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Abstract. ChooseN unoriented lines through the origin of Rd+1.
The sum of the angles between these lines is conjectured to be max-
imized if the lines are distributed as evenly as possible amongst the
coordinate axes of some orthonormal basis for Rd+1. For d ≥ 2 we
embed the conjecture into a one-parameter family of problems, in
which we seek to maximize the sum of the α-th power of the renor-
malized angles between the lines. We show the conjecture is equiv-
alent to this same configuration becoming the unique optimizer (up
to rotations) for all α > 1. We establish both the asserted optimal-
ity and uniqueness in the limiting case α =∞ of mildest repulsion.
The same conclusions extend to N =∞, provided we assume only
finitely many of the lines are distinct.

Keywords: potential energy minimization, spherical designs, projective
space, extremal problems of distance geometry, great circle distance,
attractive-repulsive potentials, mild repulsion limit, Riesz energy
MSC2010 Classification: 90C20, 90C26, 52A40, 58C35, 70G75

1. Introduction

Choose N unoriented lines through the origin of Rd+1. The sum of
the angles between these lines is conjectured to be maximized if the
lines are distributed as evenly as possible amongst the coordinate axes
of some orthonormal basis for Rd+1. When d = 2 this conjecture dates
back to Fejes Tóth [9]. For d ≥ 2 it has motivated a recent series of
works by Bilyk, Dai, Glazyrin, Matzke, Park, Vlasiuk in different com-
binations [2] [4] [5] [7], and by Fodor, Vı́gh and Zarnócz [10]. In this
note we embed the conjecture into a one-parameter family of problems,
in which we seek to maximize the sum of the α-th power of the renor-
malized angles between the lines. Here renormalized means the angles
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are rescaled to achieve a maximum value of 1 when the lines are or-
thogonal, and α parameterizes the effective strength of the repulsion
between each pair of lines. We show the conjecture is equivalent to this
same configuration becoming the unique optimizer (up to rotations) for
all α > 1. We establish both the asserted optimality and uniqueness in
the limiting case α = ∞ of mildest repulsion. The optimality extends
also to N = ∞, under the assumption that only finitely many of the
lines remain distinct.

Let Sd = {x ∈ Rd+1 | |x| = 1} be the d-dimensional unit sphere, and
let ρ be the geodesic distance on Sd, i.e. ρ(x, y) = arccos(x · y).

Define functions Λ0 : [0, π]→ R and Λ : Sd × Sd → R as

Λ0(t) =
2

π
min{t, π − t}(1.1)

Λ(x, y) = Λ0(ρ(x, y)),(1.2)

so that Λ(x, y) ∈ [0, 1] is proportional to the (non-obtuse) angle be-
tween the lines xR and yR in Rd+1 determined by x and y in Sd,
attaining its maximum value Λ(x, y) = 1 if and only if x · y = 0. Next,
we define some measure spaces. Let N ∈ N := {1, 2, . . .},

M(Sd) = {µ | µ is a nonnegative finite measure on Sd},
P(Sd) = {µ ∈M(Sd) | µ(Sd) = 1, i.e. µ is a probability},
PN(Sd) = {µ ∈ P(Sd) | #[spt(µ)] ≤ N},

P=
N(Sd) = {µ ∈ PN(Sd) | µ =

1

N

N∑
i=1

δxi , xi ∈ Sd ∀i},

Pfin(Sd) =
∞⋃
N=1

PN(Sd), and P=
fin(Sd) =

∞⋃
N=1

P=
N(Sd).

Notice that P=
fin(Sd) denotes the set of probability measures with finite

support and rational weights on Sd. Then we consider the interaction
energy given by µ ∈M(Sd),

(1.3) E1(µ) =
1

2

∫∫
Λ(x, y)dµ(x)dµ(y).

In 1959, Fejes Tóth [9] considered the d = 2 instance of the following
problem and several variants

(1.4) maximize E1(µ) over P=
N(Sd) for each fixed N ∈ N.

In other words, given N , he was interested in the location of N not nec-
essarily distinct points on the sphere which maximizes the sum of their
mutual non-obtuse angles. He conjectured that this energy (discrete
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sum) is maximized by the periodically repeated copies of the orthonor-
mal basis. More precisely:

Conjecture 1. (Fejes Tóth [9])1 Given N ∈ N, µ maximizes (1.4) if
there is an orthonormal basis v1, ..., vd+1 of Rd+1 and x1, ..., xN ∈ Sd

such that µ = 1
N

∑N
i=1 δxi and xi ∈ {vj,−vj} if i ≡ j mod d+ 1.

Here δx is the probability concentrated at x, i.e. δx(A) = 1 if x ∈ A
and zero otherwise. We shall also consider a version of the conjecture
in which N is unconstrained:

Conjecture 1’. A measure µ maximizes (1.3) over Pfin(Sd) if there is

an orthonormal basis v1, ..., vd+1 of Rd+1 such that µ =
∑d+1

i=1 (aiδvi +
biδ−vi) with ai, bi ≥ 0 and ai + bi = 1

d+1
for all i = 1, ..., d+ 1.

Essentially, conjectures 1 (and 1′) assert that there exists a max-
imizer of E1 over P=

N(Sd) (and over Pfin(Sd) respectively), which is
supported on an orthonormal basis. Note that 1′ implies 1 if we fur-
ther restrict N to be divisible by d + 1. These conjectures have been
settled for the case d = 1, but for d ≥ 2 remain open; see e.g. Bilyk
and Matzke [7]. The analogous problem for points (as opposed to lines)
which repel each other throughout the (non-projectivized) sphere has
been analyzed by many authors, as discussed e.g. by Alexander and
Stolarsky [1]. Following ideas developed by Pólya and Szegö [14] and
others [8] [1] [3] in that context, let us consider the kernel Λα with
α > 0, the associated quadratic form

(1.5) Bα(µ, ν) =

∫∫
Λα(x, y)dµ(x)dν(y), µ, ν ∈M(Sd),

and the corresponding energy

(1.6) Eα(µ) =
1

2
Bα(µ, µ), α ∈ [1,∞].

Moreover, let us consider also the limiting case of mildest repulsion:
Λ∞(x, y) = 1 if x · y = 0, and zero otherwise. Now we reformulate the
conjectures. Notice the following are if and only if statements.

Conjecture 2. For each α > 1 and N ∈ N, µ maximizes (1.6) over
P=
N(Sd) if and only if there is an orthonormal basis v1, ..., vd+1 of Rd+1

and x1, ..., xN ∈ Sd such that µ = 1
N

∑N
i=1 δxi and xi ∈ {vj,−vj} if

1 [7] notes the original conjecture was stated for S2 and later stated for all Sd in [13].
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i ≡ j mod d+ 1.

Conjecture 2’. For each α > 1, µ maximizes (1.6) over Pfin(Sd) if
and only if there is an orthonormal basis v1, ..., vd+1 of Rd+1 such that

µ =
∑d+1

i=1 (aiδvi + biδ−vi) with ai, bi ≥ 0 and ai + bi = 1
d+1

for all
i = 1, ..., d+ 1.

Remark 1.1. Due to the symmetry of Λ0 around t = π/2 we have
Λα(x, y) = Λα(−x, y), which indicates that the energy (1.6) is invariant
under the mass transfer between x and −x on Sd. Thus the conjecture is
more naturally formulated on projective space RPd := Sd/{±}, where
the kernel Λα becomes a monotone function of the distance, i.e. purely
repulsive. Also, the energy is obviously invariant under the rotation
of µ. In view of this, the conjectures 2 and 2’ state that for α > 1,
the maximizer is unique up to rotation and mass exchange between the
antipodes. On the other hand, uniqueness is not expected for α = 1; e.g.
the uniform probability on S1 gives the same E1-energy as 1

2
(δx + δy)

with x · y = 0.

Definition 1.2. For x ∈ Sd we denote x̃ = {x,−x}. For x, y ∈ Sd, we
denote x ∼ y if x̃ = ỹ. In addition, for µ, ν ∈M(Sd) we write µ ≡ ν if
they are equal up to rotation and identification of the antipodes. That
is, µ ≡ ν if there exists an orthogonal matrix M ∈ O(d + 1) such that
µ(A ∪ −A) = ν(M(A ∪ −A)) for every measurable subset A of Sd.

In this paper we say the optimizer is essentially unique if µ ≡ ν
for any optimizers µ, ν for a given problem. In the sequel, we denote
Conjecture 1 as C1, and C2, C1’, C2’ similarly. We begin with a
simple observation.

Proposition 1.3. C1 and C2 are equivalent, and so are C1’ and C2’.

Proof. Firstly it is clear that C2 implies C1 by taking α ↘ 1. For
the converse, assume C1 holds but C2 fails for some α > 1, so that
there is a maximizer ν of Eα which is not of the type described in
C1. Then there exist x, y ∈ spt(ν) such that x · y /∈ {0, 1,−1}. Let µ
be a maximizer of E1 of the type described in C1. Then we have the
contradiction

E1(µ) = Eα(µ) ≤ Eα(ν) < E1(ν) ≤ E1(µ)

where the strict inequality follows from x · y /∈ {0, 1,−1}. The equiva-
lence between C1’ and C2’ can similarly be understood. QED

It is clear that if the conclusion of C2 (resp. C2’) holds for some α >
1, then the same conclusion also holds for all α′ satisfying α′ > α. In this
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paper we resolve C2 and C2’ in the mildest case α =∞, meaning two
particles on the sphere interact precisely when they are perpendicular.
In a companion work, by applying a perturbative approach based on
Theorem 1.4 below and a bound from [12], we are able to generalize the
conclusions of that theorem to large finite values of α; in that context
we are able to extend the maximization to the full set P(Sd) [11]. We
hope that this may yield an interesting new approach to the Fejes Tóth
conjecture in general dimensions.

Theorem 1.4. Fix α =∞. Then the conclusion of Conjectures 2 and
2’ hold in every dimension d ∈ N.

In section 2 of this paper the special case α =∞ of C2 is established
using an induction on both the dimension d and number of particles N
(see Theorem 2.1 for more detailed statement); we then deduce from it
the more general statement of Theorem 1.4 in section 3.

Remark 1.5. After this manuscript was posted on the arXiv, an el-
egant alternate proof of Theorem 1.4 was provided to us by Dmitriy
Bilyk and his collaborators [6].

2. Maximization of E∞ over P=
N(Sd)

Let V be a D-dimensional subspace of RD+1, so that V ∩ SD is a
(D − 1)-dimensional unit sphere. Define

M=
N(SD) = NP=

N(SD) = {µ | µ =
N∑
i=1

δxi , xi ∈ SD},

MV
N,k(S

D) = {µ ∈M=
N(SD) | µ(V ) = k} for k = 0, 1, ..., N,

ED,N = max
µ∈M=

N (SD)
E∞(µ), ED,N,k = max

µ∈MV
N,k(SD)

E∞(µ).

Theorem 2.1. Let D,N ∈ N and α =∞. Then:

(a) The conclusion of C2 holds. That is, µ maximizes E∞ overM=
N(SD)

if and only if there is an orthonormal basis v1, ..., vD+1 of RD+1 and
x1, ..., xN ∈ SD so that µ =

∑N
i=1 δxi and xi ∼ vj if i ≡ j mod D + 1.

(b) Assume k ≥ DN
D+1

. Then µ =
∑N

i=1 δxi maximizes E∞ overMV
N,k(S

D)

if and only if xi ∼ p for all xi /∈ V where p̃ = SD∩V ⊥, and there exists
an orthonormal basis v1, ..., vD of V such that either

∣∣{i | xi ∼ vj}
∣∣ =⌈

k
D

⌉
or
∣∣{i | xi ∼ vj}

∣∣ =
⌊
k
D

⌋
for every j = 1, ..., D.

Remark 2.2. The conclusion of Theorem 2.1(b) holds for k = b DN
D+1
c

as well, because in this case (along with k = d DN
D+1
e) the structure of
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maximizers over MV
N,k(S

D) given in (b) coincides with the structure of

maximizers over M=
N(SD) given in (a), as one can easily check.

To prove the theorem, we shall first prove the following lemma.

Lemma 2.3. Let Fd,n = E∞(µd,n) and Fd,n,k = E∞(νd,n,k) where
µd,n, νd,n,k are the (conjectured) maximizers overM=

n (Sd) andMV
n,k(S

d)

respectively as in Theorem 2.1. If n− 1 ≥ d ≥ 1 and dn
d+1
≤ k ≤ n− 1

then

(2.1) Fd,n−k + Fd−1,n < Fd,n,k

and there is a monotonicity

Fd,n,k > Fd,n,k+1,(2.2)

Fd,n,b dn
d+1
c = Fd,n,d dn

d+1
e.(2.3)

Of course, Ed,n = Fd,n and Ed,n,k = Fd,n,k once the theorem is proved.

Proof of Lemma 2.3. By the structure of maximizers µ described in
Theorem 2.1 (a)–(b) respectively, it follows

Fd,m+1 − Fd,m = m−
⌊ m

d+ 1

⌋
=
⌈ d

d+ 1
m
⌉

for every m, and(2.4)

Fd,n,k = Fd−1,k + k(n− k).(2.5)

Firstly (2.3) follows from Remark 2.2. To see (2.2), by using (2.4), (2.5)
we find (2.2) is equivalent to 2k − n + 1 > dd−1

d
ke. Notice this is also

equivalent to 2k−n ≥ d−1
d
k, that is, k ≥ dn

d+1
which is what we assumed.

From now on we will prove (2.1). Note that (2.1) is equivalent to

(2.6) Fd,n−k + Fd−1,n − Fd−1,k < k(n− k).

Firstly, notice Fd,n−k is clearly dominated by E∞(ν) where ν assigns
the total mass n − k uniformly onto an orthonormal basis of Rd+1,
hence

Fd,n−k ≤
((d+ 1)d

2

)(n− k
d+ 1

)2

=
d(n− k)2

2(d+ 1)
.

Secondly, observe (note that the sum is not void as n ≥ d+ 1)

Fd−1,n − Fd−1,k =
n−1∑
m=k

⌈d− 1

d
m
⌉

= e+
n−1∑
m=k

d− 1

d
m where e = e(n, k) ≤ n− k

=
(d− 1)(n− k)(n+ k − 1)

2d
+ e.
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It follows

Fd,n−k + Fd−1,n − Fd−1,k

≤ d(n− k)2

2(d+ 1)
+

(d− 1)(n− k)(n+ k − 1)

2d
+ e

≤ d(n− k)2

2(d+ 1)
+

(d)(n− k)(n+ k − 1)

2(d+ 1)
+ e

=
d(n− k)

(d+ 1)

(
n− 1

2

)
+ e.

In view of this, (2.6) will follow if we show

(2.7) eavg :=
e

n− k
<

d

2(d+ 1)
+ k − dn

d+ 1
.

Since the “average error” eavg ≤ 1, (2.7) is immediate if k ≥ d dn
d+1
e+ 1.

So we only need to show (2.7) for k = d dn
d+1
e, which we henceforth

assume. Now let l := n−k = b n
d+1
c so that (n, k) =

(
(d+1)l+r, dl+r

)
for some r ∈ {0, 1, ..., d}. Then since n = (d+ 1)l + r,

d

2(d+ 1)
+
⌈ dn

d+ 1

⌉
− dn

d+ 1
=

d

2(d+ 1)
+

r

d+ 1
=

d+ 2r

2(d+ 1)
.

On the other hand, since k = dl + r, by definition of e,

e =
r

d
+
r + 1

d
+ · · ·+ d− 1

d
+ 0 +

1

d
+ · · ·+ d− 1

d
+ 0 +

1

d
+ . . .

where the sum consists of l terms. By the periodically increasing prop-
erty of this sequence and the property of arithmetic average, we see
that eavg = e/l is maximized when l = d− r, that is

eavg =
e

l
≤ 1

d− r

(r
d

+
r + 1

d
+ · · ·+ d− 1

d

)
=
d+ r − 1

2d
.

Now it is easy to check d+2r
2(d+1)

> d+r−1
2d

, which proves (2.7). QED

Proof of Theorem 2.1. Given D, the theorem is trivial if N ≤ D. So
we assume N ≥ D + 1. We will proceed by an induction on N and D.
Given d, n ∈ N, assume:

Induction Hypothesis (IH): Theorem 2.1 (a)–(b) holds for every N ∈ N
if D ≤ d− 1, and for every N ≤ n− 1 if D = d.

First we will deduce (a) for (D,N) = (d, n). Let q, r ∈ Z be integers
such that n−1 = q(d+1)+r with r ∈ {0, . . . , d}. By IH(a), we can find

a maximizer µ0 overM=
n−1(Sd) such that µ0(V ) = dq+ r =

⌈
d(n−1)
d+1

⌉
=
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dn
d+1

⌋
and µ0({p}) = q = n− 1−

⌊
dn
d+1

⌋
. Define µ = µ0 + δp ∈M=

n (Sd).

We will show that µ is the unique maximizer over M=
n (Sd). Observe

E∞(µ) = E∞(µ0) +B∞(µ0, δp) = Ed,n−1 +
⌊ dn

d+ 1

⌋
.

Let ν0 be any element in M=
n−1(Sd) and let ν = ν0 + δp. Then

E∞(ν) = E∞(ν0) +B∞(ν0, δp) = E∞(ν0) + ν0(V ).

If E∞(ν0) = Ed,n−1, then ν0 ≡ µ0 by IH(a) and hence ν0(V ) ≤
⌊
dn
d+1

⌋
.

Moreover ν0(V ) =
⌊
dn
d+1

⌋
yields ν ≡ µ. We proved:

E∞(ν0) = Ed,n−1 and E∞(ν) ≥ E∞(µ) implies ν ≡ µ.

Now suppose E∞(ν0) < Ed,n−1 but still E∞(ν) ≥ E∞(µ). This implies
ν0(V ) >

⌊
dn
d+1

⌋
. Set k = ν0(V ) and k′ =

⌊
dn
d+1

⌋
, and observe that IH(2)

and (2.5) imply

E∞(µ) = E∞(µ0) + k′ = Ed,n−1,k′ + k′ = Ed−1,k′ + k′(n− k′) = Fd,n,k′ ,

E∞(ν) = E∞(ν0) + k ≤ Ed,n−1,k + k = Ed−1,k + k(n− k) = Fd,n,k.

(2.2),(2.3) then gives E∞(ν) ≤ E∞(µ), yielding E∞(ν) = E∞(µ) and
k = d dn

d+1
e. Now the implied equality E∞(ν0) = Ed,n−1,k tells us the

structure of ν0 via IH(b), which clearly implies µ ≡ ν, as in the proof
of (2.3). This completes the proof of IH(a) for N = n.

Now we will deduce (b) for (D,N) = (d, n) to complete the induc-
tion. Fix k ≥

⌈
dn
d+1

⌉
and assume µ ∈ MV

n,k(S
d) achieves the maximum

E∞(µ) = Ed,n,k. We will firstly show that µ(p̃) > 0 yields (b). Indeed
in this case we can again write µ = µ0 + δp, so E∞(µ) = E∞(µ0) + k.
Hence E∞(µ) = Ed,n,k implies E∞(µ0) = Ed,n−1,k. Then IH(b) applied
to µ0 yields µ must be of the type described in (b), as desired.

Hence from now on we will assume µ(p̃) = 0 and show this yields the
contradiction E∞(µ) < Ed,n,k. Let H = Sd \ (V ∪ p̃), and denote µH , µV
as the restriction of µ onto H and V respectively, so that µ = µH +µV .
LetW be the set of all (d− 1)-dimensional subspaces of V . Then there
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exists W ∈ W such that µ(W ) = max
X∈W

µ(X). Now observe

E∞(µ) = E∞(µH) + E∞(µV ) +B∞(µH , µV )

= E∞(µH) + E∞(µV ) +
∑

x∈spt(µH)

µ(x)B∞(δx, µV )

= E∞(µH) + E∞(µV ) +
∑

x∈spt(µH)

µ(x)µ(V ∩ {x}⊥)

≤ E∞(µH) + E∞(µV ) + (n− k)µ(W ).

Note that E∞(µH) ≤ Ed,n−k. For E∞(µV ) + (n− k)µ(W ), observe

E∞(µV ) + (n− k)µ(W ) = E∞
(
µV + (n− k)δz

)
for some z ∈ V ∩W⊥,

which yields E∞(µV ) + (n − k)µ(W ) ≤ Ed−1,n in particular. Then by
IH and Lemma 2.3, we indeed have

E∞(µ) ≤ Ed,n−k + Ed−1,n = Fd,n−k + Fd−1,n < Fd,n,k ≤ Ed,n,k.

This completes the induction and proves Theorem 2.1. QED

3. Maximization of E∞ over Pfin(Sd)

In this section we show that the same measures maximize the qua-
dratic form E∞(µ) among all measures Pfin(Sd) having finite support,
without imposing any upper bound N on the size of the support or
rationality on the values of µ. We start with a lemma showing that
rational quadratic forms on the standard simplex admit rational ex-
trema.

Lemma 3.1. Let A be a (d+1)×(d+1) symmetric matrix with rational
entries. Let ∆d be the d-dimensional standard simplex in Rd+1, i.e.

∆d = {x = (x1, ..., xd+1) ∈ Rd+1 |
d+1∑
i=1

xi = 1, xi ≥ 0 ∀i},

∆o
d = {x = (x1, ..., xd+1) ∈ ∆d | xi > 0 for all i}

its relative interior, and ∂∆d = ∆d \ ∆o
d its relative boundary. Define

f : ∆d → R by f(x) = 1
2
xTAx.

(a) Then f has maxima and mimima on ∆d whose entries are rational.

(b) If f has interior extrema on ∆d, then it has interior extrema whose
entries are rational. That is, suppose there is x ∈ ∆o

d such that f(x) =
M := max∆d

f . Then there is x′ ∈ ∆o
d whose entries are rational and

f(x′) = M . The same holds for minima.
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Proof. We first prove (b), and we will only prove for the maximum
and proceed by an induction on d. Let x ∈ ∆o

d attain f(x) = M . Then
note that the gradient ∇f(x) = Ax must be perpendicular to ∆d at the
optimum x, that is, Ax = ce for some c ∈ R and e = (1, 1, ..., 1) ∈ Rd+1.

We firstly consider the case x is the only maximum of f over ∆d.
If A is invertible, then x = cA−1e. Now since A has rational entries
so does A−1. Hence x has rational entries if and only if c is rational.
But as

∑
i xi = 1, c must be rational and we are done. But if A is not

invertible, there is a nonzero y ∈ Rd+1 with Ay = 0. Now if y · e = 0,
then x+ ty ∈ ∆d for all small t ∈ R, and we have

g(t) := f(x+ ty) =
1

2
(x+ ty)TA(x+ ty) = f(x),

violating the unique optimality assumed of x, thus y · e 6= 0. Let H
be the hyperplane containing ∆d. By multiplying a constant we can
assume y ∈ H. Now if y = x, observe the unique optimality of x implies
the system Az = 0 and

∑
i zi = 1 has a unique solution (that is, x).

Then x will be found via elementary row operations on this system,
and the rationality of A implies rationality of x, yielding the lemma.
On the other hand if y 6= x, let v = y−x and z = x+tv = (1−t)x+ty.
Then z ∈ ∆d for all small t ∈ R, and g(t) = f(z) = (1− t)2f(x), again
violating the unique optimality of x.

It remains to consider the case x ∈ ∆o
d is not the unique maximum,

so there is x′ ∈ ∆d, x
′ 6= x and f(x′) = M . Consider the line L =

{z | z = (1 − t)x + tx′, t ∈ R}, and the two distinct points {y, y′} =
L ∩ ∂∆d. Observe then there exist two unique subsimplexes ∆k,∆k′

of dimensions k and k′ respectively, such that y, y′ lie in the relative
interiors of ∆k,∆k′ , denoted by ∆o

k,∆
o
k′ . Here a single point is its own

relative interior, by convention. Notice ∆o
k∩∆o

k′ = ∅. Now observe that
f is constant on L, since with v = x′ − x we have

g(t) := f(x+ tv) =
1

2
(x+ tv)TA(x+ tv) = f(x) + t2f(v)

where we used the fact that v · Ax = v · ce = 0. Moreover g(0) = g(1)
implies f(v) = 0, thus g is constant, hence f(y) = f(y′) = M . Then
since k, k′ < d, the induction hypothesis is applicable and there exist
z ∈ ∆o

k and z′ ∈ ∆o
k′ such that f(z) = f(z′) = M and the entries of

z, z′ are rational. Now since the quadratic form f is constant on the
lines xz and xz′ as shown above, f = M on the line zz′. Finally, notice
zz′∩∆o

d 6= ∅; otherwise the segment zz′ is in ∂∆d, thus in a subsimplex
∆d−1 of dimension d− 1. Then {z, z′} ⊆ ∆d−1, yielding {y, y′} ⊆ ∆d−1

and hence yy′ ⊆ ∆d−1. But this contradicts to the fact x ∈ yy′. Hence
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zz′ ∩∆o
d 6= ∅, yielding {(1 − t)z + tz′ | t ∈ (0, 1)} ⊆ ∆o

d. We conclude
any rational t ∈ (0, 1) yields the rational maximum (1− t)z+ tz′ ∈ ∆o

d.
Now part (a) is immediate from part (b) since any (extremal) point

x ∈ ∆d belongs to the relative interior of a subsimplex ∆o
k. QED

Theorem 3.2. A measure µ maximizes E∞ over Pfin(Sd) if and only
if there is an orthonormal basis v1, ..., vd+1 of Rd+1 such that µ ≡

1
d+1

∑d+1
i=1 δvi.

Proof. Let µ∗ be a conjectured (essentially unique) maximizer, so that

E∞(µ∗) = (d+1)d
2

1
(d+1)2

= d
2(d+1)

=: M∗. Choose any µ ∈ Pfin(Sd). We

will show E∞(µ) ≤ E∞(µ∗), and the inequality is strict unless µ ≡ µ∗.
To this end, set A = spt(µ) and P(A) = {µ ∈ Pfin(Sd) | spt(µ) ⊆ A}

and MA := maxP(A) E∞. We separate two possible cases, according to
whether or not equality holds in E∞(µ) ≤MA.

In the first case where E∞(µ) = MA, notice that Lemma 3.1(b)
implies there exists ν ∈ P(A) such that spt(ν) = A, E∞(ν) = MA

and ν(x) is rational for every x ∈ A. Then Theorem 2.1(a) implies
MA ≤ M∗ thanks to the rationality, and furthermore equality holds
if and only if ν ≡ µ∗ (here we use the standard fact that the inter-
action energy

∑
i 6=j xixj is uniquely maximized over the hyperplane

{x ∈ Rd |
∑

i xi = 1} by the uniform probability vector; this can, for
example, be seen as a consequence of the Perron-Frobenius theorem).

Hence in particular MA = M∗ yields spt(µ) = spt(ν) ⊆
⋃d+1
i=1 {ui,−ui}

for some orthonormal basis u1, ..., ud+1, and this clearly implies µ ≡ µ∗

again by the same standard fact.
In the second case E∞(µ) < MA, choose any ν ∈ P(A) attaining

E∞(ν) = MA. Let B = spt(ν) and define P(B) and MB as above.
Then by the above argument we have MB ≤ M∗. But notice MB =
E∞(ν) = MA, which yields E∞(µ) < MA = MB ≤M∗.

We conclude µ∗ is the essentially unique maximizer on Pfin(Sd). QED
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