A way to model growth endogenously is to add human capital to the model.

Human capital can represent many different aspects of an individual (or a group of individuals) such as

knowledge, acquired skills, and innate abilities. These characteristics influence the productivity of the

workers.

Because the productivity of workers depends on their characteristics, individuals who wish to improve

their productivity may be motivated to modify these characteristics. The concept of improvements of

workers has been studied in the context of task specialization. A way to model improvements of workers

is called learning by doing and is inspired by the theory that by repeating the same task over and over,

a worker improves at doing that specific task. We instead represent the improvement of workers by

coupling the labour market with an education market, as in Becker and Murphy [8].

In our models, matching in both sectors (educational and labour) is represented using linear optimiza-

tion. One example of such a model with a labour market was proposed by McCann and Trokhimtchouk

[28], following Hao and Suen [21]. Their model associates a manager of type m ∈ M to one or many

workers of type w ∈W . Let p : M ×W → R be a function that represents the production of a manager

of type m teamed up with a worker of type w. The goal of the model in [28] is to optimize the total pro-

1



Chapter 1. Introduction 2

duction for the society, given a distribution for the workforce population. Using duality theory, it is also

possible to view the problem as a competitive equilibrium in which individuals choose the occupation

that optimizes their wage.

McCann, Shi, Siow, and Wolthoff generalize the approach of [28] to include an education sector

in [27]. Students from a fixed distribution have to choose a teacher and a future employment, i.e.

teacher, worker, or manager. Students’ future skills as adults will be a fixed convex combination of their

abilities as students and their teachers’ skills. The goal is to optimize the society’s production, which

is a combination of labour’s production and other benefits from education. In [27], individuals’ skills

are two-dimensional: they are comprised of a cognitive skill and a communication skill. The authors

study the education and labour matching and the profession choices for individuals. They also present

numerical simulations.

Erlinger, McCann, Shi, Siow, and Wolthoff [13] studied the same model in one dimension, that is,

with only a cognitive skill. They present a complete analysis that includes a duality theory result and

conditions for the existence and uniqueness of an optimizer. They also found some general asymptotic

results for the behaviour of adult wages near the highest possible skill. Finally, McCann [26] elucidates

the concept of competitive equilibrium in the one-dimensional case.

In the models of both [13] and [27], the adults’ distribution of skills is in a steady-state form. It is

determined by the distribution of abilities of students and the matching of students to teachers. It would

be more realistic to assume that the distributions of adults’ skills evolve from one generation to another,

allowing the current generation’s distribution of adults’ skills and education market to determine the

distribution of adults’ skills for the next generation. We introduce two such models and study whether

for these models, the sequence of distributions of adults’ skills will converge to a steady state distribution

of adults’ skills, like the one in [13] and [27]. Of course, this depends on initial conditions and hypotheses

of the models.

In order to incorporate several generations in our models, we use overlapping generation models. An

overlapping generation model is a type of model in economics that combines a finite number (N) of

generations. Each individual will then interact N distinct times with the society. A classical example

considers adults to be either working or retired (in which case N = 2).

Overlapping generation models have been introduced to study interest rates [34]. Overlapping gener-

ation models have also been used to study the economics of education, as they offer a way to incorporate

aging. For example, they are used to compare different methods of funding in education ([41], [20],

and [19]). Artige [5] studies the dynamics of a population with a model that combines education and

production. In all of these models, students are assumed to be identical and adults make educational

choices for their dependants. In our models, students’ abilities are heterogeneous and students make

their own choices regarding their education and future profession.

With this goal in mind, we adopt models which borrow their production technologies from [13]

and [27], but in which the distribution of adults’ skills in the present generation is induced by the

educational matching of the previous generation. We fix an initial distribution of skills for the adults,

κ1, not necessarily related to the students’ distribution of abilities. From it, our models create a sequence

of distributions of adults’ skills determined, at every step i > 1, by the students’ distribution of abilities

and educational choices of students from the previous generation found in step i− 1.

The educational choices for a fixed generation will generate a new distribution for the skills of the
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next generation of adults. The focus of the study is on the dynamics of the distributions of skills of the

adult population over different generations.

Chapter 3 (joint work with Robert McCann) introduces and studies two dynamic versions of [13].

For the first model, we assume that the students have incomplete information. That is, students have to

estimate their wage as adults. For the second model, we study a complete information model in which

we study all generations together. This allows for students to rationally forecast their exact future wage.

The main results of Chapter 3 are Theorems 3.4.4, 3.5.3 and 3.6.4. They give conditions which guarantee

that any initial distribution of skills will evolve in the long time limit toward a unique steady state.

In the incomplete information case (introduced in Section 3.1), the limiting steady state comes from

[13]. This result justifies the validity and interest of the steady state model of [13]. Although the steady

state of Erlinger et al is in general specified as the solution to a variational optimization problem, under

the conditions in question we show it can instead be constructed directly. In a concrete example, this

explicit construction allows us to support a conjecture from [13] concerning the presence and form of

wage singularities in Section 3.7.

For the complete information case (introduced in Section 3.2), we introduce a new steady state which

includes discounting, i.e. such that the production of the current and near future generations is more

important than production of future generations.

Another important extension to the one dimensional steady state model from [13] is to consider the

case where the skill and ability space is two dimensional. As discussed in [27], cognitive skills are not

enough to explain the professional success and estimated wage of an individual. Indeed, studies show

that non-cognitive skills influence educational and professional opportunities.

In order to quantify non-cognitive skills, McCann, Shi, Siow, and Wolthoff decided in [27] to include

a communication skill in their model. They assume that production in a company can be separated into

two tasks; one of production from the worker and one of supervision from the manager. In their model,

only the supervision task requires communication skill (as his or her communication skill increases, a

manager can supervise more workers) and the efficiency of the team is a combination of the cognitive

skills of the worker and of the manager.

In [27], the authors describe solutions to their model. For example, they show that individuals will

be specialized. That is, if an individual does the manager’s task in a team, then he or she won’t do the

worker’s task in another team. They show that teamwork increases productivity. Chapter 4 extends

duality and existence results from [13] to the case where individuals’ skills are two-dimensional (see [27])

and provide rigorous proofs for some of the results claimed in [27].

This thesis is organized as follows: Chapter 2 introduces notation, mathematical concepts, and

specific hypotheses for the following models and presents the steady-state model from [13]. Chapter 3

introduces and studies two dynamic versions of [13]. Chapter 4 extends duality and existence results

from [13] to the case where individuals’ skills are two-dimensional (see [27]) and provide rigorous proofs

for some of the results claimed in [27].



Chapter 2

Notation and Preliminaries

In this chapter, we introduced notation and concepts used in this thesis.

2.1 Functions and measures

Definition 2.1.1 (Proper function). A function f : Rn → R∪ {∞} is said to be proper if there exists

an x ∈ Rn such that f(x) ∈ (−∞,∞).

Definition 2.1.2 (Lower semi-continuous function). A function f : [a, b] → R ∪ {∞} is lower semi-

continuous at a point x ∈ [a, b] if for all ε > 0,

lim inf
ε→0

f(x+ ε) ≥ f(x).

A function f : [a, b]→ R∪ {∞} is lower semi-continuous if it is lower semi-continuous at all points

x ∈ [a, b].

In words, a function is lower semi-continuous if its limits all dominate its values (see figure 2.1).

Figure 2.1: Two examples of lower semi-continuous function.

4



Chapter 2. Notation and Preliminaries 5

Definition 2.1.3 (Lower semi-continuous hull). Let f : [a, b] → R. The lower semi-continuous hull of

f is a function lsc f : [a, b]→ R, such that lsc f(x) = lim infε→0 f(x+ ε).

Note that lsc f coincides with f at points where f is continuous.

For a function

f : (x1, x2, . . . , xn) ∈ Rn 7→ f (x1, x2, . . . , xn) ∈ R,

we’ll use the following notation for the partial derivative with respect to xi

fxi =
∂

∂xi
f.

We will use πi to denote the projection on the ith coordinate of an element in a product space:

πi : (x1, x2) ∈ R2 7→ xi ∈ R.

More generally, πi1,i2,...,in is the projection on the i1, i2, . . . , in coordinates.

Let f : X1 → X2 be a measurable map and let µ be a measure on X1. The push forward of µ by f

is a measure on X2 defined by

f#µ(A) = µ
(
f−1(A)

)
for each A ⊂ X2. A measurable function g : X2 → R is integrable with respect to f#µ, if and only if

g ◦ f : X1 → R is integrable with respect to µ and in that case,∫
X2

gd(f#µ) =

∫
X1

g ◦ fdµ.

Let P(X) denote the set of (Borel) probability measures on X. A measure µ ∈ P(R) is said to be

absolutely continuous if for every measurable subset A ⊂ R with zero Lebesgue measure L(A) = 0, we

also have µ(A) = 0. In that case, we can write dµ(x) = µac(x)dx, where µac is a Lebesgue integrable

function. In this thesis, for an absolutely continuous measure µ, we sometimes abuse notation by using

µ to represent both the measure and its density µac. The set of absolutely continuous measures on X

will be denoted Pac(X).

The support of a positive measure γ ∈ P(R2) is smallest closed set S such that γ vanished outside

of S:

spt (γ) =
{

(x, y) ∈ R2|γ(U) > 0 for every open neighborhood U of (x, y)
}
.

Definition 2.1.4 (Positive Assortative Measure). A measure λ ∈ P(R2) is said to be positive

assortative if for all (x1, y1), (x2, y2) ∈ spt λ,

(x1 − x2)(y1 − y2) ≥ 0;

that is, λ is supported on a non-decreasing subset of R2.

Lemma 2.1.5 ([1, Lemma 3.1]). For a measure γ ∈ P(R2) with support on the graph of a function

T : R→ R, then T is π1#γ measurable and γ = (1× T )#(π1#γ), where

1× T : x ∈ R 7→
(
x, T (x)

)
∈ R2.
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The map T : R −→ R is called a matching function (or Monge map) from spt π1#γ to spt π2#γ. If

π1#γ is absolutely continuous, then γ is positive assortative if and only if T is a non-decreasing matching

function.

A function f : R2 → R is said to be submodular if a < a′ and k < k′ implies f(a, k) + f(a′, k′) ≤
f(a, k′) + f(a′, k) and strictly submodular if the inequality is strict.

The following lemma will allow us to quantify derivatives of wage functions. The proof is postponed

to Appendix A.

Lemma 2.1.6. If f : Ā × K̄ → R is locally Lipschitz in a, uniformly in k, then g(a) = sup
k∈K̄

f(a, k) is

locally Lipschitz and for each a ∈ Ā for every neighbourhood a ∈ Ua ⊂ Ā the following bounds hold:

inf
k∈K̄, a′∈Ua

fa(a′, k) ≤ g′(a) ≤ sup
k∈K̄, a′∈Ua

fa(a′, k)

in the pointwise a.e. senses, where fa(a′, k) =
∂

∂a
f(a, k)

∣∣
a=a′

. Similarly, if f is locally semi-convex in

a ∈ Ā, uniformly in k ∈ K̄, then g(a) is locally semi-convex and for all a ∈ Ā and for every neighbourhood

a ∈ Ua ⊂ Ā
g′′(a) ≥ inf

k∈K̄, a′∈Ua
faa(a′, k)

in the pointwise a.e. senses, where faa(a′, k) =
∂2

∂a2
f(a, k)

∣∣
a=a′

.

2.2 Topological Spaces

We topologize measures using weak-∗ convergence, or narrow convergence, which refers to convergence

against bounded continuous test functions. We denote weak-∗ convergence of µi to µ by µi
w∗→ µ. For

probability measures, weak-∗ convergence can be metrized by the Prokhorov metric [30].

The set of wage functions of interest are real functions of K = [0, k̄) that are bounded, increasing,

and convex. Being bounded, increasing and convex, these functions are continuous, except maybe at k̄

and by the Arzelà-Ascoli theorem, for any sequence of such functions { fj } there exists a subsequence

that converges uniformly on compact subsets. This means that equicontinuity can only fail at the upper

end point. Therefore, we need a metric that doesn’t weight the right end point k̄. The distance function

we use to metrize uniform convergence on compact subsets of K = [0, k̄) is

dK(f, g) =

∞∑
i=1

2i ‖f − g‖L∞([0,k̄− 1
i ])

. (2.1)

The upper endpoint is excluded from K to permit wage singularities for superstars; since the analysis

of [13] suggests these singularities remain in C0 \ C1, we often make the simplifying hypothesis that in

any given model, all wages are uniformly bounded.

The next lemma presents compactness properties of the distance function dK . The proof is postponed

to Appendix A.

Lemma 2.2.1 (Properties of dK). Let { fj } be a sequence of real functions of K.

(a) We have that fj → f in the sense of uniform convergence on compact subsets of K if and only if

dK(fj , f)→ 0.
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(b) Consider a sequence of absolutely continuous measures with respect to the Lebesgue measure {µi }
such that µi → µ in the weak-∗ topology, where µ� L. Suppose

lim
δ→0

(
sup
i
µi
(
[k̄ − δ, k̄]

))
→ 01. (2.2)

Let { fj } be a uniformly bounded set of continuous functions on K such that fi
dK→ f which is also

continuous on K. In this case, we have

µi(fi)→ µ(f).

(c) The non-decreasing convex functions on K taking values in [−b, b] ⊂ R form a compact set when

metrized by dK .

2.3 Γ-Convergence

In order to prove that sequences of optimizers over generations converge to an optimizer, we use the

notion of Γ-convergence. We use definitions and theorems from [11].

Definition 2.3.1 ([11, Definition 1.5, Γ-convergence]). Let (X, d) be a metric space. For all i let

fi : X → R. We say that the sequence {fi} Γ-converges in X to f∞ if for all x ∈ X we have:

1. (lim inf inequality) for every sequence {xi } converging to x

f∞(x) ≤ lim
i→∞

fi(xi);

2. (lim sup inequality) there exists a sequence {xi } converging to x such that

f∞(x) ≥ lim
i→∞

fi(xi).

The function f∞ is called the Γ-limit of { fi }, and we write f∞ = Γ− limi fi.

In order to have sequences of minimizers converge to a minimizer, we need to add a coerciveness

condition to Γ-convergence.

Definition 2.3.2 ([11, Definition 1.19, coerciveness conditions]). A function f : X → R̄ is coercive if

for all t ∈ R the set { f ≤ t } is precompact. A function f : X → R̄ is mildly coercive if there exists a

non-empty compact set K ⊂ X such that infX f = infK f . A sequence { fi } is equi-mildly coercive if

there exists a non-empty compact set K ⊂ X such that infX fi = infK fi for all i.

We are now ready to state the conditions under which sequences of minimizers converge to a mini-

mizer.

Theorem 2.3.3 ([11, Theorem 1.21]). Let (X, d) be a metric space, let { fi } be a sequence of equi-mildly

coercive functions on X, and let f∞ = Γ− limi fi; then minX f∞ is attained and

min
X

f∞ = lim
i

inf
X
fi.

1Note that if we have a uniform L∞ bound on µi, hypothesis (2.2) is satisfied.
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Moreover, if {xi } is a precompact sequence such that limi fi(xi) = limi infX fi, then every limit of a

subsequence of {xi } is a minimum point for f∞.

2.4 Duality

We include here a general duality theorem that we’ll use to prove duality of many model.

Lemma 2.4.1 ([10, Theorem 4.4.3] Fenchel-Rockafellar Duality). Let A and B be Banach spaces, and

ϕ : A→ R ∪ {∞}

φ : B → R ∪ {∞}

be convex functions with associated Legendre transforms

ϕ∗ : A∗ → R ∪ {∞}

x∗ 7→ sup
x∈A
〈x, x∗〉 − ϕ(x) and

φ∗ : B∗ → R ∪ {∞}

y∗ 7→ sup
y∈B
〈y, y∗〉 − φ(y).

Let H : A→ B and let H∗ : B∗ → A∗ be its adjoint operator, i.e.

∀x ∈ A, y ∈ B, 〈H(x), y∗〉 = 〈x,H∗(y∗)〉 .

Let Dom ϕ := {x ∈ A | ϕ(x) <∞}. Then if φ is continuous and real-valued at some point in H(Dom ϕ)

(condition (4.3.2) in [10]),

inf
a∈A

ϕ(a) + φ(Ha) = max
y∗∈B∗

−ϕ∗(H∗y∗)− φ∗(−y∗).
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2.5 Hypotheses

This subsection introduces notation and definitions needed for the proposed models. For more detail on

the choices of notation and hypotheses, see [27].

Let A = [0, k̄) = K be the space of abilities of students and skills of adults respectively. A student’s

ability, combined with the skill or his or her teacher, will impact his or her skill when becoming an adult.

For the adults in the labour market, their skills quantify how much they produce.

Fix θ, θ′ ∈ (0, 1) and let

zE : A×K → K : (s, t) 7→ (1− θ)s+ θt (2.3)

be the future skill of a student of skill s who chooses a teacher of skill t and

zL : K ×K → R : (w,m) 7→ (1− θ′)w + θ′m

be the effectiveness of a team with a worker of skill w and a manager of skill m.

With these functions, we can estimate the general benefit of pairing a student of type s with a teacher

of type t to be cbE(zE(s, t)) where c ≥ 0 is fixed. Similarly, the productivity of a worker of skill w with

a manager of skill m is bL(zL(w,m)).

The functions bE and bL can theoretically be as general as we wish them to be. In order to ensure

that the wage functions are positive, non-decreasing and convex, we restrict bE and bL. We assume bE

and bL are both strictly positive, increasing, convex, and twice differentiable. More precisely, we suppose

both functions and their derivatives satisfy the following positive lower bounds:

0 < bE/L = bE/L(0)

0 < b′E/L = b′E/L(0)

0 < b′′E/L = infk∈[0,k̄) b
′′
E/L(k).

(2.4)

A case of interest is when bE/L is an exponential function, because it means that the production func-

tion is a transformation of the Cobb-Douglas production function with constant returns to scale. The

logarithmic transformation allows the objective function to be convex and for bE/L to satisfy (2.4).

The distribution of students is assumed to be known and constant. We will denote it by α ∈ P(A).

2.6 Steady State Model

In this model, the goal is to find an optimal measure, ε, correlating students to teachers and an optimal

measure, λ, correlating workers to managers. Let N be the number of students a teacher can teach, and

N ′ be the number of workers a manager can supervise.

The distribution of adults will be induced by zE and the pairing of students/teachers ε through the

formula: κ = zE#ε. These measures are found solving the following linear problem (see [13]):
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max
0≤ε,λ

∫
A×K

cbE
(
zE(s, t)

)
dε(s, t) +

∫
K×K

bL
(
zL(w,m)

)
dλ(w,m) (2.5)

s.t. α = π1#ε i.e. the distribution of students is known and (2.6)

zE#ε =
π2#ε

N
+ π1#λ+

π2#λ

N ′
i.e. the distribution of adults is induced by zE and ε.

(2.7)

The measure of adults’ skills κ is the sum of the measures of teachers’ skills
(
κt =

π2#ε

N

)
, workers’

skills
(
κw = π1#λ

)
, and managers’ skills

(
κm =

π2#λ

N ′

)
.

Let v : K → R be the wage function for adults and u : A → R be an indirect utility for students,

then the dual problem of (2.5) is:

inf
u,v

∫
A

u(s)α(s)

s.t. cbE(zE(s, t)) + v(zE(s, t)) ≤ u(s) +
v(t)

N
i.e. the education market is stable and

bL(zL(w,m)) ≤ v(w) +
v(m)

N ′
i.e. the labour market is stable.

(2.8)



Chapter 3

Dynamics of a coupled education

and labour matching over generation

In this chapter, we use overlapping generation models with two overlapping generations to study edu-

cational choices. Students have heterogeneous abilities that influence their personal educational choices

and choices of their future profession. The educational choices for a fixed generation will generate a new

distribution for the skills of the adult population of the next generation. The focus of the study is on

the dynamic of the distributions of skills of the adult population over different generations.

We fix an initial distribution of skills for the adults, κ1, a measure on K, which isn’t necessarily

related to the students’ distribution of abilities. We create a sequence of distributions of adults’ skills

determined, at every step i > 1, by the students’ distribution of abilities and educational choices of

students from the previous generation found in step i − 1. We study the dynamic of the sequence of

measures representing the adults’ distribution of skills.

There are many ways to model the overlapping generation problem we want to study. We will present

two of them. Both will use the same production function and make the same hypotheses as [27] and

[13]. For the first model, we assume that the students have incomplete information. That is, students

have to estimate their wage as adults based only on the wage functions of previous generations. For the

second model, we study a complete information model in which we study all generations together. This

allows for students to rationally forecast their exact future wage.

Overall this chapter introduces two new models describing a society with an education and a labour

market that evolves from one generation to another according to individuals’ educational choices. By

deriving a closed form representation of the dynamics in terms of the inverses of the cumulative dis-

tribution functions of the adults’ skill distributions, we are able to solve these models explicitly. In

the incomplete information model we prove, under certain conditions, that the sequence of adults’ skill

distributions converge to an adults’ skill distribution associated to a solution for the steady state model

studied in [13]. When this is the case, we can use these solutions to find explicit solutions for the steady

state model by studying the limiting case.

To formulate the complete information model with an infinite time horizon we use discounting to

guarantee convergence. We characterize the limit of this model as the solution of a steady problem with

discounting, proposed here for the first time. Unlike the other models discussed, this model is not purely

variational, but rather takes the form of a family of variational problems depending on parameters plus

11
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a self-consistency condition relating the parameters to the solution. We sketch a duality theory for this

family and employ the techniques described above to deduce that for a suitable choice of parameters, a

self-consistent solution exists and is the unique limit of the time dynamics.

The main results of this chapter are Theorems 3.4.4, 3.5.3, and 3.6.4. Theorem 3.4.4 proves that for

any initial distribution of skills, the sequence of distributions over infinite generations will converge to

a predetermined distribution under suitable conditions. Theorem 3.5.3 shows that, if the sequence of

wage functions evolving from one generation to another is convergent, sequences of solutions converge

to a solution to the steady state model from [13]. Note that we give conditions for the sequence of wage

functions to be convergent in Proposition 3.5.2. Finally, Theorem 3.6.4 gives conditions under which

solutions of the complete information model converge to solutions of a new steady state model which

include a discounting factor.

This chapter is organized as follows: Section 3.1 introduces the model with incomplete information

and Section 3.2 introduces the model with complete information proposed in this chapter. Section 3.3

extends results from [13] to our models and gives preliminary results. Section 3.4 studies the dynamic

of sequences of adults’ distribution of skills and Sections 3.5 and 3.6 separate the study of the limit of

a sequence of solutions for the incomplete and the complete information models. Using results from

Sections 3.4 and 3.5 we construct explicit solutions for the steady state model from [13] in Section 3.7.

To complement this section, a finite time horizon version of the complete information model is

introduced and used to prove some facts about the complete information model in Appendix B. In this

chapter, we will use constants and functions defined in subsection 2.5. This chapter is joint work with

Robert McCann.

3.1 Incomplete Information Model

We propose two models. For the first, suppose that students don’t have all the needed information to

optimize their educational choices. That is, they can’t forecast their wage as adults and they have to

estimate it. There is an important decision to be made in this case. That is, how to approximate a

student’s future wage? In this chapter, we assume every student will use the same approximation: they

will use the wage function for the previous generation of adults to represent the wage function when

they become adults. This allows the model to stay simple and maintain some semblance of realism. One

could also use the wage function for the current generation of adults or any other wage function such as

a combination of wage functions from previous generations.

We model this problem with a sequence of infinite dimensional linear problems. Each of these

problems optimize the total production for one generation. For the first generation, we begin with an

initial distribution for adults κ1 and an estimated future wage for students ṽ1 assumed to be positive,

convex and non-decreasing.The goal is to identify a matching ε1 ∈ P(A × K) between students and

teachers and a matching λ1 ∈ N ′

N
N−1
N ′+1P(K×K) between workers and managers for the first generation.

To do so, we solve an optimization problem. The dual of this optimization problem seeks competitive

wage functions v1 : K → R and u1 : A→ R.

We will present both the primal incomplete information model (3.1) and the dual incomplete informa-

tion model (3.4). Their optimal solutions, (ε, λ) and (u, v) respectively, form a competitive equilibrium

[26]. That is, solving the primal problem (3.1) is equivalent to solving the dual problem (3.4). The primal

problem optimizes the estimated production of the entire society by allocating a role and a matching
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partner to each individual. This means that, given a distribution of abilities for students and a distribu-

tion of skills for adults, it finds matching measures ε and λ. The dual problem finds optimal wages that

minimize the sum of all the wages individuals will get. That is, it takes the point of view of someone who

owns the entire society and hires every individual. This fictitious owner wants to pay as little as possible,

but has to pay at least as much as the individuals are producing in order to retain them; otherwise his

workforce would be unstable. The fact that the primal and dual problems are equivalent, means that

the optimal labour matching λ produces enough to pay the workers and the managers according to the

optimal wage function v and the optimal educational matching ε produces enough to pay the teachers

their expected salaries and to satisfy the benefit from education u. In other words, the matchings (ε, λ)

and wages (u, v) combine to satisfy the estimated budget constraint.

Once we have a competitive equilibrium for the first generation, we set κ2 = zE#ε1 to be the

distribution of adults for the next generation. We now consider the same optimization problem, but

with the distribution of adults being κ2 instead of κ1 and the estimated future wage function for students

to be ṽ2 = v1. We iterate this process, always setting κi+1 = zE#εi and ṽi+1 = vi.

At every step i, we fix κ = κi ∈ P(K) to be the current distribution of adults, and ṽ = ṽi to be the

estimated future wage function for students at step i. At each step, the linear optimization problem to

solve is:

max
0≤ε,λ

∫
A×K

(
cbE
(
zE(s, t)

)
+ ṽ
(
zE(s, t)

))
dε(s, t) +

∫
K×K

bL
(
zL(w,m)

)
dλ(w,m) s.t. (3.1)

α = π1#ε i.e. the distribution of students’ skills is known and (3.2)

κ =
π2#ε

N
+ π1#λ+

π2#λ

N ′
. (3.3)

The second constraint (3.3) represents the fact that the distributions of teacher, worker and manager

skills sum to the known distribution of adult skills. The objective function represents the external benefits

from education plus the expected future wages of the current students, plus the total production of the

labour market. The constraints represent the fact that the distributions of student skills and adults

skills are known.

For fixed κ and ṽ, we can associate to (3.1) the following dual problem:

inf
u,v

∫
A

u(s)α(s)+

∫
K

v(k)κ(k) (3.4)

s.t. cbE(zE(s, t)) + ṽ(zE(s, t)) ≤ u(s) +
v(t)

N
i.e. the education market is stable and (3.5)

bL(zL(w,m)) ≤ v(w) +
v(m)

N ′
i.e. the labour market is stable. (3.6)

The proof that the values of (3.1) and (3.4) coincide, and that both are attained (called strong duality)

parallels the proof of duality in [13] and uses the doubling condition∫
[ā−2∆a,ā]

α(da) ≤ C
∫

[ā−∆a,ā]

α(da). (3.7)

(see also Section B.1). More precisely the infimum (3.4) is attained by a pair of continuous convex

functions u, v on K which formal asymptotics suggest remain bounded near k̄ [13]; we’ll generally

assume this boundedness for simplicity.
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The dual problem represents the perspective of someone that has to pay wages to the adults and

give students their benefit for education. It minimizes the wages to pay, under the constraint that the

individuals receive enough to be retained.

The wage function for generation i is vi = v, where v is an optimizer of (3.4) with κ = κi and ṽ = ṽi.

The function u represents the personal benefit of education. By assumption, ṽi+1 = vi.

One goal of this chapter is to study the evolution of the sequence of measures {κi } obtained by

solving a version of (3.1)–(3.3) and (3.4)–(3.6) for every generation, to obtain (εi, λi;ui, vi) = (ε, λ;u, v)

from (κ, ṽ) = (κi, ṽi) at the ith iteration. In other words, setting

GI : (κi, ṽi) ∈ P(K)× C(K) 7→ (κi+1, ṽi+1) = (zE#εi, vi) ∈ P(K)× C(K) (3.8)

it is equivalent to study the dynamics of iterating GI . Note that GI depends on α, bE , bL, N , N ′, θ and

θ′.

Before we study (3.1) and the dynamics of GI , we introduce another model. The general idea is the

same, but we assume students can forecast their future wages with complete accuracy.

3.2 Complete Information Model

This section proposes a model for a problem that is similar to the one presented in Section 3.1. The only

difference is that students know what their salary will be once they become adults. To ensure knowledge

of future wages, we need a model that will solve all generations at the same time.

Let κ1 be an absolutely continuous Borel probability measure that represents the initial distribution

for adults. The goal is to optimize the society’s total production over all future generations, by separating

adults by profession, i.e. worker, manager and teacher, and by matching workers to managers and

students to teachers. That is, we are seeking sequences of measures

{ εi }∞i=1 and {λi }∞i=1 ,

where εi represents the matching between students and teachers for generation i and λi represents the

labour matching for generation i. These measures have to satisfy the following population (or market

clearing) constraints:

π1#εi = α i = 1, 2, . . .

i.e. the distribution of students’ skills is known,

π1#λ1 +
1

N ′
π2#λ1 +

1

N
π2#ε1 = κ1

i.e. the first distribution of adults’ skills is known, and

π1#λi +
1

N ′
π2#λi +

1

N
π2#εi = zE#εi−1 i = 2, 3, . . .

i.e. distributions of adults’ skills are induced.

The last set of constraints represents the fact that the sum of the teacher, worker and manager skills

at generation i agrees with the distribution of adult skills at generation i induced by the education
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matching at generation i− 1.

The goal is to optimize the total productivity of the society. We introduce a discount factor e−β

(take β = 0 to remove it) to represent the fact that immediate gain is more valuable than future gain.

The proposed complete information model then is the maximization:

C(κ1) := sup
(εi,λi)∞i=1

∞∑
i=1

e−βi

(∫
A×K

cbE ◦ zEdεi +

∫
K×K

bL ◦ zLdλi

)
(3.9)

s.t.
{ π1#εi = α

π1#λi + 1
N ′π2#λi + 1

N π2#εi = zE#εi−1

i = 1, 2, . . .

where ε0 = (1× 1)#κ1 by convention.

Note that the future wage function for students does not appear in the objective function. This

is because the future skill of students will actually be included in the model for their role in the next

generation. In (3.1), students’ estimated wages are used in the objective function to represent their

future contribution to the society, but this is not relevant in this new model.

By using a finite time horizon T <∞ to approximate this infinite time horizon model, we will show

in Section B.1 that the dual of this problem is given by the T →∞ limit:

C(κ1) = inf
(ui,vi)∞i=1

∫
K

e−βv1(k)dκ1(k) +

∞∑
i=1

e−βi
∫
A

ui(s)dα(s) s.t (3.10)

ui(s) +
1

N
vi(t) ≥ cbE(zE(s, t)) + e−βvi+1(zE(s, t)) i = 1, 2, . . . educational stability;

vi(w) +
1

N ′
vi(m) ≥ bL(zL(w,m)) i = 1, 2, . . . labour market stability.

Let

HC : P(K)→ P(K)

κ1 7→ κ2 = zE#ε1 (3.11)

be a function that sends the initial distribution of adult skills to the distribution of adult skills at the

next generation. Note that HC depends on α, β, bE , bL, N , N ′, θ and θ′.

A priori it is not evident that κi+1 = HC(κi), except in the defining case i = 1. However, in the

next subsection, we will re-express (3.9) in order to show, in Corollary 3.2.4, that κi+1 = HC(κi) for

all i ≥ 1. The proof is inspired by dynamic programming. Indeed, we’ll show that optimizers of (3.9)

satisfy a functional equation. Our goal thereafter will be to study dynamics of GI and HC .

Also, it is not evident that HC is well defined. In fact, HC will only be well defined when ε1 in the

solution of (3.9) is unique. This will be the case, whenever v1 is strictly convex, increasing and bounded

because in that case all following vi are also strictly convex and increasing from Proposition 3.3.1 and

then optimizer (εi, λi)
∞
i=1 will be unique (see [13, Theorem 15]).
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3.2.1 Dynamic Programming Description

We begin by re-expressing the problem (3.9) using a functional equation. To do so, we need some new

notation. Let

N : P(K)→ 2P(K) (3.12)

(N is for next) be a set valued function that sends each distribution of adults’ skills κ1 ∈ P(K) to the

set of feasible adults’ distributions of skills for the next generation. That is,

N (κ1) =

{
κ2 ∈ P(K)|∃ε ∈ P(A×K) such that π1#ε = α,

1

N
π2#ε ≤ κ1 and zE#ε = κ2

}
.

We define the set of countable sequences, S, of feasible adults’ distributions of skills for generations

following an adults’ distribution of skills κ1 by:

S(κ1) =

{
{κi }∞i=1 ∈

∞∏
i=0

P(K)
∣∣∣κi+1 ∈ N (κi) for all i = 1, 2, . . .

}
. (3.13)

For consecutive adults’ skill distributions (κi, κi+1), the space of possible matching, M , is defined as

M(α, κi, κi+1) =

{
(ε, λ) ∈ P(A×K)× N ′

N

N − 1

N ′ + 1
P(K ×K)

∣∣∣ π1#ε=α

π1#λ+ 1
N′ π2#λ+ 1

N π2#ε=κi
zE#ε=κi+1

}
. (3.14)

We define the optimal production, P , for a sequence of feasible adults’ distributions of skills to be:

P : S(κ1)→ R

{κi }∞i=1 7→ sup
{ εi,λi }∞i=1 s.t.

(εi,λi)∈M(α,κi,κi+1)

∞∑
i=1

e−βi
(∫

A×K
cbE ◦ zEdεi +

∫
K×K

bL ◦ zLdλi
)
. (3.15)

We restate (3.9) as the supremum of the optimal production for any finite sequence of feasible adults’

distributions of skills.

Lemma 3.2.1. For any κ1 ∈ P(K) the complete information model (3.9) can be restated as follows:

C(κ1) = sup
{κi }∞i=1∈S(κ1)

P ({κi }∞i=1) ,

where C is defined in (3.9) and P is defined in (3.15).

Proof. First, we prove the inequality:

C(κ1) ≤ sup
{κi }∞i=1∈S(κ1)

P ({κi }∞i=1) .

Let { (εni , λ
n
i ) }∞i=1 be such that

C(κ1) ≤ 1

n
+

∞∑
i=1

e−βi
∫
A×K

cbE ◦ zEdεni +

∞∑
i=1

e−βi
∫
K×K

bL ◦ zLdλni .
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Let κn1 = κ1 and κni = zE#ε
n
i−1 for i ∈ { 2, 3, . . . }. Then, {κni }

∞
i=1 ∈ S(κ1). Thus,

sup
{κi }∞i=1∈S(κ1)

P ({κi }∞i=1) ≥
∞∑
i=1

e−βi
∫
A×K

cbE ◦ zEεni +

∞∑
i=1

e−βi
∫
K×K

bL ◦ zLλni .

Taking the limit when n→∞, we get

sup
{κi }∞i=1∈S(κ1)

P ({κi }∞i=1) ≥ C (κ1) .

Now, we prove the other inequality. We fix κ1 and let {κni }
∞
i=1 ∈ S(κ1) be an approximate optimizer

for

sup
{κi }∞i=1∈S(κ1)

P ({κi }∞i=1) .

Then for all n there exists { εn,mi , λn,mi }∞i=0 such that (εn,mi , λn,mi ) ∈M(α, κi, κi+1) and { εn,mi , λn,mi }∞i=0

is an approximate optimizer for

sup
{ εi,λi }∞i=1 s.t.

(εi,λi)∈M(α,κni ,κ
n
i+1)

∞∑
i=1

e−βi
∫
A×K

cbE ◦ zEεi +

∞∑
i=1

e−βi
∫
A×K

bL ◦ zLλi.

For all n,m, the set of measures { εn,mi , λn,mi }∞i=0 is feasible for C(κ1). Thus, taking the limit over n

and m, we have

C(κ1) ≥ sup
{κi }∞i=1∈S(κ1)

P ({κi }∞i=1) .

Let

P(κ1, κ2) = sup
(ε,λ)∈M(α,κ1,κ2)

e−β
∫
K×K

bL ◦ zLλ+ e−β
∫
A×K

cbE ◦ zEε (3.16)

be the optimal productivity of a generation whose adults’ distribution of skills is κ1, given that the

distribution of skills for the next generation of adults will be κ2 and the students’ distribution of abilities

is α. With this definition, we have:

P
(
{κi }∞i=1

)
=

∞∑
i=1

e−β(i−1)P(κi, κi+1).

We want to show that C(κ1) from (3.9) satisfies the following functional equation:

C(κ1) = sup
κ2∈N (κ1)

P(κ1, κ2) + e−βC(κ2). (3.17)

That is, the full productivity of all generations, given that the distribution of skills for the first gener-

ation of adults is κ1, is the supremum of the optimal productivity of the first generation plus the full

productivity of all following generations, over all possible distributions of adults’ skills for the second
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generation κ2. This would imply that:

HC(κ1) ∈ arg sup
κ2∈N (κ1)

P(κ1, κ2) + e−βC(κ1)

and the analogous formula (3.23) for i > 1.

In order to show that C satisfies (3.17), we need the following lemma.

Lemma 3.2.2. For all {κi }∞i=1 ∈ S(κ1) we have:

P
(
{κi }∞i=1

)
= P(κ1, κ2) + e−βP

(
{κi }∞i=2

)
,

where S, P and P are defined by (3.13), (3.15) and (3.16).

Proof. First, we simply use the definition of P :

P
(
{κi }∞i=1

)
= sup

{ εi,λi }∞i=1 s.t.
(εi,λi)∈M(α,κi,κi+1)

( ∞∑
i=1

e−βi
∫
A×K

cbE ◦ zEεi +

∞∑
i=1

e−βi
∫
A×K

bL ◦ zLλi

)
.

Now, we separate the first term of the series and then we use the definition of P and P.

P ({κi }∞i=1) = sup
{ εi,λi }∞i=2 s.t.

(εi,λi)∈M(α,κi,κi+1)

( ∞∑
i=2

e−βi
∫
A×K

bL ◦ zLλi +

∞∑
i=2

e−βi
∫
A×K

cbE ◦ zEεi

)

+ sup
(ε1,λ1)∈M(α,κ1,κ2)

(
e−β

∫
A×K

bL ◦ zLλ1 + e−β
∫
A×K

cbE ◦ zEε1

)
=e−βP

(
{κi }∞i=2

)
+ P(κ1, κ2)

Proposition 3.2.3. For all κ1 ∈ P(K), C(κ1) defined by (3.9) satisfies (3.17).

Proof. The proof follows the proof of [36, Theorem 4.2]. By Lemma 3.2.1,

C(κ1) = sup
{κi }∞i=1∈S(κ1)

P
(
{κi }∞i=1

)
,

which can be restated with the following two properties:

∀ {κi }∞i=1 ∈ S(κ1), C(κ1) ≥ P ({κi }∞i=1) ; (3.18)

∀ε > 0, ∃ { κ̄i }∞i=1 ∈ S(κ1) s.t. C(κ1) ≤ P ({ κ̄i }∞i=1) + ε. (3.19)

To prove that C(κ2) satisfies (3.17), we’ll show the following two properties:

∀κ2 ∈ N (κ1) C(κ1) ≥ e−βC(κ2) + P(κ1, κ2); (3.20)

∀ε > 0, ∃κ2 ∈ N (κ1) s.t. C(κ1) ≤ e−βC(κ2) + P(κ1, κ2) + ε. (3.21)

First, we show that C satisfies (3.20). Fix κ1 ∈ P(K) and ε > 0. Let κ2 ∈ N (κ1), by (3.19), there
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exists {κi }∞i=2 ∈ S(κ2) such that

P
(
{κi }∞i=2

)
≥ C(κ2)− ε. (3.22)

Thus, we have

C(κ1) ≥ P
(
κ1, {κi }∞i=2

)
by (3.18)

= e−βP
(
{κi }∞i=2

)
+ P(κ1, κ2) by Lemma 3.2.2

≥ e−βC (κ2)− e−βε+ P(κ1, κ2) by (3.22).

Since ε > 0 and κ2 ∈ N (κ1) were arbitrary, this shows (3.20).

Now we prove (3.21). Fix κ1 ∈ P(K) and ε > 0. From (3.19), there exists {κi }∞i=1 such that

C(κ1) ≤ P
(
{κi }∞i=1

)
+ ε

= P(κ1, κ2) + e−βP
(
{κi }∞i=2

)
+ ε by Lemma 3.2.2

≤ P(κ1, κ2) + e−βC
(
{κi }∞i=2

)
+ ε by (3.18).

Letting ε→ 0 yields the claim.

Corollary 3.2.4. The function HC defined by (3.11) satisfies:

HC(κi) ∈ arg sup
κi+1∈N (κi)

P(κi, κi+1) + e−βC(κi+1) (3.23)

for all i, where N is defined in (3.12), P is defined in (3.16) and C is defined in (3.9).

In Appendix B, we introduce a complete information model with finite time horizon. We prove in

Section B.1 that in this case, strong duality holds and in Section B.2 that our infinite time horizon model

can be expressed as a limit of the finite one.

3.3 Analysis of the Models and Preliminary Results

Before we study dynamics of GI and of HC , we need various results about the optimization problems

(3.1), (3.4), (3.9) and (3.10).

Given a wage function for adults v, a benefit from education function for students u and an expected

future wage function for students ṽ, we can define the wage functions for different roles of adults:

V : (u, v, ṽ) 7→ (vw, vm, vt) (3.24)

where vw(k) = sup
m∈K̄

bL(zL(k,m))− v(m)

N ′
,

vm(k) = N ′ sup
w∈K̄

bL(zL(w, k))− v(w) and

vt(k) = N sup
s∈Ā

cbE(zE(s, k)) + ṽ(zE(s, k))− u(s).

The subscripts indicate the roles; w for worker, m for manager and t for teacher. Although we generally

deal with bounded convex payoffs u, v ≥ 0 which extend continuously to K̄, should we wish to allow
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unbounded payoffs we augment the definition of vt with the convention ∞−∞ =∞ as in [13].

Note that in the complete information case, we can find wage functions for different roles at every

generation with V(ui, vi, e
−βvi+1). The wage functions for the steady state model (2.5) can be recovered

from V(u, v, v).

Because we assumed that bE and bL are increasing and strictly convex, (and we will only consider

ṽ’s that are non-decreasing and convex) we can see, from the structure of V, that v will be convex

non-decreasing and strictly convex increasing as long as ṽ is or c > 0. To make this idea more precise

we need Lemma 2.1.6 which allows us to quantify the derivative of the wage function for a fixed type of

adult.

The next proposition gives conditions that ensure that the wage functions v of (3.4) and vi of (3.10)

are convex and non-decreasing and are equal to the maximum of the wage over the various professions.

Proposition 3.3.1. Fix c ≥ 0, θ, θ′ ∈ (0, 1) and N,N ′ > 1. Let A = [0, k̄) and let α be a Borel

probability measure on Ā satisfying the doubling condition (3.7) at ā. Define zE/L and bE/L as in

subsection 2.5.

If ṽ ≤ b is increasing and strictly convex, then the infimum (3.4) is attained by convex, non-decreasing

functions (u, v) satisfying

u(s) = sup
k∈K̄

cbE(zE(s, k)) + ṽ(zE(s, k))− v(k) (3.25)

and

v = max { vw, vm, vt } ,

where (vw, vm, vt) = V(u, v, ṽ) is defined by (3.24).

If c > 0, the infimum (3.10) is attained by convex, non-decreasing functions (ui, vi)
∞
i=1 satisfying

ui(s) = sup
k∈K̄

cbE(zE(s, k)) + vi+1(zE(s, k))− vi(k)

and

vi = max { viw, vim, vit } ,

where (viw, v
i
m, v

i
t) = V

(
ui, vi, e

−βvi+1

)
.

Note 3.3.2. This proposition relies heavily on the hypotheses we made in subsection 2.5 that bE and bL

are both strictly positive, increasing and strictly convex.

Note 3.3.3. It might be surprising to the reader who knows the work of [13] to see that we don’t need to

introduce a perturbed problem in order to show that dual functions (u, v) are non-decreasing and convex.

This is because the wage function for teachers, vt, is not recursive in our cases. For the same reason,

we don’t need to contemplate the possibility of unbounded wages or wage gradients in our models, except

perhaps in the long time limit. Therefore, we don’t need to assume a priori that v is non-decreasing

and convex in order to conclude that vt is also non-decreasing and convex. For the infimum of (3.4), it

suffices to assume that ṽ is non-decreasing and convex. For the infimum of (3.10), we approximate the

problem by a finite version and assume the wage function of the last generation is non-decreasing and

convex.

We still need a perturbation of our problems in order to show that v = max { vw, vm, vt }. We won’t

give a full formulation of such a perturbed problem here and refer to [13] for details.
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Proof of Proposition 3.3.1. Let (u, v) be feasible for (3.4). Let v̄ = max { vw, vm, vt }, where

(vw, vm, vt) = V(u, v, ṽ).

First, we prove that v̄ is continuous on K, and convex and increasing on K̄ following the proof of [13,

Lemma 5]. To do so, we’ll prove that vw/m/t are all convex increasing.

We start with vt. First, we’ll assume ṽ and bE are twice differentiable. Define

f(a, k) = cbE(zE(a, k)) + ṽ(zE(a, k)).

As by assumption, bE and ṽ are convex increasing and zE is linear, we have that f is convex increasing in

both variables. By Lemma 2.1.6, vt(k) = N supa∈A f(a, k)− u(a) is also convex increasing and satisfies

v′t ≥ Nθ
(
cb′E + infb ṽ

′(b)
)
≥ 0

v′′t ≥Nθ2
(
cb′′E + infb ṽ

′′(b)
)
≥ 0.

If ṽ, bE /∈ C2(K̄), we can approximate it uniformly on any compact subset of K by C2 functions ṽj .

Using the same reasoning, we’ll get that vjt is convex increasing. Thus, taking the limit, vt is convex

non-decreasing.

Now, we consider vw/m. We apply Lemma 2.1.6 with f(w,m) = bL(zL(w,m)) which is jointly convex

and increasing in both variables. If bL isn’t C2, we can approximate it by functions that are. We get

the following bounds:

(1− θ′)b′L ≤ fw(w,m) ≤ (1− θ′)b′L

and

fww(w,m) ≥ (1− θ′)2b′′L.

Those bounds and Lemma 2.1.6 imply that vw is also convex non-decreasing. Similarly, we can show

that vm is convex non-decreasing.

Thus, we conclude that v̄ is convex non-decreasing and satisfies:

v̄′ ≥ min

{
(1− θ′)b′L, N ′θ′b

′
L, Nθ

(
cb′E + inf

b
ṽ′(b)

)}
v̄′′ ≥ min

{
(1− θ′)2b′′L, N

′θ′2b′′L, Nθ
2

(
cb′′E + inf

b
ṽ′′(b)

)}
.

Because v̄ is convex non-decreasing on K̄, it is continuous on K.

Now, we show, also following the proof of [13, Lemma 5], that u satisfy (3.25) and is continuous

on A, and convex and increasing on Ā. As we assumed that u is an optimizer, it has to satisfy (3.25),

otherwise we can lower the objective of (3.4) by replacing u by the right side of (3.25). Using Lemma

2.1.6, we can get a lower bound on u′ and u′′ from the fact that bE and ṽ are convex and increasing and

we conclude that u is convex and increasing.

Now, we’ll prove that there exists optimizers for (3.4). To do so, we’ll first add the extra hypothesis

that feasible v are convex and non-decreasing and in that case use [13, Lemma 11] to have an optimizer.
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We will then show that these extra hypotheses on v are non-binding. First, note that feasibility of

(u, v) = (b+ cb̄E , b̄L), where b is an upper bound for ṽ, yields an upper bound:

b+ cb̄E + b̄L

for (3.4). Then [13, Lemma 11] allows us to extract from any approximating sequence of optimizers an

optimizing pair (u, v) for (3.4) satisfying (3.5), (3.6) and the extra condition that garantees that v is

non-decreasing and convex. Fatou’s lemma ensures that (u, v) minimizes the objective.

Now we prove that v = max { vw, vm, vt } by following [13, Theorem 13]. First, we suppose that κ is

supported on K. Let v̄ = max { vw, vm, vt }. Feasibility of (u, v) implies v ≥ v̄. If η = v − v̄ is positive

somewhere, it is positive on an interval where no constraints can be binding. For small λ > 0, we define

the perturbation vλ := (1− λ)v + λv̄. We will show that the pair (u, vλ) is feasible. Thus, unless η = 0

on all K, (u, vλ) lowers the objective functional. This is a contradiction, which implies that v = v̄.

If spt κ $ K, we can introduce a perturbed problem with spt κδ = K and limδ→0 κδ = κ in order to

show that v = v̄.

Now, we show (u, vλ) is feasible. First, we show that vλ satisfies the stability of the labour market’s

constraint (3.6). Since vλ = v − λη = v̄ + (1− λ)η, for any w,m ∈ K̄, we have:

vλ(w) +
vλ(m)

N ′
− bL(zL(w,m)) = v̄(w) +

v(m)

N ′
− bL(zL(w,m)) + (1− λ)η(w)− λ

N ′
η(m)

≥ η(w)

(
1− λ

(
1 +

η(m)

N ′η(w)

))
,

and

vλ(w) +
vλ(m)

N ′
− bL(zL(w,m)) = v(w) +

v̄(m)

N ′
− bL(zL(w,m))− λη(w) +

1− λ
N ′

η(m)

≥ η(m)

N ′

(
1− λ

(
1 +

N ′η(w)

η(m)

))
.

If η(m) = η(w) = 0, then (3.6) is satisfied. If both η(m), η(w) ≥ 0, taking λ < 1/2 ensures that (3.6) is

satisfied. The same is true if one of η(m) or η(w) vanish.

Now, we prove that (u, vλ) satisfies the stability of education market constraint (3.5). Because v̄ ≥ v,

by adding u(s)− cbE(zE(s, t)) to

vλ(t)

N
− vλ(zE(s, t)) =

v̄(t)

N
− v(zE(s, t)) +

1− λ
N

η(t) + λη(zE(s, t)),

and considering constraint (3.5), we get

u(s) +
vλ(t)

N
− cbE(zE(s, t))− vλ(zE(s, t)) ≥ 1− λ

N
η(t) + λη(zE(s, t)) ≥ 0.

This shows that (u, vλ) is feasible and therefore, that v̄ = v when (u, v) is an optimizing pair of (3.4).

Finally, we proved that v̄ is strictly increasing and convex so the extra assumption that v is non-

decreasing and convex are non-binding.

For the complete information model (3.10), we can optain an optimizing sequence { (ui, vi) }∞i=1

similarly. First, we add the extra assumption that for all i, vi is non-decreasing and convex. Note that
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{ (ui, vi) }∞i=1 = { (b̄L + cb̄E , b̄L) } is feasible because 1 + 1
N ≥ e

−β . So

e−β
2− e−β

1− e−β
b̄L +

e−β

1− e−β
cb̄E

is an upper bound for (3.10). Thus, there exists a sequence of approximate optimizers { { (uji , v
j
i ) }
∞
i=1 }

∞
j=1

for (3.10) with extra assumption that vi are convex non-decreasing.

By [13, Lemma 11], we can extract a converging subsequence for i = 1. Let jl be the indices of

this subsequence. We then extract a converging subsequence of (ujl2 , v
jl
2 ) for i = 2 and continue in this

fashion to get subsequences jk such that (ujki , v
jk
i ) converges for all i ≤ k. We can then use a diagonal

argument1 to get a subsequence such that (uji , v
j
i )→ (ui, vi) converges for all i.

By Fatou’s lemma, { (ui, vi) }∞i=1 minimizes (3.10).

The proof that the infimum of (3.10) is attained by strictly convex, increasing functions (ui, vi)
∞
i=1

uses the finite horizon problem introduced in Appendix B. For the finite horizon problem (B.2), the

proof is done by induction over a perturbed problem. Indeed, we need to include vi in the objective

functional of (3.10) for all i. To do so, we can use a perturbed problem as the one from [13]. Then if we

assume for fixed i the wage function, vi, is continuous and convex non-decreasing, we can use a proof that

is identical to the proof in the incomplete information case to show that vi−1 = max { vi−1
w , vi−1

m , vi−1
t }

is continuous on K̄ and strictly convex increasing on K (strictly convex and increasing because c > 0).

As we assume that vT+1 is continuous and convex non-decreasing, we conclude that all vi are strictly

convex and increasing.

As we prove in Corollary B.2.3 that optimizers of (B.2) converge to optimizers of (3.10), we conclude

that optimizers of (3.10), vi, are non-decreasing and convex. Coupling this with the fact that strict

convexity and growth of vi is bounded, we get that optimizers of (3.10), vi, are in fact increasing and

strictly convex.

Corollary 3.3.4. The wage functions vi solving the incomplete (3.4) and complete information models

(3.10) are continuous on K̄ and K respectively, and they are differentiable almost everywhere on their

domain.

The next proposition presents conditions to ensure the existence, uniqueness and positive assortativity

of primal optimizer.

Proposition 3.3.5. Fix c ≥ 0 and θ, θ′ ∈ (0, 1). Let A = K = [0, k̄) and fix a Borel probability measure

α ≥ 0 and a Borel measure κ1 ≥ 0 both without atoms on Ā such that α satisfies the doubling condition

(3.7). Let ṽ be a positive, increasing and strictly convex function. Define

zE(a, k) = (1− θ)a+ θk.

There exists maximizers (ε, λ) (resp. (εi, λi)
∞
i=1) of (3.1) (resp. of (3.9)).

Then, for any maximizing ε, λ of (3.4) and (εi, λi)
∞
i=1 of (3.9): λ and λi are positive assortative (see

definition 2.1.4). Moreover, there exists a pair of optimizers for both problems such that ε and εi are

also positive assortative. For those ε and εi, there exist non-decreasing functions φ, φi : A→ K uniquely

1A similar diagonal argument is used in the proof of Lemma 2.2.1 (c).
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determined α-a.e. such that

ε = (1× φ)# α,

εi = (1× φi)# α for all i = 1, . . . .

The measures λ and λi are unique. If c > 0 then ε and εi are also unique; if c = 0 this uniqueness

extends to the incomplete information model provided ṽ is strictly convex.

Proof. To prove existence of primal optimizers for (3.1) (resp. (3.9)) we follow the proof of [13, Lemma

17]. Given the shape of the constraints, feasible pairs for (3.1) (resp. (3.9)) form a weak-∗ compact

subset of C(Ā2)∗, (resp. of
(
C(Ā2)∞i=1

)∗
). As the linear functionals we are trying to optimize are weak-∗

continuous, the maximum must be attained provided the set of feasible measures is non-empty.

To see that the feasible set of (3.1) is non-empty, let kt be the largest element of K such that∫ k̄
kt
κ1 = 1

N , and let ε = α × Nκ1|(kt,k̄). Then we let km be the largest element of K such that∫ kt
km

κ1 = N−1
N(N ′+1) and let λ = κ1|(0,km) ×N ′κ1|(km,kt).

To see that the feasible set of (3.9) is non-empty, we use the same construction to get ε1 and λ1. We

then get εi and λi for i > 1 by setting κi = zE#εi−1.

Strict positive assortativity of λ, λi, and positive assortativity of ε, εi is proven as in [13, Theorem

15]. We will present the proof in the incomplete information setting. Let

f(s, t) = u(s) +
v(t)

N
− cbE(zE(s, t))− ṽ(zE(s, t)) ≥ 0

and

g(w,m) = v(w) +
v(m)

N ′
− bL(zL(w,m)) ≥ 0.

As the problem satisfies competitive equilibrium2, we have that ε(f) = λ(g) = 0. Therefore, the support

of ε is contained in the zero set F ⊂ A×K of f and the support of λ is contained in the zero set G ⊂ K2

of g.

Now, as bL and ṽ or cbE are strictly convex, f and g are strictly submodular. Thus, their zero sets

F and G are non-decreasing.

We will show that the measures ε and εi’s are unique because f is strictly submodular, and that the

measures λ and λi’s are unique because g is strictly submodular. First, we prove that ε is unique. As f is

strictly submodular, except potentially for a countable number of vertical segments, the non-decreasing

set G is contained in the graph of a non-decreasing map ϕ : A → K. Any measure ε ∈ P(A×K) such

that π1#ε = α has no mass on these segments because α doesn’t have any atoms. Since the maximizer

ε vanished outside the graph of ϕ, it is uniquely defined by ε = (1× ϕ)#α.

To show that λ is unique, we assume there exist two optimal matchings for the labour sector: λ1

and λ2. One can show that as α doesn’t have any atoms, neither does κi or the measures of workers

and managers: π1#λi +
π2#λi
N ′ for i = 1, 23. Let ∆λ = λ2 − λ1. We know that λ1, λ2 and therefore ∆λ

must vanish outside G. Once again, G has at most countably many vertical and horizontal segments,

but λi doesn’t charge them, because κi doesn’t have atoms. The positive part of the marginals of ∆λ,

2I.e. there is no duality gap. For the proof that there is no duality gap between (3.1) and (3.4) see [13] and for the
proof that there is no duality gap between (3.9) and (3.10) see Section B.1.

3See [13, Lemma 14].
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π1#∆λ+ and π2#∆λ+ must have the same mass. Also, by feasibility,

N ′π1#∆λ+ −N ′π1#∆λ− + π2#∆λ+ − π2#∆λ− = 0.

As the positive and the negative parts of a measure have disjoint support, it means

N ′π1#∆λ+ = π2#∆λ−
(

and N ′π1#∆λ− = π2#∆λ+

)
.

Since π1#∆λ+ and π2#∆λ− have the same mass, we have a contradiction, as N ′ > 1.

The following lemma gives conditions that ensure that the distribution for skills of adults is without

atoms.

Lemma 3.3.6. Let A = K = [0, k̄) and let α be a Borel probability measure without atoms on Ā. Define

zE(a, k) = (1 − θ)a + θk. Let ε be a positive assortative measure on A ×K such that π1#ε = α. Then

κ = zE#ε has no atoms.

If α ∈ L∞ then κ ∈ L∞ also. More explicitely, when X ′α > εc we have X ′κ > εc (1− θ), where Xα

(resp. Xκ) is the inverse of the cumulative distribution of α (resp. κ).4

Proof. The proof of the first claim follows the proof of [13, Lemma 14]. As ε is positive assortative,

its support is non-decreasing, which means that almost everywhere, spt (ε) ⊂ graph(kt) for some non-

decreasing map kt : A→ K. From [1, Lemma 3.1], ε = (1× kt)# α.

The function f(a) = zE(a, kt(a)) is non-decreasing and κ = f#α. Moreover, the derivative of f

exists almost everywhere and is such that f ′ ≥ 1
1−θ . Therefore f is one-to-one and there exists a

function g : K → A such that g′ ≤ 1− θ and g(f̄(k)) = k for every non-decreasing extension f̄ of f .

For all K ′ ⊂ K, we have

κ(K ′) = α
(
f−1(K ′)

)
= α

(
g(K ′)

)
.

As this function is valid when K ′ is a single point and we assumed that α has no atoms, we conclude

that κ has no atoms.

We express the probability measures α and κ in terms of non-decreasing random variables:

Xα : [0, 1]→ Ā

r 7→ ability of a student in the r-th percentile

Xκ : [0, 1]→ K̄

r 7→ ability of an adult in the r-th percentile.

When α ∈ L∞, then there exists an εc > 0 such that Xα
′ > εc. The inverse function of the random

variable Xα (resp. Xκ) is the cumulative distribution of α (resp. κ): Fα (resp. Fκ). By the inverse

4Recall that α ∈ L∞ is equivalent to existence of an εc = 1/‖α‖∞ > 0 such that X′
α > εc.
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function theorem, we have that Fα
′ < 1

εc
. By definition of a random variable, we have

Fκ(k) = κ ([0, k])

= α ([g(0), g(k)])

= Fα (g(k)) .

By taking the derivative with respect to k, we get:

F ′κ(k) = g′(k)F ′α (g(k))

<
1

εc(1− θ)
.

So by applying the inverse function theorem again, we get that Xκ
′(k) > εc (1− θ).

The next theorem gives conditions for the skills of teachers to be weakly above the skills of managers

which will themselves be weakly above the skills of workers. This is an example where the rank function

that sends the rank of students to the rank of their teachers R is the same for any generation.

Theorem 3.3.7. Fix c ≥ 0, θ, θ′ ∈ (0, 1) and N,N ′ > 1. Let A = [0, k̄) and let α be a Borel probability

measure on Ā satisfying the doubling condition (3.7). Define zE(a, k) = (1−θ)a+θk and bE/L satisfying

the bounds (2.4). Assume

Nθcb′E ≥ b
′
L max {N ′θ′, 1− θ′ } (a)

and

N ′θ′ > (1− θ′) sup
k∈K

b′L

(
(1− θ′)k + θ′k

−)
b′L(θ′k+)

.5 (b)

If ṽ is non-decreasing and striclty convex, then the optimal measures (ε, λ) of (3.1) are completely

determined by the fact that the skills of workers are below the skills of managers which themselves are

below teachers’ skills and that ε and λ are positive assortative.

The optimal measures { εi, λi }∞i=1 of (3.9) are completely determined by the fact that the skills of

workers are below the skills of managers which themselves are below teachers’ skills and that εi and λi

are positive assortative.

Note 3.3.8. Hypothesis (a) represents the fact that the benefit on productivity of having highly skilled

teachers is large relative to the benefit of having highly skilled individuals in the labour market. Indeed,

it requires that the number of students a teacher can teach (N), the impact of a teacher on its student’s

future skill (θ), and the benefit from education (c) are large. Hypothesis (b) represents the fact that the

number N ′ of workers a manager can supervise is large and managers’ skills have a large impact on the

production (high θ′).

Proof of Theorem 3.3.7. We suppose (a) holds, and prove that for optimizers of (3.1) and of (3.9)

the skills of teachers are weakly above the skills of other adults. This proof follows the proof of [13,

5We tag these equation (a) and (b) to be consistant with [13].
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Proposition 7 (a)]. First, by Lemma 2.1.6, for all k where vw/m is differentiable there exists a km/w such

that

v′w(k) = (1− θ′)b′L(zL(k, km)) ≤ (1− θ′)b̄′L (3.26)

v′m(k) = N ′θ′b′L(zL(kw, k)) ≤ N ′θ′b̄′L (3.27)

If a teacher of cognitive skill k0 teaches a student of ability a, that student will end up having cognitive

skill k1 = zE(a, k0). Using the fact that

vt(k) = N sup
s∈A

cbE(zE(s, k)) + ṽ(ZE(s, k)− u(s)

and Lemma 2.1.6, we have that

v′t(k0) = Nθ (cb′E(k1) + ṽ′(k1))

whenever vt is differentiable. The fact that vt is differentiable at k0 follows from convexity. Indeed, we

have that

u(a) +
1

N
vt(k)− ṽ(zE(a))− cbE(zE(a, k)) ≥ 0

is convex and is equal to zero if k = k0. Thus, k0 is a minimizer. The first order necessary condition

states that:

(ṽ′ + cb′E)(zE(a, k0)−) ≥ 1

N

v′t(k0)
∂zE(a,k0)

∂k

≥ (ṽ′ + cb′E)(z(a, k0)+).

As ṽ + cbE is differentiable by hypothesis,

v′t(k0) = N
∂zE(a, k0)

∂k
(ṽ′ + cb′E)(zE(a, k0))

is well defined.

Thus, v′t(k0) ≥ Nθcb′E . Under the hypothesis of (a), it means that

v′t ≥ v′w and

v′t ≥ v′m.

Thus the functions

vt − vw/m

must be increasing. As the functions vt − vw/m are non-positive on

{ k | v̄(k) = vw/m(k) }

and non-negative on

{ k | v̄(k) = vt(k) }

the first two sets must lie entirely to the left of the third, and so teachers’ abilities are weakly above the

abilities of other adults.
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Now, we show that if (b) holds, then the skills of workers are weakly below the skills of managers.

The proof follows the proof of [13, Proposition 7 (b)]. First, take the maximal case in (3.26), i.e. m = k̄,

and the minimal case if (3.27), i.e. w = 0. We get that

v′w(k) ≤ (1− θ′)b′L(zL(k, k̄))

v′m(k) ≥ N ′θ′b′L(θ′k).

Thus if (b) holds, v′w < v′m. This implies that the function vm−vw is strictly increasing. As the function

vm−vw is non-positive on { k | v̄ = vw } and non-negative on { k | v̄ = vm }, the first set must lie entirely

on the left of the second.

We will also need some results from [13, Proposition 7] that we state now.

Proposition 3.3.9 (Specialization by type). Fix K = A = [0, k̄) and c ≥ 0. Suppose u, v, ṽ : K → R

are convex, non-decreasing and satisfy v = V(u, v, ṽ).

If

N ′θ′ > (1− θ′) sup
k∈K

b′L(zL(k, k̄−))/b′L(θ′k+) (b)

worker types lie weakly below all of the manager types.

If

Nθ ≥ 1 (d)

any student will be weakly less skilled than his or her teacher.

If

either c > 0 or Nθ > 1 (e)

and (d) holds then any student will be strictly less skilled than his or her teacher.

If

either c > 0 or v′(0+) > 0, (f)

(d) and (e) hold then all academic descendants of a teacher with skill k ∈ K will display one of at most

finitely many d = d(k) distinct skill types, unless differentiability of v fails at k.

Finally, we need some duality theorem in order to prove that the assymptotic of our dynamic problem

is indeed equivalent to (2.5) the steady state problem from [13]. The duality theorems for the incomplete

information model (3.1)-(3.3) and (3.4)-(3.6) are proved exactly as the ones from [13] therefore we state

them here without proof. The duality theorems for the complete information model (3.9) and (3.10)

requires the introduction of a finite horizon model and is done in Section B.1.

Theorem 3.3.10 (c.f. [13, Corollary 9]). Fix c, θ, θ′, N , N ′, ṽ, κ a distribution for student skills

α ∈ P(Ā). A pair of feasible measures ε, λ ≥ 0 maximizes (3.1) if there exists a pair of functions (u, v)
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that satisfy (3.5) and (3.6) such that

α(u) + κ(v) = ε (cbE ◦ zE + ṽ ◦ zE) + λ (bL ◦ zL) .

3.4 Convergence of the Adult Skill Distributions

In this section, we study the sequence of measures for skills of adults {κi }. We will prove that the

sequence of measures converges to a fixed point from any initial measure in P(K) under some conditions.

We’ll assume that the optimal measures (εi, λi) for the complete information problem (3.9) and (ε, λ)

for the incomplete information model (3.1) satisfy the two following properties:

(A) positive assortativity they are positive assortative;

(B) specialization for each generation, the profession of almost every adult is uniquely determined by

his or her skill’s rank among his or her peers.

To motivate these assumptions and give the reader examples of the simpler cases of (B) specialization,

we’ll present two examples of potential societies, where the ordering is the same for any generation. We

proved in Theorem 3.3.7 that if (a) and (b) hold, the optimal measures (εi, λi) for (3.9) and (ε, λ) for

(3.1) satisfy (A) positive assortativity and the skills of teachers are weakly above the skills of managers,

which are weakly above the skills of workers, which is a specific case of (B) specialization.

Another important special case of (B) specialization is when the skills of teachers of teachers and

of teachers of managers are weakly above the skills of managers, which are weakly above the skills of

teachers of workers, which are weakly above the skills of workers. This is the case in the optimal solution

to the simulation of [27, Section 4].

Note that for these two special cases, the adults with highest skill are teachers, but this is not a

consequence of hypotheses (A) positive assortativity and (B) specialization. Consequently, we don’t

assume that the adults with highest skill are teachers.

If the solution satisfies (A) positive assortativity and (B) specialization, the pair of measures (εi, λi)

only depends on the distribution for students’ skills α and on the initial distribution for adults’ skills κ1.

In this case, εi = (1×ϕi)#α for ϕi : A→ K, non-decreasing sending the ability of a student to the skill

of his or her teacher. The skills for the next generation of adults for both (3.9) and (3.1) will always be

given by κi+1 = G(κi) = zE#εi. That is, HC = HI = G, where HI(·) = HI(·, ṽ).

For all i, as α has no atoms and εi is strictly positive assortative, there exists a strictly increasing

function

Ri : [0, 1]→ [0, 1]

that sends the rank of a student in the a-th percentile at generation i to the rank Ri(a) of his or her

teacher among adults in the teacher’s generation. In order to understand the dynamics of the distribution

of adults skills, we need to study properties of rank functions Ri’s.

Lemma 3.4.1. The rank function Ri, which is associated to a matching of students with teachers that

satisfies (A) positive assortativity and (B) specialization, satisfies R′i = 1
N a.e. on [0, 1] and x ∈ [0, 1] 7→

Ri(x)− x/N is non-decreasing.

Proof. Fix i. Consider the cumulative distribution Fα of α (resp. Fκi of κi). By (A) positive

assortativity, the function ϕi : A→ K sending the ability of a student to the skill of his or her teacher
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(
εi = (1× ϕi)# α

)
is increasing. We can write Ri as Ri = Fκi ◦ ϕi ◦ F−1

α . As Ri is the composition of

non-decreasing functions, it is non-decreasing. Therefore, Ri is differentiable a.e., and its distributional

derivative is non-negative. We now prove that R′i = 1
N a.e. on [0, 1] by showing both inequalities. The

rank function Ri satisfies R′i ≥ 1
N a.e. on [0, 1]. Indeed, if R′i <

1
N on an interval (a, b) ∈ [0, 1], we have

that

|Ri(b)−Ri(a)| < 1

N
|b− a|

which means that there aren’t enough teachers for the quantity of students with ability rank between

a and b. Similarly, by (B) specialization R′i ≤ 1
N a.e. on [0, 1]. So we conclude that R′i = 1

N a.e.

on [0, 1]. Thus the distributional derivative of Ri dominates 1/N , to establish the monotonicity of

x ∈ [0, 1] 7→ Ri(x)− x/N .

In order to prove convergence of the inverse of the cumulative distribution functions of the adults’

skill distributions we need to study some compositions of the Ri’s. Let R(i,j) be the composition of

Ri−j+1 with Ri−j+2 composed with the next one, continuing in this way until we reach Ri:

R(i,j) = Ri−j+1 ◦Ri−j+2 ◦Ri−j+3 ◦ · · · ◦Ri−1 ◦Ri.

Using base case Ri,0 = 1, we can define the R(i,j) recursively as

R(i,j) = Ri−j+1 ◦R(i,j−1). (3.28)

Let

R(∞,j) = R∞ ◦R∞ ◦ · · · ◦R∞︸ ︷︷ ︸
j times

.

We need the following assumptions on the rank functions and their compositions:

(C) the composition estimate there exists a norm ‖·‖ ≤ ‖·‖∞ on L∞([0, 1]) (that might depend on

α, θ and {Ri }) for which there exists a non-decreasing function R∞ : [0, 1]→ [0, 1] such that

lim
i→0

∥∥∥∥∥∥
i−1∑
j=1

θj
(
Xα ◦R(∞,j) −Xα ◦R(i,j)

)∥∥∥∥∥∥ = 0.

We also assume ‖·‖-convergence implies subsequential convergence Lebesgue a.e.

We present two examples where the condition (C) the composition estimate is satisfied. First, if the

rank function is independent of i, that is if the rank function is the same for every generation: Ri := R∞.

For the second example, we prove in the next lemma and proposition that if R∞ is continuous

(R∞(x) = 1
N x+ constant by Lemma 3.4.1) then (C) the composition estimate is satisfied if there exists

an R∞ such that Ri → R∞ in L∞([0, 1]). We begin with the following:

Lemma 3.4.2 (Implications of contracting limit). Let Lip(R∞) ≤ 1 and x ∈ [0, 1] 7→ Ri(x) − x/N be

non-decreasing for all i. If ‖Ri −R∞‖L∞([0,1]) ≤ ε for all i ≥ Iε, then i− j ≥ Iε implies

‖R(∞,j) −R(i,j)‖L∞([0,1]) ≤ jε.

Proof. Fix i > Iε and i− j ≥ Iε. We’ll prove the lemma by adding and subtracting R(∞,k) ◦R(i,j−k) for
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k = 1, . . . j − 1, thus re-expressing R(∞,j) −R(i,j) as a sum of j terms of the form

R(∞,j−1−k) ◦ (R∞ −Ri−k) ◦R(i,k).

By coupling the terms as above, we get

∥∥∥R(∞,j) −R(i,j)
∥∥∥
L∞(L)

≤
j−1∑
k=0

Lip(R∞)j−1−k ‖R∞ −Ri−k‖L∞(R
(i,k)
# L)

≤
j−1∑
k=0

‖R∞ −Ri−k‖L∞(R
(i,k)
# L)

≤ jε.

Here we have used the fact that x ∈ [0, 1] 7→ Ri(x) − x/N is non-decreasing to conclude R
(i,k)
# L has a

density bounded by Nk, hence is absolutely continuous with respect to Lebesgue.

Proposition 3.4.3 (L∞ composition estimate). Fix a distribution α for students’ abilities with logα ∈
L∞(Ā), so that the inverse Xα of its cumulative distribution function is Lipschitz. Under the hypotheses

of Lemma 3.4.2, (C) the composition estimate holds in L∞:

lim
i→0

∥∥∥∥∥∥
i−1∑
j=1

θj
(
Xα ◦R(∞,j) −Xα ◦R(i,j)

)∥∥∥∥∥∥
L∞([0,1])

= 0.

Proof. As {Ri } converges uniformly to R∞, for all ε > 0, there exists an Iε such that for a.e. x ∈ [0, 1]:

|R∞(x)−Ri(x)| < ε

for all i ≥ Iε.
Fix ε > 0 and

i > max

Iε, ln
(

ε(1−θ)
2k̄(1−θIε )

)
ln θ

+ Iε

 .

Now to show that ∥∥∥∥∥∥
i−1∑
j=1

θj
(
Xα ◦R(∞,j) −Xα ◦R(i,j)

)∥∥∥∥∥∥
L∞

< Cε

we use the fact that, for large i, when j is small R(i,j) is close to R(∞,j) and when j is large, θj is small.

Indeed, we split the sum into two:∥∥∥∥∥∥
i−1∑
j=1

θj
(
Xα ◦R(∞,j) −Xα ◦R(i,j)

)∥∥∥∥∥∥
L∞

≤
i−Iε∑
j=0

θj
∥∥∥(Xα ◦R(∞,j) −Xα ◦R(i,j)

)∥∥∥
L∞

+

i−1∑
i−Iε+1

θj
∥∥∥(Xα ◦R(∞,j) −Xα ◦R(i,j)

)∥∥∥
L∞

.
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For the first term, we have:

i−Iε∑
j=0

θj
∥∥∥(Xα ◦R(∞,j) −Xα ◦R(i,j)

)∥∥∥
L∞
≤
i−Iε∑
j=0

θjLipXα

∥∥∥R(∞,j) −R(i,j)
∥∥∥
L∞

≤ LipXαε

i−Iε∑
j=0

jθj by Lemma 3.4.2

≤ LipXα

(1− θ)2
ε

where the last inequality is obtained using the fomula for the derivative of a geometric series.

For the second term,

i−1∑
i−Iε+1

θj
∥∥∥(Xα ◦R(∞,j) −Xα ◦R(i,j)

)∥∥∥
L∞
≤

i−1∑
i−Iε+1

θj2k̄

= θi−Iε
2k̄(1− θIε)

1− θ
< ε.

The last inequality holds because of the choice defining of i.

We prove convergence of the cumulative distribution functions of the adults’ skill distributions and

their inverses. The proof is based on a closed form representation of the dynamics in terms of the inverses

of the cumulative distributions of the adults’ skill distributions.

Theorem 3.4.4 (Long time limit of adult skills). Fix c ≥ 0, θ, θ′ ∈ [0, 1], N > 1, N ′ > 1, κ1 ∈ P(K̄)

and ṽ1 : K̄ → R assumed to be positive, convex and non-decreasing. Fix a distribution for students’

abilities α with logα ∈ L∞(Ā), so that the inverse Xα of the cumulative distribution function of α is

Lipschitz continuous.

Suppose solutions { (εi, λi) } of the primal overlapping generation problems (3.1) or (3.9) satisfy (A)

positive assortativity, (B) specialization and the rank functions Ri’s satisfy (C) the composition estimate

with a suitable norm ‖·‖.
Then as i→∞, the cumulative distribution functions Fκi(k) := κi([0, k]) of the adult skill distribu-

tions converge uniformly on [0, k̄], and their inverses Xκi := F−1
κi converge in ‖·‖ to

X∞ :=

∞∑
j=0

θj(1− θ)Xα ◦R(∞,j). (3.29)

Proof. We express the probability measures α and κ in terms of non-decreasing random variables:

Xα : [0, 1]→ Ā

r 7→ ability of a student in the r-th percentile;

Xκ : [0, 1]→ K̄

r 7→ ability of an adult in the r-th percentile.

The inverse function Fα of the random variable Xα (resp. Fκ of Xκ) is the cumulative distribution

function of α (resp. of κ).



Chapter 3. Dynamics of a multisector matching over time 33

Using the equation zE that sends the ability of a student and his or her teacher’s skill to his or

her future ability as an adult (2.3) it is possible to express the random variables representing the next

generation of adults Xκi+1 using Xα, Ri and Xκi :

Xκi+1
= (1− θ)Xα + θXκi ◦Ri.

Thus, by induction we get:

Xκi+1
= θiXκ1

◦R(i,i) +

i∑
j=0

θj(1− θ)Xα ◦R(i,j), (3.30)

where R(i,j) is the composition of Ri−j+1 with Ri−j+2 composed with the next one, continuing in this

way until we reach Ri:

R(i,j) = Ri−j+1 ◦Ri−j+2 ◦Ri−j+3 ◦ · · · ◦Ri−1 ◦Ri.

Let X∞ defined by (3.29) be a candidate for the limit of the sequence {Xκi}, where R(∞,j) is from

(3.28).

We have that R∞(x) ∈ [0, 1]. Therefore, by the monotonicity of Xα, there exists a global bound for

X∞:

X∞(x) ≤ (1− θ)
∞∑
j=0

θjXα(1) ≤ Xα(1).

The series X∞ is convergent because it is a bounded series of positive terms.

We now prove that limi→∞Xκi = X∞ in the norm ‖·‖ from (C) the composition estimate. Because

‖·‖ ≤ ‖·‖∞,

‖X∞ −Xκi‖ =

∥∥∥∥∥∥
∞∑
j=0

(1− θ)θjXα ◦R(∞,j) − θiXκ1
◦R(i,i) −

i−1∑
j=0

(1− θ)θjXα ◦R(i,j)

∥∥∥∥∥∥
≤
∞∑
j=i

(1− θ)θj
∥∥∥Xα ◦R(∞,j)

∥∥∥
∞

+ θi
∥∥∥Xκ1 ◦R(i,i)

∥∥∥
∞

+ (1− θ)

∥∥∥∥∥∥
i−1∑
j=0

θj
(
Xα ◦R(∞,j) −Xα ◦R(i,j)

)∥∥∥∥∥∥ .
Since Xα, Xκ1

∈ [0, k̄] and 0 < θ < 1, the first two terms go to 0 when i→∞. The last term also goes

to zero by (C) the composition estimate. This concludes the proof that Xκi converges to X∞.

As α doesn’t have any atoms (by assumption), Xα is strictly increasing. Also R∞ is strictly increasing

by Lemma 3.4.1. Because Xα and R∞ are strictly increasing,

X∞(x) = (1− θ)
∞∑
j=0

θjXα ◦R(∞,j)(x)

is strictly increasing and therefore invertible on its image. Let F∞ be the inverse of X∞, extended
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monotonically to K.

We now prove that {Fκi } converges uniformly to F∞. Suppose for contradiction that there exists a

subsequence {Fκij }
∞
j=1

and a sequence of points {xij }
∞
j=1

such that

∣∣∣Fκij (xij)− F∞ (xij)∣∣∣ > ε. (3.31)

By Lemma 3.3.6, {Fκi } is equi-Lipschitz (and therefore equicontinuous), so by the Arzelà-Ascoli theo-

rem, there exists a subsequence that converges uniformly to a limit F̄κ 6= F∞. A further subsequence

{Fκl } of the converging subsequence has the additional property that its inverse cumulative distributions

converge pointwise to X∞.

We now prove that {Fκl } converges pointwise to F∞, which will contradict (3.31). First, we consider

the subdomain K̄ ∩ =(X∞) and then we’ll extend F∞ on its complement.

By Lemma 3.3.6, {Fκi } is equi-Lipschitz (and therefore equicontinuous), so for ε > 0, there exists a

δ > 0 such that

|Fκi(x)− Fκi(y)| < ε

whenever |x− y| < δ.

By hypothesis, ‖Xκl −X∞‖ → 0 implies there exists a subsequence Xκlj
that converges to X∞ a.e.

We fix x ∈ [0, 1] such that Xκlj
(x)→ X∞(x) and let

y = X∞(x) and yj = Xκlj
(x).

As {Xκlj
(x) } converges to X∞(x), there exists an I ∈ N such that |y − yj | < δ for all j > I. Then for

a.e. y ∈ Im (X∞),∣∣∣F∞(y)− Fκlj (y)
∣∣∣ =

∣∣∣x− Fκlj (y)
∣∣∣

=
∣∣∣Fκlj (yj)− Fκlj (y)

∣∣∣
< ε by equicontinuity of {Fκi }.

There exists a unique continuous extension for F∞ to y ∈ K̄ \ Im (X∞).

So we conclude that

Fκlj → F∞

pointwise a.e. which contradicts (3.31).

Given the difference between the two models, we now separate the analysis to deal with them in-

dividually. For the incomplete information model (introduced in Section 3.1), we prove, using duality,

that the sequence of solutions converges to the solution of a limiting problem which is also a solution to

the steady state problem from [13] (see Section 2.6).

For the complete information model (introduced in Section 3.2), we introduce a steady state model

with discounting, and show that solutions to (3.9) and (3.10) converge to a solution of this new steady

state problem.
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3.5 Limit of Adult Skill Distributions for Incomplete Informa-

tion Model

We prove that a converging sequence of solutions of the incomplete information model from Section 3.1

converges to a solution of the steady state model introduced in Section 2.6.

As the dual optimizers (ui, vi) of (3.4) are convex in A × K, they are locally Lipschitz. Since the

asymptotic analysis of [13] indicates boundedness of the steady state solution, it is reasonable to expect

that the vi are uniformly bounded, as we henceforth assume. Lemma 2.2.1 (c) then yields a subsequence

(uij , vij ) that converges uniformly on compact subsets of A×K to a limit (u∞, v∞).

We are not able to rule out the case where there exist different limits for the wage functions. For

example, it might be possible that an asymptotic society would alternate between two states, with two

different wage functions, though the author doesn’t think it possible if bE and bL are convex. Therefore,

we need to assume that the whole sequence of solutions from the dual problem (3.4) converges to a limit

(u, v). In this case, a sequence of solutions from (3.1) (resp. from (3.4)) converges to a solution of the

steady state model (2.5) (resp. of the dual of the steady state model (2.8)) from [13]

Proposition 3.5.1 (Steady characterization of eventual wages and skills). Fix c ≥ 0, θ, θ′ ∈ [0, 1],

N,N ′ > 1, and κ1 ∈ P(K̄). Fix a distribution for students’ abilities α with logα ∈ L∞(Ā).

Suppose a sequence of solution { (εi, λi) } for the primal non-recursive incomplete information problem

(3.1) following the process explained in Section 3.1 satisfy (A) positive assortativity, (B) specialization,

and (C) the composition estimate.

Suppose (ui, vi) are optimizers of (3.4) and the wage functions vi are bounded independently of i.

Let { (εil , λil ;uil , vil) } be a subsequence such that (εil , λil) weak-∗ converges to measures (ε∞, λ∞). and

{ (uil , vil) } is a subsequence of optimal wages that converges uniformly on compact subset of K to wage

functions (u∞, v∞).

By possibly taking another subsequence, suppose { vil−1 } converges to v̂ which might be different then

v∞.

The functions (u∞, v∞) and measures (ε∞, λ∞) optimize the dual and primal non-recursive incom-

plete information problems (3.1)–(3.3) and (3.4)–(3.6) with κ = κ∞ and ṽ = v̂, where the limit of the

cumulative distribution functions Fκi(x) = κi[0, x] of the adult skill distributions

lim
i→∞

Fκi(k) := F∞(k)

is the cumulative distribution function of κ∞.

Proof. Fix i. By Proposition 3.3.5, there exists a solution (εi, λi) of the primal overlapping generation

problems (3.1). By Proposition 3.3.1, there exists an feasible optimizing pair (ui, vi) for (3.4). Therefore,

we have

εi (cbE ◦ zE + vi−1 ◦ zE) + λi (bL ◦ zL) = α(ui) + κi(vi). (3.32)

We take the limit for the subsequence il. As εil and λil weak-∗ converge, we have

εil(cbE ◦ zE)→ ε∞(cbE ◦ zE)
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and

λil(bL ◦ zL)→ λ∞(bL ◦ zL).

As uil dK-converges to u∞ and α ∈ L∞(Ā), by Lemma 2.2.1 (b),

α(uil)→ α(u∞).

By Lemma 3.3.6 the κi’s are uniformly bounded in L∞. So as vil → v∞ in dK and κi
w∗→ κ∞ by Lemma

2.2.1 (b),

κil(vil)→ κ∞(v∞).

By Lemma 3.3.6 the zE#εi’s are also uniformly bounded in L∞. So as vil−1 → v̂ in dK and zE#εil
w∗→

zE#ε∞ by Lemma 2.2.1 (b),

zE#εil(vil−1)→ κ∞(v̂).

Using these limit in (3.32), we have

ε∞(cbE ◦ zE) + ε∞(v̂(zE)) + λ∞(bL ◦ zL) = α(u∞) + κ∞(v∞)

From Theorem 3.3.10 we conclude that (ε∞, λ∞) is an optimal solution of (3.1) and (v∞, u∞) is an

optimal solution of (3.4) with κ = κ∞ and ṽ = v̂.

When v̂ is equal to v∞ in Proposition 3.5.1 we’ll prove in Theorem 3.5.3 that the limit of solutions

of the incomplete information model is a solution of the steady state problem from [13] which is recalled

in Section 2.6. This will be the case when optimal wage functions are unique for every generation and

converge globally. We present a specific regime when this is the case.

Proposition 3.5.2. Fix c ≥ 0, θ, θ′ ∈ [0, 1], N,N ′ > 1, and κ1 ∈ P(K̄) is connected. Fix a distribution

for students’ abilities α supported on Ā with logα ∈ L∞(Ā).

Suppose hypotheses (a) and (b) from Theorem 3.3.7 and hypotheses (d), (e) and (f) from Proposition

3.3.9 hold, as well as (A) positive assortativity, (B) specialization and (C) the composition estimate from

Theorem 3.4.4.

Then the sequence of wage functions { vi } that solves the incomplete information model introduced

in section 3.1 converges uniformly on compact subsets to a wage function v∞.

Proof. Because of Theorem 3.3.7, the skill of workers is weakly below the skill of managers which is

weakly below the skill of teachers for any generation. As the support of κ1 is connected, that means

that the support for the skill of teachers is also connected. Therefore as the support of α is Ā, which is

a connected set, we know that the support of κ2 will also be connected and, by induction, we conclude

that the support of κi is connected for all i.

As {κi } is convergent by Theorem 3.4.4 and the order of the professions is constant, we conclude

that λi → λ∞ and εi → ε∞ are also convergent. We will show that (ui, vi) is convergent by constructing

a unique pair (u∞, v∞) that solves the incomplete information model (3.1) with κ1 = κ∞ and ṽ = v∞.

To construct v∞, we begin with a wage function v0 and we construct the sequence { vi } such that there

exists a ui such that (ui, vi) is a solution of (3.4) with κ1 = κ∞ and ṽ = vi−1. Note that with our

assumptions, the solution of the primal incomplete information model (3.1) with κ1 = κ∞ and ṽ = vi−1

is constant (λ∞, ε∞).
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Because of our strict hypotheses, the optimal wage function v is uniquely dertermined when it doesn’t

depend on the initial wage function v0. The seed velocity v0 affects only the wages of teachers at the

first generation, not of managers and workers. Hence it affects only the wages of teachers of teachers at

the second generation, not of managers, workers, or their teachers. Similarly, at the n-th generation, it

affects only the wages of teachers whose first n− 1 generations of academic descendants are all teachers,

not workers, managers, or teachers whose academic descendants in the next n − 1 generations include

workers or managers. By Proposition 3.3.9 all academic descendants of a teacher with skill k ∈ K

will display one of at most finitely many d = d(k) distinct skill types, so the teachers whose academic

descendants are not workers nor managers for the next n − 1 generations become an arbitrarily small

proportion of the population as n tends to infinity.

We’ll denote K0 ⊂ K to represent the support of workers and managers, spt(κw + κm), and Kj ⊂ K
to represent the support of workers, managers and teachers with at most j descendants (therefore K0

is an extension of this definition where workers and managers are considered to be teachers with no

descendants).

By the first order condition, we have that v′1(k) = (1 − θ′)b′L(zl(k,m)) on the support of workers,

where m ∈ K is such that λ1(k,m) > 0 and v′1(k) = N ′θ′b′L(zl(w, k)) on the support of managers, where

w ∈ K is such that λ1(w, k) > 0. We will now prove that v1 is uniquely determined on K0. This is

because K0 is connected. Suppose there exist two v1, ṽ1 that are part of an optimizing pair (u1, v1)

and (ũ1, ṽ1). We have that v′1 = ṽ′1 and that both functions are non-decreasing and convex, so as K0 is

connected, we conclude that v1 = ṽ1 + l on K0. Suppose WLOG that l ≥ 0. We have

bL(zL(w,m) ≤ v1(w) +
v1(m)

N ′

with equality on the support of λ1. Replacing v1 by ṽ1 + l, we get

bL(zL(w,m) ≤ ṽ1(w) +
ṽ1(m)

N ′
+

(
1 +

1

N ′

)
l

with equality on the support of λ1. We conclude that l = 0 and v1 = ṽ1 on K0.

Now suppose vi is uniquely determined on Ki−1. We can show similarly that vi+1 is uniquely

determined on Ki. Now suppose that there exists (ui+1, vi+1) and (ũi+1, ṽi+1) that are both optimal on

Ki. We have v′i+1 = ṽ′i+1 and u′i+1 = ũ′i+1 thus vi+1 = ṽi+1 + l on Ki \K0 because the skill of teachers

is connected and ui+1 = ũi+1 + n on A. As it is optimal,

α(ui+1) + κ∞(vi+1) = α(ũi+1) + κ∞(vi+1)

and therefore l + n = 0. We have

bE(zE(s, t)) + vi(zE(st)) ≤ ui+1(s) +
vi+1(t)

N

with equality on the support of λi+1. Replacing vi+1 by ṽi+1 + l, and ui+1 by ũi+1 + n we get

bE(zE(s, t)) + vi(zE(st)) ≤ ũi+1(s) +
ṽi+1(t)

N
+ n+

l

N
= ũi+1(s) +

ṽi+1(t)

N
+

(
1− 1

N

)
n

and we conclude that n = l = 0 and vi+1 is unique on Ki.
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We constructed a unique v∞ on ∪∞i=1Ki which is the support of κ∞ by Proposition 3.3.9. Any

other candidate ṽ∞ can’t solve (3.4) with κ1 = κ∞ and ṽ = ṽ∞ because we would get a sequence of

wage function converging to v∞ by using the process we just described. Therefore v∞ is unique and we

conclude that { vi } is convergent.

Theorem 3.5.3. Under the hypotheses of Proposition 3.5.1, if v̂ = v∞ the functions (u∞, v∞) and

measures (ε∞, λ∞) optimize the dual and primal steady state problems from [13] which are recalled

in Section 2.6. The limit of the cumulative distribution functions Fκi(x) = κi[0, x] of the adult skill

distributions

lim
i→∞

Fκi(k) := F∞(k)

is the cumulative distribution function of the adult skill distribution associated to a solution of (2.5), the

steady state problem from [13]. That is, there exists an optimal pair (ε, λ) of (2.5) such that κ∞ = zE#ε

has cumulative distribution F∞.

Proof. From Theorem 3.3.10, we have

ε∞(cbE ◦ zE) + ε∞(v̂(zE)) + λ∞(bL ◦ zL) = α(u∞) + κ∞(v∞)

Setting v̂ = v∞, and noting that κ∞ = zE#ε∞, we have ε∞(v̂ ◦ zE) = κ∞(v∞) and therefore

ε∞(cbE ◦ zE) + λ∞(bL ◦ zL) = α(u∞).

From the duality theory of [13] we conclude that (ε∞, λ∞) is an optimal solution of (2.5) and (u∞, v∞)

is an optimal solution of (2.8).

Note that Theorem 3.5.3 and the proof of Theorem 3.4.4 can be used to get an explicit formulation

for the distribution of adults’ skills for the steady state case [13] (see Section 2.6), when the associate

solution to the non-recursive incomplete information model is unique.

Corollary 3.5.4 (Explicit form of steady state). Fix c ≥ 0, θ, θ′ ∈ [0, 1], N,N ′ > 1. Fix a distribution

for students’ abilities α with logα ∈ L∞(Ā). Consider the solution to the steady state problem introduced

in Section 2.6. Suppose λ is positive assortative and ε is strictly positive assortative. Let κ̄ be the

distribution for skills of adults.

Let Fα(x) := α[0, x] (resp. Fκ̄) be the cumulative distribution function of α (resp. κ̄) and let Xα

(resp. Xκ̄) be its inverse. Let R∞ be the function that sends the rank of a student to the rank of his or

her teacher.

If hypothesis (f) from Proposition 3.3.9 is satisfied, and the skill of workers and managers are con-

nected in K then the steady state Xκ̄ = X∞ is given by (3.29).

Proof. As (f) is satisfied, and the skill of workers and managers are connected in K the solutions (ε, λ),

(u, v) are unique solution of (3.1), with κ = zE#ε = κ̄ and ṽ = v. Therefore, we can use Theorem 3.4.4

to deduce Xκ̄.
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3.6 Limit of Adult Skill Distributions for Complete Information

Model

For the complete information model we adopt a similar approach. However, discounting prevents the

solutions from converging to solutions of the steady state model of [13]. Thus we need to replace it with

a suitably adapted limiting model.

In order to create a steady state problem arising from the complete information model, we adapt

the Lagrangian from the steady state model by replacing part of the resulting distribution zE#ε of

adult skills with an anticipated distribution κ∞ which, along with the discount factor β < 1, becomes

a parameter in the model. This division is calculated to preserve the mass of the skill distribution for

adults, while discounting future wages relative to tuition expenses in the education market’s stability

constraint. The resulting Lagrangian becomes

L(ε, λ;u, v) = α(u) + (1− e−β)κ∞(v)

+ cε(bE ◦ zE)− π1#ε(u) + e−βzE#ε(v)−
π2#ε(v)

N

+ λ(bL ◦ zL) + α(u)− π1#λ(v)−
π2#λ(v)

N ′

and depends on the parameters β ∈ (0, 1) and κ∞ ∈ P(K). Since this Lagrangian is bilinear in its

variables we anticipate the minimax relation

Sβ(κ∞) := sup
ε,λ≥0

inf
u,v∈C(K̄)

L(ε, λ;u, v)

≤ inf
u,v∈C(K̄)

sup
ε,λ≥0

L(ε, λ;u, v) (3.33)

=:S∗β(κ∞)

becomes an equality. Under simplifying hypotheses we’ll establish this presently. In the meantime it is

straightforward to compute

Sβ(κ∞) = max
0≤ε,λ

∫
A×K

cbE
(
zE(s, t)

)
dε(s, t) +

∫
K×K

bL
(
zL(w,m)

)
dλ(w,m)

s.t. α = π1#ε steady state for students

e−βzE#ε+ (1− e−β)κ∞ =
π2#ε

N
+ π1#λ+

π2#λ

N ′
steady state for adults

(3.34)

by carrying out the infimum over the wage function v : K → R for adults and the indirect utility

u : K → R for students. Similarly, carrying out the supremum over the education and labour pairings

ε ≥ 0 and λ ≥ 0 yields the linear program dual to (3.34):

S∗β(κ∞) := inf
u,v

∫
A

u(s)α(s) + (1− e−β)

∫
K

v(k)κ∞(k)

s.t. cbE(zE(s, t)) + e−βv(zE(s, t)) ≤ u(s) +
v(t)

N
stability of the education market

bL(zL(w,m)) ≤ v(w) +
v(m)

N ′
stability of the labour market.

(3.35)
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Naturally, the optimizers (ε, λ) of (3.34) and (u, v) of (3.35) depend on the parameters (β, κ∞). Given

0 < β < 1, our “steady state model with discounting” is to find a distribution κ∞ of adult skills for

which the optimal (ε, λ) in (3.34) satisfy the self-consistency condition

zE#ε = κ∞, (3.36)

meaning the resulting distribution of adult skills (zE)#ε agrees with the proposed distribution κ∞.6

By extracting a long time limit from our complete information model under conditions analogous to

those imposed in the incomplete information model, we shall show that the steady state with discounting

model (3.34)–(3.36) admits a self-consistent solution.

First, we prove the easy inequality Sβ(κ∞) ≤ S∗β(κ∞) from (3.33) which relates (3.34) to (3.35)

continues to hold when the continuity of u, v ∈ C(K) in relaxed to permit the possibility of unbound-

edness at the upper endpoint k̄. As shown in [13, Proposition 8] the doubling condition (3.7) on α then

guarantees that v ∈ L1(K̄, z#ε), which is sufficient to prove the desired inequality.

Lemma 3.6.1 (Easy direction of duality). Fix c ≥ 0, θ, θ′ ∈ [0, 1], N > 1, N ′ > 1. Let A = K = [0, k̄)

and β ≥ 0. Suppose e−β > 1
N . Let κ∞ be a Borel probability measure on K̄ and fix a distribution for

students’ abilities α with α ∈ L∞(Ā).

Define bE/L and zE/L as in subsection 2.5. Let (ε, λ) be a feasible candidate for the primal problem

(3.34). Let (u, v) = (u0 +u1, v0 +v1) be feasible for the dual (3.35) which differ from bounded continuous

functions u0, v0 ∈ C(Ā) by non-decreasing functions u1, v1 : Ā → [0,∞). Suppose moreover that u ∈
L1
(
Ā, α

)
and v ∈ L1

(
Ā, zE#ε

)
∩ L1

(
K̄, κ∞

)
then

cε(bE ◦ zE) + λ(bL ◦ zL) ≤ α(u) + κ∞(v).

If α satisfies the doubling condition (3.7), then v ∈ L1(Ā, zE#ε).

Proof. This proof follows the proof of [13, Proposition 8]. Let (ε, λ) be feasible for (3.34) and (u, v)

feasible for (3.35) such that u ∈ L1(Ā, α) and v ∈ L1
(
Ā, zE#ε

)
∩L1

(
K̄, κ∞

)
. By the stability constraint

for the education sector, we have

u(s)− cbE(zE(s, t)) ≥ e−βv(zE(s, t))− v(t)

N

on Ā× K̄. By hypothesis the left hand side is in L1
(
Ā× K̄, ε

)
, so

∞ > α(u)− cε(bE ◦ zE) ≥
∫
A×K

(
e−βv(zE(s, t))− 1

N
v(t)

)
ε(s, t). (3.37)

Now integrating v over the steady state constraint for adults gives∫
K

v
(
e−βzE#ε+ (1− e−β)κ∞ −

π2#ε

N

)
=

∫
K

v

(
π1#λ+

π2#λ

N ′

)
(3.38)

≥
∫
K×K

bL ◦ zLλ > 0 (3.39)

where the last inequality follows from stability of the labour sector.

6We could consider this problem recursively as we did for the incomplete information model from Section 3.1 in order
to get an incomplete information model with discounting, but we won’t go there here.
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Adding (1−e−β)κ∞(v) <∞ to (3.37) makes its right hand side equal the left hand side of (3.38). In

that case, (1− e−β)κ∞ plus the left hand side of (3.37) is greater or equal to (3.39) which is the desired

inequality.

Now, we show that the doubling condition (3.7) on α at ā implies that 0 ≤ v ∈ L1(Ā, zE#ε). Recall

that (u, v) = (u0 + u1, v0 + v1) with u0, v0 ∈ C(Ā) and u1, v1 : Ā → [0,∞] non-decreasing. Since v0 is

bounded it is integrable. We will show that v1 ∈ L1(Ā, zE#ε). Since v1 is strictly increasing, v−1
1 (y) ∈ Ā

is well defined. We have:∫
K̄

v1(k)zE#ε(dk) =

∫ ∞
0

zE#ε
(
v−1

1 [y,∞]
)
dy by the layer-cake representation

=

∫ ∞
0

zE#ε
(
ā−

(
ā− v−1

1 [y,∞]
))
dy

≤
∫ ∞

0

α

(
k̄ − 1

1− θ
(ā− v−1

1 (y)), ā

)
dy by [13, Lemma 14]

≤ C 1
θ−1

∫ 1

0

α[v−1
1 (y), ā]dy (3.40)

for some C < ∞. From stability of the education market and e−β > 1
N we have v < u. Thus,

v1 ≤ u0 + u1 − v0 ≤ u1 + l where l is a constant. Therefore, u−1
1 (y − l) ≤ v−1

1 (y), so∫ ∞
0

α[u−1
1 (y), ā]dy =

∫
u1(a)α(da) <∞ by hypothesis

implies that (3.40) is finite and so v1 ∈ L1(K̄, zE#ε).

We could prove that there is no duality gap using Section B.1 and we expect that existence of

optimizing wages can be proved as in [13]. However, it is not obvious how the self-consistency condition

(3.36) might be achieved using such techniques. Instead of following this path, we shall extract a limit

from the optimizer of the complete information model from Section 3.2 and show that it provides self-

consistent solution to the steady state with discounting, thus establishing existence of an optimizer and

absence of a duality gap under suitable (but somewhat restrictive) hypotheses.

Lemma 3.6.2 (C is continuous with respect to the weak-∗ topology). Fix c ≥ 0, θ, θ′ ∈ [0, 1], N,N ′ > 1.

Let A = K = [0, k̄) and β ≥ 0. Fix a distribution for students’ abilities α with logα ∈ L∞(Ā).

Let {κj }∞j=1 be a sequence that is uniformly bounded in L∞ such that κj → κ∞ in the weak-∗ topology.

Then limj→∞ C(κj) = C(κ∞) in (3.9).

Proof. Fix j. By Proposition 3.3.5 there exists an optimizing sequence for C(κj)

{ (εji , λ
j
i ) }
∞
i=1 .

By Proposition 3.3.1 there exists an optimizing sequence { (uji , v
j
i ) }
∞
i=1. By Corollary B.2.3, we can take

the limit T →∞ in Corollary B.1.3 and we have

∞∑
i=1

e−βi
(
cεji (bE ◦ zE) + λji (bL ◦ zL)

)
= e−βκj(v

j
1) +

∞∑
i=1

e−βiα(uji ).

For all i, { (εji , λ
j
i ) }
∞
j=1 forms a sequence and the Prokhorov Theorem [30] couples with a diagonal
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argument to produce a weak-∗ converging subsequence { (εjli , λ
jl
i ) }

∞
l=1 that converges for all i. Let

(ε̂i, λ̂i) be the limit of that converging subsequence. By Proposition 3.3.1, for all i and j, ui and vi are

non-decreasing and convex. By Lemma 2.2.1 (c) (ujli , v
jl
i ) has a dK-converging subsequence. Taking the

limit as j →∞ along the converging subsequence (using Lemma 2.2.1 (b) for the κj(v
j
1) term), we get:

∞∑
i=1

e−βi (cε∞i (bE ◦ zE) + λ∞i (bL ◦ zL)) = e−βκj(v
∞
1 ) +

∞∑
i=1

e−β∞α(u∞i )

and therefore, { (ε∞i , λ
∞
i ) }∞i=1 is an optimizer for C(κ∞) and the result follows from linearity of the

objective functional.

Similarly, we can prove the following lemma.

Lemma 3.6.3. When κi weak-∗ converges to κ∞ we have

P(κi, κi+1)→ P(κ∞, κ∞),

where the doubly constrained maximum P over one generation is defined by (3.16).

We can now prove the main theorem of this section.

Theorem 3.6.4 (Optimizers of the complete information model converge to optimizers of the steady

state with discounting). Fix c > 0, θ, θ′ ∈ [0, 1], N > 1, N ′ > 1. Let κ1 ∈ P(K̄) and fix a distribution

for students’ abilities α with logα ∈ L∞(Ā). Suppose hypothesis (b) from Proposition 3.3.9 is satisfied.

Suppose (εi, λi) is an optimizer of (3.9) and satisfies (A) positive assortativity, (B) specialization

and (C) the composition estimate.

Suppose (ui, vi) is an optimizer of (3.10) and the wage functions vi are bounded independently of i.

Then (ui, vi) has a subsequence that converges uniformly on bounded subsets of A × K to wage

functions (u∞, v∞). The solutions of the primal complete information problem (3.9) { εi, λi) } have a

weak-∗ convergent subsequence that converges to (ε∞, λ∞).

Suppose hypothesis (d) from Proposition 3.3.9 are satisfied and (u∞, v∞) are strictly convex and

the skills of workers and managers form a connected subset of K. The constant sequence of measures

{ (ε∞, λ∞) }∞i=1 solves (3.9) and the constant sequence of functions { (u∞, v∞) }∞i=1 solves (3.10) with

κ1 = zE#ε∞. In that case, (ε∞, λ∞) solves the steady state model with discounting (3.34) with κ∞ =

zE#ε∞ and (u∞, v∞) solve its dual (3.35).

Proof. Consider solutions of the complete information model {(εi, λi)} of (3.9) and {(ui, vi)} of (3.10).

By Prokhorov’s theorem [30], { (εi, λi) } has a convergent subsequence which converges to a limit

(ε∞, λ∞). As ui, vi are convex and bounded, by Lemma 2.2.1 (c), we know that there exists a con-

vergent subsequence:

(uij , vij )→ (u∞, v∞).

By Theorem 3.4.4, κi weak-∗ converges to κ∞.

We now consider a problem with the same hypotheses as above except κ1 is replaced with κ̃1 =

zE#ε∞ = κ∞. This new problem has its own solutions for the primal (ε̃i, λ̃i) and for the dual (ũi, ṽi).

First, we prove that for all i, ε̃i = ε∞, λ̃i = λ∞, and ũi = u∞.



Chapter 3. Dynamics of a multisector matching over time 43

By Proposition 3.2.3 we get

C(κi) = sup
κ∈N (κi)

P(κi, κ) + e−βC(κ)

= P(κi, κi+1) + e−βC(κi+1).

so by Lemmas 3.6.2 and 3.6.3 when we take the limit i→∞ we get:

C(κ∞) = P(κ∞, κ∞) + e−βC(κ∞).

Since κ̃1 = κ∞ this shows we may take κ̃2 = κ∞ and hence κ̃i = κ∞ for all i. As κ̃i is in a steady

state, we can conclude from Proposition 3.3.5 that ε̃i = ε̃∞ and λ̃i = λ̃∞ for all i. Also, λi and εi are all

positive assortative.

For all i, the proof that ṽ′i doesn’t depend on i for workers, i.e. on π1(spt λ) ∩ Dom ṽ′i, and for

managers, i.e. on π2(spt λ) ∩Dom ṽ′i is identical to the one from [13, Theorem 15].

Now for teachers, given that we assume hypothesis (d) from Proposition 3.3.9 and c > 0, by Propo-

sition 3.3.9 almost every teacher has at most finitely many descendants and therefore we’ll be able to

establish the κ∞-a.e. uniqueness of v′i from the uniqueness of the wage gradient for workers or managers

of future generations v′i+n.

Using uniqueness of ṽ′i, we can then prove uniqueness of ũ′i. Given that ε̃i = ε∞ and λ̃i = λ∞ are

constant from generation to generation, we have that ṽ′i = v′∞ and ũ′i = u′∞ are also constant from

generation to generation.

Now, uniqueness of u∞ can be shown as in [13, Theorem 15] because u∞ is in the objective function

of (3.10) and α is supported on all A. Finally, we show κ∞-a.e. uniqueness of v∞.

As in [13, Theorem 15], we also have that v′∞ is unique. Suppose there exists an i such that there

exist two different potential values v and v̂ for vi.

We know that v′i = v′ = v̂′. As we assumed that the skills of workers and managers are connected in

K, we have v = v̂ + l on the support of the skills of workers and managers. Suppose WLOG that l ≥ 0.

As (u∞, v∞)∞i=1 is optimal for (3.10) with κi = κ∞, we have

bL(zL(w,m)) ≤ v(w) +
v(m)

N ′

with equality on the support of λ∞. We also have

bL(zL(w,m)) ≤ v̂(w) +
v̂(m)

N ′
+

(
1 +

1

N ′

)
l

with equality on the support of λ∞, which is impossible unless l = 0. We conclude that l = 0 and v = v̂

on the support of the skills of workers and managers.

Now by Proposition 3.3.9 the wages of teachers will eventually be expressed with the functions bE ,

u, and v on the support of the skills of workers and managers. Therefore v is also unique for the skills

of teachers. We conclude that vi = v∞ for all i on the support of the skills of adults.

Using Corollary 2.3, we get the equivalent of Corollary B.1.3 in the infinite horizon case, which
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implies

∞∑
i=1

e−βi
(
cε̃i(bE ◦ zE) + λ̃i(bL ◦ zL)

)
= e−βκ̃1(ṽ1) +

∞∑
i=1

e−βiα(ũi).

So

∞∑
i=1

e−βi (cε∞(bE ◦ zE) + λ∞(bL ◦ zL)) = e−βκ∞(v∞) +

∞∑
i=1

e−βiα(u∞)

⇐⇒ cε∞(bE ◦ zE) + λ∞(bL ◦ zL) = α(u∞) + (1− e−β)κ∞(v∞).

This is the equilibrium formula of the steady state with discounting models (3.34) and (3.35).

Note 3.6.5. Under the hypotheses of Theorem 3.6.4, this construction yields a self-consistent solution

for the steady state with discounting (3.34).

Note 3.6.6. Under the hypotheses of Theorem 3.3.7 and Proposition 3.3.9, the solution of the primal

complete information problem (3.9) { (εi, λi) } converges weak-∗ to (ε∞, λ∞). Therefore, the solution to

the dual problem is also convergent if the solution of the steady state with discounting is unique (see

Proposition 3.5.2).

3.7 Examples

We now study some specific examples. First, we consider the case where the skills of teachers are weakly

above the skills of managers, which are weakly above the skills of workers. Conditions for this to be

realized are presented in Theorem 3.3.7.

In this case, the function that sends the rank of a student to the rank of his or her teacher for any

generation i is linear and is given by

Ri(r) = 1 +
r − 1

N
.

As Ri doesn’t depends on i, R(i,j) = R
(j)
i and we get:

R(i,j)(r) = 1 +
r − 1

N j
.

Therefore, from Corollary 3.5.4

Xκ̄(r) = (1− θ)
∞∑
j=0

θjXα ◦R(i,j)(r)

= (1− θ)
∞∑
j=0

θjXα

(
1 +

r − 1

N j

)
.

If we also assume that α is the uniform measure on [0, 1], then the random variable Xα sends r to r.

In this case
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Xκ̄(r) = (1− θ)
∞∑
j=0

θj
(

1 +
r − 1

N j

)

= (1− θ)
∞∑
j=0

θj + (1− θ)(r − 1)

∞∑
j=0

θj

N j

= 1 + (1− θ)(r − 1)
1

1− θ
N

=
N(1− θ)
N − θ

r +
θ(N − 1)

N − θ
.

We deduce that κ̄ is the uniform probability measure on
[
θ(N−1)
N−θ , 1

]
:

κ̄ =
N − θ

(1− θ)N
1|[ θ(N−1)

N−θ ,1].

More generally, we can prove similarly that if α is a uniform probability measure and the Ri’s are linear

functions that are independant of i, κ̄ will also be a uniform probability measure.

3.7.1 Explicit Calculation of the Dual

In this subsection, we use Corollary 3.5.4 and more precisely the primal solution we just obtained to

find explicit solutions to the dual problem from the steady state labour and education matching model

from Erlinger et al., when λ is positive assortative and ε is strictly positive assortative, the skills of

teachers are weakly above the skills of managers, which are weakly above the skills of workers and α is

the uniform measure on [0, 1].

Support for skills and abilities

We have that the adults’ skills take values between θ(N−1)
N−θ and 1. As we know the ratio of adults for

each profession (see [13, p.15]), we get that workers’ skills are between θ(N−1)
N−θ and (N ′+θ)(N−1)

(1+N ′)(N−θ) , and

managers’ skills are between (N ′+θ)(N−1)
(1+N ′)(N−θ) and N−1

N−θ . Then, we can subdivide the rest of the skills, i.e.

between N−1
N−θ and 1, between all teachers, i.e. teachers of workers, teachers of managers, teachers of

teachers of workers, etc.. Let

a0 =
θ(N − 1)

N − θ
, a1 =

(N ′ + θ)(N − 1)

(1 +N ′)(N − θ)
, a2 =

N − 1

N − θ
.

The skills of workers are between a0 and a1, the skills of managers are between a1 and a2 and we’ll keep

denoting the “boundary skills” by an, where the skills of teachers of individuals that will eventually

become workers are between a2n and a2n+1 where n represents the number of student descendent our

teacher has, and the skills of teachers of individuals that will eventually become managers are between

a2n+1 and a2n+2 where n represents the number of student descendent our teacher has. The boundary
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skills can be obtained from a0, a1, a2 as follow:

a2n−1 =
1

Nn−2

(
n−2∑
i=0

N i

)
a2 +

a1

Nn−1
− 1

Nn−1

(
n−2∑
i=0

N i

)
a0 (3.41)

a2n =
1

Nn−1

(
n−1∑
i=0

N i

)
a2 −

1

Nn−1

(
n−2∑
i=0

N i

)
a0 (3.42)

for n ≥ 2. We prove these formulas by induction.

Proof of (3.41)–(3.42). For the base cases a3 and a4 (n = 2) we have:

a3 = right side of the managers interval + quantity of teacher of workers

= a2 +
a1 − a0

N

=
1

N0

(
0∑
i=0

N i

)
a2 +

a1

N1
− 1

N1

(
0∑
i=0

N i

)
a0 and

a4 = right side of the teachers of workers interval + quantity of teachers of managers

= a3 +
a2 − a1

N

= a2 +
a1

N
− a0

N
+
a2

N
− a1

N

=
1 +N

N
a2 −

a0

N

=
1

N1

(
1∑
i=0

N i

)
a2 −

1

N1

(
0∑
i=0

N i

)
a0

Fix n. Suppose the formulas are true for all m < 2n. Then

a2n+1 =a2n +
1

N
(a2n−1 − a2n−2)

=
1

Nn−1

(
n−1∑
i=0

N i

)
a2 −

1

Nn−1

(
n−2∑
i=0

N i

)
a0 +

1

Nn−1

(
n−2∑
i=0

N i

)
a2 +

a1

Nn

− 1

Nn

(
n−2∑
i=0

N i

)
a0 −

1

Nn−1

(
n−2∑
i=0

N i

)
a2 +

1

Nn−1

(
n−3∑
i=0

N i

)
a0

=
1

Nn−1

(
n−1∑
i=0

N i

)
a2 +

a1

Nn
− 1

Nn

(
n−1∑
i=0

N i

)
a0
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and

a2n+2 =a2n+1 +
1

N
(a2n − a2n−1)

=
1

Nn−1

(
n−1∑
i=0

N i

)
a2 +

a1

Nn
− 1

Nn

(
n−1∑
i=0

N i

)
a0 +

1

Nn

(
n−1∑
i=0

N i

)
a2

− 1

Nn

(
n−2∑
i=0

N i

)
a0 −

1

Nn−1

(
n−2∑
i=0

N i

)
a2 −

a1

Nn
+

1

Nn

(
n−2∑
i=0

N i

)
a0

=
1

Nn

(
n∑
i=0

N i

)
a2 −

1

Nn

(
n−1∑
i=0

N i

)
a0.

Similarly, the skills of students will be separated between skills of future workers, of future managers,

future teachers of workers, teachers of managers, . . . , with the “boundary skills”:

si =
N − θ
N(1− θ)

ai +
θ(1−N)

N(1− θ)
.

Matching worker/manager and student/teacher

The relationship between the ability of a student s and the skill of his or her teacher t is given by the

affine transformation between the support of students’ abilities and the support of teachers’ skills:

s =
N − θ
N(1− θ)

t+
θ(1−N)

N(1− θ)
and t =

N(1− θ)
N − θ

s− θ(1−N)

N − θ
.

Similarly, the relationship between the skill of a worker w and the skill of his or her manager m is given

by the affine transformation between the support of workers’ skills and the support of managers’ skills:

w =
a1 − a0

a2 − a1
m− a2a0 − a2

1

a2 − a1
and m =

a2 − a1

a1 − a0
w − a2a0 − a2

1

a1 − a0
.

Wage Functions for Workers and Managers

We find the wage functions for workers and managers. To do so, we assume bE(x) = bL(x) = ex. We

have that

vm(k) = N ′ sup
w∈K

exp(zL(w, k))− vw(w)

so by the first order necessary condition, for an interior maximum we have

∂

∂w

∣∣∣∣∣
w=

a1−a0
a2−a1

m− a2a0−a2
1

a2−a1

exp(zL(w, k))− vw(w) = 0

⇐⇒ v′w(w) = (1− θ′) exp

(
(1− θ′)w + θ′

(
a2 − a1

a1 − a0
w − a2a0 − a2

1

a1 − a0

))
⇐⇒ vw(w) =

1− θ′

1− θ′ + θ′ a2−a1

a1−a0

exp

(
(1− θ′)w + θ′

(
a2 − a1

a1 − a0
w − a2a0 − a2

1

a1 − a0

))
+ cw
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and as

vw(k) = sup
m∈K

exp(zL(k,m))− vm(m)

N ′
,

by the first order necessary condition, we have:

∂

∂m

∣∣∣∣∣
m=

a2−a1
a1−a0

w− a2a0−a2
1

a1−a0

exp(zL(k,m))− vm(m)

N ′
= 0

⇐⇒ v′m(m) = θ′N ′ exp

(
(1− θ′)a1 − a0

a2 − a1
m− a2a0 − a2

1

a2 − a1
+ θ′m

)
⇐⇒ vm(m) =

θ′N ′

(1− θ′)a1−a0

a2−a1
+ θ′

exp

(
(1− θ′)a1 − a0

a2 − a1
m− a2a0 − a2

1

a2 − a1
+ θ′m

)
+ cm.

To find cw and cm, we use the fact that

vw (a1) = vm (a1)

and the fact that when m(w) = a2−a1

a1−a0
w − a2a0−a2

1

a1−a0
.

vw(w) +
1

N ′
vm (m(w)) = exp ((1− θ′)w + θ′m(w)) .

Wage Functions for Teachers

We get that

v′k(t) = cNθ exp((1− θ)s(t) + θt) +Nθṽ′((1− θ)s(t) + θt)

where ṽ′ = v′k−2. For that, we get vk(t) =
∫
v′k(t) + ck. We’ll write v2 for the wage function of teachers

of workers, v3 for the wage function of teachers of managers, v4 for the wage function of teachers of

teachers of workers, etc. and we’ll denote v0 = vm and v1 = vw. The function vk is defined on [ak, ak+1].

Using the fact that vk takes the same value as the previous wage function on its left boundary ak

(vk(ak) = vk−1(ak)), we obtain the values of ck from the constant for the wage of manager.

The benefit from education function

We have that

vk+2(k) = N sup
s∈A

cbE(zE(s, k)) + vk(zE(s, k))− uk(s)

and so we have that

u′k(s) = cN(1− θ) exp ((1− θ)s+ θt(s)) + (1− θ)Nvk ((1− θ)s+ θt(s))

Using the fact that

vk+2(k) = NcbE(zE(s, k)) + vk(zE(s, k))− uk(s)

when s = t(s), we can get the constant of integration.
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Derivative of the Wage Function Near k̄

We have that

v′t2n(a2n) = (Nθ)
n+1

v′w(a−2) + cNθ

n∑
i=0

(Nθ)
i
exp(a2i−2)

v′t2n+1
(a2n+1) = (Nθ)

n+1
v′m(a−1) + cNθ

n∑
i=0

(Nθ)
i
exp(a2i−1)

which reinforced the belief that, in this specific case (i.e. if α is uniform and skills of teachers are above

skills of managers which are above skills of workers), when the derivative of the wage function approaches

k̄ = 1 = a∞, it is bounded if Nθ < 1 and unbounded if Nθ > 1 as predicted in [13, Theorem 16]. In fact,

the leading order rates of convergence predicted there are attained precisely, in spite of the fact that

one of the hypotheses upon which these predictions were based is violated, because the wage functions

found here have derivatives whose discontinuities accumulate at k̄.

We now give an example for the case Nθ > 0. Let N = N ′ = 5, θ = θ′ = 1
2 , c = 4 and bE(x) =

bL(x) = ex. We get

v′t (1− δ) ∼ 1

δ1− log 2
log 5

.

For the case Nθ < 1, let N = 2, N ′ = 5, θ = θ′ = 1
3 , c = 12 and bE(x) = bL(x) = ex. We get

v′t(1− δ) ∼ 24e

(
1−

(
2

3

)2− log 5
log 2

δ
log 3
log 2−1

)
∼ 24e.

3.7.2 Explicit Examples

In [13, Theorem 16], the authors prove that, if the wage function is continuously differentiable at k̄ and

Nθ 6= 1, the derivative of the wage function v is bounded at k̄ if and only if Nθ < 1. We’ll show two

explicit examples, one where Nθ > 1 and one where Nθ < 1. For both of our examples, the derivative of

the wage function v is not continuous at k̄, but it still behaves as predicted by [13, Theorem 16]’s result.

We show the different functions u, v, and v′ in figures 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6. In all of

these pictures workers, future workers, teachers of individuals that will eventually teach workers and

future teachers of individuals that will eventually teach workers are in blue. Managers, future managers,

teachers of students that will eventually become teachers and future teachers of individuals that will

eventually teach managers are in red.
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Figure 3.1: The benefit from education u : A → R, with N = N ′ = 5, θ = θ′ = 1
2 , c = 4, and

bE(x) = bL(x) = ex.

Figure 3.2: The wage function v : K → R, with N = N ′ = 5, θ = θ′ = 1
2 , c = 4, and bE(x) = bL(x) = ex.
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Figure 3.3: The derivative of the wage function v : K → R, with N = N ′ = 5, θ = θ′ = 1
2 , c = 4, and

bE(x) = bL(x) = ex.

Figure 3.4: The benefit from education u : A → R, with N = 2, N ′ = 5, θ = θ′ = 1
3 , c = 12, and

bE(x) = bL(x) = ex.

Figure 3.5: The wage function v : K → R, with N = 2, N ′ = 5, θ = θ′ = 1
3 , c = 12, and bE(x) =

bL(x) = ex.
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Figure 3.6: The derivative of the wage function v : K → R, with N = 2, N ′ = 5, θ = θ′ = 1
3 , c = 12,

and bE(x) = bL(x) = ex.



Chapter 4

Analysis of a multi-sector matching

problem with communication and

cognitive skills

In this chapter, we study a model that couples an education and a labour market, similar to the one

from Section 2.6. The novelty of the model in this chapter is that every individual is assumed to have

two skills: a communication and a cognitive skill. This model was first proposed by McCann, Shi, Siow

and Wolthoff in [27]. In [27], the authors explain the importance of including a non-cognitive skill (here

we call it a communication skill) when we study labour and education market. Indeed, schools use

non-cognitive factors (like volunteer activities and leadership positions) in their admission decisions and

those non-cognitive factors are empirically correlated with professional success.

In the paper where the model is introduced [27], the authors explain the motivation for the choice of

parameters and the interest of studying a model of individuals with two dimensional skills. They identify

conditions to ensure that the teams in the labour market of their fictitious society are composed of one

manager and several workers (and then their model forces this relationship). They study the relationship

between the skills of a student and the cognitive skill of his or her teacher, and between the cognitive

skill of a worker and the cognitive skill of his or her manager. In this chapter, we provide rigorous proofs

for some of their observations. They also run simulations to illustrate properties of solutions.

Erlinger, McCann, Shi, Siow and Wolthoff [13] studied the analogous model in one dimension; that

is, with only a cognitive skill. In this chapter, we adapt some of their results to the two dimensional

case of the model. In particular, we analyze the structure of optimal solutions, we prove that there is

no duality gap and that solutions exist under mild assumptions. We also discuss properties of optimal

matching. The fact that there is no duality gap can be interpreted, in economics terms as the existence

of competitive equilibrium.

As shown in the study of the one dimensional version of the model [13], an adult’s wage is convex in

his or her cognitive skill. With the assumptions of this model, for some adults, their wage will depend

linearly on their communication skill, while for others, their wage is independent of their communication

skill. Thus, we can’t extend all uniqueness results. This implies that the properties of optimal matching

when individuals’ skills are assumed to be two dimensional are different from the one dimensional case.

53
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4.1 Description of the problem

We use the modelization from [27, Section 2 and 3]. The model we use is slightly more general than

the one in [27], because we include some more general notation from [13]. This is the same model as in

Section 2.6, but with a communication skill.

Suppose each student has a cognitive ability a ∈ [0, ā) ⊂ R and each adult has a cognitive skill

k ∈ [0, k̄) ⊂ R. Suppose without loss of generality that ā = k̄. The adult cognitive skill of an individual

is determined through his or her cognitive ability as student and the cognitive skill of his or her teacher

when he or she was a student.

Now suppose each individual also has a communication skill η ∈ N = (η, η) ⊂ [1,∞) which is fixed

for each individual for life, i.e. can’t be improved by education. The skill spaces for abilities of students

and skills of adults will be A = K = N× [0, k̄) respectively. We’ll denote the cognitive ability of students

by a and their communication skill of students by ι. We’ll denote the cognitive skill k for generic adults

and w for workers, m for managers and t for teachers and the communication skill of adults η. When

there is more then one adult involve, we’ll subscript η by the letter associated to the profession of the

adult.

Let θE , θL ∈ (0, 1). The parameter θE represents the role of the teacher’s cognitive skill and 1− θE
represents the role of the student’s cognitive ability in the improvement of a student’s future cognitive

skill. The parameter θL represents the role of the manager’s cognitive skill and 1 − θL represents the

role of a worker’s cognitive skill in the outcome of a team.

Let,

zE : (ι, a; η, t) ∈ Ā× K̄ 7→ (ι, (1− θE)a+ θEt) ∈ K̄
z1
E : (ι, a; η, t) ∈ Ā× K̄ 7→ (1− θE)a+ θEt ∈ [0, k̄]

zL : (ηw, w; ηm,m) ∈ K̄ × K̄ 7→ (1− θL)w + θLm ∈ R.

We define zE(ι, a; η, t) to be the communication and cognitive ability of an adult that was a student of

type (ι, a) and studied with a professor of type (η, t). The function z1
E gives this adult’s cognitive skill.

Similarly, zL gives the efficiency attained by a collaboration between a given worker of type (ηw, w) and

a manager of type (ηm,m).

With these functions, we can estimate the productivity of a student of type (ι, a) with a teacher of

type (η, t) to be cbE(zE(ι, a; η, t)) where c ≥ 0 is fixed (this is the general benefit from education), and

the productivity of a worker of type (ηw, w) with manager of type (ηm,m) to be bL(zL(ηw, w; ηm,m)).

We assume bE and bL are both twice differentiable (in both variables in the case of bE) and satisfy

positive lower bounds:

0 < min { bL = bL(0), b′L = b′L(0), b′′L = infk∈[0,K̄] b
′′
L(k) }

0 < bE = bE(η, 0)

0 < min { infη,k
∂
∂η bE(η, k) = ∂

∂η

∣∣
(η,k)=(η,0)

bE(η, k), infη,k
∂
∂k bE(η, k) = ∂

∂k

∣∣
(η,k)=(η,0)

bE(η, k) }

0 < b′E = min { ∂
∂η

∣∣
(η,k)=(η,0)

bE(η, k), ∂∂k
∣∣
(η,k)=(η,0)

bE(η, k) }

0 < b′′E = min { infη,k
∂2

∂η2 bE(η, k), infη,k
∂2

∂k2 bE(η, k), infη,k
∂2

∂η∂k bE(η, k) } .

(4.1)

We also assume that bE : Ā→ R, bL : [0, k̄]→ R, are both bounded. Let b̄E = bE(η̄, k̄), b̄L = bL(k̄) be

their upper bound.

Fix ρE ≥ 1 and ρL ≥ 1. Suppose that a teacher of type (η, t) can teach ρEη ≥ 1 students and
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a manager of type (η,m) can manage ρLη ≥ 1 workers. We don’t need to assume ρLη or ρEη to be

integers, because a student (resp. worker) can have more then one teacher (resp. manager).

We will suppose that the distribution of students’ ability, α ∈ P(Ā), is known and is a Borel proba-

bility measure.

4.1.1 Primal formulation

Our problem is to maximize the production of the society:

LP ∗ := max
ε,λ

(∫
Ā×K̄

cbE (zE(ι, a; η, t)) ε(dι, da; dη, dt)

+

∫
K̄×K̄

bL (zL(ηw, w; ηm,m))λ(dηw, dw; dηm, dm)

)
, (4.2)

subject to:

π1#ε = α the distribution of students’ ability is known (4.3)

κ := κw + κm + κt = zE#ε the measure for adults’ skill is coherent (4.4)

ε, λ ≥ 0,

where κw/m/t is the distribution of workers/managers/teachers:

κw(η, k) =
(
π1#λ

)
(η, k) =

∫
K̄

λ (η, k; dηm, dm) ;

κm(η, k) =
1

ρLη
π2#λ (η, k) =

1

ρLη

∫
K̄

λ (dηw, dw; η, k) ; and

κt(η, k) =
1

ρEη
π2#ε (η, k) =

1

ρEη

∫
K̄

ε (dι, da; η, k) .

More explicitly the constraints are ε ≥ 0, λ ≥ 0,∫
K̄

ε(ι, a; dη, dt) =α(ι, a) and (4.3’)∫
K̄

zE(η, k; ηt, t)ε(η, k; dηt, dt) =

∫
K̄

λ(η, k; dηm, dm) (4.4’)

+

∫
K̄

1

ρLη
λ(dηw, dw; η, k) +

∫
Ā

1

ρEη
ε(dι, da; η, k).

Let G0 be the set of pairs of measures (ε, λ) satisfying the constraints.

4.1.2 Dual formulation

Let u : K̄ → R and v : K̄ → R be the Lagrange multiplier associated with (4.3) and (4.4) respectively.

The Lagrangian function is:
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L(ε, λ;u, v) =

∫
K̄×K̄

(
bL (zL(ηw, w; ηm,m))− v(ηw, w)− 1

ρLηm
v(ηm,m)

)
λ(dηw, dw; dηm, dm)

+

∫
Ā×K̄

(
cbE (zE(ι, a; η, t))− 1

ρEη
v(η, t)− u(ι, a) + v (zE(ι, a; η, t))

)
ε(dι, da; dη, dt)

+

∫
Ā

u(ι, a)α(dι, da).

Formally, interchanging the order of sup and inf should yield the dual problem

inf
u,v

sup
ε,λ≥0

∫
K̄×K̄

(
bL (zL(ηw, w; ηm,m))− v(ηw, w)− 1

ρLηm
v(ηm,m)

)
λ(dηw, dw; dηm, dm)

+

∫
Ā×K̄

(
cbE (zE(ι, a; η, t))− 1

ρEη
v(η, t)− u(ι, a) + v (zE(ι, a; η, t))

)
ε(dι, da; dη, dt)

+

∫
Ā

u(ι, a)α(dι, da).

If the function integrated over λ or ε is positive, the supremum is unbounded. So in the optimal case,

bL (zL(ηw, w; ηm,m))− v(ηw, w)− 1

ρLηm
v(ηm,m) ≤ 0,

cbE (zE(ι, a; η, t))− 1

ρEη
v(η, t)− u(ι, a) + v (zE(ι, a; η, t)) ≤ 0

and their integrals with respect to λ and ε vanish.

Thus, we get the following problem:

LP∗ := inf
u,v

∫
Ā

u(ι, a)α(dι, da), (4.5)

subject to the stability constraint

v(ηw, w) +
1

ρLηm
v(ηm,m) ≥ bL (zL(ηw, w; ηm,m)) (4.6)

for the labour market and

1

ρEη
v(η, t) + u(ι, a) ≥ cbE (zE(ι, a; η, t)) + v (zE(ι, a; η, t)) (4.7)

for the education sector.

The function u : (η, a) ∈ A → [0,∞) represents the gain of a student type (η, a) from education

and v : (η, k) ∈ K → [0,∞) is the wage of an adult of type (η, k). Let F0 be the set of functions

(u, v) = (u0 + u1, v0 + v1) satisfying the constraints which differ from bounded continuous functions

u0, v0 ∈ C(Ā) by functions u1, v1 : Ā→ [0,∞] that are non-decreasing in the second parameter.

Note 4.1.1. Note that for (u, v) ∈ F0, their lower semi-continuous extensions (lsc u, lsc v) (see defi-

nition 2.1.3) also belong to F0, and the objective value at (lsc u, lsc v) will be lower than the objective

value at (u, v). We therefore assume u and v are lower semi-continuous from now on.
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4.2 Structure of optimal solutions

In this section, we give a general analysis of how solutions to our problems (4.2) and (4.5) behave. We

study how variation in skills impacts the profession or future profession of an individual and how it

impacts the matching patterns.

Let

vw(η, k) : = sup
(ηm,m)∈K̄

bL(zL(η, k; ηm,m))− 1

ρLηm
v(ηm,m) (4.8)

: = ṽw(k),

vm(η, k) : = ρLη

(
sup

(ηw,w)∈K̄
bL (zL(ηw, w; η, k))− v(ηw, w)

)
(4.9)

= ρLηṽm(k), and

vt(η, k) : = ρEη

(
sup

(ι,a)∈Ā
cbE (zE(ι, a; η, k)) + v(zE(ι, a; η, k))− u(ι, a)

)
(4.10)

= ρEηṽt(k).

be the wage function of workers, managers and teachers, respectively. For the teacher’s wage, we will

assume ∞ − ∞ = ∞ by convention. As zL and z1
E don’t depend on their first and third variables,

workers’ wage function doesn’t depend on his or her communication skill and a manager or teacher’s

wage is linear in its communication skill. This represents the fact that ṽm(k) (resp. ṽt(k)) is the wage

of a manager (resp. teacher) per worker (resp. student) and their real salary is that wage per worker

(resp. student) multiplied by the number of workers (resp. students) they have.

If v is proper (see definition 2.1.1) and lower semi-continuous (see definition 2.1.2), the supremum

will be attained in (4.8) and (4.9). If v is convex and non decreasing in both variables and u is proper,

the supremum will be attained in (4.10).

Let

v̄ := max {vw, vm, vt} .

By (4.6), feasible wage functions, v, satisfy v ≥ vw, and v ≥ vm and by (4.7), v ≥ vt so v ≥ v̄.

We will eventually prove that v̄ is the optimal wage a.e., i.e. the wage of an adult is the maximum

of the wage he would get as a worker, manager or teacher.

We show that for a fixed cognitive skill level k, there exists a cutoff communication skill η̂(k) such that

individuals with communication skill lower than η̂(k) will be workers and individuals with communication

skill higher than η̂(k) won’t be workers. First, we show the following:

Lemma 4.2.1. Let k ∈ [0, k̄]. If there exists an η ∈ N̄ such that adults with skill (η, k) are necessarily

managers i.e. vm(η, k) > max { vw(η, k), vt(η, k) } then ṽm(k) > 0.

Similarly, if there exists an η ∈ N̄ such that adults with skill (η, k) are necessarily teachers i.e.

vt(η, k) > max { vw(η, k), vm(η, k) } then ṽt(k) > 0.

Proof. We prove the result of wage of managers, the proof is the same for wage of teachers. Setting

(ηw, w) = (ηm,m) = (η, k) in (4.6), we get that v(η, k) > 0 for all ηk. Therefore, if there exists an ηk

such that (ηk, k) are managers and it follows from Theorem 4.5.5 that vm(ηk, k) = v(ηk, k) > 0. The

result then follow from the fact that vm(ηk, k) = ρLηkṽm(k).
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Proposition 4.2.2 (c.f. [27, Proposition 3]). For each cognitive skill k ∈ [0, k̄), there exists a cutoff

value η̂(k) ∈ N such that individuals with communication skill η < η̂(k) will be a worker and almost

every individual with communication skill η > η̂(k) won’t be a worker.

Proof. Fix k. Suppose for all η, every individual with skills (η, k) is a worker, then we pick η̂(k) = η̄.

Suppose there exists an η such that individuals with skill (η, k) can be managers. By the envelope

theorem and (4.8), as we assumed bL to be twice differentiable, ∂
∂ηvw(η, k) = 0. Using (4.9), we get

∂
∂η vm(η, k) = −ρLṽm(k). Putting together those two derivatives and the fact that ρL > 0 and ṽm(k) is

non-negative, we get

∂

∂η
(vw(η, k)− vm(η, k)) = −ρLṽm(k) ≤ 0.

Therefore vw(η, k)− vm(η, k) is a decreasing function of η, so there exists ηm(k) such that

(
vw(η, k)− vm(η, k)

)
(ηm(k)− η) ≥ 0.

with equality if and only if η = ηm(k).

Now, if for all η every individual with skills (η, k) is a worker or a manager, we pick η̂(k) = ηm(k).

Suppose there exists an η such that individuals with skill (η, k) can be teachers. We can mimic the

previous argument to get an ηt(k) such that

(
vw(η, k)− vt(η, k)

)
(ηt(k)− η) ≥ 0.

with equality if and only if η = ηt(k). If there is no individual with cognitive skill k that are manager,

we pick η̂(k) = ηt(k). Otherwise, η̂(k) = min {ηm(k), ηt(k)}.

By definition, vw, vm and vt are suprema so Lemma 2.1.6 allows us to find pointwise a.e. bound for

their derivatives. The next two lemmas use those bounds to prove that the optimums u and v will be

convex and non-decreasing in both variables and supermodular.

Lemma 4.2.3 (Structure of the benefit from education function). Let v : K → R be convex and

non-decreasing in both variables with v(η, k̄) ≥ lim supk→k̄ v(η, k), Then the student payoff u defined by

u(η, a) = sup
(ηt,t)∈K̄

cbE(zE(η, a; ηt, t)) + v(zE(η, a; ηt, t))−
1

ρEηt
v(ηt, t)

is also convex and non-decreasing in its second variable on K, supermodular and satisfies

1

1− θE
∂u(η, a)

∂a
≥ cb′E + inf

η,k

∂v(η, k)

∂k
,

1

(1− θE)2

∂2u(η, a)

∂a2
≥ cb′′E + inf

η,k

∂2v(η, k)

∂k2
,

∂u(η, a)

∂η
≥ cb′E + inf

η,k

∂v(η, k)

∂η
,

∂2u(η, a)

∂η2
≥ cb′′E , and

∂2u(η, a)

∂η∂a
≥ cb′′E + inf

η,k

∂2v(η, k)

∂η∂k



Chapter 4. Multisector matching problem with two dimensional skills 59

pointwise a.e.

Proof. The proof mimics the proof of [13, Lemma 5, second claim]. Because v is convex in k and convex

and piecewise linear in η, it is twice differentiable a.e. on K. Therefore, we first assume v ∈ C2(K̄). Let

f(ι, a; η, t) = cbE(zE(ι, a; η, t)) + v(zE(ι, a; η, t)).

For each fixed ι (resp. a), and fixed η, t, f is convex and non-decreasing as a function of a (resp ι). As
∂z1
E

∂a = 1− θE , we have,

fa(ι, a; η, t) = (1− θE)

c ∂
∂k

∣∣∣∣∣
k=z1

E(ι,a;η,t)

bE(ι, k) +
∂

∂k

∣∣∣∣∣
k=z1

E(ι,a;η,t)

v(ι, k)


So

fa(ι, a; η, t)

1− θE
≥ cb′E + inf

∂v

∂k
(η, k).

Similarly,
faa(η, a; ηt, t)

(1− θE)2
≥ cb′′E + inf

∂2v

∂k2
(η, k).

The bounds for fι, fι,ι and fι,a are found similarly. It then follows from Lemma 2.1.6 that the same

bounds are true for u(η, a).

If we don’t suppose v is C2(K), we can approximate it uniformly on compact subsets of K by C2

functions vi satisfying the same hypotheses as v. We get that

f i(η, a; ηt, t) = cbE(zE(η, a; ηt, t)) + vi(zE(η, a; ηt, t))

converge to f uniformly on compact subsets of Ā× K̄ \ { (ā, k̄) } and

ui(η, a) = sup
(ηt,t)∈K̄

f i(η, a; ηt, t)−
1

ρEηt
v(ηt, t)

converge uniformly to u on compact subsets of A. So u inherits the same Lipschitz and local semi-

convexity bounds as ui in the distributional (and hence pointwise a.e.) sense.

Lemma 4.2.4 (Structure of wage functions). Let v : K → R be convex and non-decreasing in its second

variable, and non-decreasing, convex and piecewise linear in its first variable and supermodular with

v(η, k̄) ≥ lim supk→k̄ v(η, k). Then vw/m/t are positive, non-decreasing and convex in the second variable

on the subset of K̄ where they represent individuals. Their maximum

v̄ := max { vw, vm, vt }

is non-decreasing and convex in the second variable on K̄, piecewise linear in their first variable, and
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satisfy

∂v̄(η, k)

∂η
≥ 0

∂2v̄(η, k)

∂η2
= 0

∂v̄(η, k)

∂k
≥ min

{
(1− θE)b′L, ηρLθLb

′
L, ρEηtθE

(
cb′E + inf

(η,k)

∂

∂k
v(η, k)

)}
∂2v̄(η, k)

∂k2
≥ min

{
(1− θE)2b′′L, (θL)2ηρLb

′′
L, ρEηtθ

2
E

(
cb′′E + inf

(η,k)

∂2

∂k2
v(η, k)

)}
and

∂2v̄(η, k)

∂η∂k
≥ min

{
0, ρLθLb

′
L, θEρE

(
cb′E + inf

(η,k)

∂

∂k
v(η, k)

)}
pointwise a.e.

Proof. To prove this claim, we follow the idea of the proof of [13, Lemma 5, third claim]; that is we will

prove that, on the subset of K̄ where they represent individuals, vw/m/t are piecewise linear in their first

variable, non-decreasing, convex in their second variable, and supermodular, by finding lower bounds on

their derivative.

Let’s begin with vt. Because v is convex in k and convex and piecewise linear in η, it is twice

differentiable a.e. on K. First we suppose v ∈ C2(Ā). As in Lemma 4.2.3, we set

f(ι, a; ηt, t) = cbE(zE(ι, a; ηt, t)) + v(zE(ι, a; ηt, t)).

Then we have

vt(ηt, t) = ρEηt

(
sup

(ι,a)∈Ā
f(ι, a; ηt, t)− u(ι, a)

)
.

Note that

fηt = 0

ft = θE

c ∂
∂k
bE(η, k)

∣∣∣∣∣
(η,k)=zE(ι,a;ηt,t)

+
∂v

∂k

(
zE(ι, a; ηt, t)

)
≥ θE

(
cb′E + inf

(η,k)

∂v

∂k
(η, k)

)

ftt = θ2
E

c ∂2

∂k2
bE(η, k)

∣∣∣∣∣
(η,k)=zE(ι,a;ηt,t)

+
∂2v

∂k2

(
zE(ι, a; ηt, t)

)
≥ θ2

E

(
cb′′E + inf

(η,k)

∂2v

∂k2
(η, k)

)
.
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So again by Lemma 2.1.6, we have that:

∂vt(ηt, t)

∂t
≥ θEρEηt

(
cb′E + inf

(η,k)

∂v

∂k
(η, k)

)
,

∂2vt(ηt, t)

∂ηt∂t
≥ θEρE

(
cb′E + inf

(η,k)

∂v

∂k
(η, k)

)
, and

∂2vt(ηt, t)

∂t2
≥ θ2

EρEηt

(
cb′′E + inf

(η,k)

∂2v

∂k2
(η, k)

)
a.e. Finally,

∂vt(ηt, t)

∂ηt
= ρE

(
sup

(ι,a)∈Ā
f(ι, a; ηt, t)− u(ι, a)

)

=
vt(ηt, t)

ηt

which is positive if we are on the subdomain of K̄ where individual can be teachers because in that case,

by Lemma 4.2.1, vt > 0.

If v is not twice differenciable, we can approximate it uniformly on compact subsets of K by C2

function vi satisfying the same hypotheses as v. We get that

f i(ι, a; η, t) = cbE
(
zE(ι, a; ηt, t)

)
+ vi

(
zE(ι, a; ηt, t)

)
converge uniformly to f on compact subsets of Ā × K̄ \

{(
ā, k̄
)}

and we can define from it vit that

will converge uniformly to vt on compact subsets of A. So vt inherits the same Lipschitz and local

semi-converxity bounds as vit in the distributional (and hence pointwise a.e.) sense.

Now consider vw and vm. Let

f(ηw, w; ηm,m) = bL(zL(ηw, w; ηm,m))

and rewrite

vw(ηw, w) = sup
(ηm,m)

f(ηw, w; ηm,m)− 1

ηmρL
v(ηm,m)

vm(ηm,m) = ηmρL

(
sup

(ηw,w)

f(ηw, w; ηm,m)− v(ηw, w)

)
.
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As

fηw = 0 = fηm

fw = (1− θL)b′L(zL(ηw, w; ηm,m)) ≥ (1− θL)b′L

fww = (1− θL)2b′′L(zL(ηw, w; ηm,m)) ≥ (1− θL)2b′′L

fm = θLb
′
L(zL(ηw, w; ηm,m)) ≥ θLb′L

fmm = θ2
Lb
′′
L(zL(ηw, w; ηm,m)) ≥ θ2

Lb
′′
L,

using Lemma 2.1.6, we get

∂vw
∂η

(η, w) = 0

∂vm
∂η

(η,m) = ρL

(
sup

(ηw,w)

f(ηw, w; η,m)− v(ηw, w)

)
=
vm(η,m)

η

which is positive if we are on the subdomain of K̄ where individual can be managers because in that

case, by Lemma 4.2.1, vm > 0 and ∂vm
∂η (η,m) > 0. Taking more derivatives, we have:

∂2vm
∂η2

m

(ηm,m) = 0,
∂vw
∂w

(ηw, w) ≥ (1− θL)b′L,

∂2vw
∂w2

(ηw, w) ≥ (1− θL)2b′′L,
∂vm
∂m

(ηm,m) ≥ θLηmρLb′L,

∂2vm
∂ηm∂m

(ηm,m) ≥ θLρLb′L,
∂2vm
∂m2

(ηm,m) ≥ θ2
LηmρLb

′′
L.

Thus, v̄ is increasing and convex in both variables and supermodular and its partial derivatives satisfy

the appropriate bounds.

Note that by being piecewise linear in η, v̄ is also piecewise convex in η. We will prove later that v̄

is in fact globally convex in η.

In Proposition 4.2.2 we strengthen the argument from [27], which give, for fixed cognitive skill,

conditions on the communication skill to be a worker or not. The next proposition studies, for fixed

communication skill, the relationship between an individual’s occupation and his or her cognitive skill.

Note that as we fixed communication skill, this is equivalent then studying the one dimensional problem

[13]. Therefore, this proposition is equivalent to [13, Proposition 7].

Proposition 4.2.5 (Specialization by type; the educational pyramid). Suppose u : A→ R, v : K → R

are convex and non-decreasing in k and satisfy v = max { vw, vm, vt } where vw/m/t are defined by (4.8),

(4.9) and (4.10).

1. If

ρLηθL ≥ (1− θL) sup
k∈K

b′L
(
(1− θL)k + θLk̄

−)
b′L(θEk)

(b)
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then for fixed communication skill, the cognitive ability of all workers’ types is weakly below the

one of all managers’ types.

2. If

ρEηθEb
′
E ≥ b

′
L max { ρLηθL, 1− θL } (a)

then for fixed communication skill, the cognitive ability of all teacher types is weakly above the

cognitive ability of all manager and worker types.

3. Suppose

ρEηθE ≥ ρLη̄θL sup
0≤z≤k
η

b′L
(
(1− θL)z− + θLk̄

)
ρLηθLb′L(θLz+) + c ∂∂z bE(η, z+)

(c)

and (b) holds, and

f(ι, a; ηt, t) := u(ι, a) +
1

ρEηt
v(ηt, t)− cbE(zE(ι, a; ηt, t)− v (zE(ι, a; ηt, t))

vanishes at some (ι, a; ηt, t) ∈ Ā × K̄ where v (zE(ι, a; ηt, t)) = vm
(
z1
E(ι, a; ηt, t)

)
. Then for fixed

ηt,

v > vm for (ηt, k) where k > t.

In words, no manager (or worker) can have a higher salary than a teacher of managers.

4. If

ηρEθE ≥ 1, (d)

then any student’s cognitive ability will be weakly below his or her teacher’s cognitive skill and

strictly below if

either c > 0 or ηρEθE > 1 (e)

and (d) holds.

5. If

either c > 0 or
∂

∂k
v(·, 0+) > 0 (f)

then conditions (d) and (e) imply that any teacher of type (η, k) will have at most finitely many

academic descendants d(η, k), i.e. a teacher of teachers of teachers... will eventually reach a

teacher of managers or a teacher of workers which will end the teaching chain, except if v is not

differentiable in k at (η, k). Moreover, we have

∂

∂k
vt(η0, k0) =ρEη0θE

(
c
∂

∂k
bE(η1, k1) + ρEη1θE

(
c
∂

∂k
bE(η2, k2) + ρEη2θE

(
· · ·

· · ·+ ρEηd−1θE

(
c
∂

∂k
bE(ηd, kd) +

∂

∂k
v(ηd, kd)

))))

≥


1−(ρEηθE)d

1−ρEηθE ρEηθEc
∂
∂k bE(η, θdEk0) +

(
ρEηθE

)d ∂
∂kv(η, θdEk0) if ρEηθE 6= 1

dc ∂∂k bE(η, θdEk0) + ∂
∂kv(η, θdEk0) if ρEηθE = 1

Note 4.2.6. Condition (a) requires that the impact of teachers (which depends on ρE, θE, βE and η)
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is greater than the impact of workers (which depends on θL and bL) and than the impact of managers

(which depends on ρL, θL, βL and η).

Condition (b) forces the best worker to have a lesser impact on the production of the labour market

than the worst manager.

Condition (c) is a weaker condition than (a) which ensures that some teachers have more impact

than everyone in the labour market.

Condition (d) ensures that a teacher teaches at least one student and condition (e) makes this strictly

more than one student or puts the benefit from education bE in the objective functional.

Condition (f) ensures that the benefit from education bE is in the objective functional or that the

wage function of adults is strictly increasing at cognitive skill 0 for any communication skill.

Proof of Proposition 4.2.5. The proof mimics the proof of [13, Proposition 7]. By Lemma 4.2.4, vw/m/t

are convex in k, hence one-sided differentiable and two-sided differentiable a.e. At points where they are

differentiable, Lemma 2.1.6 allows the following estimate:

∂

∂k
vw(η, k) = (1− θL)b′L ((1− θL)k + θLm) (4.11)

∂

∂k
vm(η, k) = ρLηθLb

′
L ((1− θL)w + θLk) (4.12)

∂

∂k
vt(η, k) = ρEηθE

(
c
∂

∂k

∣∣∣
k=(1−θE)a+θEk

bE (ι, k) +
∂

∂k

∣∣∣
k=(1−θE)a+θEk

v (ι, k)

)
where m,w ∈ [0, k̄] and (ι, a) ∈ A are the maximisers of (4.8), (4.9) and (4.10) respectively.

1. To show that a worker’s cognitive skill lies weakly below any manager’s cognitive skill, we prove

that vm − vw is strictly increasing in its second variable (cognitive skill). As this function is

non-negative for all (ηm,m) managers and non-positive for all (ηw, w) workers this will show the

claim.

We have that
∂

∂k
vm(η, k) is minimal when w = 0 in (4.12) so its minimal value is

ρLηθLb
′
L(θLk),

and
∂

∂k
vw is maximal when m = k̄ in (4.11) so it maximal value is

(1− θL)b′L
(
(1− θL)k̄− + θLk

)
.

Now because of assumption (b) we have

∂

∂k
vm(η, k) ≥ ρLηθLb′L(θLk)

≥ ρLηθLb′L(θLk)

≥ (1− θL) sup
k∈K

b′L
(
(1− θL)kθE ; k̄−

)
by (b)

≥ ∂

∂k
vw(η, k).

2. We will show that
∂

∂k
vt(η, k) ≥ max

{
∂

∂k
vw,

∂

∂k
vm

}
.
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It is harder to get an estimate of
∂

∂k
vt because of its dependence on v. If a student of cognitive

skill a1 is taught by a teacher of cognitive skill k0, it will have cognitive skill

k1 = (1− θE)a1 + θEk0

as an adult.

So,

∂

∂k
vt(η, k0) = ρEηθE

(
c
∂

∂k1
bE(η1, k1) +

∂

∂k1
v(η1, k1)

)
(4.13)

≥ ρEηθEcb′E as v is increasing in its second variable

≥ b̄′L max {ρLη̄θL, 1− θL} by (a)

≥ max

{
∂

∂k
vm(ηt, k0),

∂

∂k
vw(ηt, k0)

}
.

3. Assume that a teacher of type (ηt, t) teaches a student of type (ι, k) who becomes a manager of

type (ηm = ι,m) = zE(ι, a; ηt, t).

We have that v ≥ vm with equality at (ηm,m), thus,

∂

∂k
v
(
ηm,m

+
)
≥ ∂

∂k
vm
(
vm,m

+
)
.

Now we have:

∂

∂k
vt(ηt, t

+) ≥ ρEηtθE
(
c
∂

∂k
bE
(
ηm,m

+
)

+
∂

∂k
vm
(
ηm,m

+
))

≥ ρEηθE
(
c
∂

∂k
bE
(
ηm,m

+
)

+ ρLηmθLb
′
L

(
zE(w,m+)

))
for a w ∈ [0, k̄)

≥ ρEηθE
(
c
∂

∂k
bE
(
ηm,m

+
)

+ ρLηmθLb
′
L

(
θLm

+
))

≥ ρLηθLb′L
(
(1− θL)m− + θLk

)
by (c).

Now (b) implies that for a fixed ηt, m is weakly above the cognitive skill of any worker. Thus,

∂

∂k
vm(ηt, t) ≤ ρLηtθLb′L

(
(1− θL)m− + θLt

)
≤ ρLη̄θLb′L

(
(1− θL)m− + θLt

)
,

which gives us
∂

∂k
vt(ηt, t

+) ≥ ∂

∂k
vm(ηt, t)

and the convexity of vt and strict convexity of vm (see proof of Lemma 4.2.4) imply that

∂

∂k
vt(ηt, k) ≥ ∂

∂k
vm(ηt, k)

for k > t.
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So vt(ηt, ·) > vm(ηt, ·) on (t, k̄).

4. By (4.13) and (d) for a student (ι, a) who will become an adult of type (ι, k) with teacher (ηt, t)

we have:

∂

∂k
vt(ηt, t) ≥ c

∂

∂k
bE(ι, k) +

∂

∂k
v(ι, k)

≥ ∂

∂k
v(ηa, k).

If ηρEθE > 1 the first inequality is strict and if c > 0 the second inequality is strict, so we conclude

that any student’s cognitive ability will be below his or her teacher’s cognitive skill.

5. Start with a teacher (η0, k0) with students type (ι1, a1) who will become adults of type (η1, k1 =

z1
E(ι1, a1; η0, k0)). If a student decides to be a worker or a manager, there is nothing to prove.

If a student becomes a teacher, we’ll denote (η2, a2) the type of his or her students. Similarly, as

long as the next generation are teachers they have type (ηn, kn = z1
E(ιn, an; ηn−1, kn−1)) and their

students have type (ιn+1, an+1).

We claim that there exists a finite d such that the students of type (ιd, ad) choose to become workers

or managers. Suppose not to get a contradiction. Then the teachers’ cognitive skills ki+1 < ki

converge to some k∞ ∈ K. Their communication skills ηi form a positive sequence. Then, taking

the limit in (4.13) gives:

lim
i→∞

∂

∂k
vt (ηi, ki) = lim

i→∞
ρEηiθE

(
c
∂

∂k
bE (ηi, ki) +

∂

∂k
v (ηi, ki)

)
.

Rearranging the terms, and noting that v = vt in this case, we get:

lim
i→∞

(1− ρEηiθE)
∂

∂k
vt (ηi, ki) = lim

i→∞
ρEηiθEc

∂

∂k
bE (ηi, ki) .

If (d) holds, the left hand side is ≤ 0 and the right hand side is ≥ 0. Adding condition (e) and (f)

gives that one of those inequalities is strict. As vt and bE are strictly positive, the strict inequality still

holds in the limit. This is a contradiction and we conclude that the sequence (ηi, ki) terminates at a

finite d. By iterating, we get:

∂

∂k
vt(η0, k0) =ρEη0θE

(
c
∂

∂k
bE(η1, k1) + ρEη1θE

(
c
∂

∂k
bE(η2, k2) + ρEη2θE

(
· · ·

· · ·+ ρEηd−1θE

(
c
∂

∂k
bE(ηd, kd) +

∂

∂k
v(ηd, kd)

))))

≥


1−(ρEηθE)d

1−ρEηθE ρEηθEc
∂
∂k bE(η, θdEk0) +

(
ρEηθE

)d ∂
∂kv(η, θdEk0) if ρEηθE 6= 1

dc ∂∂k bE(η, θdEk0) + ∂
∂kv(η, θdEk0) if ρEηθE = 1
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4.3 Perturbed problem

In section 4.5, we’ll try to find conditions for problems (4.2) and (4.5) to have (unique) solutions. To

do so, we will minimize the dual problem LP∗ under the additional hypothesis that v is convex and

non-decreasing in both variables and supermodular, following the strategy of Erlinger et al [13]. These

hypotheses and lemma 4.2.3 imply that u is strictly non-decreasing, strictly convex in both variables and

strictly supermodular1. Having non-decreasing wage functions in both variables is a natural hypothesis

as it means that an increase in a skill variable never corresponds to a decrease in wage. Supermodularity

means that an increase in one variable increases the impact of the other variable. That is, the wage of an

individual with higher cognitive skill is augmented more with an increase in his or her communication

skill than that of an individual with lower cognitive skill.

The technical reason to assume these hypotheses is to force the feasible functions to be in a compact

space, allowing us to extract limits from minimizing sequences. We then show that these additional

constraints on v are non-binding for our problem.

Note that if u and v are convex in each of their variables, they can only be discontinuous by having

a decreasing jump on the bottom or the left side of K
(
on (0, η) for η ∈ N or on (k, η) for k ∈ [0, k̄)

)
or an increasing jump on the top or the right side of K

(
on (k̄, η) for η ∈ N or on (k, η̄) for k ∈ [0, k̄)

)
.

If u and v are also increasing the first discontinuity is impossible and if they are lower semi-continuous,

the second discontinuity is impossible.

To prove that the extra conditions stating that v is convex and non-decreasing in both variables and

supermodular are non-binding, it is necessary to control our functions u, v on the full domain A,K not

only on spt α and spt κ (where κ = zE#ε is the unknown distribution of adults). Our original problem

doesn’t control the value of u and v outside the support of α and κ. Moreover, as v is non-strictly

supermodular and non-strictly convex in its first variable (in fact it is piecewise linear), we can’t prove

directly that it is supermodular and convex in its first variable.

To solve these problems, we introduce a perturbed version of the dual problem.

LP∗(δ) := inf
(u,v)∈Fδ

δ 〈u+ v〉A +

∫
Ā

u(ι, a)α(dι, da) (4.14)

where

〈v〉A :=
1

L(A)

∫
A

vdL

denotes the Lebesgue average of v over A, and Fδ is the set of (u, v) = (u0 +u1, v0 +v1) which differ from

bounded continuous functions u0, v0 by functions u1, v1 that are non-decreasing in the second variable,

such that 
v(ηw, w) +

1

ρLηm
v(ηm,m) ≥ bL (zL(ηw, w; ηm,m)) + δ

(
ηww + η2

w + ηm
)

1

ρEηt
v(ηt, t) + u(ι, a) ≥ cδbE (zE(ι, a; ηt, t)) + v(zE(ι, a; ηt, t)) + δηt,

(4.15a)

(4.15b)

similar to the non-perturbed problem2.

1Note that u and v don’t have to be jointly convex.
2Note that cδ might depend on δ if we want. For example, c = 0 can be approximated with cδ → 0, when δ → 0.
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These problems admit primal problems:

LP ∗(δ) := max
(ε,λ)∈Gδ

∫
Ā×K̄

(
cδbE (zE(ι, a; ηt, t)) + δηt

)
ε(dι, da; dηt, dt) (4.16)

+

∫
K̄×K̄

bL (zL(ηw, w; ηm,m)) + δ
(
ηww + η2

w + ηm
)
λ(dηw, dw; dηm, dm)

where Gδ is the set of pairs (ε, λ) ≥ 0 such that:
π1#λ+ π2#

(
λ

ρLη2

)
+ π2#

(
ε

ρEη2

)
= zE#ε+

δ

|K|
L|K

π1#ε = α+
δ

|A|
L|A.

(4.17a)

(4.17b)

We’ll use f = f(ηw, w, ηm,m) = ηww + η2
w + ηm for the function that multiplies δ in LP ∗(δ).

4.4 Strong duality

We now want to show that LP∗(δ) = LP ∗(δ). We first need the following lemma:

Lemma 4.4.1 (Endogenous distribution of adult skills). Fix a Borel measure α ≥ 0 on Ā. If ε ≥ 0 on

Ā× K̄ is such that π1#ε = α, then for each η̄−∆η ∈ (η, η̄) and k̄−∆k ∈ (0, k̄), the measure κ = zE#ε,

where zE is defined in section 4.1, satisfies:∫
[η̄−∆η,η]×[k̄−∆k,k̄]

κ(dηk, dk) ≤
∫

[η̄−∆η,η̄]×[ā− 1
1−θE

∆k,ā]

α(dηa, da).

Proof. The proof mimics the proof of [13, Lemma 14, first claim]. First note that

κ
(
[η̄ −∆η, η]× [k̄ −∆k, k̄]

)
= ε

(
z−1
E

(
[η̄ −∆η, η]× [k̄ −∆k, k̄]

))
.

We have that (ηa, a; ηt, t) is in z−1
E

(
[η̄ −∆η, η]× [k̄ −∆k, k̄]

)
if and only if

ηa ∈ [η̄ −∆η, η]

and

k̄ −∆k ≤ z1
E(ηa, a; ηk, k)

= (1− θE)a+ θEk

≤ (1− θE)a+ θE k̄

⇐⇒ a ≥ k̄ − 1

1− θE
∆k.
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So

κ
(
[η̄ −∆η, η]× [k̄ −∆k, k̄]

)
= ε

(
b−1

(
[η̄ −∆η, η]×

[
k̄ −∆k, k̄

]))
≤ ε

([
[η̄ −∆η, η]×

[
k̄ − 1

1− θE
∆k, k̄

]]
× K̄

)
= α

(
[η̄ −∆η, η]×

[
k̄ − 1

1− θE
∆k, k̄

])
.

Lemma 4.4.2 (Endogenous distribution of adult skills with disintegration theorem). Fix a Borel mea-

sure α ≥ 0 on Ā. Let αη be the disintegration of α with respect to η. If ε ≥ 0 on Ā × K̄ is such that

π1#ε = α, then for each k̄ −∆k ∈ (0, k̄), κ = zE#ε we have:∫
[k̄−∆k,k̄]

κη(dk) ≤
∫

[ā− 1
1−θE

∆k,ā]

αη(da)

where κη is the disintegration of κ with respect to η.

Proof. The proof follows the proof of [13, Lemma 14, first claim]. The disintegration of a measure is the

conditional expectation, so ∫
[k̄−∆k,k̄]

κη(dk) =

∫
[k̄−∆k,k̄]

κ(η, dk)∫
K̄
κ(η, dk′)

As κ is a probability measure, so are its marginals. So
∫
K̄
κ(η, dk′) = 1 and the result can be proven the

same way as Lemma 4.4.1.

We can now prove one side of the duality for the perturbed problems. This inequality is usually

straightforward to prove, but in this case, we need to show that v ∈ L1(Ā, zE#ε).

Proposition 4.4.3 (Easy direction of duality for unbounded functions). If Borel measures (ε, λ) ∈ Gδ
and Borel functions (u, v) ∈ Fδ are such that u ∈ L1(Ā, α) and uδ, vδ ∈ L1(A,L), then

α(u) + δ 〈u+ v〉A ≥ ε(cδbE(b) + δηt) + λ (bL(zL) + δf)

provided v ∈ L1(Ā, zE#ε).

If α satisfies the doubling condition∫
[ā−∆a,ā]

α(η, da) ≤ C
∫

[ā− 1
2 ∆a,ā]

α(η, da) ∀η ∈ [η, η̄] (4.18)

then v ∈ L1(Ā, zE#ε).

Note that it makes sense to assume that u ∈ L1(Ā, α) and uδ, vδ ∈ L1(A,L) in order to ensure that

LP∗(δ) is finite. Note also that Proposition 4.4.3 implies that

LP∗(δ) ≥ LP ∗(δ).
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Proof of Proposition 4.4.3. The proof follows the proof of [13, Proposition 8]. Take two pairs (ε, λ) and

(u, v) satisfying the hypotheses. The stability constraint in education sector (4.7) implies,

u(ι, a)− cδbE(zE(ι, a; ηt, t))− δηt ≥ v(zE(ι, a; ηt, t))−
1

ρEηt
v(ηt, t)

on Ā× K̄. Integrating over ε, we get∫
Ā×K̄

(
v(zE(ι, a; ηt, t))−

1

ρEηt
v(ηt, t)

)
ε(dι, da; dηt, dt)

≤
∫
Ā×K̄

(
u(ι, a)− cδbE(zE(ι, a; ηt, t))− δηt

)
ε(dι, da; dηt, dt) (4.19)

=

∫
Ā

u(ι, a)π1#ε(dι, da)− ε
(
cδbE(zE) + δηt

)
=

∫
Ā

u(ι, a)

(
α+

δ

|A|
L|A

)
− ε
(
cδbE(zE) + δηt

)
by (4.17b)

=α(u) + 〈δu〉A − ε
(
cδbE(zE) + δηt

)
.

Adding 〈δv〉K (and noting that K = A) we get:

α(u)− ε
(
cδbE(zE) + δηt

)
+ δ 〈u+ v〉A

≥〈δv〉K +

∫
Ā×K̄

(
v(zE(ι, a; ηt, t))−

1

ρEηt
v(ηt, t)

)
ε(dι, da; dηt, dt). (4.20)

Also, by integrating v over (4.17a) we have:

〈δv〉K +

∫
K̄

v(η, k)zE#ε(dη, dk)−
∫
K̄×K̄

v(ηk, k)

ρEηk
ε(dι, da; dηk, dk) (4.21)

=

∫
K̄×K̄

v(ηk, k)λ(dηk, dk; dηm, dm) +

∫
K̄×K̄

1

ρLηk
v(ηk, k)λ(dηw, dw; dηk, dk)

=

∫
K̄×K̄

(
v(ηw, w) +

1

ρLηm
v(ηm,m)

)
λ(dηw, w; dηm,m)

≥
∫
K̄×K̄

(
bL(zL(ηw, w; ηm,m)) + δf

)
λ(dηw, w; dηm,m) by (4.15a). (4.22)

If v ∈ L1(Ā, zE#ε), (4.20) equals (4.21) and we conclude that

α(u) + δ 〈u+ v〉A ≥ ε(cδbE ◦ zE + δηt) + λ (bL ◦ zL + δf) .

Now we must show that (4.18) implies that v ∈ L1(Ā, zE#ε). We supposed that (u, v) = (u0 +

u1, v0 + v1) differ from bounded continuous functions u0 ∈ C(Ā), v0 ∈ C(K̄) by functions that are

non-decreasing in the second parameter u1, v1. Suppose, without loss of generality, that v1 is strictly

increasing in the second parameter.

Suppose that α satisfies (4.18). Using the layer cake representation, we have:∫
K̄

v1(ηk, k)κ(dηk, dk) =

∫ ∞
0

κ
[
v−1

1 (y,∞)
]
dy.
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Let v−1
1 (y,∞)1 be the lowest η such that there exists a k such that v1(η, k) > y and let k = v−1

1 (y,∞)(η)

be the lowest k such that v1(η, k) > y. We have

κ
[
v−1

1 (y,∞)
]

=

∫
[(v−1

1 (y,∞)1,η̄]

∫
[(v−1

1 (y,∞)(η),k̄]
κ(dηk, dk)

=

∫
[(v−1

1 (y,∞)1,η̄]

∫
[(v−1

1 (y,∞)(η),k̄]
κη(dk)π1#κ(dη)

=

∫
[(v−1

1 (y,∞)1,η̄]

∫
[k̄−(k̄−v−1

1 (y,∞)(η)),k̄]
κη(dk)π1#κ(dη)

≤
∫

[(v−1
1 (y,∞)1,η̄]

∫
[
ā− 1

1−θE (k̄−v−1
1 (y,∞)(η)),k̄

] αη(dk)π1#κ(dη)

≤
∫

[(v−1
1 (y,∞)1,η̄]

∫
[
ā− 1

1−θE (k̄−v−1
1 (y,∞)(η)),k̄

] αη(dk)π1#α(dη)

≤ Cd
∫

[(v−1
1 (y,∞)1,η̄]

∫
[
ā− 1

2d
1

1−θE (k̄−v−1
1 (y,∞)(η)),k̄

] αη(dk)π1#α(dη)

where the first inequality follows from Lemma 4.4.2, the second from the fact that π1#κ = π1#α, and

the third from (4.18).

Letting d = − ln(1−θE)
ln 2 > 0, we get

κ
[
v−1

1 (y,∞)
]
≤ C

− ln(1−θE)

ln 2

∫
[(v−1

1 (y,∞)1,η̄][(v−1
1 (y,∞)(η),ā]

αη(dk)π1#α(dη)

= C
− ln(1−θE)

ln 2 α
[
v−1

1 (y,∞)
]
.

Setting s = t in (4.15b), we have that

u(η, k) ≥ cδbE(η, k) + δηt +
ρEη − 1

ρEη
v(η, k),

so

u(η, k) ≥ ρEη − 1

ρEη
v(η, k)

≥
ρEη − 1

ρEη
v(η, k).

Thus, considering u1 and v1, we have

u1(η, k) ≥
ρEη − 1

ρEη
(v1(η, k) + v0(η, k))− u0(η, k).

As v0 and u0 are bounded, we conclude that there exists a constant c such that

u1(η, k) ≥
ρEη − 1

ρEη
(v1(η, k) + c) .

Setting
ρEη − 1

ρEη
= c′,
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we have that

u1(η, k) ≥ c′ (v1(η, k) + c) .

So ∫
K̄

v1(ηk, k)κ(dηk, dk) ≤ C
− ln(1−θE)

ln 2

∫ ∞
0

α[v−1
1 (y,∞)]dy

= C
− ln(1−θE)

ln 2

∫
Ā

v1(ηa, a)α(dηa, da)

≤ C
− ln(1−θE)

ln 2

∫
Ā

1

c′
u1(ηa, a)− cα(dηa, da)

= C
− ln(1−θE)

ln 2

(
1

c′

∫
Ā

u1(ηa, a)α(dηa, da)− cα(Ā)

)
<∞

because u1 ∈ L1(Ā, α) and α(Ā) <∞.

To prove the other side of the duality, we will use the duality theorem Lemma 2.4.1.

Theorem 4.4.4 (No duality gap). Fix δ, cδ > 0, 0 < θE < 1, 0 < θL < 1, η̄ > η > 1 and ā = k̄ > 0. Let

A = K = [η, η̄) × [0, k̄) and let α be a Borel probability measure on Ā satisfying the doubling condition

(4.18) at ā. Define zE , zL, bE , bL as in section 4.1. Then the optimal values of the primal (4.14) and

the dual (4.16) problem are the same;

LP ∗(δ) = LP∗(δ).

Proof. Following the proof of [13, Theorem 18], we will apply Lemma 2.4.1 with

A = C(Ā)⊕ C(K̄)

B = C(Ā× K̄)⊕ C(K̄ × K̄).

So

A∗ = Γ(Ā)⊕ Γ(K̄)

B∗ = Γ(Ā× K̄)⊕ Γ(K̄ × K̄),

where Γ(X) is the set of Borel measures on X. Define,

ϕδ : C(Ā)⊕ C(K̄)→ R ∪ {∞}

(u, v) 7→ δ 〈u+ v〉A +

∫
Ā

u(ηa, a)α(dηa, da),

ϕ∗δ : Γ(Ā)⊕ Γ(K̄)→ R ∪ {∞}

(µ, ν) 7→

{
0 if (µ, ν) =

(
α+ δ

|A|L|A,
δ
|K|L|K

)
+∞ otherwise,
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and

φδ : C(Ā× K̄)⊕ C(K̄ × K̄)→ R ∪ {∞}

(ũ, ṽ) 7→


0 if ũ(ηa, a; ηk, k) ≥ cδbE(zE(ηa, a; ηk, k)) + δηt

and ṽ(ηw, w; ηm,m)) ≥ bL(zL(ηw, w; ηm,m)) + δf

+∞ otherwise,

φ∗δ : Γ(Ā× K̄)⊕ Γ(K̄ × K̄)→ R ∪ {∞}

(ε, λ) 7→

{
ε(cδbE(b) + δηt) + λ (bL(zL) + δf) if ε ≤ 0 and λ ≤ 0

+∞ otherwise.

It is easy to check that ϕ∗δ and φ∗δ are indeed the Legendre transforms of ϕδ and φδ.

Now let

H

(
u

v

)
((ι, a; ηt, t), (ηw, w; ηm,m)) =

(
u(ι, a) + 1

ρEηt
v(ηt, t)− v(zE(ι, a; ηt, t))

v(ηw, w) + 1
ρLηm

v(ηm,m)

)

H∗

(
ε

λ

)
=

 π1#ε

λ1 +
(

λ
ρLη2

)2

+
(

ε
ρEη2

)2

− zE#ε

 .

Once again, it is easy to show that〈
H

(
u

v

)
,

(
ε

λ

)〉
=

〈(
u

v

)
, H∗

(
ε

λ

)〉
.

To apply Lemma 2.4.1, we need to show that φδ is continuous and real-valued at some point in

H(Dom ϕδ). Let (u, v) ∈ Dom ϕδ. We have that u, v ∈ L1(A,LA) and u ∈ L1(Ā, α), which means

that LP∗(δ) is finite. Moreover, φδ(H(u, v)) = 0 if (u, v) are feasible for LP∗(δ). So the conditions are

achieved because the conditions of being feasible and finite for LP∗(δ) are open and there exists such a

pair; for example,

(u, v) = (cδbE(η̄, k̄) + bL(k̄) + δ
(
η̄k̄ + η̄2 + 2η̄

)
, bL(k̄) + δ

(
η̄k̄ + η̄2 + η̄

)
).

Now Lemma 2.4.1 tells us that

inf
(u,v)∈C(Ā)⊕C(K̄)

ϕδ(u, v) + φδ(H(u, v))

= max
(ε,λ)∈Γ(Ā×K̄)⊕Γ(K̄×K̄)

−ϕ∗δ(H∗(ε, λ))− φ∗δ(−ε,−λ).

By definition of ϕδ and φδ, we have that

inf
(u,v)∈C(Ā)⊕C(K̄)

ϕδ(u, v) + φδ(H(u, v))

= inf
(u,v)∈C(Ā)⊕C(K̄)

H(u,v)1≥cδbE(b)+δηt
H(u,v)2≥bL(zL)+δf

δ 〈u+ v〉A +

∫
Ā

u(ηa, a)α(dηa, da).
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Then using the definition of H we get that

inf
(u,v)∈C(Ā)⊕C(K̄)

ϕδ(u, v) + φδ(H(u, v))

= inf
(u,v)∈C(Ā)⊕C(K̄)

u(ι,a)+ 1
ρEηt

v(ηt,t)−v(zE(ι,a;ηt,t))≥cδbE(b)+δηt

v(ηw,w)+ 1
ρLηm

v(ηm,m)≥bL(zL)+δf

δ 〈u+ v〉A +

∫
Ā

u(ηa, a)α(dηa, da)

≥ LP∗(δ)

the inf in LP∗(δ) is taken over a larger class of functions.

Simillary, we have that:

max
(ε,λ)∈Γ(Ā×K̄)⊕Γ(K̄×K̄)

−ϕ∗δ(H∗(ε, λ))− φ∗δ(−ε,−λ)

=LP ∗(δ).

So LP ∗(δ) ≥ LP∗(δ), and equality follows from Proposition 4.4.3.

We now use duality to identify conditions for optimality.

Corollary 4.4.5 (Characterizations of optimality). A pair of non-negative feasible measures (ε, λ) ∈ Gδ
maximizes the primal problem LP ∗(δ) if there exists feasible (u, v) ∈ Fδ satisfying the hypothesis of

Proposition 4.4.3 such that

α(u) + δ 〈u+ v〉A = ε(cδbE(b) + δηt) + λ (bL(zL) + δf) .

Proof. The proof follows the proof of [13, Corollary 9, first claim]. Let ε, λ ≥ 0 be a pair of feasible

measures on Ā2. Let (u, v) be feasible be such that

α(u) + δ 〈u+ v〉A = ε (cδbE(b) + δηt) + λ (bL(zL) + δf) . (4.23)

By Proposition 4.4.3,

ε (cδbE(b) + δηt) + λ (bL(zL) + δf) ≤ LP ∗(δ) ≤ LP∗(δ) ≤ α(u) + δ 〈u+ v〉A .

So by (4.23), we have equality everywhere and (ε, λ) are optimal for LP ∗(δ), while (u, v) are optimal for

LP∗(δ).

Corollary 4.4.6 (Characterizations of optimality). Let (u, v) ∈ Fδ, satisfying the hypothesis of Propo-

sition 4.4.3. The pair (u, v) minimize the LP∗(δ) if and only if there exists non-negative (ε, λ) ∈ Gδ

such that

α(u) + δ 〈u+ v〉A = ε(cδbE(b) + δηt) + λ (bL(zL) + δf) .

Proof. The proof follows the proof of [13, Corollary 9, second claim]. The proof for the necessary

condition, for (u, v) to be minimizers, is identical then the proof of Corollary 4.4.5.
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For the sufficient condition, we know from Theorem 4.4.4 that LP ∗(δ) = LP∗(δ). Suppose (u, v) is

optimal, so α(u) + δ 〈u+ v〉A = LP∗(δ). Then the result follows from Lemma 4.5.4 (existence of optimal

measures).

The next corollary shows that the constraints attain equality a.e.

Corollary 4.4.7 (Characterizations of optimality). Suppose (ε, λ) ∈ Gδ and (u, v) ∈ Fδ, then we have

that

α(u) + δ 〈u+ v〉A = ε(cδbE(b) + δηt) + λ (bL(zL) + δf)

if and only if ε(f) = λ(g) = 0, where

f(ι, a; ηt, t) = u(ι, a) +
v(ηt, t)

ρEηt
− cδbE(zE(ι, a; , ηt, t)) + δηt − v(zE(ι, a; ηt, t)) ≥ 0

and

g(ηw, w; ηm,m) = v(ηw, w) +
v(ηm,m)

ρLηm
− bL(zL(ηw, w; ηm,m))− δf ≥ 0.

Proof. This proof follows the proof of [13, Corollary 9, third claim]. We note that ε(f) = 0 is equivalent

to the equality in (4.19) from Proposition 4.4.3, and λ(g) = 0 is equivalent to equality in (4.22) from

Proposition 4.4.3. So,

α(u) + δ 〈u+ v〉A = ε(cδbE(b) + δηt) + λ (bL(zL) + δf)

is equivalent to both of those inequalities being in fact equalities, and the result follows.

4.5 Existence of solution

The following lemma allows us to take converging subsequences, which will be essential when we prove

that the infimum is attained.

Lemma 4.5.1 (Compactness for wage functions – adults). Let vi : K → [0,∞) be a sequence of convex,

non-decreasing in both variables and supermodular functions satisfying for all i:

for a.e. η ∈ N, ∃gη such that
∂2

∂k2
vi(η, k) ≥ gη(k) for a.e. k ∈ [0, k̄);

for a.e. k ∈ [0, k̄), ∃gk such that
∂2

∂η2
vi(η, k) ≥ gk(η) for a.e. η ∈ N ;

and
∂2

∂η∂k
vi(η, k) ≥ g for a.e. (k, η) ∈ K

where 0 ≤ g, gη/k and gk ∈ L1
loc([η, η̄]), gη ∈ L1

loc([0, k̄)). Then

• for all η, { vi(η, ·) } admits a subsequence { vil(η, ·) } which converges pointwise to a limit vη(·):

∀k ∈ [0, k̄) lim
l→∞

vil(η, k) = vη(k)

which is real valued on [0, k̃η), and infinity on (k̃η, k̄), and
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• for all k, { vi(·, k) } admits a subsequence { vil(·, k) } which converges pointwise to a limit vk(·):

∀η ∈ N lim
l→∞

vil(η, k) = vk(η)

which is real valued on [0, η̃k), and infinity on (η̃k, η̄).

Both limit functions are in fact the same:

vη(k) = vk(η) = v∞(η, k).

Convergence is uniform on compact subsets of

[0, inf
k
η̃k)× [0, inf

η
k̃η).

Moreover, the bounds

∂2

∂k2
v∞(η, k) ≥ gη(k)

∂2

∂η2
v∞(η, k) ≥ gk(η)

∂2

∂η∂k
v∞(η, k) ≥ g

still hold in the sense of distribution.

As v is convex in both variables, but is not necessarily jointly convex, we need to fix one variable

and take the limit for the proof.

Proof of Lemma 4.5.1. The proof follows the proof of [13, Lemma 11, First and Second Claim]. We

prove the first bullet point. The proof of the second is identical.

Fix η. By the fundamental theorem of calculus, we have:

vi(η, k
′) = vi(η, 0) +

∫ k′

0

∂

∂k
vi(η, k)dk, (4.24)

as vi are convex in k, and
∂

∂k
vi(η, k) are non-decreasing in k for all i. Thus, we can use Helly’s selection

theorem to get a subsequence with converging non-decreasing limit
∂

∂k
vη(k).

By choosing a further subsequence, we prove convergence of vi(η, 0) towards vη(0). If no such

subsequence exists, we let vη(0) = ∞ and we can conclude with k̃η = 0. Otherwise, we can choose

k̃η ∈ [0, k̄] such that
∂

∂k
vη(k) <∞ if k < k̃η and

∂

∂k
vη(k) =∞ for k > k̃η.

For k′ < k̃η, Lebesgue’s dominated theorem with
∂

∂k
vη(k′) as the dominant allows us to pass to the

limit in (4.24) to obtain a limit vη(k′).

As mentioned above, the proof of the second bullet point is the same.

The fact that vη(k) = vk(η) = v∞(η, k) follows from fixing (η, k) and taking a subsequence to get

convergence for vη and vk. The limit has to be the same.
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To see that convergence is uniform on compact subsets of

[0, inf
k
η̃k)× [0, inf

η
k̃η)

we need to apply the fundamental theorem of calculus twice to write

vi(η
′, k′) = vi(0, 0) +

∫ η′

0

∂

∂η

(
vi(η, 0) +

∫ k′

0

∂

∂k
vi(η, k)dk

)
dη

and apply Lebesgue dominated convergence twice.

Now we prove that the bound
∂2

∂k2
v∞(η, k) ≥ gη(k)

holds. Note that the bound
∂2

∂k2
vi(η, k) ≥ gη(k)

holds in the distributional sense, i.e.∫ kη

0

(f ′′(k)vi(η, k)− f(k)gη(k)) dk ≥ 0

for each smooth compactly supported test function 0 ≤ f ∈ C∞c ([0, kη]). Since f, f ′′ are bounded,

vi(η, ·) is also bounded on [0, kη). Therefore, we can use Lebesgue’s dominated convergence theorem

again to conclude that the inequality survives the limit.

The bound on the second derivative with respect to η is proven the same way.

For the cross derivative bound, the proof is the same, but the integral is over K and the function

f : K → R.

Lemma 4.5.2 (Compactness for wage functions – students). Under the same hypothesis as Lemma

4.5.1, if kη > 0 then for fixed η, the function:

ui(η, a) = max
(ηt,t)∈K

cbE (zE(η, a; ηt, t)) + vi (zE(η, a; ηt, t))−
1

ρEηt
vi(ηt, t)

diverges for a > kη as i→∞ along the converging subsequence of Lemma 4.5.1.

Proof. The proof follows the proof of [13, Lemma 11, third claim]. If a > kη, there exits a k < kη such

that z1
E(η, a; ηt, k) > kη. For this k, cbE(zE(η, a; ηt, k)) <∞, v∞(zE(η, a; ηt, k)) =∞ and v∞(ηt, k) <∞,

so u0(η, a) =∞.

Corollary 4.5.3 (Convergence uniform from below). Suppose we have a sequence of functions vi : K →
[0,∞) satisfying the hypotheses of Lemma 4.5.1 that converge to v∞.

Suppose that for a fixed η, v∞(η, ·) is real valued for k ∈ [0, kη) and infinite for k ∈ (kη, k̄). If

lim
k→kη
k<kη

v∞(η, k) <∞

then

0 ≤ lim inf
i→∞

inf
k∈[0,kη)

vi(η, k)− v∞(η, k).
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If

lim
k→kη
k<kη

v∞(η, k) =∞

the sequence grows uniformly, i.e. for all c <∞, i′ <∞ large enough implies

vi(η, k) ≥ c

for all k > k0 − 1
i′ and i > i′.

Proof. This proof follows the proof of [13, Corollary 12]. Fix δ and take k′ < kη such that v∞(η, k′) >

v∞(η, k−η )− δ/2. Take i to be large enough, so that

vi(η, k
′) > v∞(η, k′)− δ/2

> v∞(η, k−η )− δ.

So for all k ∈ [k′, kη),

vi(η, k) > v∞(η, k)− δ

because vi(η, ·) is monotone. Thus the inequality lim infi→∞ vi(η, k)−v∞(η, k) ≥ 0 holds for k ∈ [k′, kη).

For k ∈ [0, k′] the conclusion follows from the fact that convergence is uniform for compact subset of

[0, kη).

If

lim
k→kη
k<kη

v∞(η, k) =∞,

for c < ∞, take i′ large enough that v∞(k0 − 1
i′ ) > c and then take i′ larger if necessary to ensure

vi
(
k0 − 1

i′

)
> c for all i > i′. Monotonicity of vi for all i conclude the proof.

Lemma 4.5.4 (Existence of optimal measure). For fixed δ, cδ non-negative and θE, θL, ρE, ρL positive,

θE , θL ∈ (0, 1), α a Borel probability measure on Ā, then there exists feasible measures εδ ≥ 0 on Ā× K̄
and λδ ≥ 0 on K̄ × K̄ maximizing the perturbed problem (4.16).

Proof. This proof follows the proof of [13, Lemma 17]. To prove the existence of maximizer, we show

that the objective functional is continuous and the feasible set is compact and non-empty.

• Since bE ◦ zE and bL ◦ zL are continuous, the linear functional to optimize (4.16) is continuous.

• The continuous functions C(Ā × K̄) on the compact square Ā × K̄ equipped with the supremum

norm ‖·‖∞ form a Banach space. Borel positive measures on Ā×K̄ are equivalent to non-negative linear

functional on Ā×K̄ by the Riesz-Markov-Kakutani representation theorem. These functionals are in the

dual of C(Ā× K̄). As the ε’s are probability measures, they have unitary norm. As the λ’s are positive

measures with norm between ρη and ρη̄ they are contained into a cylinder. By the Banach-Alaoglu

theorem, they form a weak-∗ subset in the dual of C(Ā× K̄).

By definition of weak-∗ topology, a sequence εi converge to ε∞ if and only if the integral εi(f) converge

to ε∞(f) for all f ∈ C(Ā× K̄).
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Suppose (ε, λ) ∈ Gδ. Then we have∫
K̄2

(
f(ηw, w) +

f(ηm,m)

ρLηm

)
λ(ηw, w; ηm,m)

= 〈δf〉K +

∫
Ā×K̄

(
f(zE(ι, a; ηt, t))−

f(ηt, t)

ρEηt

)
ε(ι, a; ηt, t) and∫

Ā×K̄
f(ι, a)ε(dι, da; dηt, dt) =

∫
Ā

f(ι, a)α(dι, a) + 〈fδ〉A

(4.17a)

(4.17b)

for each f ∈ C(Ā). Thus, Gδ is compact.

• We need to prove that Gδ is non-empty. Suppose ε concentrates on the diagonal as follows:

ε = (1× 1)#

(
α+

δ

L(A)
L|A

)
.

Then the marginals of ε are equal to zE#ε because zE(ι, a; ι, a) = (ι, a):

π1#ε = π2#ε = κ = zE#ε = α+
δ

L(A)
L|A).

In this case, it is obvious that (4.17b) is satisfied. Taking

λ(η1, k1; η2; k2) =
1− 1

ρEη1

1 + 1
ρLη1

ε(η1, k1; η2, k2) +
1

1 + 1
ρLη1

(1× 1)#

(
δ

L(A)
L|A

)

ensures that (4.17a) is satisfied too. Thus Gδ is non-empty.

Theorem 4.5.5 (Existence of minimizing wages). For fixed A = K, θE , θL, satisfying conditions of

section 4.1, α satisfying (4.18) and null on sets of Hausdorff dimension one, the infimum of the dual

problem (4.5) is attained by functions (u, v) satisfying v = max { vw, vm, vt } on K̄, and

u (ι, a) = sup
(ηt,t)∈K̄

cbE(b (ι, a; ηt, t)) + v (b (ι, a; ηt, t))−
1

ρEηt
v (ηt, t)

on Ā, where vw/m/t are defined in section 4.2. Moreover, u, v are continuous, convex in their second

variable, non-decreasing in each variable, supermodular and, real-valued on N × [0, ā).

Proof. The proof follows the proof of [13, Theorem 13].

Existence of optimizer for fixed δ > 0, cδ > 0.

We will first study the perturbed dual problem (4.14), for 0 < δ < 1 and cδ := c > 0 (or cδ = δ if

c = 0) under the constraints (4.15a) and (4.15b). We will add the artificial constraint that v is convex

and non-decreasing in both variables and supermodular. First, we want to prove that there exists a

minimizer.

Note that, as pointed out in the proof of Theorem 4.4.4, the pair of constant functions

(u, v) = (cδbE(η̄, k̄) + bL(k̄) + δ
(
η̄k̄ + η̄2 + 2η̄

)
, bL(k̄) + δ

(
η̄k̄ + η̄2 + η̄

)
)
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is feasible, i.e. satisfies (4.15a) and (4.15b). Thus, we have an upper bound of

δ
〈
2b̄L + cδ b̄E + δ

(
2η̄k̄ + 2η̄2 + 4η̄

)〉
A

+

∫
Ā

(
cδ b̄E + b̄L + δ

(
η̄k̄ + η̄2 + 2η

))
α(dι, da)

for the infimum.

Let (uiδ, v
i
δ) be a minimizing sequence for (4.14). Lemma 4.5.1 allows us to find a converging sub-

sequence for both functions. The function vδ that is the limit is non-decreasing and convex in both

variables.

The limit (uδ, vδ) satisfies the constraints (4.15a) and (4.15b) because pointwise limits conserve

inequalities.

The limit (uδ, vδ) minimize (4.14) by Fatou’s lemma as follows:

δ 〈uδ + vδ〉A +

∫
Ā

uδ(ι, a)α(dι, a) ≤ lim inf
i→∞

δ
〈
uiδ + viδ

〉
A

+

∫
Ā

uiδ(ι, a)α(dι, a)

= LP∗(δ).

Properties of the optimizer (uδ, vδ).

• By Lemma 4.5.1, for each fixed η, there exists a kη such that the limit vδ is finite for k < kη and

infinite for k > kη. Because LP∗(δ) is bounded, kη = k̄. Similarly, we can prove that vδ is finite for

η < η̄ for all k ∈ [0, k̄).

• Note that

uδ(η, a) ≥ max
(ηt,t)∈K

cbE(zE(η, a; ηt, t)) + vδ(zE(η, a; ηt, t))−
1

ρEηt
vδ(ηt, t) (4.26)

is in fact an equality. If is isn’t, we can improve the objective functional by replacing uδ by the right

hand side of (4.26).

• Using (u, v) = (uδ, vδ), we define (vwδ , v
m
δ , v

t
δ) := (vw, vm, vt) and v̄δ := max { vw, vm, vt }. Because

the solution (uδ, vδ) is feasible, we have vδ ≥ v̄δ.

We want to prove that vδ = v̄δ. To do so, we can prove that the function φ = vδ − v̄δ is zero on its

domain.

Consider the perturbation

vλ := (1− λ)vδ + λv̄δ,

which is still convex and non-decreasing in both variables, and supermodular for λ ∈ (0, 1). We will

prove that for λ small enough, the pair (uδ, v
λ) also respects the other constraints, i.e. (4.15a) and

(4.15b), unless the continuous function φ ∼= 0 in K. If this is the case, this pair improves the objective,

which is a contradiction and we conclude that vδ = v̄δ.

Noting that

vλ = vδ − λφ

= v̄δ + (1− λ)φ
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we have

vλ(ηw, w) +
1

ρLηm
vλ(ηm,m)− bL(zL(ηw, w; ηm,m))− δ

≥vw(ηw, w) +
1

ρLηm
vδ(ηm,m)− bL(zL(ηw, w; ηm,m))

− δf + (1− λ)φ(ηw, w)− λ

ρLηm
φ(ηm,m) (v̄δ ≥ vw)

≥vw(ηw, w)− sup
(ηm,m)∈K̄

{
bL(zL(ηw, w; ηm,m)) + δf − 1

ρLηm
vδ(ηm,m)

}

+ (1− λ)φ(ηw, w)− λ

ρLηm
φ(ηm,m)

=(1− λ)φ(ηw, w)− λ

ρLηm
φ(ηm,m) (def of vw (4.8))

=φ(ηw, w)

(
1− λ

(
1 +

1

ρLηm

φ(ηm,m)

φ(ηw, w)

))
(4.27)

and

vλ(ηw, w) +
1

ρLηm
vλ(ηm,m)− bL(zL(ηw, w; ηm,m))− δf

=vδ(ηw, w) +
1

ρLηm
v̄δ(ηm,m)− bL(zL(ηw, w; ηm,m))− δf − λφ(ηw, w) +

1− λ
ρLηm

φ(ηm,m)

≥φ(ηm,m)

ρLηm

(
1− λ

(
1 + ρLηm

φ(ηw, w)

φ(ηm,m)

))
. (4.28)

We want to prove that

vλ(ηw, w) +
1

ρLηm
vλ(ηm,m)− bL(zL(ηw, w; ηm,m))− δ ≥ 0 (4.15a)

to show that the constraint is satisfied for vλ. If one or both of φ(ηw, w) and φ(ηm,m) vanish, there is

nothing to prove. If both φ(ηw, w) and φ(ηm,m) are positive, we have that one of (4.27) and (4.28) is

positive taking λ < 1/2.

Now to prove that (4.15b) is satisfied, observe that by adding

uδ(ι, a)− cδbE(zE(ι, a; ηt, t))

to

1

ρEηt
vλ(ηt, t)− vλ(zE(ι, a; ηt, t))

=
1

ρEηt
v̄δ(ηt, t)− vδ(zE(ι, a; ηt, t)) +

1− λ
ρEηt

φ(ηt, t) + λφ(zE(ι, a; ηt, t)),
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we get

1

ρEηt
vλ(ηt, t) + uδ(ι, a)− vλ(zE(ι, a; ηt, t))− cδbE(zE(ι, a; ηt, t))− δηt

≥ 1

ρEηt
vt(ηt, t) + uδ(ι, a)− vδ(zE(ι, a; ηt, t))− cδbE(zE(ι, a; ηt, t))− δηt

+
1− λ
ρEηt

φ(ηt, t) + λφ(zE(ι, a; ηt, t)) v̄δ ≥ vt

≥ 1

ρEηt

(
vt(ηt, t)− ρEηt sup

(ι,a)∈Ā

{
vδ(zE(ι, a; ηt, t)) + cδbE(zE(ι, a; ηt, t))

+ δηt − uδ(ι, a)
})

+
1− λ
ρEηt

φ(ηt, t) + λφ(zE(ι, a; ηt, t))

=
1− λ
ρEηt

φ(ηt, t) + λφ(zE(ι, a; ηt, t)) by (4.10)

≥0.

This proves that vδ = v̄δ on K.

• We also prove that the artificial constraints forcing vδ to be non-decreasing and convex in both

variables and supermodular are in fact respected in the original problem.

Similarly to Lemma 4.2.4, we can find bounds on derivatives of v̄δ as follows:

∂v̄δ(η, k)

∂k
≥ min

{
(1− θE)b′L, ηρLθLb

′
L, ρEηtθE

(
cδb
′
E + inf

(η,k)

∂

∂k
vδ(η, k)

)}
;

∂2v̄δ(η, k)

∂k2
≥ min

{
(1− θE)2b′′L, (θL)2ηρLb

′′
L, ρEηtθ

2
E

(
cδb
′′
E + inf

(η,k)

∂2

∂k2
vδ(η, k)

)}
;

∂2v̄δ(η, k)

∂η∂k
≥ min

{
δ, ρLθLb

′
L, ρEθE

(
cδb
′
E + inf

(η,k)

∂

∂k
vδ(η, k)

)}
;

∂

∂η
v̄δ ≥ δη; and

∂2

∂η2
v̄δ ≥ δ

a.e.

So v̄δ = vδ is strictly non-decreasing, strictly convex in both variables, and strictly supermodular.

We now want to show that (uδ, vδ) minimizes (4.14) if we remove the artificial constraint. Suppose

for contradiction that the objective function is lower at some other feasible pair (u, v) ∈ Fδ.

If u ∈ C2(Ā), v ∈ C2(K̄), then

(u, v) = (1− s)(uδ, vδ) + s(u, v) ∈ Fδ

also lowers the objective for s > 0. For a small enough s, v inherits the monotonicity and convexity

properties of vδ, contradicting the optimality of (uδ, vδ).

If u /∈ C2(Ā), or v /∈ C2(K̄), we want to get the same contradiction. First, we can assume u, v

are continuous and bounded by the proof of Theorem 4.4.4. Then, we can apply the Stone-Weierstrass
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theorem to approximate u, v by uniformly smooth functions (ũσ, ṽσ) such that

u+ σ ≤ ũσ ≤ u+ 2σ

v ≤ ṽσ ≤ v + σ.

With those bounds, we have that (ũσ, ṽσ) is in Fδ if (u, v) is.

Using a small enough σ, (ũσ, ṽσ) lowers the objective value, thus we can get the same contradiction.

We conclude that (uδ, vδ) minimizes (4.14) in Fδ.

Existence of optimizer for δ = 0.

By Lemma 4.5.4, there exists εδ, λδ maximizing the dual problem (4.16). As LP∗(δ) = LP ∗(δ), we

have

α(uδ) + δ 〈uδ + vδ〉A = cδεδ (bE(b)) + λδ (bL(zL)) .

Lemma 4.5.1 allows us to find a subsequence (uδi , vδi) that admits a limit (u0, v0) pointwise on Ā×K̄
and uniformly on compact subsets of ([

0, inf
k
η̃k

)
×
[
0, inf

η
k̃η

))2

where η̃k, k̃η are defined in Lemma 4.5.1. We will write δ → 0 to refer to the converging subsequence.

We want to show that kη = k̄ for all η. Suppose for contradiction that kη < k̄. Then by Corollary

4.5.3, uδ(η, a)→∞ uniformly on a ∈ [(kη + k̄), k̄]. As vw/m/t depend linearly on η, if uδ(η, a)→∞ for

an η ∈ [η, η̄] then it diverges for all η ∈ [η, η̄]. There exists an η′ such that

η′ × [(kη + k̄), k̄] ∩ K̄ 6= ∅.

Thus, we have a contradiction using Fatou’s Lemma as in Step 1 of the proof of this Theorem.

The fact that η̃k = η̄ for all k follows from the fact that vw/m/t depend linearly on η.

Properties of (u0, v0). All of those properties are proven as in [13].

• We show that equality still holds in (4.26) when δ = 0. Let

fδ(ι, a; ηt, t) :=uδ(ι, a) +
1

ρEηt
vδ(ηt, t)− cδbE(zE(ι, a; ηt, t))− δvt

− vδ(zE(ι, a; ηt, t))

≥0.

As
∂2

∂ι∂ηt
fδ = 0 and

∂2

∂a∂t
fδ ≤ 0,

the zero set of fδ, Zδ is non-decreasing in ι and ηt and in a and t.

The zero set Zδ of fδ is closed in A ∩ K̄ and

A× K̄ ∩ spt εδ ⊂ Zδ

by Corollary 4.4.7.
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Thus, for all (ι, a; ηt, t) ∈ Zδ∫
(ι,η̄]×(a,ā]×K̄

εδ(dη
s, das; dηt, dkt) ≤

∫
Ā×[ηt,η̄]×[t,k̄]

εδ(dη
s, das; dηt, dkt).

Equations (4.17a) and (4.17b) give us the left and right marginals of ε. Expending the left marginal,

we get ∫
(ι,η̄]×(a,ā]×K̄

εδ(dη
s, das; dηt, dkt) = α ((ι, η̄]× (a, ā]) + δ∆ι∆a,

where ∆ι = η̄ − ι and ∆a = ā− a.

Expending the right marginal gives:∫
Ā×[ηt,η̄]×[t,k̄]

εδ(dη
s, das; dηt, dkt)

≤ ρE η̄
(
zE#ε

(
[ηt, η̄]× [t, k̄]

)
+ δ∆ηt∆t

−λ1
(
[ηt, η̄]× [t, k̄]

)
− (λ/ρLη2)

2 (
[ηt, η̄]× [t, k̄]

))
≤ ρE η̄

(
zE#ε

(
[ηt, η̄]× [t, k̄]

)
+ δ∆ηtδt

)
≤ ρE η̄

(
α

(
[ηt, η̄]×

[
ā− ∆t

1− θE
, ā

])
+ δ∆ηt∆t

)
by Lemma 4.4.1.

Putting those two facts together, we get that

α ((ι, η̄]× (a, ā]) + δ∆ι∆a ≤ ρE η̄
(
α

(
[ηt, η̄]×

[
ā− ∆t

1− θE
, ā

])
+ δ∆ηt∆t

)
.

When δ → 0, the left hand side stays away from zero. So the right hand side is strictly positive. We

supposed that α is null on sets of Hausdorff dimension one, so.

α (η̄, [0, ā]) = α ([0, η̄]× ā) = 0

and conclude that ηt < η̄ and t < k̄. Thus, the supremum in (4.26) is attained inside K and thus the

equality in (4.26) still holds.

• We show that v0 = v̄0 on K. Taking δ → 0 in vδ = v̄δ gives the following:

v0 = lim
δ→0

vδ = max { lim sup
δ→0

vwδ , lim sup
δ→0

vmδ , lim sup
δ→0

vtδ } . (4.29)

Suppose

sup
(η,k)∈K̄

v0(η, k) <∞.

By definition (4.10) for (η, k), k < k̄,

vtδ(η, k) = ρEη

(
sup

(ι,a)∈Ā
cδbE(zE(ι, a; η, k)) + δη + vδ(zE(ι, a; η, k))− uδ(ι, a)

)
. (4.30)
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The convergence of vδ is uniform, because z1
E(ι, a; η, k) < k̄. Moreover, by Corollary 4.5.3

u0(ι, a) ≤ lim inf
δ→0

uδ(ι, a).

Thus, we conclude that lim supδ→0 v
t
δ ≤ vt0.

Similarly, we can show that lim supδ→0 v
w
δ ≤ vw0 and lim supδ→0 v

m
δ ≤ vm0 , so we conclude v0 ≤

max { vw0 , vm0 , vt0 }. The opposite inequality follows from the constraints and we conclude that v0 = v̄0.

Suppose limk→k̄
k<k̄

v0(η, k) =∞. For fixed k ∈ [0, k̄), let

Cδ = sup
(ι,a)∈A

cδbE(zE(ι, a; η, k)) + vδ(zE(ι, a; η, k)).

Then Cδ −−−→
δ→0

C0 < ∞. Let δ0 be small enough that Cδ0 < 2C0. As vδ diverges, uδ diverges too. So,

we can (by making δ0 smaller if necessary) have uδ(η, ā− δ0) > 2C0 for all δ < δ0. Thus, for δ < δ0 the

supremum (4.30) can be restricted to a ∈ [0, ā− δ0]. In this interval, the convergence (uδ, vδ)→ (u0, v0)

is uniform. So taking δ → 0 in (4.30) gives limδ→0 v
t
δ = vt0. Similarly, we can show limδ→0 v

w/m
δ = v

w/m
0 .

So we conclude v0 = v̄0 by (4.29).

• Now, we can prove that u0 diverges if and only if v0 does. Let k̄− denote the limit when k → k̄

and η̄− when η → η̄.

First, suppose that v0(η, k̄−) =∞ or v0(η̄−, k) =∞. We can then show that u0 =∞ using a similar

argument to the proof of Lemma 4.5.2.

Now if v0(η, k̄−) <∞, then

u0(η, k̄−) = sup
(ηt,t)

c0bE
(
η, (1− θE)k̄− + θEt

)
+ v0

(
η, (1− θE)k̄− + θEt

)
− 1

ρEηt
v0(ηt, t)

≤ sup
(ηt,t)

c0bE
(
η, (1− θE)k̄− + θEt

)
+ v0

(
η, (1− θE)k̄− + θEt

)
<∞.

If v0(η̄−, k) <∞, then as v0 = v̄0, it is linear in η. So v0(η, k) <∞ for all η. In that case, u0(η̄−, k)

doesn’t diverge because bE is bounded from above.

• Finally, this can be extended to K̄. If v0(η, k̄−) < v0(η, k̄) we can replace v0(η, k̄−) by v0(η, k̄)

without violating any constraints. It doesn’t affect the value of vw/m/t or u0 except possible by reducing

vt(η, k̄) and u0(η, ā). Thus, it only improves the objective value. The same is true for (η̄−, k). We can

therefore extend v0 = v̄0 to K̄.

4.6 Properties of optimal matchings

In this section, we discuss properties of optimizers for the primal (4.2) and dual problem (4.5).

First, we talk about positive assortativity of primal measures ε, λ.

Lemma 4.6.1 (Structure of wage functions). Let bL : [0, k̄]→ R be as introduced in section 4.1 then

f1(ηw, w; ηm,m) := bL (zL(ηw, w; ηm,m)) = bL ((1− θL)w + θLm)
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is strictly supermodular in w, m.

Let v : K → R be convex and non-decreasing in its second variable and supermodular. Then

f2(ι, a; ηt, t) = v(zE(ι, a; ηt, t))

is supermodular in a, t and supermodular in ι, t. The supermodularity is strict if v is strictly convex

and strictly supermodular.

Proof. The proof is straightforward and mimics the proof of [13, Lemma 5, first claim]. For f1, one simply

has to take the right cross derivatives and see that they are (strictly) positive. For f2, we approximate

v by vi ∈ C2(K̄) and follow the same argument.

Lemma 4.6.2. If f(k1, k2) ≥ 0 is strictly submodular, then its zero set Z is strictly increasing.

Proof. Suppose for contradiction that there exists p = (k1, k2) and p′ = (k′1, k
′
2), both in Z such that

k1 > k′1 and k2 < k′2. As f is submodular in k1 and k2, we have that

0 > f(k1, k
′
2) + f(k′1, k2)− f(k1, k2)− f(k′1, k

′
2)

= f(k1, k
′
2) + f(k′1, k2) p, p′ ∈ Z

≥ 0 f is positive.

This is impossible and we conclude that Z is strictly increasing.

The next lemma shows that, for a student, an increase in either the cognitive or the communication

skill results in an increase in their teacher’s cognitive skill. Moreover, an increase in workers’ cognitive

skill results in an increase in their manager’s cognitive skill.

Lemma 4.6.3. Let (u, v) be an optimizing pair for LP∗. Suppose v is strictly supermodular and strictly

convex in its second variable. Let (ε, λ) be the measure that maximizes LP ∗. Then ε(ι, a; ηt, t) is positive

assortative in ι, t and in a, t. Moreover, λ(ηw, w; ηm,m) is always positive assortative in w, m.

Proof. By Corollary 4.4.7, the support of ε is included in the zero set of

f(ι, a; ηt, t) = u(ι, a) +
v(ηt, t)

ρEηt
− cδbE(zE(ι, a; ηt, t))− v(zE(ι, a; ηt, t)) ≥ 0.

By Lemma 4.6.1, f is strictly submodular in ι, t and in a, t. So by Lemma 4.6.3, its zero set is strictly

increasing in ι, t and in a, t. Thus, the result follows for ε.

The proof for λ is similar, noting that by Corollary 4.4.7, the support of λ is included in the zero set

of

g(ηw, w; ηm,m) = v(ηw, w) +
v(ηm,m)

ρLηm
− bL(z̄E(ηw, w; ηm,m)) ≥ 0.

Lemma 4.6.4 (Endogenous distribution of adult skills). Let (ε, λ), be optimizers of LP ∗.

If α gives no mass to sets of Hausdorff dimension one, then there exists a function τ : A → [0, k̄]

that associates a student’s type (η, a) to the cognitive skill of teachers of students of this type such that

π1,2,4
# ε = (1× τ)#α.
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If ε is positive assortative in its first and last variables and in its second and last variables, the function

τ is non-decreasing in both variables.

Moreover, if α is absolutely continuous, i.e. α(ι, a) = αac(ι, a)dιda is given by a density αac ∈ L1(A),

then κ(η, k) = κac(η, k)dηdk is given by a related density κac ∈ L1(K) satisfying

αac(η, a) =

(
(1− θE) + θE

∂

∂a
τ(η, a)

)
κac(η, (1− θE)a+ θEτ(η, a)

for a.e. (η, a) ∈ A.

Proof. The proof follows the proof of [13, Lemma 14, second and third claim]. As

f(ι, a; ηt, t) = u(ι, a) +
v(ηt, t)

ρηt
− cbE(b(ι, a; ηt, t))− v(b(ι, a; ηt, t))

is positive and is null on the support of ε, we have that

0 = fa(ι, a; ηt, t) = ua(ι, aa)− (cbE + v)(1− θE)
(
ι, (1− θE)a+ θEt

)
on the support of ε. As we assume that bE is strictly convex and v is convex, we have that

∂

∂k
(cbE + v)

(
η, (1− θE)a+ θEτ(η, a)

)
is invertible in its second variable if we fix its first variable, where τ(η, a) is the cognitive skill of a teacher

of a student of type (η, a). Thus, τ is a well defined function except possibly on a C1-rectifiable set of

Hausdorff dimension one, and if α is null on those sets,

π1,2,4
# ε = (1× τ)#α

by Lemma 2.1.5. If ε is positive assortative between its first and last variables, then τ is increasing in

its first variable and if ε is positive assortative between its second and last variables, then τ is increasing

in its second variable.

Let f(η, a) = (η, (1− θE)a+ θEτ(η, a)) be the adult type of a student of type (η, a). This function

is non-decreasing in both variables and pushes α forward to κ.

We have that

Df(η, a) =

(
1 θE

∂
∂η τ(η, a)

0 (1− θE) + θE
∂
∂aτ(η, a)

)
.

As τ is increasing in its second variable, detDF ≥ (1− θE). Thus, f is invertible, with inverse g having

Lipschitz constant at most 1
1−θE .

We then have that for K ′ ⊂ K,

κ (K ′) = α (g(K ′)) .

Taking a C1-rectifiable set of Hausdorff dimension one shows that if α is null on those sets then so is κ.

Moreover, taking K ′ to be an arbitrary set of measure zero shows that κ is absolutely continuous if α is.
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As τ is defined on a compact set and is increasing, it is differentiable a.e. so the formula

αac(η, a) =

(
(1− θE) + θE

∂

∂a
τ(η, a)

)
κac(η, (1− θE)a+ θEτ(η, a)

follows from a simple change of variables.

Theorem 4.6.5 (Positive assortative and unique optimizers). Let (u, v) be an optimizing pair for LP∗.

Suppose that v is strictly convex in k. The first derivative of v with respect to η is piecewise constant.

The first derivative of v with respect to k is uniquely determined. The first order derivatives of u are

uniquely determined. If α dominates an absolutely continuous measure whose support fills Ā then u is

unique α-a.e.

Proof. The proof follows the proof of [13, Theorem 15, fifth claim]. As v is strictly convex in k, it is

continuous in k, has one-side derivatives in k that agrees except perhaps for countably many k ∈ K.

Moreover, we proved that

v(η, k) = v̄(η, k) = max {ṽw(k), ηṽ(k)}

where ṽ(k) = max {ρLṽm(k), ρE ṽt(k)}. So v is piecewise linear in η. Thus it is differentiable a.e.

Worker Let

g(ηw, w; ηw, w) = v(ηw, w) +
v(ηm,m)

ρLηm
− bL(zL(ηw, w; ηm,m)) ≥ 0.

The set of workers κw has full measure on π1(spt λ). As λ has full support on the zero set of g and

g ≥ 0, the first order necessary condition implies gηw = gw = 0 i.e.

∂

∂ηw
v(ηw, w) = 0

∂

∂w
v(ηw, w) = (1− θL)b′L ((1− θL)w + θLm) .

Because bL is strictly convex, there cannot be two such m unless v is not differentiable at (ηw, w). This

proves that ∂
∂wv is uniquely determined on π1(spt λ) ∩Dom ∂

∂kv.

Manager The set of managers κm has full measure on π2(spt λ). As λ has full support on the zero

set of g and g ≥ 0 the first order necessary condition tells us that

∂

∂ηm
g =

∂

∂m
g = 0

when g is differentiable. As gηm = 0, we have that vηm = v
ηm

. Thus vηm is constant when it is

differentiable.

As gm = 0, we have
∂

∂m
v = ρLηmθEb

′
L((1− θL)w + θLm).

As in the worker’s case, we can conclude that ∂
∂mv is uniquely determined on π1(spt λ) ∩Dom ∂

∂kv.

Teacher We can show that vηt is constant, in the same way we show that vηm is constant, by

replacing g with

f(ι, a; ηt, t) = u(ι, a) +
v(ηt, t)

ρEηt
− cbE(zE(ι, a; ηt, t))− v(zE(ι, a; ηt, t)).
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To show that vt is uniquely determined a.e., we use Proposition 4.2.5 (5). That proposition gives a

recursive formula for vt(η1, k1) if (η1, k1) ∈ spt κt ∩Dom vk and (η2, k2) ∈ Dom vk. The formula relates

vt(η1, k1) and vt(η2, k2), where (η1, k1) ∈ π2(spt ε) and (η2, k2) is the type of an adult whose teacher had

type (η1, k1). The strict monotonicity we assumed for v(η, ·) ensures that (η2, k2) is unique. Proposition

4.2.5 (5) then implies that the recursion ends after a finite number of students. Thus, vt is uniquely

determined.

Student By Lemma 4.2.3, u is convex and non-decreasing in k. This means that u is differentiable

in k. The first order necessary condition for f gives us

ua(ι, a) = (1− θE)
∂

∂k
(cδbE(ι, k) + v(ι, k)) |k=(1−θE)a+θEt.

As (cδbE+v)k is strictly increasing in k, t is uniquely determined for κ-a.e. adult type. So ua is uniquely

determined for α-a.e. student type.

We don’t know if u is differentiable in ι, so the first order condition reads ±f(ι±, a; ηt, t) ≥ 0, i.e.

(cδbE + v)ι (ι−, (1− θE)a+ θEt) ≥ uι(ι, a) ≥ (cδbE + v)ι (ι+, (1− θE)a+ θEt).

But as cδbE + v is convex,

(cδbE + v)ι (ι−, (1− θE)a+ θEt) ≤ (cδbE + v)ι (ι+, (1− θE)a+ θEt).

So,

uι(ι, a) = (cδbE + v)ι (ι, (1− θE)a+ θEt).

Next, we prove that u is unique. Suppose there exists another minimizer (v0, u0). As the derivative

of u is unique for α-a.e. type of student, u0 = u+const. The constant must vanish because the objective

value is the same.

When δ = 0, we don’t know if v is strictly convex in either variable. By Theorem 4.5.5, v is strictly

convex in k if c > 0 or ρEηθE > 1 for all η. If this is not the case, we can approximate v by forcing

cδ > 0; for example, cδ = δ. Thus, taking the limit when δ → 0, we know that there exists a minimizing

v which is convex. We don’t know if its derivative is uniquely determined anymore. We know that there

exists an ε which is positively assortative between ι and t and between a and t, but there may be other

optimal ε’s.
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Appendix A

Technical Preleminary Results

In this appendix, we present proofs of prelemenary results that were too technical for inclusion in

Chapter 2.

First, we present the proof of Lemma 2.1.6.

Proof of Lemma 2.1.6. As K̄ is compact, the sup is always attained in the definition of g. Thus, it is

possible to pick an arbitrary

ka ∈ arg max
k∈K̄

f(a, k).1

First, we assume f is locally Lipschitz in a and uniformly Lipschitz in k and we prove that g is

locally Lipschitz. Let a1 ∈ Ā. As f is locally Lipschitz in a1, for every neighbourhood a1 ∈ Ua1
⊂ Ā f

is Lipschitz in a within Ua1
with Lipschitz constant CUa1

. Thus, for all a2 ∈ Ua1
, if g(a1) ≥ g(a2):

|g(a1)− g(a2)| = g(a1)− g(a2)

= sup
k∈K̄

f(a1, k)− sup
k∈K̄

f(a2, k)

≤ f(a1, ka1
)− f(a2, ka1

)

≤ |f(a1, ka1)− f(a2, ka1)|

≤ CUa1
|a1 − a2| because f is Lipschitz.

By symmetry, we have the same bound when g(a1) < g(a2). Thus g is locally Lipschitz, with same

Lipschitz constant as f in its first variable.

Now, as for all a2 ∈ Ua1
we have∣∣∣∣g(a1)− g(a2)

a1 − a2

∣∣∣∣ ≤ CUa1

≤ sup
a∈Ua1

k∈K̄

fa(a, k)

we get the upper bound on g′(a).

1This set might contain more then one point ka.
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For the lower bound on g′ we will prove bound for one-sided derivatives:

∂a+g(a) ≥ inf
a′∈Ua

∂a+g(a′)

≥ inf
a′∈Ua

lim
a′′→a′
a′′>a′

g(a′′)− g(a′)

a′′ − a′

≥ inf
a′∈Ua

lim
a′′→a′
a′′>a′

f(a′′, ka′′)− f(a′, ka′)

a′′ − a′
.

As ka′′ = arg maxk f(a′′, k), we have

∂a+g(a) ≥ inf
a′∈Ua

lim
a′′→a′
a′′>a′

f(a′′, ka′)− f(a′, ka′)

a′′ − a′

≥ inf
a′∈Ua
k∈K̄

lim
a′′→a′
a′′>a′

f(a′′, k)− f(a′, k)

a′′ − a′

≥ inf
a′∈Ua
k∈K̄

∂a+f(a′, k).

As f is locally Lipchitz in a, and g is locally Lipchitz they are differentiable a.e. and at their differ-

entiability point ∂a+f(a′, k) = fa(a′, k) and ∂a+g(a) = g′(a). We conclude that g′(a) ≥ inf
a′∈Ua
k∈K̄

fa(a′, k).

Finally, we show that if f is locally semi-convex in a and uniformly semi-convex in k, then g(a) is

locally semi-convex. First, note that as f is locally semi-convex in a, for all a ∈ Ā for every neighbourhood

a ∈ Ua there exists a constant

C1 = − inf
k∈K̄, a′∈Ua

faa(a′, k)

such that

f(a, k) + C1
|a|2

2

is convex with respect to a in Ua. Thus

g(a) + C1
|a|2

2
= sup
k∈K̄

{
f(a, k) + C1

|a|2

2

}

is a supremum of convex functions with respect to a in Ua, thus it is convex with respect to a in Ua and

we have the right bound on g′′.

Now, we present the proof of Lemma 2.2.1.

Proof of Lemma 2.2.1. (a) Let { fj } be a sequence of real functions on K such that fj → f in the

sense of uniform convergence on compact subsets of K. Then for all i, ‖fj − f‖L∞([0,k̄− 1
i ])
→ 0 as

j →∞ and therefore dK(fj , f)→ 0.

Let { fj } be a sequence of real functions on K such that dK(fj , f)→ 0. This means that for all i,

‖fj − f‖L∞([0,k̄− 1
i ])
→ 0. Let U ⊂ K be a compact subset. Then there exists an i ∈ N such that

U ⊂
[
0, k̄ − 1

i

]
and we conclude that ‖fj − f‖L∞(U) → 0.
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(b) Suppose µj → µ in the weak-∗ topology. Let ε > 0. We will separate K = Kε ∪ K−ε where

Kε = [0, k̄ − ε] and K−ε = (k̄ − ε, k̄).

On Kε we have ∣∣∣∣∫
Kε

fidµi − fdµ
∣∣∣∣ =

∣∣∣∣∫
Kε

fidµi − fdµi + fdµi − fdµ
∣∣∣∣

≤
∫
Kε

|fidµi − fdµi|+
∣∣∣∣∫
Kε

fdµi − fdµ
∣∣∣∣ .

The second term goes to zero as µi weak-∗ converges to µ and f is bounded and continuous. By

(a), on Kε, ‖fi − f‖L∞(Kε)
→ 0. Thus we have that∫

Kε

|fidµi − fdµi| ≤ ‖fi − f‖L∞(Kε)
‖µi‖TV

≤ ‖fi − f‖L∞(Kε)
as µi is a probability measure

→ 0.

On K−ε we have ∣∣∣∣∣
∫
K−ε

fidµi − dµ

∣∣∣∣∣ ≤ |fi|L∞(K−ε)
µi(K−ε) + |f |L∞(K−ε)

µ(K−ε).

As fi and f are uniformly bounded, the result follows from hypothesis (2.2).

(c) Any non-decreasing convex function of K is Lipschitz continuous on compact subsets of K.

Consider a compact subset C ⊂ K = [0, k̄) such that k̄− supx∈C x > ε. Consider a sequence { fi }
of non-decreasing, and convex functions fi : K → R bounded by b. Each fi is Lipschitz on C with

Lipschitz constant LipCfi <
b
ε . Then { fi } is equi-Lipschitz and by the Arzelà-Ascoli theorem,

there exists a subsequence that converges uniformly on C.

In order to conclude that { fi } has a converging subsequence when metrized by dK , we need to have

a subsequence that converges independently of the compact subset C ⊂ K. Let Cn = [0, k̄− k̄
n ] ⊂ K.

For every compact subset C ⊂ K, there exists an n such that C ⊂ Cn.

First, note that as C1 is compact, there exists a subsequence of { fi } that converges uniformly

on C1. As C2 is compact, there exists a subsequence of the subsequence on C1 that converges

uniformly on C2. Similarly, as Cn is compact there exists a subsequence of the subsequence on

Cn−1 that converges uniformly on Cn.

We will use a diagonal argument to create a subsequence of { fi } that converges on all Cn. Let

fin be the n-th element of the converging subsequence on Cn. Then for all n, { fij }
∞
j=n

converges

uniformly on Cn because it is a subsequence of the converging subsequence on Cn. Therefore { fij }
converges on Cn for all n.



Appendix B

Finite Time Horizon for Complete

Information Model

One way to get a solution for the complete information model (3.9) is to first consider the same problem,

for a finite time horizon. Then, (3.9) can be seen as the limit when this time horizon increases. Indeed,

(3.9) is an infinite time horizon problem. In this appendix, we introduce the corresponding finite time

horizon model.

For the finite time horizon model, we fix T ∈ N and solve until generation T . Let vT+1 be a positive,

twice differentiable, non-decreasing, and convex function that represents the estimated wage function

for the students of the last step. We assume vT+1 is bounded by a constant h. Let κ1 be an absolutely

continuous Borel probability measure that represents the initial distribution for adults. The goal is to

optimize the society’s total production over T generations through separating adults by profession, i.e.

worker, manager and teacher, and matching workers to managers and students to teachers within a

generation. That is, we are seeking measures

{ εi }Ti=1 and {λi }Ti=1 ,

where εi represents the matching between students and teachers and λi represents the labour matching

for generation i. These measures have to satisfy the following constraints:

π1#εi = α i = 1, . . . , T i.e. the distribution of students is known,

π1#λ1 +
1

N ′
π2#λ1 +

1

N
π2#ε1 = κ1 i.e. the first distribution of adults is known and

π1#λi +
1

N ′
π2#λi +

1

N
π2#εi = zE#εi−1 i = 2, . . . , T i.e. distributions of adults are induced.

The last T − 1 constraints represent the fact that the distribution of adults for generation i is induced

by the education matching of generation i− 1.

The goal is to optimize the total productivity of the society plus the expected wage for students

of the last generation. We include a discount factor e−β (take β = 0 to remove it) to represent the

fact that immediate gain is more valuable than future gain. Thus, the proposed finite horizon complete

94
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information model is:

CT = sup
(εi,λi)Ti=1

(
e−β(T+1)

∫
A×K

vT+1 ◦ zEdεT +

T∑
i=1

e−βi
∫
A×K

cbE ◦ zEdεi

+

T∑
i=1

e−βi
∫
K×K

bL ◦ zLdλi

) (B.1)

s.t. π1#εi = α for i = 1, . . . , T,

π1#λi +
1

N ′
π2#λi +

1

N
π2#εi = zE#εi−1 for i = 1, . . . , T,

where, ε0 = (1× 1)#κ1.

Note that (B.1) depends on α, β, κ1, vT+1, bE/L, θE/L and zE/L.

The dual of this problem is given by:

C∗T = inf
(ui,vi)Ti=1

∫
K

e−βv1(k)dκ1(k) +

T∑
i=1

e−βi
∫
A

ui(s)dα(s) (B.2)

s.t. ui(s) +
1

N
vi(t) ≥ cbE(zE(s, t)) + e−βvi+1(zE(s, t)) i = 1, . . . , T stability of education market

vi(w) +
1

N ′
vi(m) ≥ bL(zL(w,m)) i = 1, . . . , T stability of labour market.

Strong duality, CT = C∗T , is proven in Section B.1. Section B.2 shows that the infinite horizon

complete information model can be seen as the limit, as the number of generations increases, of the

finite time horizon model CT .

B.1 Proof of Duality, Complete Information, Finite Time Hori-

zon

We’ll prove that the optimal value for the primal is equal to the optimal value for the dual in the finite

horizon complete information model. This proof is separated into two parts. First, we will show the

standard duality inequality:

CT ≤ C∗T . (B.3)

Then, we will show that there is no duality gap. Both proofs are adaptations of the duality proofs of

[13].

If we restrict the minimization (B.2) to continuous bounded wage functions (ui, vi) the inequality

CT ≤ C∗T is straightforward. However, it is not at all clear how to show the infimum is attained in

this class. Instead we need to establish duality in a larger class of functions to be sure the infimum is

attained, and then appeal to the asymptotic analysis of Erlinger et al to conclude the minimizer likely

belongs to the smaller class. Since the larger class includes unbounded functions, a careful argument is

needed to ensure convergence of certain integrals in the proof. Fortunately, as shown in [13, Proposition

8] the doubling condition on α (3.7) guarantees that vi ∈ L1(K̄, z#εi−1), which is sufficient to establish

the inequality desired.
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Proposition B.1.1. Let A = K = [0, k̄), β ≥ 0, T ∈ N and vT+1 ∈ L1
(
K̄, α

)
. Let κ1 be a Borel

probability measure on K̄ and let α be a Borel probability measure on A. Define bE/L and zE/L as in

subsection 2.5. Suppose
⊕T

i=1

( εi
λi

)
is a feasible candidate for the primal problem CT and

⊕T
i=1 ( uivi ) is

feasible for the dual problem C∗T such that ui ∈ L1
(
Ā, α

)
for all i, v1 ∈ L1

(
K̄, κ1

)
and vi = vci + vgi

differs from a bounded continuous function vci (c for continuous) by a non-decreasing function vgi (g for

growth). If vi ∈ L1
(
K̄, zE#εi−1

)
for i = 2, . . . , T + 1 we have

e−βT
∫
A×K

vT+1 ◦ zEdεT +

T∑
i=1

e−βi
∫
A×K

cbE ◦ zEdεi

+

T∑
i=1

e−βi
∫
K×K

bL ◦ zLdλi

≤
∫
K

e−βv1dκ1 +

T∑
i=1

e−βi
∫
A

uidα.

If α satisfies the doubling condition (3.7) then vi ∈ L1
(
K̄, zE#εi−1

)
for i = 2, . . . , T .

Proof. Suppose
⊕T

i=1

( εi
λi

)
is feasible for the primal problem CT and

⊕T
i=1 ( uivi ) is feasible for the dual

problem C∗T . By multiplying the stability constraints for education sector by e−βi, integrating over εi

and summing over i, we have:

∞ >

T∑
i=1

e−βi
∫
A

uidα−
T∑
i=1

e−βi
∫
A

cbE ◦ zEdεi

≥
T∑
i=1

e−β(i+1)

∫
K

vi+1 ◦ zEdεi −
T∑
i=1

e−βi
∫
K

1

N
vi(t)dεi(s, t). (B.4)

Multiplying constraints that represent the prescribed distribution for adults’ skills by e−βivi and sum-

ming them over i, we get:

∫
A×K

e−βv1dκ1 +

T∑
i=2

∫
A×K

e−βivi ◦ zEdεi−1 −
T∑
i=1

e−βi
∫
A×K

1

N
vi(t)dεi(s, t) (B.5)

=

T∑
i=1

∫
K×K

e−βi
(
vi(w) +

1

N ′
vi(m)

)
dλi(w,m)

≥
T∑
i=1

∫
K×K

e−βibL ◦ zLdλi > 0,

where the inequality follows from statibility of the labour market. Adding∫
A×K

e−βv1dκ1 − e−β(T+1)

∫
K

vT+1 ◦ zEdεT

to (B.4) makes it equal to (B.5). This is where we need the integrability of vi with respect to zE#εi−1.

Indeed, as (B.4) is bounded from above and (B.5) is bounded from below, if vi ∈ L1
(
zE#εi−1

)
then

T∑
i=1

e−βi
1

N

∫
A×K

vi(t)dεi(s, t)
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also has to be finite. Thus, we have the desired inequality:

Ct ≤ C∗T .

To complete the proof, we need to show that the doubling condition (3.7) of α implies that vi ∈
L1
(
Ā, zE#εi−1

)
. Suppose each vi = vci + vgi differs from a bounded continuous function vci (c for

continuous) by a non-decreasing function vgi (g for growth). As vci is bounded, it is integrable.

The stability constraint for education markets implies that

ui(s) ≥ e−βvi+1 (zE(s, t))− 1

N
vi(t) + cbE(zE(s, t))

≥ e−βvi+1 (zE(s, t))− 1

N
vi(t).

Setting s = t := k and summing over all i, we get:

T∑
i=1

ui(k) ≥ e−βvt+1(k) +

T∑
i=2

(
e−β − 1

N

)
vi(k)− 1

N
v1(k).

Thus as long as e−β − 1
N ≥ 0, we get

T∑
i=2

vi(k) ≤ 1

e−β − 1
N

(
1

N
v1(k)− e−βvT+1(k) +

T∑
i=1

ui(k)

)
. (B.6)

Now, using the layer-cake representation, we get:

T∑
i=1

∫
K

vgi (k)dzE#εi−1(k) =

T∑
i=1

∫ ∞
0

κi

(
(vgi )

−1
[y,∞)

)
dy layer-cake representation

=

T∑
i=1

∫ ∞
0

κi

[
ā−

(
ā− (vgi )

−1
(y)
)
, ā
]
dy.

Thus by [13, Lemma 14] and because α satisfies the doubling condition (3.7):

T∑
i=1

∫
K

vgi (k)dzE#εi−1(k) ≤
T∑
i=1

∫ ∞
0

α

[
k̄ − 1

1− θ

(
ā− (vgi )

−1
(y)
)
, ā

]
dy

≤
T∑
i=1

∫ ∞
0

Cdα

[
k̄ − 1

2d
1

1− θ

(
ā− (vgi )

−1
(y)
)
, ā

]
dy by (3.7).
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Letting d = − ln(1− θ)/ ln(2) and using the layer-cake representation again, we have

T∑
i=1

∫
K

vgi (k)dzE#εi−1(k) ≤
T∑
i=1

C− ln(1−θ)/ ln(2)

∫
K

vgi (y)dα(y)

≤
T∑
i=1

C− ln(1−θ)/ ln(2)

e−β − 1
N

∫
K

(
1

N
v1

− e−βvT+1 +

T∑
i=1

ui −
T∑
i=1

vci

)
dα by (B.6)

<∞.

To prove the other inequality, we use Lemma 2.4.1.

Proposition B.1.2 (No duality gap). Let β ≥ 0, T ∈ N, vT+1 : K → R+ and A = K = [0, k̄]. Let

κ1 be a Borel probability measure on K̄ and let α be a Borel probability measure on Ā that satisfies the

doubling condition (3.7). Define bE/L and zE/L as in subsection 2.5. The optimal value of the primal

finite horizon complete information problem CT is the same as the optimal value of the dual finite horizon

complete information problem C∗T .

Proof. To prove that there is no duality gap, we will apply Lemma 2.4.1 with

Å =

T⊕
i=1

(
C(Ā)⊕ C(K̄)

)
,

B =

T⊕
i=1

(
C(Ā× K̄)⊕ C(K̄ × K̄)

)
, so

Å∗ =

T⊕
i=1

Γ(Ā)⊕ Γ(K̄),

B∗ =

T⊕
i=1

Γ(Ā× K̄)⊕ Γ(K̄ × K̄),
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where Γ(X) is the set of Borel measures on X. Now, we define:

ϕ :Å→ R ∪ {∞}
T⊕
i=1

(
ui

vi

)
7→
∫
K

e−βv1(k)dκ1(k) +

T∑
i=1

e−βi
∫
A

ui(s)dα(s);

ϕ∗ :Å∗ → R ∪ {∞}
T⊕
i=1

(
µi

νi

)
7→

{
0 if µi = α ∀i = 1, . . . , T, ν1 = κ1 and νi = 0 ∀i = 2, . . . , T

+∞ otherwise;

φ :B → R ∪ {∞}

T⊕
i=1

(
ũi

ṽi

)
7→


0

if ũi(s, t) ≥ e−βi)cbE(zE(s, t)) ∀i = 1, . . . , T − 1,

ũT (s, t) ≥ e−β(T+1)vT+1(zE(s, t)) + e−βicbE(zE(s, t))

and ṽi(w,m) ≥ e−βibL(zL(w,m)) ∀i = 1, . . . , T

+∞ otherwise;

φ∗ :B∗ → R ∪ {∞}

T⊕
i=1

(
εi

λi

)
7→


e−β(T+1)εT (vT+1(zE))+

ΣTi=1e
−βiεi(cbE(zE)) + e−βiλi(bL(zL))

if εi ≤ 0 and λi ≤ 0 ∀i

+∞ otherwise.

It is easy to check that ϕ∗ and φ∗ are Legendre transforms of ϕ and φ respectively.

Let

H

(
T⊕
i=1

(
ui

vi

))
((s, t), (w,m)) =

T−1⊕
i=1

(
e−βiui(s) + 1

N e
−βivi(t)− e−βivi+1(zE(s, t))

e−βivi(w) + e−βi 1
N ′ vi(m)

)

+

(
e−βTuT (s) + 1

N e
−βT vT (t)

e−βT vT (w) + e−βT 1
N ′ vT (m)

)

and H∗

(
T⊕
i=1

(
εi

λi

))
=

(
e−βπ1#ε1

e−β

N π2#ε1 + e−βπ1#λ1 + e−β

N ′ π2#λ1

)

+

T⊕
i=2

(
e−βiπ1#εi

e−βi 1
N π2#εi + e−βiπ1#λi + e−βi 1

N ′π2#λi − e−βizE#εi−1

)
.

The operator H∗ is the adjoint of H. With this construction,

inf⊕T
i=1(

ui
vi )∈Å

ϕ

(
T⊕
i=1

( uivi )

)
+ φ

(
H

T⊕
i=1

( uivi )

)

is the restriction to C∗T where the infimum is taken over continuous functions, thus

C∗T ≤ inf⊕T
i=1(

ui
vi )∈Å

ϕ

(
T⊕
i=1

( uivi )

)
+ φ

(
H

T⊕
i=1

( uivi )

)
.
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Similarly,

CT = max⊕T
i=1

( εi
λi

)−ϕ∗ (H∗ ( εiλi ))− φ∗ (− ( εiλi )) .
To apply Lemma 2.4.1, we need to show that φ is continuous and real-valued at some point in

H(Dom ϕ). Let
⊕T

i=1 ( uv ) ∈ Dom ϕ. Then, v1 ∈ L1(K,κ1) and ui ∈ L1(A,α) which means that the

objective function of C∗T is finite at
⊕T

i=1 ( uv ) ∈ Dom ϕ. Moreover, φ
(
H
⊕T

i=1 ( uv )
)

= 0 if
⊕T

i=1 ( uv ) is

feasible for C∗T . Thus the conditions are achieved because the conditions of being feasible and finite for

LP∗(δ) are open and there exist such functions, for example:

T⊕
i=1

(
u

v

)
=

T⊕
i=1

(
bL(k̄) + bE(k̄)

bL(k̄)

)
.

Thus, by Lemma 2.4.1,

C∗T ≤ CT .

Corollary B.1.3. Fix c, θ, θ′, N,N ′. Let β ≥ 0, T ∈ N, vT+1 : K̄ → R+ and A = K = (0, k̄). Let

κ1 be a Borel probability measure on K̄ and let α be a Borel probability measure on Ā that satisfies the

doubling condition (3.7). Define bE/L and zE/L as in subsection 2.5. A sequence of feasible measures

(εi, λi)
T
i=1 maximizes (B.1) if there exists (ui, vi)

T
i=1 that satisfy the constraints of (B.2) such that

e−β(T+1)εT (vT+1 ◦ zE) +

T∑
i=1

e−βi (cεi(bE ◦ zE) + λi(bL ◦ zL)) = e−βκ1(v1) +

T∑
i=1

e−βiα(ui)

Of course, we can prove, as in Propositions 3.3.1 and 3.3.5, existence of primal and dual optimizers

for the finite time horizon model.

B.2 From Finite to Infinite Time Horizon

To represent a countable number of generations, we consider what happens when T → ∞. To ensure

that C∞ is well defined in that case, we verify that the limit limT→∞ CT exists and is independent of

our choice of vT+1.

Proposition B.2.1. Fix β ∈ (0, 1], θ, θ′ ∈ (0, 1), N,N ′ > 1 and a probability measure α on A. Define

zE/L and bE/L as in subsection 2.5. For any absolutely continuous probability measure κ1 ∈ P(A) and

any sequence of non-decreasing, convex, bounded functions { vT+1 }, such that vT+1 < h for all T we

define:

CT (κ1, vT+1) = CT .

The limit of CT (κ1, vT+1) when T →∞ satisfies

0 ≤ lim
T→∞

CT (κ1, vT+1) = C(κ1) < C <∞

where C(κ1) is the solution to (3.9) and is independent of { vT+1 } and C is independent of κ1 and

{ vT+1 }.
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Proof. Since εi and λi are supported on A×K = K ×K = [0, k̄)× [0, k̄),∫
A×K

vT+1 ◦ zEdεT ≤ max vT+1 ≤ h as vT+1 is bounded by h, (B.7)∫
A×K

cbE ◦ zEdεi ≤ cb̄E ,∫
K×K

bL ◦ zLdλi ≤ b̄L.

Thus, by the definition of CT and using the formula for a geometric series, for T ≥ 1,

CT (κ1, vT+1) < he−β(T+1) +
e−β

1− e−β
(
cbE + bL

)
≤ he−β +

e−β

1− e−β
(
cbE + bL

)
< C

for C independent of κ1 and vT+1.

The only thing that is left to show is that the limit limT→∞ CT exists and is independent of vT+1.

To show this, we introduce a modified version of CT :

C̃T = sup
(εi,λi)Ti=1

T∑
i=1

e−βi
∫
A×K

cbE ◦ zEdεi +

T∑
i=1

e−βi
∫
K×K

bL ◦ zLdλi

s.t. π1#εi = α i = 1, . . . , T

π1#λ1 +
1

N ′
π2#λ1 +

1

N
π2#ε1 = κ1

π1#λi +
1

N ′
π2#λi +

1

N
π2#εi = zE#εi−1 i = 2, . . . , T.

First, note that C̃T ≤ CT . Let (εni , λ
n
i )Ti=1 be an approximate optimizer for C̃T . In this case, (εni , λ

n
i )Ti=1

satisfies the constraints for CT and:

C̃T = lim
n→∞

T∑
i=1

e−βi
∫
A×K

cbE ◦ zEdεni +

T∑
i=1

e−βi
∫
K×K

bL ◦ zLdλni

≤ lim
n→∞

e−β(T+1)

∫
A×K

vT+1 ◦ zEdεnT +

T∑
i=1

e−βi
∫
A×K

cbE ◦ zEdεni

+

T∑
i=1

e−βi
∫
K×K

bL ◦ zLdλni

≤ lim
n→∞

CT = CT .

Thus C̃T is also bounded from above. It is also increasing in T , so limT→∞ C̃T exists.

Secondly, note that CT − C̃T ≤ e−β(T+1)h. Let (εni , λ
n
i )Ti=1 be an approximate optimizer for CT .
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Then,

CT = lim
n→∞

e−β(T+1)

∫
A×K

vT+1 ◦ zEdεnT +

T∑
i=1

e−βi
∫
A×K

cbE ◦ zEdεni

+

T∑
i=1

e−βi
∫
K×K

bL ◦ zLdλni

≤ e−β(T+1)h+ C̃T .

Thus, limT→∞ CT = limT→∞ C̃T .

As limT→∞ C̃T exists and is independent of vT+1, the same is true of limT→∞ CT .

Now, we’ll show that the optimizers (uTi , v
T
i )i of (B.2) converge to the optimizer of (3.10). To do so,

we’ll use Γ-convergence. First, we need to introduce some notation. We will denote the set of feasible

wages

F =

{
(ui, vi)

∞
i=1

∣∣∣∣∣ui:A→R,vi:K→R bounded, non-decreasing, and convex

ui(s)+
1
N vi(t)≥cbE(zE(s,t))+e−βvi+1(zE(s,t))

vi(w)+ 1
N′ vi(m)≥bL(zL(w,m))

}

with the following metric:

d∞ ((ui, vi)
∞
i=1, (ûi, v̂i)

∞
i=1) =

∞∑
i=1

e−βi (dK(ui, ûi) + dK(vi, v̂i)) .

Let W and WT map the feasible wage functions to the real numbers:

W : F → R :

(ui, vi)
∞
i=1 7→

∫
K

e−βv1(k)dκ1(k) +

∞∑
i=1

e−βi
∫
A

ui(s)dα(s);

WT : F → R :

(ui, vi)
∞
i=1 7→

∫
K

e−βv1(k)dκ1(k) +

T∑
i=1

e−βi
∫
A

ui(s)dα(s).

In the next proposition, we show that WT
Γ→W .

Proposition B.2.2. Let bE/L be as defined in subsection 2.5. Fix NE/L ≥ 1 and κ1 ∈ P ac(K) and

α ∈ P ac(A). Then WT Γ-converges to W .

Proof. Let (ui, vi)
∞
i=1 ∈ F . Then for any (uTi , v

T
i )∞i=1 such that limT→∞(uTi , v

T
i )∞i=1 = (ui, vi)

∞
i=1 with

respect to d∞ we have uTi → ui and vTi → vi with respect to dk. Therefore, from

∣∣W ((ui, vi)
∞
i=1)−WT

(
(uTi , v

T
i )∞i=1

)∣∣ ≤ e−β ∣∣κ1(v1 − vT1 )
∣∣+

T∑
i=1

e−βi
∣∣α(ui − uTi )

∣∣+

∞∑
i=T+1

e−βiα(u).

we conclude that limT→∞WT

(
(uTi , v

T
i )∞i=1

)
= W ((ui, vi)

∞
i=1) with Lemma 2.2.1 (b). Any sequence for

(ui, vi)
∞
i=1 is its own recovery sequence. Therefore, both conditions from Definition 2.3.1 (Condition (1)

(lim inf inequality) and Condition (2) (lim sup inequality)) are satisfy and WT
Γ→W .
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Corollary B.2.3. Fix c > 0, θ, θ′ ∈ [0, 1], N,N ′ > 1, and κ1 ∈ L∞(K̄). Fix a distribution for students’

abilities α with logα ∈ L∞(Ā).

Let (uTi , v
T
i ) be an optimizer for (B.2). Any convergent subsequence { (uTli , v

Tl
i ) }∞l=1 converge to an

optimizer of (3.10).

Proof. Fix i. For all T , uTi and vTi are bounded non-decreasing and convex so by Lemma 2.2.1 (c),

there exists a converging subsequence in dK { (uTli , v
Tl
i ) }∞l=1. Using a diagonal argument, we can get a

subsequence that is converging for all i.

By Theorem 2.3.3, liml→∞(uTli , v
Tl
i ) = (ui, vi)

∞
i=1 is an optimizer of (3.10).
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optimal maps. Arch. Rational Mech. Anal., 209:747–795, 2013.

[41] Ayed Zambaa and Ben Hassen. Education financing and growth using overlapping generations

model: a theoretical perspective. Economic Annals, 58(197), April - June 2013.


