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PSEUDO-RIEMANNIAN GEOMETRY CALIBRATES OPTIMAL
TRANSPORTATION

Young-Heon Kim, Robert J. McCann and Micah Warren

Abstract. Given a transportation cost c : M × M̄ → R, optimal maps minimize the

total cost of moving masses from M to M̄ . We find, explicitly, a pseudo-metric and

a calibration form on M × M̄ such that the graph of an optimal map is a calibrated

maximal submanifold, and hence has zero mean curvature. We define the mass of space-

like currents in spaces with indefinite metrics.

1. Introduction

The aim of this article is to adapt the notion of calibration (see [5] [11]) to a
pseudo-Riemannian framework constructed to describe and explore the geometry of
optimal transportation from a new perspective.

Given a smooth function c : M × M̄ → R (called the transportation cost), and
probability densities ρ and ρ̄ on two manifolds M and M̄ (possibly with boundary),
a natural variational problem is to find an optimal map F : M → M̄ that minimizes
the total cost

(1.1)
∫
M

c(x, F (x))ρ(x)dx

under the constraint that for every measurable function f on M̄ ,

(1.2)
∫
M

f(F (x))ρ(x)dx =
∫
M̄

f(x̄)ρ̄(x̄)dx̄.

The last condition will be denoted by F#ρ = ρ̄, in which case we say F pushes ρ
forward to ρ̄. This variational problem, called optimal transportation, dates back to
Monge in 18th century and is currently undergoing a rapid and broad development,
especially in relation to geometry; see Villani’s recent book and the references it
contains [13].
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We introduce a metric on M × M̄ via the following symmetric bilinear form on
TM × TM̄ , defined on a coordinate frame:

(1.3) hρ,ρ̄c =

(
ρ(x)ρ̄(x̄))∣∣det(DD̄c(x, x̄))

∣∣
) 1

n
(

0 −DD̄c
−
(
DD̄c

)T 0

)
and calibration

(1.4) Φ(x, x̄) =
ρ(x)dx+ ρ̄(x̄)dx̄

2
.

Here DD̄c denotes second derivatives of the cost function in mixed directions. Our
central result, Theorem 3.10 can be stated imprecisely as follows:

Theorem 1.1. Under reasonable conditions, the graph of the optimal map is cali-
brated by Φ, and is thus a stable maximal surface with respect to the pseudo-metric
hρ,ρ̄c on M × M̄ .

A new geometric aspect of optimal transportation was observed by the first two
authors [7]. Namely, the transportation cost c induces a certain pseudo-metric on
M × M̄ , (3.2), in such a way that positivity of its Riemannian curvature tensor on
certain sections gives a necessary condition for the regularity of general optimal maps
F . This result gives a geometric perspective on the fundamental regularity theory
developed for optimal maps by Ma, Trudinger and Wang [9] [12] and Loeper [8].
Moreover, the graph of the optimal map F is a Lagrangian submanifold with respect
to the Kähler form of the pseudo-metric (see Section 3 or [7] for more details).

Mealy [11] developed the idea of calibration on pseudo-Riemannian manifolds, and
introduced the special Lagrangian equations for signature (n, n) metrics:

b(n−1)/2c∑
k=0

σ2k+1(D2φ) = 0 (here, σk denotes the k-symmetric function).

These describe functions whose gradient graphs (x,∇φ(x)) are maximal surfaces in
the “standard” pseudo-Euclidean space, (Rn+n, dx2 − dy2), provided that∣∣D2φ

∣∣ < 1

which is equivalent to the graph being spacelike. After Hitchin [6, Prop. 3] con-
nected Monge-Ampère equations and special Lagrangian submanifolds in a pseudo-
Euclidean space, the third author [15] explored these equations, which essentially
describe Mealy’s submanifolds under a coordinate change. In Hitchin’s coordinate
setting the gradient map of a convex function φ solving the standard Monge-Ampère
equation

detD2φ = 1,

gives a calibrated submanifold in the product space Rn×Rn equipped with a pseudo-
Euclidean metric, dx · dy. In fact, Hitchin’s definition of special Lagrangian is that
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a linear combination of certain volume forms vanish along a Lagrangian submanifold.
Our calibration (1.4) encodes precisely this definition for the volume forms ρdx and
ρ̄dx̄.

In this paper, we provide a framework that combines and extends these results by
introducing the pseudo-metric defined in (1.3), which is conformally equivalent to the
pseudo-metric in [7] but depends on ρ and ρ̄ in addition to c. With respect to this
metric, the graphs of optimal maps are calibrated, thus give maximal submanifolds
(see Theorem 3.10 and Corollary 3.11). This demonstrates how the functional ex-
tremality of optimal maps for (1.1)–(1.2) characterizes in a natural way the geometric
extremality of their graphs.

Mealy’s calibrations compare admissible (spacelike, in our case of interest) smooth
submanifolds to other admissible smooth submanifolds, but we would like a more
general setting allowing for spacelike submanifolds which are merely rectifiable.

Solutions to the optimal transportation problem are not in general smooth. Al-
lowing for nonsmooth solutions, we will use the language of currents, which requires
that we verify that the submanifolds in question are rectifiable. This has been shown
recently in [10], given assumption (A2), using the Lewy transformation, which returns
us to a situation which locally looks like Mealy’s, where the submanifolds in question
are automatically Lipschitz graphs. The development of currents generalizes some
results for the Euclidean cost function appearing in [1]. The behavior of solutions to
the problem of optimal transportation for general measures on general metric spaces
can be quite wild. It is unclear how much of this theory can be adapted to more
general cases.

Our use of currents will require some apparently new definitions of mass for cur-
rents in a pseudo-Riemannian manifold, see definition 2.1. While the corresponding
notions of mass from Euclidean geometric measure theory are expressed in terms of
suprema, we will need to express mass in terms of infima, and will also need some
sort of space orientation for these definitions to make sense. These definitions recover
the volume of a smooth spacelike submanifold.

After laying down some pseudo-Riemannian geometric measure theory in section
2, we will define calibrations on spaces with pseudo-metrics. In the final section we
show how the optimal transportation problem fits into this setting.

The calibrated submanifolds with the metric we are considering are not in general
graphs of the optimal maps, rather these are graphs of Lie solutions as developed
by Delanoe [2], see section 4. The moduli space of such calibrated submanifolds is
discussed in [14] .

2. Spacelike Currents in an Indefinite (pseudo) Metric

We formulate some definitions which adapt the geometric measure theoretic notion
of mass to oriented manifolds with indefinite metric. This notion will allow us to
compare the mass of calibrated currents to homologous currents in Section 3.
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Let (Nn,m, h, τ) denote a smooth (n + m)-dimensional manifold, a metric with
signature (n,m) and a space orientation n-form τ. An oriented n-plane P is spacelike if
h|P > 0, and is τ -oriented if τ(ξ) > 0 for any n-vector ξ ∈ ΛnTxN representing P. Let
G+(n, TxN) denote the collection of n-vectors which are both spacelike and τ -oriented.
(To be clear, G+ is a cone, not a Grassmannian.) Note that the “unit sphere”
of n-vectors in an indefinite metric will have distinct connected components, since
each such plane comes with two orientations distinguished by the sign of the space
orientation form τ (see Proposition 2.2). Here, as in many other of our arguments,
it is crucial that n is the maximum dimension of any spacelike plane. An element
ξ ∈ ΛnTxN is called simple if it is a single product of n vectors, i.e. ξ = v1∧ . . .∧ vn.
For a simple ξ ∈ G+(n, TxN) we will be interested in the h-norm of ξ, which is the
n-dimensional h-volume defined by

(2.1) ‖ξ‖h :=
√

det(h(vi, vj))1≤i,j≤n.

In the following, a current shall mean a de Rham n-current with compact support
on N, that is, an element of the dual space (ΩnN)∗ of the space ΩnN of smooth
n-forms on N . Recall that a compact oriented n-submanifold with locally finite
Hausdorff measure defines a linear functional on the space of n-forms by integration,
thus a ”reasonable” nonsmooth submanifold is also a current, in a similar way. The
support of current T is given by the following: Let U be the largest open set having
the property that T (ϕ) = 0 whenever ϕ is compactly supported inside U . The support
of T, spt(T ), is the complement of U.

Definition 2.1 (Mass of a current; comass of a form). Define the set of simple
τ -oriented space-like unit n-planes by

Px = {ξ ∈ ΛnTxN | ξ = v1 ∧ . . . ∧ vn, τ(ξ) > 0, h|span(v1,...,vn) > 0, ‖ξ‖h = 1}.

Define the oriented comass of an n-form ψx at a point via

‖ψx‖∗h = inf
ξ∈Px

ψx(ξ).

On any set U ⊂ N, define the oriented comass of a n-form ψ on U as

‖ψ‖∗(U,h) = inf
x∈U

‖ψx‖∗h .

Now define the oriented mass of a current T ∈ (ΩnU)∗ by

‖T‖(U,h) = inf
‖ψ‖∗(U,h)≥1

T (ψ).

Some remarks about the definitions: First, since the space Px is noncompact, we
observe that the values of all of the infima in Definition 2.1 may be −∞. Time-like
or negatively oriented planes are given infinite weight, thus any current with enough
time-like or negatively oriented planes is given a mass of −∞. Fortunately, this rules
out certain pathologies that occur for pseudo-metrics (see examples in [15, section
4]), and recovers expected values of mass for smooth space-like sets.
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For Riemannian (thus positive definite) metrics, a calibration is a closed p-form
Ψ such that for all p-vectors ξ, Ψx(ξ) ≤ ‖ξ‖ (see [5]). A calibrated current S is
one for which S(Ψ) = ‖S‖ . It follows from Stokes’ theorem that smooth calibrated
manifolds are minimal. In a pseudometric, a calibration needs to give the opposite
inequality. To be precise, we define:

Definition 2.2 (Calibration for indefinite metric). A calibration on (Nn,m, h, τ) is
an n-form Ψ such that

dΨ = 0

and
Ψx(ξ) ≥ ‖ξ‖h

at each point x, for each space-like tangent plane ξ. Notice that this latter condition
is equivalent to ‖Ψ‖∗h ≥ 1.

Proposition 2.1. Let S be a smooth, oriented, compact n-dimensional space-like
submanifold of N . Let volh(S) denote the volume of S with respect to the pseudo-
metric h. Then, volh(S) = ‖S‖(N,h).

Proof. At each x, for a given spacelike simple n-vector ξ ∈ ΛnTxN , the form given
by the h-inner product with ξ has comass 1 (See [11, pg 797] ). This form depends
smoothly on the tangent space to S. (The corresponding simple n-vector field is
obtained by choosing a smooth frame field and taking the n-product of the basis
vectors.) Thus we can find a form ψ ∈ ΩnS such that for each x ∈ S, ψx(ς) ≥ ‖ς‖h
for all ς ∈ Px with equality when and only when ς represents the oriented tangent
plane to S. Extend this smoothly to a form ψ0 which has positive comass on a
neighborhood V0 of S. Dividing by the pointwise comass at each point where the
comass is positive, we have that ‖ψ0‖∗(V0,h) = 1. Next, take a cover of N with open
sets Vi, so that Vi ∩ S = ∅, for i ≥ 1, and so that on each Vi, there is a ψi with
‖ψi‖∗(Vi,h) ≥ 1. Such Vi are easily locally available. Noting that the comass is
superadditive, we may sum over a partition of unity and get a form, which we call ψ,
with ‖ψ‖∗(N,h) ≥ 1. Also, for any ϕ with ‖ϕ‖∗(N,h) ≥ 1, S(ϕ) ≥ S(ψ), by the choice of
ψ. It follows that

inf
‖ϕ‖∗(N,h)≥1

S(ϕ) = S(ψ) =
∫
S

ψ =
∫
S

d volh(S).

This completes the proof. �

From the above proposition, it is legitimate to use the notion of mass of currents
to compare volumes of smooth space-like submanifolds.

We conclude this section with a remark:

Proposition 2.2. Let h be an indefinite metric on Rn+m of the form dx2−dy2. The
“unit sphere” ‖ξ‖h = 1 of space-like n-planes is disconnected.
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Proof. Let ξ be an n-plane given by v1∧· · · ∧vn. The projection π of the independent
set {vi} onto Rn gives an independent set, otherwise the plane would contain time-like
or null vectors. Define τ(P ) = det(π(v1 ∧ · · · ∧vn)). It is clear that the alternating
form τ will be either positive or negative on any space-like plane. �

3. Application to Optimal Transportation

Let M , M̄ be oriented n-dimensional manifolds and let ρ, ρ̄ be smooth volume
forms on M , M̄ , respectively, with

∫
M
ρ =

∫
M̄
ρ̄ = 1. In oriented local coordinates

(x1, · · · , xn, x̄1, · · · x̄n) of (x, x̄) ∈ M × M̄ , we have the expression ρ = ρ(x)dx, ρ̄ =
ρ̄(x̄)dx̄, ρ(x), ρ̄(x̄) > 0, where dx = dx1 ∧ · · · ∧ dxn, dx̄ = dx̄1 ∧ · · · ∧ dx̄n. Define an
n-form Φ on M × M̄ in local coordinates (see upcoming subsection 3.1) by

(3.1) Φ(x, x̄) =
ρ(x)dx+ ρ̄(x̄)dx̄

2
.

Notice that we could write this in the invariant form

Φ =
π∗ρ+ π̄∗ρ̄∗

2
where π∗, π̄∗ are pullbacks of the projection mapping to M and M̄ respectively. In
this section, we show the compactly supported portions of the graph of an optimal
map are calibrated by the form Φ, hence maximal with respect to the pseudo-metric
hρ,ρ̄ in metric.

Let c : M × M̄ → R be a positive, continuous, superdifferentiable cost function
which is smooth on a set N =

(
M × M̄

)
-C, where C is a closed measure zero set which

we will call the “cut locus”. (The reason for the terminology “cut-locus” is clear if the
cost function is the distance squared function on a Riemannian manifold.) For some
regularity issues later, we further assume that the cost function is uniformly semi-
concave on compact sets, i.e. for any compact coordinate charts K × K̄ ⊂ M × M̄ ,
there exists a smooth function f : K × K̄ → R such that f + c is concave on K × K̄.
Let DD̄c be the n× n matrix given by(

DD̄c
)
ij̄

(x, x̄) =
∂2

∂xi∂x̄j
c(x, x̄).

On N we will require that

(A2) det
(
DD̄c

)
6= 0

and that c̄(x̄, x) := c(x, x̄) both satisfy the twist (A1) condition: For each x,

(A1) x̄→ Dc(x, x̄)

is invertible, with an inverse depending continuously on x, and vice versa.
Now let hc be the pseudo-metric on N ⊂M×M̄ that is defined at each T(x,x̄)N =

TxM × Tx̄M̄ as

hc(∂xi, ∂x̄j) = hc(∂x̄j , ∂xi) =
∂2

∂xi∂x̄j
c(x, x̄)
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which is represented in coordinates by the nondegenerate symmetric matrix

(3.2) hc =

(
0 −DD̄c

−
(
DD̄c

)T 0

)
(This metric was introduced by the first and second author in [7].) Note that as a
matrix, hc has n positive and n negative eigenvalues; in fact, we can choose coordinates
so that −DD̄c is positive definite.

Given assumption (A1) together with some decay conditions on ρ, ρ̄ if M , M̄ are
noncompact, we will always have a unique solution (see, for example, [13, Theorem
10.28]) to the optimal transport problem, namely, a map F : M → M̄ which satisfies
F#ρ = ρ̄ in the sense of measures. One also has the unique solution γ to the
Kantorovich problem (c.f [13, Theorem 5.10]), that is a minimizing measure on M×M̄
which has marginals ρ and ρ̄. This measure γ is associated to certain potential
functions u ∈ C(M) and v ∈ C(M̄) in such a way that γ is supported on Γ defined as

(3.3) Γ = {(x, x̄) ∈M × M̄ | u(x) + v(y)− c(x, y) = 0}.

The optimal mapping Fu : M → M̄ and inverse mapping Fv : M̄ → M which solve
the symmetric optimal transport problems are derived from these potentials u and v.
The set Γ contains the graph of both maps Fu and Fv (or what is sometimes called
the graph of Fu and the antigraph of Fv). One may regard Γ as a multi-valued map
either from M or M̄ . It is a well-known fact that Γ is single-valued exactly where u
(or v) is differentiable (in fact C1-differentiable), and vice versa. Related to this, the
following is also well-known:

Proposition 3.1. (c.f. [3] [10]) Both Fu and Fv differentiable almost everywhere.

Here is a sketch of the proof: The cost function c is semi-concave, which gives semi-
convexity of the c-convex solution u. (Using the conventions in [13, Theorem 5.2].)
Then by Alexandrov’s theorem, u is twice differentiable almost everywhere, and to-
gether with assumptions (A1) (A2) we see that the transport maps must be differen-
tiable where u is so.

3.1. Choosing orientation and coordinates. We are assuming that M comes
with an orientation, which we respect. At any point (x, x̄) ∈ N, DD̄c is nonde-
generate, so by a change of coordinates (only on M̄) we can arrange that −DD̄c is
positive definite. This locally fixes an orientation on M̄ , which applies locally in N.
In particular, it is possible that the orientations on the same neighborhoods on M̄

may differ, depending on where they lie with respect to the product manifold. For-
tunately, it is easy to check that on connected components of N, the (A2) condition
implies that our choice of coordinates on M̄ , and hence orientation, is consistent.

Claim 3.2. Choosing coordinates on M̄ so that −DD̄c+
(
−DD̄c

)T is positive definite,
the locally defined forms

τ =
dx+ dx̄

2
are consistent space orientation forms on N.
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Proof. Let (x, x̄) ⊂ Ω × Ω̄ be any product coordinate chart, with x consistent with
the orientation on M. Let x̄ = ϕ(ȳ) for some diffeomorphism ϕ : B̄ → Ω̄ ⊂ M̄. Then

∂yj
∂xi

c(x, ϕ(ȳ)) = ∂x̄k
∂xi

c(x, x̄)∂yj
ϕk̄.

At a point, we are free to choose ∂yjϕ
k̄ to be anything (nondegenerate) that we

want, so we choose it to be the inverse of −∂x̄k
∂xi

c(x, x̄). By smoothness of c on N,
−∂yj

∂xi
c(x, ϕ(ȳ)) will remain (after symmetrizing) positive definite on a nieghbor-

hood on N, and hence on some subset of Ā ⊂ B̄. We declare the coordinates on Ā to
be oriented, and Ω× Ā defines an orientation on N. One can repeat this construction
at every point on N and take a locally finite cover of such neighborhoods. These are
consistent on any overlap, as both charts are defined to have differential close to the
inverse of a smoothly changing matrix. �

At this point, we fix a space orientation form τ by summing over a partition of
unity. We also note that the coordinate definition 3.1 of Φ is now justified. For
future reference, we note that

(3.4) det(−D̄Dc) > 0.

3.2. What happens where the transport map is smooth. Where differentiable,

the potential u satisfies
Du(x) = −Dc(x, Fu(x))

(we are using conventions as in [13, Theorem 5.2]) and

D2u(x) = −D2c(x, Fu(x))−DD̄c(x, Fu(x))DFu(x)

in particular

(3.5) −DD̄c(x, Fu(x))DFu(x) = D2u(x) +D2c(x, Fu(x))

the right-hand side of which is clearly symmetric. Further, c-convexity implies that

(3.6) D2u(x) ≥ −D2c(x, Fu(x)).

To satisfy F#ρ = ρ̄, the map Fu must also satisfy, where differentiable

(3.7) ρ̄(Fu(x)) detDFu(x) = ρ(x)

recalling, (3.4). Now consider the following symplectic form on M × M̄ :

ωc =

(
0 −DD̄c(

DD̄c
)T 0

)
,

and the following conformal perturbation of hc:

(3.8) hρ,ρ̄ =
1
2

(
ρ(x)ρ̄(x̄)∣∣det(−DD̄c)

∣∣
) 1

n

hc.
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First we show that the graph of Fu is Lagrangian, wherever it is differentiable, by the
following. Pull-back the form ωc to M, and evaluate on any two tangent vectors

(Id× F )∗ωc(∂i, ∂j) = 〈−DD̄c (∂iFu) , ∂j〉+ 〈
(
DD̄c

)T
∂i, (∂jFu)〉

= 〈−DD̄c (∂iFu) , ∂j〉+ 〈∂i, DD̄c (∂jFu)〉

=
(
DD̄cDF

)
ij
−
(
DD̄cDF

)
ji

which vanishes by (3.5).
Similarly, pulling back the metric hc :

(Id× F )∗hc(∂i, ∂j) = 〈−DD̄c (∂iFu) , ∂j〉+ 〈
(
−DD̄c

)T
∂i, (∂jFu)〉

= −
(
DD̄cDF

)
ij
−
(
DD̄cDF

)
ji

which is nonnegative by (3.6). The measure preserving condition (3.7), along with
(3.6) and (3.5) guarantee that this metric will be strictly positive wherever the map
is differentiable.

Proposition 3.3. Let F : M → M̄ . Assume that F is c-monotone, i.e.

(3.9) c(x, F (x)) + c(y, F (y))− c(x, F (y))− c(y, F (x)) ≤ 0 for all x, y ∈M .

At any point of differentiability of F, the following holds

(Id× F )∗Φ(∂1, ..., ∂n)(x) ≥
√

det gij(x)

where
gij = (Id× F )∗hρ,ρ̄c (∂i, ∂j)

is the induced metric, with equality if and only if both (3.7) and (3.5) hold, in which
case

(Id× F )∗Φ(∂1, ..., ∂n)(x) =
√

det gij(x) = ρ(x).

Proof. First we compute the calibration, from (3.1)

(Id× F )∗Φ(∂1, ..., ∂n) =
ρ+ detDFρ̄(F (x))

2
.

Next, using (3.8)

gij =
1
2

(
ρ(x)ρ̄(F (x))∣∣det(DD̄c)

∣∣
) 1

n (
I (DF )T

)( 0 −DD̄c
−
(
DD̄c

)T 0

)(
I

DF

)

=

(
ρ(x)ρ̄(F (x))∣∣det(DD̄c)

∣∣
) 1

n
(

(DF )T
(
−DD̄c

)T +
(
−DD̄c

)
(DF )

2

)
.

Now taking the determinant

det gij ≤

(
ρ(x)ρ̄(F (x))∣∣det(DD̄c)

∣∣
)

det
(
(DF )T

(
−DD̄c

)T)
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with equality if and only if (DF )T
(
−DD̄c

)T is symmetric, recalling the fact (see [15],
Lemma 3.1, also for a different formulation [11, pg 803] ) that for each n× n matrix
B with property 〈Bv, v〉 ≥ 0 for every v,

det(
1
2
(B +BT )) ≤ detB

and the equality holds if and only if B = BT . We show in Lemma 3.7 that due to
c-monotonicity of F , the matrix B = (DF )T

(
−DD̄c

)T satisfies 〈Bv, v〉 ≥ 0 for every
v.

In particular, applying Cauchy-Schwarz√
det gij(x) ≤

√
ρ(x)ρ̄(F (x)) det (DF ) ≤ ρ(x) + ρ̄(F (x)) det (DF )

2
with equality if and only if (3.5) and (3.7) hold, respectively. �

Corollary 3.4. The form Φ is a calibration.

Proof. The above calculation shows that this form has comass 1, noting that every
spacelike plane can be obtained as the tangent space to the graph of a monotone
function. Closedness of the form is clear. �

3.3. Solutions defining a current. For a given optimal transport F , we consider
the set Γ given in (3.3), which is a closed set in M × M̄ . It is well known that the
set Γ satisfies c-cylical monotonicity: if (xi, x̄i) ∈ Γ, i = 1, · · · , l then∑

i

c(xi, x̄i) ≤
∑
i

c
(
xi, x̄σ(i)

)
for any permutation σ of {1, · · · , l}.

In particular, F satisfies c-monotonicity. In our case we must deal with Γ avoiding
the cut-locus: Our arguments require that the current we are defining is compactly
supported inside the region where the metric is smooth. If the metric is not smooth it
may be difficult to define the comass of an n-form. Our main goal of this subsection
is the following, which is similar in nature to the result in [10].

Proposition 3.5. Suppose that c is smooth, and satisfies (A1) (A2) on a neighbor-
hood of Γ. Then Γ defines a current in a natural way.

Proof: We begin with the following, due to [10].

Proposition 3.6. Let F be an optimal map and let Γ be the set defined in (3.3).
Suppose that c is smooth and satisfies (A2) in a neighborhood of Γ. Then Γ is n-
rectifiable and locally finite.

The proof of this proposition is contained in [10]. We give the idea here, as
we need the construction to define the current. Near any point (x, x̄) in Γ one can
choose coordinates so that DD̄c = −In and (x, x̄) is the origin. Near (x, x̄) expand
c as a second order Taylor polynomial plus third order remainder. From the Taylor
expansion together with c-monotonicity (3.9)

c(x, x̄) + c(0, 0) ≤ c(x, 0) + c(0, x̄)
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one can show that

x · x̄ ≥ O(3)

so that for a small enough neighborhood U ,

|x+ x̄| =
√
|x|2 + |x̄|2 + 2x · x̄ ≥

√
|x|2 + |x̄|2 −O(3)

in particular the map G : Γ → Rn

G(x, x̄) = x+ x̄

is injective with Lipschitz inverse. Choose a compact K ⊂ U, then

E := G(Γ ∩K) ⊂ Rn

is a closed subset. One can compute that G−1 is Lipschitz on E and so extends to
a Lipschitz map on an open set containing E. Now define the currents, first on Rn

S = χE ~TxRn

and then on M × M̄

TK =
(
G−1

)
#
S.

The result is a current on M × M̄ which is supported on the set Γ ∩ K and is
represented by the tangent space to Γ wherever it exists, which is almost everywhere
dHn.

Observe that

G∗dx = dx+ dx̄

which, for our purposes, is the space orientation form. It follows that the tangent
spaces to

(
G−1

)
#
S are appropriately oriented, given the discussion in subsection

3.1. In particular there will be no cancellation when summing over a partition of
unity. Given any precompact neighborhood U in M × M̄ we can cover Γ ∩ U with
finitely many open sets chosen as above. Taking a (locally finite) partition of unity,
we build the current T.

Now that we have an integral current, we can write T as

(3.10) T (η) =
∫

Γ

〈η(x), ξ(x)〉dHn

where ξ(x) is an Hn almost everywhere simple unit tangent n-vector to Γ.
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3.4. The current T is calibrated. Before we continue we need the following,

Lemma 3.7. Let Γ ⊂M×M̄ be any c-monotone set. If V+V̄ is a vector (decomposed
in the obvious way) in the tangent space to Γ at (x0, x̄1) then

−∂V ∂V̄ c|(x,x̄)=(x0,x̄1) ≥ 0.

In particular, V + V̄ is weakly spacelike.

Proof. Let S(t) = (s(t), s̄(t)) be a path in Γ with s(0) = (x0, x̄1) and s′(0) = V + V̄ .

By the monotonicity condition at t = 0
First,at t = 0

d

dt
{c(s(t), s̄(t)) + c(x0, x̄1)− c(s(t), x̄1)− c(x0, s̄(t))} =

Dc · s′(0) + D̄c · s̄′(0)−Dc · s′(0)−Dc̄ · s̄′(0) = 0

and using the monotonicity condition at t = 0

d

dt
{c(s(t), s̄(t)) + c(x0, x̄1)− c(s(t), x̄1)− c(x0, s̄(t))} =

D2c(s′(0), s′(0)) +Dc · s′′(0) + 2DD̄c(s′(0), s̄′(0)) + D̄2c(s̄′(0), s̄′(0))

+ D̄c · s̄′′(0)−D2c(s′(0), s′(0))−Dc · s′′(0)− D̄2c(s̄′(0), s̄′(0))− D̄c · s̄′′(0) ≤ 0

in particular 2DD̄c(V, V̄ ) ≤ 0. �

Lemma 3.8. Suppose that ξ is an n-vector representing the tangent space to the
current T at x, and η is a form such that 〈ηx, ξ〉 < 0. Then η has negative comass.

Proof. First, we note by construction, that the tangent planes are τ -oriented. If
ξ is strictly spacelike, the result follows from definition 2.1 by scaling ξ to unit size.
So suppose that ξ is only weakly spacelike (this is the case be Lemma 3.7). Rotating
coordinates, we consider the metric in the form dx2 − dy2. Take a basis for ξ, say
{ei}, and note that for each ei,

dx2(ei, ei) ≥ dy2(ei, ei) ≥ 0

and dx2(ei, ei) is strictly positive for some i. Now we make a perturbation of each
ei by scaling it slightly in the x component. The plane spanned by these vectors ξε,
is then strictly spacelike. By continuity, we conclude that 〈η, ξ〉 < 0 for some strictly
spacelike plane, so has negative comass. �

Claim 3.9. The infimum in the definition of mass for the current T is attained by
the calibration Φ.

Proof. Assume not. There exists a form ϕ of comass 1 with the property that
T (ϕ) < T (Φ). By the Riesz Representation∫

Γ

〈ϕ(x)− Φ(x), ξ(x)〉dHn < 0
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so we conclude that there is a rectifiable set Υ ⊂ Γ with positive Hn measure such
that on Υ

(3.11) 〈ϕ(x), ξ(x)〉 < 〈Φ(x), ξ(x)〉.

If Υ projects to a set of positive measure in either direction (i.e. either to M or
M̄), we can conclude that it contains a point where the optimal transport map is
differentiable, and we can draw a contradiction from Proposition 3.3: At points of
differentiability the tangent planes are calibrated, it follows that

〈Φ(x), ξ(x)〉 = ||ξ||hρ,ρ̄ ≤ 〈ϕ(x), ξ(x)〉

because ϕ has comass 1. So we conclude that Υ is in the inverse image of sets of zero
measure under both projections. It follows then the calibrating form (which measures
the volumes of projections of a given plan in either direction) must vanish on ξ: so in
fact we have 〈ϕ(x), ξ(x)〉 < 0. But this contradicts Lemma 3.8. �

This leads to our main theorem.

Theorem 3.10. Suppose that ρ, ρ̄ are smooth densities, and that c is smooth and
satisfies (A1) (A2). Suppose the minimizing measure γ is compactly supported away
from the cut locus. Then the spacelike current T defined on spt(γ) is homologically
mass maximizing: ‖T‖(N,hρ,ρ̄) ≥ ‖S‖(N,hρ,ρ̄) for all compactly supported n-currents
S which are homologous to T.

Proof. By the previous claim, we have ‖T‖hρ,ρ̄ = Φ(T ). If S is homologous to T

then by definition of mass (2.1) ‖S‖hρ,ρ̄ ≤ Φ(S) = Φ(T ), because Φ has comass 1 by
Corollary, 3.4. �

We note further that as calibration arguments require that we work with currents
of compact support, for many situations the result does not directly apply globally
(if M is not compact), however it will apply locally. Note that given any optimal
map F : M → M̄ the restriction of the optimal map to any subset is an optimal map
onto its image, and satisfies the same relations (3.6) (3.5) and (3.7), hence locally is
calibrated.

We can now compare a smooth space-like submanifold to smooth variations of the
submanifold, and we conclude:

Corollary 3.11. At any point where the graph of the optimal transport map F is a
C1 strictly space-like submanifold, the graph has zero mean curvature as a submanifold
of (M × M̄ ,h(ρ,ρ̄)

c ).
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4. Further Remarks

Remark 4.1. We see that the graph of a map F which gives a calibrated submanifold
satisfies both (3.5) and (3.7). In particular, (3.5) means that F is given locally by
the cost exponential of a potential function u. If the function u is global, then the
map F is optimal. If the function u is only local, then F is not a cost minimizer,
although it solves the volume maximization problem. The existence of such solutions
is shown in [14].

Remark 4.2. We also mention a remark on the Ma-Trudinger-Wang cost-curvature
condition [9, A3 condition]. The first two authors [7] expressed the MTW condition as
a curvature condition on hc, which may be described as follows: The weak (strong)
MTW A3 condition holds if and only if, in each coordinate chart on M and M̄ ,
the Riemannian sectional curvature Rij̄j̄i corresponding to any vanishing component
(hc)ij̄ = 0 of the metric tensor is nonnegative (positive).

With respect to the conformal metric hρ,ρ̄, we have the Riemann curvature tensor

Rρ,ρ̄
ij̄j̄i

=
(π∗ρ ∧ π̄∗ρ̄
d volhc

) 1
n (Rij̄j̄i + Λij̄(hc)j̄i − Λii(hc)j̄j̄ + Λj̄i(hc)ij̄ − Λj̄j̄(hc)ii)

for some Λij involving derivatives of the conformal factor. For metric components
(hc)ij̄ = 0, we easily see the corresponding component of the Riemann tensor is given
by

Rρ,ρ̄
ij̄j̄i

=

(
ρ(x)ρ̄(F (x))∣∣det(DD̄c)

∣∣
)1/n

Rij̄j̄i.

Thus, the weak (strong) MTW A3 condition holds if and only if, in each coordinate
chart on M and M̄ , whenever hij̄ρ,ρ̄ = 0, the sectional curvature Rρ,ρ̄

ij̄j̄i
is nonnegative

(positive).

Remark 4.3. Much the above may be phrased quite elegantly in the language of split
special Lagrangian geometry of Harvey and Lawson. In [4] the calibration (1.4) is
seen to be the real part of a D-holomorphic volume form, and the conformal factor
on the metric (1.3) gives this holomorphic form constant length.
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