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1. Introduction This article concerns the extension of geometrical variance bounds from
one to higher dimensions. Let K ⊂Rn be a compact set and P(K) denote the Borel probability
measures supported on K. Let

x̄(µ) :=

∫
Rn

xdµ(x) (1)

and Var(µ) :=

∫
Rn

|x− x̄(µ)|2dµ(x) (2)

denote the barycenter (or mean) and (the trace of the) the variance of µ ∈ P(K). Here | · | is the
Euclidean norm, and sptµ will denote the smallest closed subset of Rn containing the full mass of
µ. When K := [k, k̄]⊂R, an inequality due to Bhatia and Davis [4] asserts

Var(µ)≤ (k̄− x̄(µ))(x̄(µ)− k), (3)
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with equality if and only if sptµ⊂ {k, k̄}. Optimizing over all possible means yields

Var(µ)≤ 1

4
(k̄− k)2, (4)

with equality if and only if µ= 1
2
(δk + δk̄) — a result known since Popoviciu’s work [26] on polyno-

mial roots, as explained in Jensen and Styan [18]. We propose to explore higher dimensional, i.e.
n> 1, generalizations of bounds such as (3)–(4) and their cases of equality.

In higher dimensions, the shape of the set K ⊂Rn plays a non-trivial role in the formulation of
such a bound. However, it turns out that the variance maximizing measures must — in each case
— be supported on the intersection of K with an enclosing sphere. This is the content of our first
result, whose statement requires taking the convex envelope of the function

φK(x) :=

{
−|x|2 if x∈K,
+∞ if x∈Rn \K. (5)

Convex envelopes are conveniently expressed using the Legendre transform.
Given a Banach space Z and its dual Z∗, recall the Legendre-Fenchel transform of a function

f :Z −→R∪{+∞} is defined on Z∗ by

f∗(z∗) := sup
z∈Z

z∗(z)− f(z). (6)

where z∗(z) denotes the duality pairing. The double Legendre transform f∗∗ is well-known to be
the largest lower semicontinuous convex function on Z∗∗ whose restriction to Z is dominated by
f . Letting conv(K) denote the smallest closed convex set containing K and int(K) the interior of
K, our multidimensional analogs of the Bhatia, Davis [4] and Popoviciu [26] inequalities (3)–(4)
are the following:

Theorem 1 (Enclosing spheres support variance maximizers).
(a) If the measure µ ∈ P(Rn) has barycenter x̄(µ) and vanishes outside the compact set K ⊂Rn,
then

Var(µ)≤−|x̄(µ)|2−φ∗∗K (x̄(µ)) (7)

where φ∗∗K is defined as in (5)–(6). If x̄(µ)∈ int(conv(K)), then equality holds in (7) if and only if µ
vanishes outside the boundary of some closed ball B containing K, i.e. if and only if µ[K∩∂B] = 1.

(b) Among measures with all barycenters, µ maximizes variance over P(K) if and only if µ[K ∩
∂B] = 1 where B is the smallest closed ball containing K, and x̄(µ) is the center of B. Moreover,
in this case Var(µ) =R2 where R is the radius of B.

We note that the function −φ∗∗K is the concave envelope of −φK . Some refinements and examples
include:
Remark 1 (Specialization to one-dimension). In the classical context n = 1 and K =

[k, k̄], we recover (3) from (7) by noting t∈ [0,1] and x= (1− t)k + tk̄ imply

−φ∗∗K ((1− t)k + tk̄) = (1− t)k2 + tk̄2

and hence

−φ∗∗K (x) = (k̄+ k)x− k̄k.

For our chacterization of equality in (7), the assumption x̄(µ) ∈ int(conv(K)) is in general nec-
essary and cannot be omitted, as the following example indicates.
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Figure 1. Variance maximizer µ over P(K) in Theorem 1.

Example 1 (Stadium). Taking K ⊂R2 to be the convex hull of two (say unit) balls in R2

and constraining the barycenter x̄ to be (say) the midpoint of one of the flat sides of K shows the
conclusion of Theorem 1(a) need not remain true for all x̄ in the boundary of conv(K); the putative
enclosing sphere degenerates to a halfspace H ⊃ K in this example, with µ[K ∩ ∂H] = 1 being
necessary but not sufficient for equality in (7). See the next remark concerning lower dimensional
spheres, however.
Remark 2 (Cases of equality for boundary barycenters). Let L := conv(K) denote

the convex hull of K ⊂ Rn, i.e. the smallest closed convex set containing K. Theorem 2.1.2 of
Schneider’s book [29] asserts that each point x ∈ L belongs to the relative interior of a uniquely
determined face Fx of L, where a face F ⊂ L refers to a set containing the endpoints of every
segment in L whose midpoint lies in F . When x̄(µ)∈ ∂L in Theorem 1, let j denote the dimension
of Fx̄(µ). When j > 1, applying the same theorem to Fx̄(µ) ⊂Rj instead of K ⊂Rn shows equality
holds in (7) if and only if µ is concentrated on a round sphere Sj−1 ⊂Rj enclosing Fx̄(µ). When
j = 0 then x̄(µ) is an extreme point of K, µ is a Dirac measure, and (7) becomes an equality.
Example 2 (Applications to sample geometries). Theorem 1(a) and Remark 2 imply:

(a) (Ball) If K =BR(0) then Var(µ)≤R2−|x̄(µ)|2, and equality holds if and only if µ is supported
on ∂K.

(b) (Ellipse) If K = {(x1, x2) ∈ R2 | (x1
a

)2 + (x2
b

)2 ≤ 1} with a > b > 0 and Var(µ) = −|x̄(µ)|2 −
φ∗∗K (x̄(µ)) then sptµ consists of at most two points.

(c) (Rectangular parallelopiped) If K =
∏n

i=1[−ai, ai] is non-empty, then Var(µ) ≤ −|x̄(µ)|2 +∑n

i=1 a
2
i , and equality holds if and only if µ is concentrated on the vertices of K.

(d) (Diamond) If a1 > a2 > 0 and K = {(x1, x2) ∈ R2 | |x1
a1
| + |x2

a2
| ≤ 1}, then Var(µ) ≤ a2

1 −
a21−a

2
2

a2
|x̄2(µ)| − |x̄(µ)|2 and equality holds if and only if µ concentrates at the two vertices of K

farthest from the origin, plus at most one of its other two vertices.
In cases (a) and (c) it is easy to check φ∗∗K is constant on K: its negative coincides with the

square distance from the origin to the farthest point in K (which follows from the fact that any
affine perturbation of the concave function −|x|2 from (5) can only be minimized at extreme points
of K, and is constant on a sphere through the minimizing points). The conclusions of (b) and (d)
follow since an enclosing circle cannot intersect an ellipse in more than two points, nor a diamond
in more than the three mentioned points.
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Theorem 1(b) also has analogs for other, possibly anisotropic, measures of the extent to which
the mass of µ is concentrated or dispersed. To illustrate, we give the following definition, which
can be contrasted with other generalizations of the variance from the literature, such as those of
Pronzato et al. [27] and its references.

Let V : Rn→ [0,∞) be convex. Define

VarV (µ) := inf
z∈Rn

∫
Rn

V (x− z)dµ(x). (8)

We say that V : Rn→ [0,∞) is coercive if its sublevel sets V −1([0, λ]) are compact for each λ≥ 0.
Remark 3 (Generalized variances and centered p-th moments). If V is coercive the

infimum (8) is attained. If V is also strictly convex and VarV (µ)<∞, then the point x̄V (µ) attaining
it is unique, by the displacement convexity of McCann [23]. We can think of VarV (µ) and x̄V (µ) as
generalizations of the variance and mean, which reduce to the classical variance and mean in case
V (x) = |x|2. When V (x) = |x|p they reduce to p-th moments, but centered on x̄V (µ) rather than
the classical mean.

We then generalize Theorem 1(b) as follows:

Theorem 2 (Maximizing generalized variances). Let K ⊂Rn be compact and V : Rn→
[0,∞) be convex and coercive. Let λ≥ 0 be the smallest value for which there exists z ∈Rn with
K + z ⊂ V −1([0, λ]). Then

λ= sup
µ∈P(K)

VarV (µ). (9)

Moreover µ∈P(K) attains this supremum if and only if there exists

z∗ ∈ arg min
z∈Rn

∫
V (x− z)dµ(x) (10)

such that sptµ⊂ V −1(λ)− z∗.

Taking V (x) = |x|2 so that VarV = Var, we recognize sptµ⊂ V −1(λ)− z∗ as the sphericity con-
dition from Theorem 1 — and (10) as the barycenter condition from the same theorem. More
generally, view (9) as the value to player 1 of a two-player zero-sum game — in which the first
player chooses µ ∈ P(K) and the second player, knowing µ, chooses z ∈Rn. We can then inter-
pret (10) as player 2’s best response to µ, and sptµ ⊂ V −1(λ) − z∗ as characterizing player 1’s
best response to z∗; together they form the conditions for a saddle-point in the payoff function or
equivalently, for a Nash equilibrium; c.f. McCann and Guillen [24].

1.1. Regular simplices maximize moments, given diameter

For fixed barycenter x̄(µ), the variance (2) is a linear function on the convex set P(K). It is
thus not surprising that our proof of Theorem 1 relies on linear programming duality (and convex-
concave minimax theory in the case of Theorem 2). A more challenging question is to give sharp
bounds on the variance and moments of all measures µ in a non-convex set, to which many of the
standard techniques in the calculus of variations, see e.g. Kawohl [20], McCann [23], and Borwein
and Zhu [6], no longer apply.

The example which motivated our interest in this problem concerns the measures satisfying a
diameter bound diam[sptµ] ≤ 1. Here sptµ refers to the smallest closed set containing the full
mass of µ. This question arises as an important special case in our work on attractive-repulsive
interactions, which addresses the patterns formed by a large collection of particles or organisms
all preferring to be at distance one from each other, Lim and McCann [21]. We resolve this ques-
tion below, by showing among measures µ ∈ P(Rn) with diam[sptµ]≤ 1, the variance and other
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moments are maximized precisely when the mass of µ is evenly distributed over the n+ 1 vertices
of a regular, unit diameter simplex, i.e. an equilateral triangle if n= 2 and a regular tetrahedron
if n= 3.

While it may seem surprising to find this solution breaks rotational symmetry, such symmetry
breakings undoubtedly bear some responsibility for the zoo of patterns which emerge from the
flocking and swarming models discussed in Albi et al. [1], Balagué et al. [2], Bertozzi et al. [3],
Burchard et al. [7], Carrillo et al. [9] [10] [11] [8], Choksi et al. [12], Fellner and Raol [16], Frank
and Lieb [17], Lopes [22] and the references there, of which the present problem represents a
limiting case, Lim and McCann [21]. Indeed, for a particular family of such models, Sun et al. [31]
discovered that equidistribution over the vertices of a regular unit diameter simplex is a stationary
state around which the linearized dynamics undergoes a bifurcation from stability to instability;
in our companion work [ibid], Theorem 3 below is used to confirm their conjecture that nonlinear
stability of the full dynamics holds throughout the linearly stable regime. We were also reminded
of the role linear programming duality plays in confirming the optimality of sphere packings in
certain dimensions, as in Odlyzko and Sloane [25], Cohn and Elkies [13] and Viazovska [32].
Definition 1 (Simplices). (a) A set K ⊂Rn is called a top-dimensional simplex if K has

non-empty interior and is the convex hull of n+ 1 points {x0, x1, ..., xn} in Rn.

(b) A set K ⊂Rn is called a regular k-simplex if it is the convex hull of k+ 1 points {x0, x1, ..., xk}
in Rn satisfying |xi − xj|= d for some d > 0 and all 0 ≤ i < j ≤ k. The points {x0, x1, ..., xk} are
called vertices of the simplex.

(c) In particular, it is called a unit k-simplex if d= 1.
Remark 4 (Regular n-simplices K ⊂Rn are top-dimensional). A regular n-simplex

with sidelength d=
√

2 is linearly isometric to the following standard simplex in Rn+1

∆n := {a= {a1, ..., an+1} ∈ [0,1]n+1 |
n+1∑
i=1

ai = 1}, (11)

which can be verified by simple induction on dimension.
We can now state the following:

Theorem 3 (Isodiametric variance bounds and cases of equality). Let V (x) = v(|x|)
with v : [0,∞)−→ [0,∞) convex and increasing. If the support of a Borel probability measure µ on
Rn has diameter no greater than d, then VarV (µ) ≤ v(rnd) where rn =

√
n

2n+2
. Equality holds if

and only if µ assigns mass 1/(n+ 1) to each vertex of a regular n-simplex having diameter d.

Example 3 (Isodiametric bounds on recentered p-th moments). Take V (x) = |x|p
with p≥ 1 in Theorem 3.

This theorem gives a variational characterization of the unit n-simplex. It can also be viewed as
another generalization of Popoviciu’s inequality (4) from n= 1 to higher dimensions n> 1.

1.2. Epilog

After Theorem 3 was announced on the arXiv [21] (in the special case V (x) = |x|2), we learned
of an isodiametric inequality due to Jung [19] in which regular simplices also play a crucial role; a
modern treatment is given in Danzer et al. [14]:

Theorem 4 (Jung). Let K ⊂Rn be compact with diam(K) = 1. Then K is contained in a
closed ball of radius rn =

√
n

2n+2
. Moreover, unless it lies in some smaller ball, K contains the

vertices of a unit n-simplex.
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(A) (B)

Figure 2. Support spt(µ) of the optimizer µ in Theorem 3: (A) in R2; (B) in R3.

The constant rn which appears in these theorems also relates spherical Hausdorff measure to
Hausdorff measure, as in Federer [15]. Below we shall show how Theorem 4 follows from our
isodiametric variance bound, thus yielding a new proof of Jung’s theorem. In an appendix to Lim
and McCann [21] we show the converse is also true: Theorem 3 can be derived from Jung’s theorem
using elementary geometry. Thus the two theorems are in some sense equivalent. We are grateful
to Tomasz Tkocz and an anonymous seminar participant at Seoul National University, for drawing
our attention to Jung’s theorem.

1.3. Plan of the paper:

The next section develops the linear programming and convex duality based proof of Theorems 1
and 2. Section 3 addresses the non-convex problem of maximizing moments under a diameter
constraint. It uses induction on dimension to prove a geometric lemma which allows us to deduce
Theorem 3, before closing with a new proof of Jung’s theorem.

2. A geometric family of ∞-dimensional linear programs This section uses linear pro-
gramming and convex analysis to extend the one-dimensional inequalities (3)–(4) of Bhatia, Davis
and Popoviciu to higher dimensions, i.e. n > 1. Translation invariance allows us to center our
measures so that x̄(µ) = 0 without loss of generality. For each compact K ⊂Rn let

P0(K) := {µ∈P(K) | x̄(µ) = 0} (12)

denote the set of probability measures on K having vanishing mean.
Our first goal is to establish the following duality result of Fenchel and Rockafellar [28] type:

Proposition 1 (A strong duality with attainment). If K ⊂Rn is compact then

sup
µ∈P0(K)

∫
K

|x|2dµ(x) = inf
q∈Rn

φ∗K(−2q) =−φ∗∗K (0) (13)
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where φ∗K and φ∗∗K denote the Legendre transforms (6) of (5). The supremum is attained if 0∈L and
the infimum if 0 ∈ int(L), where L := conv(K). A measure µ ∈ P0(K) and point q ∈Rn optimize
(13) if and only if µ vanishes outside K ∩∂BR(q) for the smallest sphere ∂BR(q) centered at q and
enclosing K.

Identity (13) can be motivated heuristically as in, e.g. McCann and Guillen [24]. Introducing
Lagrange multipliers h and q for the mass and barycenter constraints,

sup
µ∈P0(K)

∫
K

|x|2dµ(x)

= sup
µ∈M+(K)

inf
h∈R,q∈Rn

h
(
1−µ(K)

)
+

∫
K

(
|x|2− 2q ·x

)
dµ(x)

≤ inf
q∈Rn,h∈R

sup
µ∈M+(K)

[
h+

∫
K

(
|x|2− 2q ·x−h

)
dµ(x)

]
= inf

q∈Rn
inf

h≥|x|2−2q·x ∀x∈K
h

= inf
q∈Rn

sup
x∈K

|x|2− 2q ·x,

=−φ∗∗K (0)

where M+(K) denotes the set of non-negative Borel measures of finite total mass on K ⊂Rn.
This inequality can be interpreted as asserting that foreknowledge of one’s opponent’s strategy
cannot be a disadvantage in a two-player zero-sum game; it may or may not confer an advantage,
depending on the structure of the game. Statement (13) is basically the assertion that the inequality
can be replaced with an equality in our case, which is a consequence of the payoff expression in
square brackets having a saddle point or equivalently, of the game having a Nash equilibrium.
Since the payoff is bilinear in the variables µ and (h, q), this may not be surprising. Due to lack of
compactness however, a rigorous proof along standard lines requires some machinery. Therefore,
recall Theorem 4.4.3 from the book of Borwein and Zhu [5]:

Theorem 5 (Fenchel-Rockafellar duality). Let A : Z −→ Y be a bounded linear transfor-
mation of Banach spaces Z and Y , equipped with functions f : Z −→ R ∪ {+∞} and g : Y −→
R∪{+∞}. If g is continuous at some point in A(domf), then

sup
y∗∈Y ∗

−f∗(A∗y∗)− g∗(−y∗) = inf
z∈Z

f(z) + g(Az),

where Y ∗ denotes the Banach space dual to Y and domf := f−1(R). Moreover, the supremum is
attained if finite.

Proof of Proposition 1: Let Z := Rn+1 be Euclidean and equip the continuous functions Y :=
C(K) on K with the supremum norm, so that Z∗ = Rn+1 and Y ∗ =M(K), the space of signed
measures on K normed by total variation. Take A(z) = z0 +

∑n

i=1 zixi =: ξ(x) ∈ Y so that A∗µ=∫
K

(1, x)dµ(x) gives the mass and barycenter of µ∈M(K). Set f(z0, . . . , zn) := z0 so that

f∗(z∗) =

{
0 if z∗ = (1,0, . . . ,0),
∞ else.

Also set

g(ξ) :=

{
0 if ξ(x)≥ |x|2 ∀x∈K,
∞ else,

so that

g∗(µ) =

{∫
K
|x|2dµ(x) if µ≤ 0,
∞ else.
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Inserting these choices into Theorem 5 yields (13), noting the definitions (5)–(6) of φ∗K . If 0∈L :=
conv(K) then P0(K) is non-empty and the supremum is bounded above and below (by the infimum
and zero) hence attained (also by Theorem 5).

If 0∈ int(L) then rB ⊂L for r > 0 sufficiently small, where B :=B1(0) is the centered unit ball.
Then φL ≤ φrB hence φ∗L(q) ≥ φ∗rB(q) = r|q| + r2 grows without bound as |q| → ∞. Being lower
semicontinuous, φ∗L then attains its minimum. On the other hand, the concavity of x 7→ −|x|2
implies φ∗L = φ∗K , as we now argue. Indeed φ∗L ≥ φ∗K follows directly from K ⊂ L and φK ≥ φL.
Conversely, given any affine function a on Rn dominated by φK , we find a≤ φL also, since φK = φL
outside L \K, and each x∈L \K can be approximated by convex combinations xj =

∑j

i=1 t
j
ik
j
i of

points kji ∈K with tji ≥ 0 and
∑j

i=1 t
j
i = 1, so

φL(xj) =−|xj|2

≥−
j∑
i=1

tji |k
j
i |2

=

j∑
i=1

tjiφK(kji )

≥ a(xj),

and the limit x = limj→∞ x
j yields φL ≥ a as desired. Since φ∗∗K is the supremum of such affine

functions a, we conclude φ∗∗L ≥ φ∗∗K , which implies φ∗K ≥ φ∗L hence φ∗K = φ∗L.
To characterize the optimizers, let µ∈P0(K) and q ∈Rn. Then∫

K

|x|2dµ(x) =

∫
K

(|x− q|2− |q|2)dµ(x)

≤max
x∈K
|x− q|2− |q|2 (14)

= φ∗K(−2q)
=:R2− |q|2

and equality holds if and only if µ vanishes outside the set

arg max
x∈K

|x− q|2 =K ∩ ∂BR(q);

here R is the smallest radius for which K ⊂ BR(q). On the other hand, µ ∈ P0(K) and q ∈Rn

optimize (13) if and only if equality holds in (14), so the proposition is established. �

Expression (13) is particularly convenient for selecting the translation of K which maximizes the
value of the linear program using the following lemma:

Lemma 1 (Optimal translation of a domain relative to the origin). For compact K ⊂
Rn, we have φ∗∗K−w(x) = (|x + w|2 − |x|2) + φ∗∗K (x + w). In particular, φ∗∗K (0) ≤ φ∗∗K−w(0) for all
translations w ∈Rn if and only if φ∗∗K attains its minimum at the origin.

Proof. The Legendre-Fenchel transform (6), applied to φK , yields

φ∗K−w(y) = |w|2−w · y+φ∗K(y− 2w) and
φ∗∗K−w(x) = |w|2 + 2w ·x+φ∗∗K (x+w),

hence

φ∗∗K−w(0) = |w|2 +φ∗∗K (w). (15)
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Recall that a convex function f on a Banach space Z attains its minimum at x if and only if
0∈ ∂f(x), where

∂f(x) := {z∗ ∈Z∗ | f(z)≥ f(x) + z∗(z−x) ∀z ∈Z}. (16)

The formula above shows f(w) := φ∗∗K−w(0) to be a strictly convex function of w with ∂f(0) =
∂φ∗∗K (0), so φ∗∗K−w(0) attains its minimum at w= 0 if and only if φ∗∗K (w) does as well. �

Proof of Theorem 1: (a) For a compact set K ⊂Rn with w ∈Rn, Lemma 1 yields φ∗∗K−w(0) =
|w|2 +φ∗∗K (w). In (13) this gives

sup
ν∈P0(K−w)

∫
|x|2dν =−φ∗∗K−w(0) =−|w|2−φ∗∗K (w). (17)

Letting µ denote the translation of ν by w := x̄(µ) yields (7). If w ∈ int(conv(K)), Proposition 1
states that ν ∈P0(K−w) attains the supremum if and only if ν vanishes outside K ∩∂BR(q) with
K ⊂BR(q) for some q ∈Rn and R> 0. In other words, if x̄(µ) ∈ int(conv(K)), then (7) becomes
an equality if and only if µ is supported on the boundary of a closed ball containing K.

(b) Can be proved using Lemma 1 as in Lim and McCann [21]. Alternately (b) follows from the
choice V (x) = |x|2 in Theorem 2, whose proof appears just below. �

Proof of Theorem 2. Recall from e.g. McCann and Guillen [24, §2.2] that

sup
µ∈P(K)

VarV (µ) = sup
µ∈P(K)

inf
z∈Rn

∫
V (x− z)dµ(x)

≤ inf
z∈Rn

sup
µ∈P(K)

∫
V (x− z)dµ(x)

= min
z∈Rn

max
x∈K

V (x− z)
= λ.

Combining compactness of K with coercivity and continuity of the convex function V allows us
to replace Rn with a sufficiently large closed ball BR(0) without affecting the values of either
infimum; the infima are therefore attained, and the inequality above becomes an equality according
to convex-concave minimax theory, as in, e.g. Strasser [30, Theorem 45.8].

From the definition of λ, there exists z∗ such that K − z∗ ⊂ V −1([0, λ]). Thus µ∈P(K) satisfies

inf
z∈Rn

∫
K

V (x− z)dµ(z)≤
∫
K

V (x− z∗)dµ(x)≤ λ

with the first inequality being saturated if and only if (10) holds, and the second inequality being
saturated if and only if V (x− z∗) = λ on sptµ. In light of (9), these two conditions are necessary
and sufficient to ensure that µ is a maximizer. �

3. Isodiametric variance and p-th moment bounds This section establishes our isodia-
metric variance bound and cases of equality: Theorem 3. Let us briefly outline the strategy of our
proof. Fix V (x) = v(|x|) radially symmetric, convex and increasing. For each compact set K ⊂Rn

of unit diameter, Theorem 2 asserts (i) that the maximizer of VarV (µ) on P(K) vanishes outside
the smallest sphere enclosing K and (ii) the center of this sphere attains the infimum (8) defining
VarV (µ). We may, without loss of generality assume that K has been translated so that this sphere
is centered on the origin. We shall now show the radius of this sphere cannot exceed the radius
rn :=

√
n

2n+2
of the unit n-simplex. To do so we use an induction on dimension, which is based on

the idea that if the centered sphere is too large, no measure whose support has unit diameter can
have its center of mass at the origin. More precisely, we show the following elementary yet crucial
geometric proposition which characterizes the unit simplex.
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Proposition 2 (Tension between diameter and center-of-mass constraints).
(a) If K ⊂ ∂Br(0) is a subset of the radius r > rn :=

√
n

2n+2
centered sphere in Rn and diam(K)≤ 1,

then 0 /∈ conv(K).

(b) If K is a subset of the centered sphere in Rn of radius rn, diam(K)≤ 1 and 0∈ conv(K), then
K is the set of vertices of a unit n-simplex.

Proof of Proposition 2. (a) The proposition is trivial to verify when n = 1. To derive a con-
tradiction, suppose the proposition holds in Rn−1 but fails in Rn. Then there exists a centered
sphere S of radius r with r > rn, and K ⊂ S with diam(K)≤ 1 and 0∈ conv(K). We can find n+ 1
points in K, say X := {x0, x1, ..., xn} ⊂K, such that 0∈ conv(X). If the origin lies on the boundary
of conv(X), then after intersecting the problem with a hyperplane supporting conv(X) at 0, the
inductive hypothesis yields the desired contradiction using rn−1 < rn. We may therefore assume
0∈ int conv(X), so that conv(X) is a top-dimensional simplex in Rn.

Without loss of generality, let x0 = rê1 = (r,0, ...,0). Define

U := {x∈ S | |x−x0| ≤ 1}.

Then ∂relU := {x∈ S | |x−x0|= 1} is a (n−2)-dimensional sphere of radius r′ and center a= a1ê1

for some r′ > 0 and a1 ∈R. Since 0 ∈ int conv(X) implies 0 ∈ int conv(U), we see that a1 < 0. And
r > rn implies r′ > rn−1, as r′ = rn−1 precisely when r = rn. Now consider the unique hyperplane
H which contains the (n − 1)-simplex with vertices X ′ = {x1, ..., xn} ⊂ X. Let L be the one-
dimensional subspace spanned by ê1. Then H ∩L 6= ∅ since 0∈ int conv(X). Let b= b1ê1 :=H ∩L.
Then a1 ≤ b1 since X ′ ⊂U , and b1 < 0 since 0∈ int conv(X). Now define the disk D := conv(H ∩S)
whose (relative) boundary is the (n− 2)-dimensional sphere ∂relD :=H ∩S. Note that b ∈D and
X ′ ⊂ ∂relD. Define

d := dist(b, ∂relD).

Notice that the facts a1 ≤ b1 < 0 and ∂relD⊂U imply d≥ r′, hence d> rn−1 (see Figure ??).
The desired contradiction (and proposition) will follow if we show that b /∈ conv(X ′), as this will

imply 0 /∈ conv(X). To achieve this, suppose on the contrary b ∈ conv(X ′). Let D′ be the (n− 1)-
dimensional closed ball in H of center b and radius d, and let ∂relD

′ be its boundary sphere. Note
that b ∈ conv(X ′)∩D′. Since none of the extreme points of conv(X ′) lie in the relative interior of
D′, it follows the extreme points of conv(X ′) ∩D′ all lie on the boundary sphere ∂relD

′. Setting
K ′ := conv(X ′)∩∂relD′, the Krein-Milman theorem implies b∈ conv(K ′). But this contradicts the
inductive hypothesis, which asserts that the center b of a sphere S′ := ∂relD

′ of radius d > rn−1

cannot lie in the convex hull of any subset K ′ ⊂ S′ whose diameter is bounded by one.
(b) We proceed as in part (a). Suppose the proposition holds in Rn−1. Let S be the centered sphere
of radius rn in Rn, and let K ⊂ S be such that diam(K)≤ 1 and 0 ∈ conv(K). As before we can
find a subset X of K, the vertices of a n-simplex with 0 ∈ conv(X), and in fact 0 ∈ int conv(X)
by part (a). Note that the sphere ∂relU now has radius rn−1. Again consider the hyperplane H
spanned by X ′, and observe that b = b1ê1 ∈ conv(X ′) since 0 ∈ conv(X). Now if a1 < b1, then as
before we have d> rn−1. This yields a contradiction by part (a) and the last part of its proof. We
conclude that a1 = b1, and this implies that H is the hyperplane containing b and having x0 = rnê1

as its normal. Then X ′ ⊂H ∩S = ∂relU , and the induction hypothesis implies that X ′ must form
vertices of a unit (n− 1)-simplex. Hence X forms vertices of a unit n-simplex, inscribed in the
sphere S = ∂Brn(0).

It remains to show that K =X. Since conv(X) is an intersection of n+ 1 closed halfspaces and
X = conv(X)∩S, any point x′ ∈K \X lies outside at least one of these halfspaces. Without loss
of generality, we may suppose it lies in the halfspace Ha := {x ∈Rn | x · ê1 < a1}. But this means
x′ ∈ S \U , yielding |x′−x0|> 1, which contradicts the assumption diam(K)≤ 1. �



Tongseok Lim and Robert J. McCann: Geometrical moment bounds
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 11

(A) (B)

Figure 3. In the proof of Proposition 2: (A), a, b∈Rn and d > 0; (B) b∈ conv(K′) yields a contradiction.

We are now in a position to prove Theorem 3 by characterizing variance maximizing measures
under a diameter constraint.

Proof of Theorem 3: Set V (x) = v(|x|) ≥ 0 with v convex and increasing, and fix a compact
set K ⊂Rn with diameter no greater than 1, and let µ ∈ P(K) be the probability measure on K
which maximizes VarV . Such a measure exists, by the weak-∗ compactness of P(K) in the Banach
space M(K) dual to (C(K),‖ · ‖∞) (or by Proposition 1 in case V (x) = |x|2). We may assume K
has been translated so that the origin z∗ = 0 satisfies (10). In this case we claim 0∈ conv(sptµ). If
not, letting 0 6= z be the point of conv(sptµ) closest to the origin, say z = (r,0, . . . ,0), we find each
point x ∈ conv(sptµ) lies in the halfspace to the right of z, hence is strictly closer to z than to 0,
contradicting (10). Theorem 2 asserts µ vanishes outside the smallest sphere BR(0) enclosing K,
so that VarV (µ) = v(R). On the other hand, sptµ⊂ ∂BR(0) has diameter at most one and contains
the origin in its convex hull. Proposition 2 therefore asserts that R ≤ rn and that when equality
holds sptµ coincides with the vertices of a unit n-simplex. Note that the uniform measure µ̂ on
the vertices of this simplex has center of mass at the origin and VarV (µ̂) = v(rn). Remark 5 below
shows no other measure on the vertices of the simplex has center of mass at the origin. If R< rn
we conclude VarV (µ)<VarV (µ̂), while if R= rn we conclude µ= µ̂. Thus for the given diameter
d = 1 of support, we have identified the maximum of VarV (·) and the measures which attain it
uniquely (up to translations and rotations). �

Remark 5 (Equidistribution over the simplex vertices). Since the vertices of the
standard simplex (11) form a basis for Rn+1, each point inside the simplex can be uniquely expressed
as a convex combination of its vertices. Thus among measures on the vertices of the simplex, only
the uniform measure has its barycenter at the point 1

n+1
(1, . . . ,1).

3.1. A new proof of Jung’s theorem

Let conclude by showing how Jung’s theorem [19] follows from the results just derived:
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Proof of Theorem 4 using Theorems 3 and 1(b). Let K ⊂Rn be compact with diam(K)≤ 1.
Theorem 3 asserts that any µ ∈ P(K) satisfies Var(µ)≤ r2

n, and Theorem 1(b) then implies that
K can be contained in a closed ball of radius at most rn. Now suppose K does not lie in a ball
with radius strictly smaller than rn. Then Theorem 1(b) provides µ∈P(K) with Var(µ) = r2

n and
Theorem 3 then implies that spt(µ) contains the vertices of a unit n-simplex. �

Conversely, an appendix to our companion work, Lim and McCann [21], shows how Jung’s
theorem can be used to prove Theorem 3 — at least for V (x) = |x|2, but the proof there adapts
easily to other radially symmetric, convex increasing choices of V (x) = v(|x|).
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