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ON THE CARDINALITY OF SETS IN R\bfitd OBEYING A SLIGHTLY
OBTUSE ANGLE BOUND\ast 
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Abstract. In this paper, we explicitly estimate the number of points in a subset A \subseteq Rd as
a function of the maximum angle \angle A that any three of these points form, provided \angle A < \theta d :=
arccos( - 1

d
) \in (\pi /2, \pi ). We also show \angle A < \theta d ensures that A coincides with the vertex set of a

convex polytope. This study is motivated by a question of Paul Erd\H os and indirectly by a conjecture
of L\'aszl\'o Fejes T\'oth.
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1. Introduction. Let us begin with a simple definition.

Definition 1.1 (angle bound). For A \subseteq Rd, let \angle A denote the smallest value of
\theta \in [0, \pi ], such that no triple of points x, y, z \in A determine an angle \angle xyz greater
than \theta , i.e., x - y

| x - y| \cdot 
z - y
| z - y| \geq cos \theta for all x, y, z \in A.

For a set A, we denote by | A| \in \{ 0, 1, . . . ,\infty \} its cardinality. In the 1950s, Paul
Erd\H os raised the following conjecture [6].

Conjecture: If A \subseteq Rd satisfies \angle A \leq \pi /2, then | A| \leq 2d.

The conjectured bound 2d is obviously sharp, being achieved by the vertices of the
hypercube in Rd. For d = 3, he had advertised the problem a decade earlier [5], which
he claimed [6] led to an unpublished solution by Kuiper and Boerdijk. For d \geq 3, the
conjecture was resolved affirmatively by Danzer and Gr\"unbaum [3], who established
it through a chain of remarkable inequalities reproduced in [1]. They also asked the
following natural question: if the angle bound \theta is acute, i.e., \theta \in [0, \pi 

2 ], what would be
the optimal upper bound for | A| subject to the strict inequality \angle A < \theta ? Danzer and
Gr\"unbaum had raised a conjecture on this question which was disproved two decades
later by Erd\H os and F\"uredi [7]. Since then, the question has remained both interesting
and challenging, as, e.g., Gerencs\'er and Harangi [10], [11] and Aigner and Ziegler [1]
discuss; a significant stream of research has focused on how large a set A can be while
satisfying the strictly acute bound \angle A < \pi 

2 .
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Now what if the angle bound \theta is obtuse, i.e., \theta \in (\pi /2, \pi )? In this case, much less
appears to be known. It is known, however, that the set A \subseteq Rd subject to \angle A \leq \theta 
must be finite; see, e.g., Otsetarova [16]. In the plane, the number of obtuse angles
determined by a set is known to grow as a cubic function of its cardinality [2], [8].
Here we address the following natural question.

Question 1.2. Given \theta \in (\pi /2, \pi ), estimate the smallest N = N(\theta , d) \in N (if
any exists) such that for all A \subseteq Rd satisfying \angle A \leq \theta , we have | A| \leq N .

Since N(\pi , d) = +\infty , it is not obvious that \theta < \pi makes N(\theta , d) finite; we describe
in Appendix A how this fact can be inferred by refining the conclusion of Erd\H os and
F\"uredi [7, Theorem 4.3], who used sphere packing and covering asymptotics to derive
two-sided bounds onN(\theta , d) for \theta near \pi ; their statement is predicated on the unstated
requirement that our N (their n) be sufficiently large; we clarify how large in Theorem
A.1. After the current manuscript was first posted to the arXiv, we also learned that
Kupavskii and Zakharov [13] had used a method inspired by Erd\"os and F\"uredi's to
show for each \pi 

2 < \theta < \pi the growth of N(\theta , d) to be doubly exponential in d, but
with \theta dependent rates which are not estimated explicitly. In this paper, we use an
entirely different approach to give the first explicit upper bound for N(\theta , d) in the
region \theta < \theta d, when

(1.1) \theta d := arccos

\biggl( 
 - 1

d

\biggr) 
\in 

\biggl( 
\pi 

2
, \pi 

\biggr) 
shrinks to \pi /2 as d \rightarrow \infty . Instead of relying on the sphere packing and covering
arguments (see Appendix A for more details), we observe that \theta := \angle A < \theta d implies
the points of A form the vertices of a convex polytope. Our bound for the number
of vertices of this polytope in terms of \theta and d then follows from the Gauss--Bonnet
theorem. This argument is a higher dimensional version of the planar statement that
if all angles of a convex polygon are at most 2\pi /3, then the polygon has at most six
vertices.

In the first circulated draft of our companion work [15], we exploited the present
result to attack a conjecture of Fejes T\'oth, concerning the placement of a large number
of lines through the origin so as to maximize the expected acute angle between them.
There instead we were interested in maximizing a power \alpha > 1 of the (renormalized)
angle between each pair of lines. Having already established the analogous conjecture
in the limiting case \alpha = \infty [14], we used the present results to extend this conclusion
to large finite values of \alpha . In subsequent drafts of [15], however, this argument has
been replaced by a different approach (based in part on an appendix authored by
Bilyk, Glazyrin, Matzke, Park, and Vlasiuk) which allows us to extend our conclusion
to the larger range \alpha > \alpha \Delta d , where \alpha \Delta d < 2 in certain cases.

Changing the ambient space from Rd to Rd+1 hereafter, let \scrH d be the area
measure on Sd = \{ x \in Rd+1 | | x| = 1\} , and let \omega d = \scrH d(Sd) denote the total area of
Sd, e.g., \omega 1 = 2\pi , \omega 2 = 4\pi . For \eta \in (0, \pi 

2 ), let fd(\eta ) denote the fraction of Sd covered
by generalized normals to the cone

(1.2) Cu,\eta := \{ x \in Rd+1 | u \cdot x \geq | u| | x| cos \eta \} 
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of half-angle \eta around 0 \not = u \in Rd+1, so that

fd(\eta ) :=
1

\omega d
\scrH d(\{ x \in Sd | x \cdot z \leq 0 for every z \in Cu,\eta \} )

=
\omega d - 1

\omega d

\int \pi 
2  - \eta 

0

sind - 1(t)dt(1.3)

=

\biggl( \int \pi 

0

sind - 1(t)dt

\biggr)  - 1 \int \pi 
2  - \eta 

0

sind - 1(t)dt.

Equivalently, fd(\eta ) is the zeroth curvature measure that the cone Cu,\eta assigns to its
vertex, in the terminology of Federer (see [9], [17]).

Our result is the following.

Theorem 1.3 (cardinality under possibly obtuse angle bound). Fix d \geq 1 and

0 < \theta < \theta d+1 and \eta d(\theta ) := arcsin
\bigl( \mathrm{s}\mathrm{i}\mathrm{n}(\theta /2)
\mathrm{s}\mathrm{i}\mathrm{n}(\theta d/2)

\bigr) 
\in (0, \pi 

2 ). If A \subseteq Rd+1 satisfies \angle A \leq \theta ,

then (1.1) and (1.3) yield

(1.4) | A| \leq 1

fd(\eta d(\theta ))
.

Remark 1.4 (dimensional monotonicity). For fixed \theta , our cardinality bound
1/fd(\eta d(\theta )) increases with dimension since fd(\eta ) is monotone decreasing with respect
to both \eta and d: indeed, the difference of averages

\partial log fd(\eta )

\partial d
=

\biggl( \int \pi 
2  - \eta 

0

sind - 1(t)dt

\biggr)  - 1 \int \pi 
2  - \eta 

0

(log sin t) sind - 1(t)dt

 - 
\biggl( \int \pi 

0

sind - 1(t)dt

\biggr)  - 1 \int \pi 

0

(log sin t) sind - 1(t)dt

is negative since t \in [0, \pi ] \mapsto \rightarrow log sin t is symmetric about \pi /2 and increasing on
[0, \pi /2].

Example 1.5 (explicit bounds in low dimensions). If d = 1, then \eta 1(\theta ) =
\theta 
2 and

f1(\eta ) = 1
2  - \eta 

\pi , so f1(\eta 1(\theta ))
 - 1 = 2\pi 

\pi  - \theta yields the known sharp values \{ 2, 3, 4,\infty \} 
corresponding to \theta \in \{ 0, \pi 

3 ,
\pi 
2 , \pi \} . However, f2(\eta ) =

1
2 (1 - cos(\pi 2  - \eta )) yields a bound

f2(\eta 2(
\pi 
2 ))

 - 1 \approx 10.9 worse than the sharp value 8 attained by the vertices of the cube
in R3.

For nonobtuse sets, the bound (1.4) becomes less and less accurate with increasing
dimension, growing slightly faster than exponentially.

Claim 1.6 (asymptotic bounds as dimension increases).

fd

\biggl( 
\eta d

\biggl( 
\pi 

2

\biggr) \biggr)  - 1

< 2

\biggl( 
\pi 

2

\biggr) 2d - 1

e(d \mathrm{l}\mathrm{o}\mathrm{g} d)/2[1 +O(d - 1)].

This growth, while faster than the known sharp value of 2d+1, is slow compared
to the doubly exponential growth of N(\theta , d) observed for each fixed \theta \in (\pi 2 , \pi ) in
[13], suggesting a rich range of intermediate asymptotic behavior in the narrowing
region \pi 

2 < \theta < \theta d of the (\theta , d) plane. It is also smaller than the doubly exponential
upper bound obtained in Appendix A using Erd\H os--F\"uredi sphere-covering arguments
(with Cd independent of d), which confirms that our bounds represent a significant
improvement on the state of the art, at least in their limited range of validity.
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Proof of Claim 1.6. From the identity

sin(\theta d/2) :=

\sqrt{} 
d+ 1

2d

which follows from (1.1) (and which is reasserted below in Theorem 2.3) we derive

\eta d

\biggl( 
\pi 

2

\biggr) 
= arcsin

\biggl( \sqrt{} 
1 - 1

d+ 1

\biggr) 
<

\pi 

2
 - 
\sqrt{} 
2(1 - 

\sqrt{} 
1 - (d+ 1) - 1)

=
\pi 

2
 - d - 1/2(1 +O(d - 1)),

where arcsin(t) < \pi 
2 - 

\surd 
2 - 2t has been used. Estimating (1.3) using 2

\pi < t - 1 sin(t) < 1
on t \in (0, \pi 

2 ) yields

fd(\eta ) >

\biggl( 
2

\int \pi /2

0

td - 1dt

\biggr)  - 1 \int \pi 
2  - \eta 

0

\biggl( 
2

\pi 
t

\biggr) d - 1

dt,

whence

fd

\biggl( 
\eta d

\biggl( 
\pi 

2

\biggr) \biggr)  - 1

< 2

\biggl( 
\pi 

2

\biggr) 2d - 1

dd/2[1 +O(d - 1)]

as desired.

In the next section, we will prove Theorem 1.3 using two propositions which may
have independent interest. Proposition 2.1 shows that the strict inequality \angle A < \theta d
cannot hold unless no point in A \subseteq Rd is a convex combination of d+1 others. On the
other hand, if no point in A is a convex combination of other points, then A consists
precisely of the vertices of a convex polytope. Proposition 2.4 combines a spherical
diameter-to-radius inequality [4] with the generalized Gauss--Bonnet theorem to esti-
mate | A| in terms of the angle bound \angle A \leq \theta in this case. In Appendix A, we review
the sphere-packing and covering arguments of Erd\H os and F\"uredi for comparison and
show how they can be extended to sets which need not be too large.

2. Proofs. Let conv(A) denote the convex hull and int(A) the interior of any
subset A \subseteq Rd.

Proposition 2.1 (angle estimates from an interior point of a simplex). Let d \geq 
2, and let \{ v0, . . . , vd\} \subseteq Rd \setminus \{ 0\} be vertices of a d-dimensional simplex containing
the origin. Let wi =

vi

| vi| . Then

(2.1) min
0\leq i<j\leq d

wi \cdot wj \leq  - 1

d

and equality holds if and only if conv\{ w0, . . . , wd\} is a regular simplex.

Proof. The proposition clearly holds for d = 2 since at least one of the three angles
at the origin must exceed 2\pi /3 unless \{ w0, w1, w2\} is equilateral. We will proceed by an
induction on dimension d. Let V = \{ v0, . . . , vd\} , so that conv(V ) is the d-dimensional
simplex. If the origin lies on the boundary of conv(V ), then the induction hypothesis
yields mini\not =j wi \cdot wj \leq  - 1

d - 1 . So let us assume 0 \in int(conv(V )). Let wi =
vi
| vi| . We
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claim W = \{ w0, . . . , wd\} also forms vertices of a d-dimensional simplex containing the
origin in its interior. To see this, observe

0 \in int(conv(V ))

\Leftarrow \Rightarrow for every i, vi =  - 
\sum 
j \not =i

\lambda jvj for some \lambda j > 0

\Leftarrow \Rightarrow for every i, wi =  - 
\sum 
j \not =i

\lambda jwj for some \lambda j > 0

\Leftarrow \Rightarrow 0 \in int(conv(W )),

which proves the claim and gives ai > 0 such that
\sum d

i=0 aiwi = 0. Without loss
of generality, assume a0 = mini\{ ai\} , a1 = maxi\{ ai\} . Set bi = ai

a0
, so that w0 =

 - 
\sum d

i=1 biwi. Now we claim

min
1\leq i<j\leq d

wi \cdot wj \geq  - 1

d
implies w0 \cdot w1 \leq  - 1

d
.

To see this, observe

w0 \cdot w1 =  - 
d\sum 

i=1

biw1 \cdot wi

\leq  - b1 +
1

d

d\sum 
i=2

bi

\leq  - b1 +
1

d

d\sum 
i=2

b1 =  - b1
d

\leq  - 1

d

since b1 \geq 1. We have shown (2.1), and in view of the above inequalities, we see that
equality holds in (2.1) if and only if wi \cdot wj =  - 1

d for all 1 \leq i < j \leq d and b1 = 1,

that is,
\sum d

i=0 wi = 0. By taking dot product with wj , j \not = 0, on the last identity, we
conclude that equality holds in (2.1) if and only if wi \cdot wj =  - 1

d for all 0 \leq i < j \leq d,
that is, conv\{ w0, . . . , wd\} forms a regular d-dimensional simplex.

Corollary 2.2 (deciding when points lie in convex position). Let d \geq 2 and
A \subseteq Rd. If \angle A < \theta d := arccos( - 1

d ), then A consists of the vertices of a convex
polytope (not necessarily d-dimensional).

Proof. If not, there exist v \in A and \{ v0, . . . , vk\} \subseteq A\setminus \{ v\} , which forms vertices of
a k-dimensional simplex such that v \in conv\{ v0, . . . , vk\} by Carath\`eodory's theorem.
Proposition 2.1 then yields i, j such that \angle (vi, v, vj) \geq \theta k \geq \theta d, a contradiction.

To derive the desired cardinality bound for convex polytopes, we use the following
spherical version of Jung's theorem [12] relating diameter to radius bounds in flat
space, established on the unit sphere Sd equipped with its standard round metric by
Dekster [4, Theorem 2].

Theorem 2.3 (Dekster, 1995). Let R \in (0, \pi 
2 ). If H \subseteq Sd satisfies diamH \leq 

2 arcsin
\bigl( 
sin(\theta d/2) sinR

\bigr) 
\in (0, \pi ), then H can be contained in a closed ball of radius

R in Sd. Here sin(\theta d/2) =
\sqrt{} 

d+1
2d from (1.1).
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Proposition 2.4 (cardinality bound for convex polytopes). Let d \geq 1 and 0 <
\theta < \theta d. If V = \{ v1, . . . , vn\} consists of the vertices of a convex polytope conv(V ) \subseteq 
Rd+1 with nonempty interior and satisfies \angle V \leq \theta , then n \leq 1

fd(\eta )
with \eta = \eta d(\theta ) =

arcsin
\bigl( \mathrm{s}\mathrm{i}\mathrm{n}(\theta /2)
\mathrm{s}\mathrm{i}\mathrm{n}(\theta d/2)

\bigr) 
\in (0, \pi 

2 ).

Proof. For \kappa \in (0, \pi 
2 ) and u, v \in Rd+1, use (1.2) to define a family of cones

v+Cu,\kappa \subseteq Rd+1 with vertex v, direction u \not = 0, and half-angle \kappa . Now consider any of
the given vertices vi; by translating the polytope we may assume vi = 0. By dilating
\lambda V with sufficiently large \lambda > 0 we also assume that only those edges emanating from
vi = 0 meet Sd, and we set H \subseteq Sd to be the intersection points of those edges with
Sd. Notice \angle V \leq \theta implies diamH \leq \theta , and hence Dekster's theorem implies, with
\eta in place of R, that H (and hence V ) is contained in the cone vi + Cui,\eta for some
unit vector ui. Since the conclusion is invariant under translations and dilations, we
deduce there exist unit vectors u1, . . . , un such that

(2.2) conv V \subseteq 
n\bigcap 

i=1

vi + Cui,\eta .

Let fi denote the fraction of Sd occupied by the generalized normals to conv(V ) at
vi:

fi :=
1

\omega d
\scrH d(\{ x \in Sd | (x - vi) \cdot (z  - vi) \leq 0 for every z \in conv V \} ).

Then \sum 
fi = 1,

an intuitive fact which can also be seen as a consequence of, e.g., Federer's gen-
eralization of the Gauss--Bonnet formula, which asserts that for any convex body
the zeroth curvature measure of the entire convex body is unity, coinciding with its
Euler--Poincar\'e characteristic [9]; in the case of a convex polytope conv(V ), the zeroth
curvature measure vanishes, except at the vertices of the body, and assigns mass fi
to vi.

Now by the covering property (2.2), we have

(2.3) 1 =

n\sum 
i=1

fi \geq 
n\sum 

i=1

fd(\eta ) = nfd(\eta ),

whence n \leq 1/fd(\eta ).

Proof of Theorem 1.3. Let A \subseteq Rd+1 satisfy \angle A \leq \theta < \theta d+1. We may assume
that A is not contained in any d-dimensional hyperplane since otherwise we may
apply an induction on dimension using the monotonicity of d \mapsto \rightarrow fd(\eta d(\theta )) established
in Remark 1.4. Then by Corollary 2.2, A is the set of vertices of a (d+1)-dimensional
convex polytope, and the theorem follows from Proposition 2.4 and \theta d+1 < \theta d.

Appendix A. Finite-size Erd\H os and F\"uredi bounds. Erd\H os and F\"uredi
relate the quantity we have estimated to sphere-packing and sphere-covering bounds
on the unit sphere Sd - 1 in [7, Theorem 4.3]. Since their published statement contains
at least one misprint (and some tacit hypotheses, as observed in [13]), let us recount
their argument and refine their conclusions, so that they apply to all sets, and not
only to large ones. Using our angle bound

\angle P := sup
x,y,z\in P

\angle xyz,
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let
\alpha d(n) := inf

P\subseteq \bfR d

| P | =n

\angle P

denote the minimal maximal angle made by n points in Rd, e.g., \alpha d(3) = \pi /3 = 60\circ ,
\alpha 3(4) \approx 109.5\circ , etc. Note P \subseteq P \prime implies \angle P \leq \angle P \prime , yielding monotonicity of this
minimax \alpha d(n) \leq \alpha d(n+1) with respect to the size of the sets being considered. This
means

Nd(\theta ) := sup
\alpha d(n)\leq \theta 

n

is a nondecreasing inverse to \alpha d(n) (and in fact agrees with N(\theta , d) from our Question
1.2). Any upper (respectively, lower) bound for \alpha d(n) can therefore be translated into
a lower (respectively, upper) bound for Nd(\theta ), and vice versa. Theorem 4.3 of [7]
asserts

(A.1)
\pi 

(log2 n)
1/(d - 1)

< \pi  - \alpha d(n) <
4\pi 

(log2 n)
1/(d - 1)

under the tacit assumption that n needs to be sufficiently large. Inspection of the
proof suggests the intended statement should perhaps have been that

(A.2)
cd

(1 + log2 n)
1/(d - 1)

< \pi  - \alpha d(n) <
Cd

( - 1 + log2 | n - 1| )1/(d - 1)
,

where cd and Cd are certain constants independent of d, to be estimated presently,
and the lower bound is only asserted for large n. Note (A.2) is equivalent to the bound

(A.3) 2(cd/(\pi  - \theta ))d - 1 - 1 < Nd(\theta ) < 1 + 2(Cd/(\pi  - \theta ))d - 1+1

while the requirement that Nd(\theta ) be large translates to \theta being close to \pi . For \theta >
\pi  - cd, the bounds (A.3) grow doubly exponentially with dimension d. Kupavskii and
Zakharov established doubly exponential bounds forNd(\theta ) in the full range \pi 

2 < \theta < \pi ,
but their rate constants are not explicit and must evidently depend on \theta near \pi 

2 [13].
Let us now recall the arguments which establish (A.2). They begin with two

crucial statements concerning the packing and covering of the unit sphere in Rd with
balls of radius \rho /2, namely that there exist positive functions cd(\rho ) and Cd(\rho ) such
that we have the following.

(Packing): For all 0 < \rho < \=\rho < \pi 
2 , there exist more than (cd(\=\rho )/\rho )

d - 1 (undi-
rected) lines through the origin in Rd such that any two of them determine an angle
greater than \rho .

(Covering): For all 0 < \rho < \=\rho < \pi , there exist fewer than (Cd(\=\rho )/\rho )
d - 1 (undi-

rected) lines through the origin in Rd such that any line determines an angle less than
\rho /2 with at least one of them.

Clearly it costs no generality to suppose Cd(\rho ) and  - cd(\rho ) to be nondecreasing
and to choose them to have finite nonzero limits Cd(0

+) and  - cd(0
+). We may take

them to be independent of dimension, or we may take them to be minimal, i.e., to
be the actual dimension- and radius-dependent packing and covering profiles of Sd - 1.
Erd\H os and F\"uredi assert more, namely that we can take cd(\rho ) = 1 and Cd(\rho ) = 4.
However, since they give neither reference nor proof, we have not attempted to confirm
these precise values, but we note that they can only hold under a smallness hypothesis
on \=\rho which they presumably had in mind since (Covering) contradicts Cd(\rho ) = 4
when \rho \lesssim \pi 

2 if d = 2. In any case, it makes no difference to the remainder of their
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argument. Indeed, if we accept these two facts, the proof of the lower bound is a
simple iterative construction while the upper bound relies on an elementary lemma
from graph theory. We now recall this to refine the conclusions of [7]. See [7] or [13]
for a fuller development of other parts of the proof.

Theorem A.1 (Finite-size Erd\H os--F\"uredi-type bounds). Fix d \geq 2, n \geq 3, and
0 < \=\rho < \pi . If Cd : [0,\infty ) \rightarrow (0,\infty ) satisfies (Covering), then the second inequality in
(A.2) holds with Cd = Cd(\=\rho ). If \=\rho < \pi 

2 and cd : [0,\infty ) \rightarrow (0,\infty ) satisfies (Packing),

then the first inequality in (A.2) holds with cd = cd(\=\rho ) provided n > (d - 1) log2
cd(\=\rho )

\=\rho .

Proof.
Packing bound. Given 0 < \rho < \=\rho < \pi 

2 , fix m > (cd(\=\rho )/\rho )
d - 1 and lines

L1, . . . , Lm such that any two of them make an angle larger than \rho . If we regard
them instead as directed lines, the angle between any two of them is less than \pi  - \rho .
Take two points A,B parallel to L1, and then translate them parallel to L2 far enough
that any vector from the original to the translated pair almost parallels L2. The largest
angle between these four points is at worst the directed angle between L1 and L2 and
hence less than \pi  - \rho . Now iterate the construction to obtain 2m points having the
largest angle less than \pi  - \rho . This shows

\alpha d(2
m) \leq \pi  - \rho < \pi  - cd(\=\rho )

m1/(d - 1)
,

and the same bound extends to \alpha d(n) for all n \leq 2m. Thus we have shown the first

inequality in (A.2) holds with cd = cd(\=\rho ) as soon as n > (d - 1) log2
cd(\=\rho )

\=\rho .

Covering bound. Given 0 < \rho < \=\rho < \pi , fix m < (Cd(\=\rho )/\rho )
d - 1 and lines

L1, . . . , Lm such that any other line makes an angle less than \rho /2 with one of them.
For any set P with 2m+1 points, color the complete graph on P by assigning to each
edge xy a color i such that xy is within angle \rho /2 of Li. Then a lemma of Szekeres [18]
asserts the existence of an odd cycle in some color. (Alternatively, the last paragraph
of the proof of Kupavskii and Zakharov's Proposition 1 [13] gives a self-contained
proof of an even simpler statement which also suffices for the present purpose.) This
cycle contains points x, y, z such that all edges of the triangle \Delta xyz are within angle
\rho /2 of the same Li. The largest angle in this triangle is at least \pi  - \rho . Thus n \geq 2m+1
implies

\alpha d(n) \geq \alpha d(2
m + 1) \geq \pi  - \rho > \pi  - Cd(\=\rho )

m1/(d - 1)
.

Now letting \rho \rightarrow 0 yields that the second inequality in (A.2) holds with Cd = Cd(\=\rho )
for all m and hence all n.
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