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ABSTRACT. In many dissipative settings, initial disturbances will gradually disap-
pear and all but their crudest features — such as size and location — will eventually
be forgotten. Quantifying the rate at which this information is lost is sometimes a
question of central interest. Here this question is addressed for the fast-diffusion
equation

∂v

∂τ
= ∆(v1− 2

n+p ), τ, v(y, τ) ≥ 0, y ∈ Rn,

in the range p ≥ n ≥ 2 6= p of nonlinearities. We use displacement convexity and
dissipation of entropy to show any two solutions starting with finite p-th moments
and the same total mass converge at rate

‖v(·, τ) − ṽ(·, τ)‖L1(Rn) =
a

τα
|z0 − z̃0| + O

(

1

τ1−δ

)

as τ → ∞,

for any δ > 0. Here α = 1
2 (1+ n

p ), a depends only on n, p, and ‖v0‖L1(Rn), while
z0 denotes the center of mass of v0(·) = v(·, 0). In contrast, for |p| < n we show
the entropy is not displacement semiconvex, even near equilibrium.

1. INTRODUCTION

This investigation concerns long time asymptotics of the nonlinear diffusion equa-
tion

∂v

∂τ
= ∆(vm) in Rn × ]0,∞[,

v( · , 0) = v0( · ) ≥ 0 on Rn,
(1)

governing a density v(y, τ) ≥ 0 in the fast-diffusion regime n
n+2

< m < 1. In
the more familiar regime m > 1 and with suitable boundary conditions, this porous
medium equation models population spreading [29], groundwater flows [8] [30] [6]
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and thermalization in plasmas [43]; vanishing of the diffusion coefficient mvm−1 at
the free boundary ensures compactly supported initial data v0 retain compact sup-
port at each subsequent time. By contrast, the fast-diffusion equation m < 1 models
curvature-driven evolution [40] [35] and avalanches in sandpiles [9] [14], where
divergence of the same coefficient ensures that compactly supported initial data in-
stantaneously develop thick tails: v(y, τ) ∼ cm,τ |y|n+p for y large. The number
p := −n + 2

1−m
of spatial moments these solutions possess frequently serves as a

convenient proxy for the exponent m = 1 − 2
n+p

[18].
Although most of our conclusions require p ≥ n ≥ 2 6= p, Herrero & Pierre

[21] showed for all p > max{2 − n, 0} that (1) is well-posed among nonnegative
L1(Rn) initial data and has smooth, positive solutions for τ > 0; (more general
initial data v0 ≥ 0 were treated in [34] [16]). The smoothness follows from Aronson
& Bénilan’s estimate [3], while Bénilan & Crandall [7] deduced that the mass of
these solutions remains constant if p > 0. The equations possess a family of scaling
solutions

(2) V (y, τ) = (α
τ
)nαρ((α

τ
)αy)

where α = 1
2
(1 + n

p
) and ρ is the Barenblatt-Pattle self-similar profile [5] [33]:

ρ(y) =

(

C +
|y|2

n + p − 2

)−n+p

2

+

with C a positive constant and (r)+ = max{r, 0}. For p > 0 an appropriate choice
of C will yield a scaling solution with any desired finite positive mass. An elemen-
tary but tedious calculation [22, Lemmas 3–4] shows that two scaling solutions of
the same mass differ by

(3) ‖V (· − y0, τ − τ0) − V (·, τ)‖L1(Rn) = a
|y0|
τα

+ b
τ0

τ
+ O

(

1

τ 2α
+

1

τ 2

)

as τ → ∞, where

(4) a = αα

∥

∥

∥

∥

∂ρ

∂y1

∥

∥

∥

∥

L1(Rn)

and b =

{

α‖∇ · (yρ)‖L1(Rn) if y0 = 0

0 otherwise.

Our task will be to show that the difference ‖v(·, τ) − ṽ(·, τ)‖L1(Rn) between two
more general solutions with the same mass as ρ, shares the asymptotic expansion
(3)–(4) up to order O(1/τ 1−δ) for any δ > 0, with y0 = z0 − z̃0 denoting the
displacement between the centers of mass of v0 and ṽ0. We are successful, assuming
p ≥ n ≥ 2 6= p and sufficiently small tails of v0 and ṽ0.

As time increases the solutions of (1) are known to spread out, while their L∞ norm
decays to zero. But as they spread out, their shape becomes more and more like that
of the scaling solution, which itself spreads while preserving its shape. This was
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shown by Friedman & Kamin [20] in the L1 sense for p 6∈ [−n, 0], and more re-
cently by Vazquez [39] in the relative L∞ sense

(5)

∥

∥

∥

∥

v(·, τ)

V (·, τ)
− 1

∥

∥

∥

∥

L∞(Rn)

= o(1) as τ → ∞

for p > 0. Much recent interest has been devoted to quantifying the rate of this at-
traction to the self-similar shape. In one-dimension, a large-time asymptotic expan-
sion was predicted by Zel’dovich & Barenblatt [42] for the porous medium regime
0 > p + n = p + 1, and subsequently amended and verified by Angenent [2]. For
|p| > n in higher dimensions, the sharp nonlinear rate of convergence 1/τ α was
found simultaneously and independently by Dolbeault & del Pino [19] and Otto
[32] (and by Carrillo & Toscani [10] as well in the porous medium regime): it cor-
responds to the rate of convergence of two translations of the scaling solution. For
p ∈ ]0, n[ the sharp rate of convergence has proved more elusive: Carrillo & Vazquez
showed this rate was bounded below by 1/τ 1/2 by combining the Aronson-Benilan
inequality [3] with a spectral gap estimate of Carrillo, Lederman, Markowich &
Toscani [12], but this bound is not sharp. Only for radially symmetric initial data
were they able to obtain the correct bound O(1/τ), by using integral-comparison
techniques. Independently, the complete linearized evolution around the self-similar
profile was computed for p > 0 by Denzler & McCann [17] [18]. In particular, they
too discovered an eigenvalue crossing at p = n, where dilations replace translations
as the slowest mode to converge, and the subsequent disappearance of this lowest
eigenvalue into continuous spectrum when p ∈ ]0, 2]. This spectrum predicts the
rate of convergence in 2-Wasserstein distance. However, in the fastest conservative
range of nonlinearities 0 < p ≤ 2, Kim & McCann [23] [22] prove the sharp rate of
convergence to be O(1/τ) with respect to the L1 and the relative L∞ norm (5). This
result can be extended to a larger range of nonlinearities p > 0, but only at the ex-
pense of assuming more and more restrictive moment conditions on the initial data,
which appears to be an artifact of their Newtonian potential comparison technique.

Apart from one-dimension [2], these results address only the leading order rate of
decay of ‖v(·, τ)−ṽ(·, τ)‖L1(Rn).The purpose of the present manuscript is to specify
the coefficient of this leading order term, and moreover its asymptotic accuracy
O(1/τ 1−δ) to within an arbitrarily small error δ > 0 of the second order correction.
We achieve this, by showing the second distinct eigenvalue found by Denzler &
McCann correctly predicts the rate of convergence of the nonlinear evolution to the
scaling solution in the p ≥ n ≥ 2 6= p range of fast-diffusion exponents, when one
mods out translations by centering the initial data

(6)
∫

Rn

y v0(y) dy = 0.
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This centering allows us to obtain a faster rate of convergence than that found by
Dolbeault, del Pino and Otto. Up to δ > 0, it matches Kim & McCann’s rate from
the range of exponents p ∈ ]0, 2] where centering is unnecessary.

The potential for such improvements was also explored in the n = 1 < −p study
of Witelski and Bernoff [41]. Although we believe the same rate should hold in the
range p ∈ ]2, n[, this range represents a gap in our understanding when n ≥ 3. For
the range of exponents p ∈ ]0, n[, we give a negative result which sheds some light
on the difficulty: we show despite the fact that the second derivatives of the entropy
(11) are bounded below at the fixed point u = ρ of the rescaled dynamics, no such
bound extends to any neighborhood of ρ in the obvious topologies. This gives some
indication of why entropy dissipation methods have met with only limited success
[12] [11] in the regime p ∈ ]0, n[.

2. STRATEGY

As time increases the solutions of (1) spread out, tending to vanish in L∞ norm.
But as they spread out they approach the shape of the self-similar solution (which
itself is spreading). To capture this asymptotic behavior it is traditional to rescale the
solutions in a time-dependent manner so that Barenblatt solutions (shifted by unit
time) become stationary solutions. Therefore, we introduce the similarity variables

(7) x = (1 +
τ

α
)−αy and t = α ln(1 +

τ

α
)

and

u(x, t) := ent v
(

etx, αet/α − α
)

,

so that

(8) v(y, τ) = (1 +
τ

α
)−nα u

(

(1 +
τ

α
)−αy, α ln(1 +

τ

α
)
)

.

The rescaled quantity u satisfies the following nonlinear Fokker-Planck equation

(9)
∂u

∂t
= ∆(u1− 2

n+p ) + ∇ · (xu), (x, t) ∈ Rn × ]0,∞[,

with the same initial data as v. Note that ρ is a stationary solution of the equation.
We begin by obtaining the rate of convergence of u(t) towards ρ by estimating

the decay of the relative entropy

(10) E(u|ρ) = E(u) − E(ρ),

corresponding to the Erdös-Renyi entropy

(11) E(u) =

∫

Rn

1

2
|x|2u(x) − n + p

2
u(x)1− 2

n+p dx.

If p ∈ ]0, 2], one defines E(u|ρ) directly by (27) which is equivalent to (10) except
when the integrals comprising E(ρ) diverge [26]. We follow Carrillo & Vazquez
[11] in adopting an Bakry-Emery style entropy–entropy dissipation approach [4],
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although the rates of convergence we obtain might also be derived using the imple-
mentation of Otto [32].

As Newman [31] and Ralston [36] recognized, the entropy E(u) plays an im-
portant role in understanding nonlinear diffusion dynamics. Notice the self-similar
profile ρ minimizes E(u) uniquely among functions with given mass and finite vari-
ance:

M2 :=

{

0 ≤ u ∈ L1(Rn) |
∫

Rn

u(x) dx = 1 and
∫

Rn

|x|2u(x) < ∞
}

.

Subsequently, Otto [32] discovered equation (9) can be formally viewed as the gra-
dient flow of the entropy E on the set M2, endowed with the 2-Wasserstein metric.
More precisely, he demonstrated that this metric arises as the arclength distance
corresponding to the Hilbert norm

‖Ψ‖2
W 1,2

u
=

∫

Rn

|∇Ψ(x)|2 u(x) dx,

on the tangent space TuM2 = W 1,2
u given by the Hilbert space completion of

the smooth functions Ψ : Rn −→ R with compact support. The evolution (9)
gives steepest descent of E with respect to this metric. Local coordinates expu :
TuM2 −→ M2 on the manifold are defined by the exponential map v = expu sΨ,
where

(12) v(x + s∇Ψ(x)) := u(x)/ det[I + sD2Ψ(x)].

Taking two derivatives d2E(vs)/ds2 along the geodesic curve (12), Otto computed
the Hessian of the entropy to be the following quadratic form on the tangent space
W 1,2

u :

(13) Hessu E(Ψ, Ψ) =

∫

Rn

|∇Ψ|2u +

∫

Rn

(

|Hess Ψ|22 −
2

n + p
(∆Ψ)2

)

u1− 2

n+p ,

where |Hess Ψ(x)|22 :=
∑n

i,j=1(∂
2Ψ/∂xi∂xj)

2.
Our result on the rate of convergence follows from an interplay between the con-

vergence in relative entropy and in the relative L∞ sense (5). The convergence rate
in relative entropy is controlled by the modulus of positivity for Hessu E on the man-
ifold M2 endowed with the Wasserstein metric. To be more precise let us denote a
lower bound for the Hessian by

Λ(u) := inf
‖Ψ‖

W
1,2
u

=1
Hessu E(Ψ, Ψ),

where the infimum encompasses all ‖Ψ‖W 1,2
u

= 1 for which Hessu E(Ψ, Ψ) takes an
unambiguous value in R ∪ {±∞}. If one can show that Λ(u) ≥ Λ0 > 0 uniformly
in u (thus quantifying uniform convexity of E), exponential convergence of u(τ)
towards the steady state at rate Λ0 follows. This is indeed the case if both p ≥ n
and p > 2, as was established by Otto [32]. An independent refinement of the
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same strategy by different groups of researchers — Ambrosio, Gigli & Savaré [1],
Carrillo, McCann & Villani [13], Sturm & von Renessee [38] and Sturm [37], shows
the dynamics contract globally with respect to 2-Wasserstein distance.

In the general case p > 0, Denzler & McCann computed the precise value of Λ(ρ)
— among other things — where ρ is the steady state. Although Λ(ρ) is positive,
Λ(u) can be arbitrarily negative when p ∈ ]0, n[, so the dynamics no longer form
a contraction globally. One might still hope for a positive lower bound on Λ(u)
locally, near the steady state ρ, but this is not the case either: the next section shows
there exist functions u ∈ Mp arbitrarily close to ρ in Wasserstein metric (as well
as in relative entropy, L1 norm, and L∞ norm) at which Λ(u) is arbitrarily negative.
In particular Λ(u) is not a lower semicontinuous function of u in the Wasserstein
distance. This constitutes our negative result. In a final section, we obtain our
positive result by exploiting continuity of both Λ(u) and the next higher eigenvalue
when ρ is subject to a perturbation which is small in the relative L∞ sense.

3. LOCAL SEMICONVEXITY OF THE ENTROPY LANDSCAPE FAILS FOR |p| < n

For |p| ≥ n, Otto’s gradient flow formulation of the dynamics takes place in a
convex landscape, since the entropy E(u) is displacement convex [28]. The present
section explains why, for |p| < n, the analogous landscape fails even to be semi-
convex in the displacement sense of McCann, i.e. to admit lower second derivative
bounds locally. This is demonstrated by showing that Λ(u) is not locally bounded
below. We begin with an elementary observation:

Lemma 1. If |p| < n and u ∈ M2 then Λ(u) < 1 and −∞ = lim
a↓0

Λ(au).

Proof. Choosing the constant c > 0 to normalize the test function Ψ(x) = c|x|2/2,

we find Hessu E(Ψ, Ψ) = 1+(p−n) nc2

n+p

∫

Rn u1− 2

n+p , which is less than one if |p| <

n. This proves the first claim: Λ(u) < 1. Now Λ(au) − 1 ≤ a−2/(n+p)(Λ(u) − 1)
decreases to minus infinity as a > 0 vanishes, showing the second claim follows
from the first. �

We demonstrate the local unboundedness of Λ(u) using the construction depicted
in Figure 1. The figure displays a function of a single variable, but it is easy to adapt
this construction to higher dimensions by visualizing regions A and B as spherical
shells around the ball C.

Proposition 2 (Lack of semiconvexity of the entropy landscape). If |p| < n and
u ∈ M2 then both the 2-Wasserstein and L1 limits lim inf

ũ→u
Λ(ũ) = −∞ diverge.

Proof. Let ε > 0 and u ∈ M2. We will construct ũ ∈ M2 arbitrarily close to u
in 2-Wasserstein distance such that Λ(ũ) is arbitrarily negative. That is, such that
d2(u, ũ) < ε and Λ(ũ) < −1/ε. To construct the example we perturb the function
u in a small ball II centered at a point where u has a positive Lebesgue density. We
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IIII

ABCBA

u

ũ

Figure 1: Illustrating the discontinuity of Λ(u)

will displace most of the mass from the inner part of the ball (letters B and C) to the
spherical shell denoted by A. The Wasserstein distance between u and ũ will be less
then the square of the diameter of II times the mass of u in II and hence can be made
less then ε either by choosing region II to be small or by choosing a region where
u is small (as can be done if u = ρ by perturbing ρ far from the origin). Notice
that such a perturbation is also small in L1, but to be small in L∞ we would need to
center the ball at a Lebesgue point where ε exceeds the density of u.

The proof of Lemma 1 yields a smooth function v, of arbitrarily small mass,
supported in region C such that Hessv E(x2,x2) < −‖x2‖2

W 1,2
v

/ε. In particular
Λ(v) < −1/ε. By choosing v so that its mass is less then the mass of u in region C
we construct ũ by letting it be equal to v in the region C, 0 in the region B, and by
removing all of the excess mass to the region A.

Choose a test function Ψ(x) := cχ(x)x2, where χ is a cut-off function equal to 1
in C and equal to 0 outside of B ∪ C, and c is the constant ensuring ‖Ψ‖W 1,2

v
= 1.

It follows that Ψ ∈ W 1,2
ũ and that

Hessũ(Ψ, Ψ) = Hessv(Ψ, Ψ) < −1

ε
and ‖Ψ‖W 1,2

ũ
= ‖Ψ‖W 1,2

v
= 1.

Thus Λ(ũ) < − 1
ε

as desired. �

As mentioned in the proof, the same proposition holds for L∞ limits, provided u
has Lebesgue points of arbitrarily small density. We remark that it is not necessary to
make ũ equal to 0 in the region B. Making ũ sufficiently small would have sufficed.
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4. NEARLY OPTIMAL SECOND ORDER ASYMPTOTICS FOR p ≥ n ≥ 2

For p ≥ n on the other hand, Λ(u) will prove continuous with respect to u near
ρ in the relative L∞ sense. Combining this observation with Vazquez’ convergence
of u(t) towards ρ in relative L∞ (5), yields sufficient control on the Hessian to
obtain an improved rate of convergence for the relative entropy of centered solutions.
Dilations show the rate of Theorem 3 to be optimal, apart from the parameter δ >
0 which may be taken arbitrarily small. Unfortunately, this near optimal rate is
obtained only in the relative entropy and L1 senses; if we were able to obtain it in
the relative L∞ setting we could eliminate the parameter δ > 0 by bootstrapping our
way to optimality.

We shall work with initial data which belong to

Mp
0 :=

{

u0 ∈ M2

∣

∣

∣

∫

Rn

xu0(x) dx = 0 and lim sup
|x|→∞

|x|n+pu0(x) < +∞
}

,

or satisfy either of the weaker hypotheses (16)–(17). Let Mp denote the set of all
translates of measures in Mp

0. Note that for p > 2 all functions u in Mp have finite
energy E(u).

Theorem 3 (Near optimal decay rate for relative entropy of centered solutions). Fix
p ≥ n ≥ 2 6= p, and let u(x, t) solve (9) smoothly for t > 0 subject to an initial
condition

(14) 0 = lim
t→0

‖u(·, t) − u0(·)‖L1(Rn).

with u0 ∈ Mp
0. For each δ > 0 there exists T > 0 such that for all t > T ,

(15) E(u(t)|ρ) ≤ E(u0|ρ) e−2(α−1−δ)(t−T ).

Remark 4. The class of initial data for which the theorem holds can be extended.
In particular Vazquez [39] has shown that if u0 satisfies the following condition

(16) |x|p
∫

B(x,|x|/2)

|u0(x̃)| dx̃ < const

for all x large enough then u( · , t) ∈ Mp for all positive times. Thus the conclusion
of the theorem holds for centered initial data satisfying (16).

Remark 5. Since (16) is satisfied for all u ∈ Mp we conclude that if u0 ∈ Mp then
for all times u(t) ∈ Mp. Thus Mp is closed under the evolution.

Remark 6. We remark that any function with p-th moments satisfies condition (16).
That is, (16) holds if

(17)
∫

Rn

|x|pu0(x)dx < ∞.
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Proof. (of Remark 6). To show the contrapositive, assume u0 ≥ 0 fails to sat-
isfy (16). Then there exists a sequence xk → ∞ such that |xk+1| > 2|xk| and
|xk|p

∫

B(xk ,|xk|/2)
u0(x) dx > 1. But since the balls B(xk, |xk|/2) are disjoint

∫

Rn

|x|pu0(x) dx ≥
∞

∑

k=1

∫

B(xk ,
|xk|

2
)

|x|pu0(x) dx

≥
∞

∑

k=1

|xk|p
2p

∫

B(xk ,
|xk|

2
)

u0(x) dx

= +∞
which precludes (17). �

Proof. Let us first prove Theorem 3 under an additional assumption on u0 ∈ Mp
0:

Case 1o. Assume that for some number a > 0

lim
|x|→∞

u0(x)|x|n+p = a.

Let ε(t) := ‖(u(t) − ρ)/ρ‖L∞(Rn) and let h(t) := E(u(t)|ρ). Vazquez [39]
showed (5) for v0 = u0 ∈ Mp

0. But note that |u(t) − ρ|/ρ = |v(τ) − V (τ)|/V (τ)
where t and τ are related by (7). Therefore ε(t) converges to zero as t goes to

infinity. In particular there exists T such that ε(t) < min
{

n+p
2(n+p−1)

αδ, 1
}

for all

t > T .
Under the additional condition of Case 1o, Lee & Vazquez [27, Lemma 6.1] and

Carrillo & Vazquez [11, Lemma 5.1] have shown that it is easy to obtain the decay
of derivatives of u(t). In particular, for any multi-index β, locally uniformly in time
around t > 0,

(18) Dβu(x, t) = O(|x|−n−p−|β|) as |x| → ∞;

see Kim & McCann [22, Corollary 9]. As Carrillo & Vazquez also showed, this is
sufficient for h to be a C2 function, and they computed

h′(t) = −
∫

Rn

u

∣

∣

∣

∣

x − n + p − 2

2
∇u− 2

n+p

∣

∣

∣

∣

2

dx

= −
∫

Rn

u|∇Ψ|2 dx

where Ψ(x) =
|x|2
2

−(n+p
2

− 1)u− 2

n+p , and

(19) h′′(t) = 2

∫

Rn

u|∇Ψ|2 dx + 2

∫

Rn

um

(

|Hess Ψ|22 −
2

n + p
(∆Ψ)2

)

dx.

Thus h′(t) = −‖Ψ‖2
W 1,2

u
and h′′(t) = 2 Hessu E(Ψ, Ψ).
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For p ≥ n, the Cauchy-Schwartz inequality Tr[A+B] ≤
√

Tr[A+A]Tr[B+B]
with A = I and B = D2Ψ shows the second integrand in (19) is non-negative. This
is Otto’s conclusion Hessu E(Ψ, Ψ) ≥ ‖Ψ‖2

W 1,2
u

[32].

Moreover, Denzler & McCann [17] [18] showed that for Ψ orthogonal in W 1,2
ρ to

the functions X = {x1, x2, . . . , xn} which generate translations, this inequality can
be improved by a factor α−1 = 2p/(n + p). In particular,

(20) Hessρ E(Ψ̃, Ψ̃) ≥ 1

α
‖Ψ̃‖2

W 1,2
ρ

for Ψ̃ ∈ W 1,2
ρ such that 〈Ψ̃, xi〉ρ :=

∫

Rn ρ(x)∇Ψ̃ · êi dx = 0 for all i = 1, . . . , n,
where êi are coordinate unit vectors.

We plan use this estimate for vectors Ψ ∈ W 1,2
u tangent to the trajectory u(t),

namely Ψ(x) = |x|2/2+ m
m−1

um−1, when u is near ρ in the relative L∞ sense. Note
that ε(t) < 1 implies W 1,2

u = W 1,2
ρ . The decay of derivatives (18) is sufficient to

guarantee that the evolution preserves the center of mass for positive times. Addi-
tionally, as we will show for more general initial data considered in Case 2o, the
center of mass is a continuous function of time at t = 0. Thus using the center of
mass condition (6), and the decay (18) of u to integrate by parts yields

(21) 〈Ψ, xi〉u =

∫

Rn

(xiu +
∂um

∂xi
) dx = 0.

However, 〈Ψ, xi〉ρ 6= 0 generally. We must therefore project Ψ onto the orthogonal
complement of the set of functions X := {x1, x2, . . . xn} in W 1,2

ρ . If u is sufficiently
close to ρ, neither the norm in W 1,2

ρ nor the Hessian will be much changed by this
projection, since the set X consists precisely of the lowest eigenfuctions for both
Hessians, Hessu and Hessρ. We estimate these changes precisely below, denoting

Ψ̃ := ΠX⊥Ψ

= Ψ −
n

∑

i=1

〈Ψ, xi〉ρ
‖xi‖2

W 1,2
ρ

xi

= Ψ −
n

∑

i=1

∫

Rn ρ∇Ψ · êi dx
∫

Rn ρ dx
xi.

For i = 1, . . . , n, |u − ρ| ≤ ε(t)ρ combines with (21) to imply

|〈Ψ, xi〉ρ|2 =

∣

∣

∣

∣

∫

Rn

(ρ − u)∇Ψ · êi dx

∣

∣

∣

∣

2

≤ ε(t)2

(
∫

Rn

ρ

∣

∣

∣

∣

∂Ψ

∂xi

∣

∣

∣

∣

dx

)2

≤ ε(t)2

∫

Rn

ρ

∣

∣

∣

∣

∂Ψ

∂xi

∣

∣

∣

∣

2

dx,
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by Jensen’s inequality. Thus

‖Ψ̃‖2
W 1,2

ρ
= ‖Ψ‖2

W 1,2
ρ

−
n

∑

i=1

|〈Ψ, xi〉ρ|2

≥ (1 − ε(t)2)‖Ψ‖2
W 1,2

ρ

≥ (1 − ε(t))‖Ψ‖2
W 1,2

u
.(22)

Now

− h′′(t)

2h′(t)
= 1 +

1

‖Ψ‖2
W 1,2

u

∫

Rn

um
(

(m − 1)(∆Ψ)2 + |Hess Ψ|22
)

≥ 1 +
(1 − ε(t))m (1 − ε(t))

‖Ψ̃‖2
W 1,2

ρ

∫

Rn

ρm
(

(m − 1)(∆Ψ)2 + |Hess Ψ|22
)

≥ 1 +
(1 − mε(t))(1 − ε(t))

‖Ψ̃‖2
W 1,2

ρ

∫

Rn

ρm
(

(m − 1)(∆Ψ̃)2 + |Hess Ψ̃|22
)

≥ [1 − (m + 1)ε(t)]α−1,

where we have used (22) to obtain the first inequality and (20) to obtain the last. For
all t > T , this means

h′′(t) ≥ −2α−1
[

1 − n+p−1
n+p

2ε(t)
]

h′(t)

≥ −2[α−1 − δ]h′(t),(23)

since m+1
2

= n+p−1
n+p

. It was also proven, e.g. by Carrillo & Vazquez, that h(t) → 0

as t → ∞. Hence, since h′ is nonpositive, h′(t) → 0 as t → ∞. Integrating in (23)
from t to ∞ yields

−h′(t) ≥ 2(α−1 − δ)h(t) for all t > T.

The conclusion of the theorem now follows by dividing by h(t), integrating from T
to t, and noting that E(u(T )|ρ) ≤ E(u0|ρ),

Case 2o. Now let us consider the general case u0 ∈ Mp
0. Then

u0(x) = O(|x|−n−p)

The strategy we employ is to approximate u0 by functions whose tails satisfy the
condition of Case 1o. The obstacle to carrying out this approximation is that the
results of Case 1o depend on the initial data through the quantity T produced by
Vazquez’ relative-L∞ convergence result (5). The remainder of the proof is con-
cerned with showing that T can be chosen uniformly with respect to the approxima-
tions we need.

Recall that Vazquez’ argument is partly based a comparison of the solution of
interest with scaling solutions of different total mass [39]. For that reason we will
write ρC and V ( · , · , C) when we want to specify what constant C was used in
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defining (2). We furthermore introduce the function U(x, t, C, t0) which solves (9)
with initial condition V (x, αt0, C). This solution can be written explicitly:

U(x, t, C, t0) = entV (etx, α(et/α − 1 + t0), C)

= (1 + (t0 − 1)e−t/α)−nαρC

(

(1 + (t0 − 1)e−tα)−αx
)

= η
n+p

2

(

Cη2α +
|x|2

n + p − 2

)−n+p

2

=

(

1

n + p − 2

)−n+p

2

η
n+p

2 |x|−(n+p) + o(|x|−(n+p)) as |x| → ∞.

(24)

Here η := 1 + (t0 − 1)e−t/α lies between 1 and t0 for all t > 0, from which one
sees the smallness of the error term is o(|x|−(n+p)) uniformly in time. Observe that
the limit

A(t, t0) := lim
|x|→∞

U(x, t, C, t0)|x|n+p

= [(n + p − 2)η]
n+p

2

is finite and independent of C for all nonnegative t and t0, meaning tail thickness
depends only on the age of the solution, and not on its mass. Additionally note that
A(0, 0) = 0 and limt0→∞ A(t, t0) = ∞.

Upper bound of tails by scaling solutions. Our first step is to show that the tails
of the solution u are for all times bounded by the tails of a similarity solution with
negative C. Let

a(t) := lim sup
|x|→∞

u(x, t)|x|n+p.

Note that a(t) is finite for all t by Remark 5. Note that U(x, t,−1, t0) is a solution
of equation (9) on an exterior domain with moving boundary. In particular at time
t the domain is the exterior of ball of radius

√
n + p − 2 ηα. The value of U grows

to ∞ as x approaches the boundary of the domain. Observe that for t0 large enough
U(x, 0,−1, t0) > u0(x) for all |x| >

√
n + p − 2 tα0 . Therefore by comparison

principle on the exterior domain U( · , t,−1, t0) > u( · , t). This implies that the
function a(t) is bounded on finite time intervals.

This uniform control on the tails, combined with (14), implies that the center of
mass is a continuous function of time.

Approximations with uniform tails. Let φ ∈ C∞([0,∞)) be nondecreasing cut-off
function such that φ = 0 on [0, 1] and φ = 1 on [2,∞). Let

u0,k(x) :=

(

1 − φ

(

x − xk

k

))

u0(x − xk) + γk φ
(x

k

)

|x|−(n+p)
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for each k, where γk > 0 and xk ∈ Rn are chosen to ensure that u0,k has the same
unit mass and zero center of mass as u0 ∈ Mp

0. From the definition of a follows that
lim supk→∞ γk ≤ a(0). Note that xk → 0 as k → ∞. Let uk(x, t) be the solution
of (9) with initial data uk,0. Recall that the solutions uk preserve the center of mass.
Since the evolution is an L1 contraction and both uk(t) and u(t) decay as |x|−n−p

for |x| large it follows that centers of mass of uk(t) converge towards the center of
mass of u(t). Therefore the center of mass of u(t) is 0 for all times.

Bounds by scaling solutions. We now show that, after a short time, our solution
u(x, t) and all its approximants will be bounded below by a scaling solution which
is sufficiently young and sufficiently light, and bounded above by a scaling solution
which is sufficiently old and sufficiently massive. Let

a := lim inf
|x|→∞

u0(x)|x|n+p

We can assume without the loss of generality that a > 0 For if u0 does not have this
property, all it takes is to wait some time t̃ and consider the problem with initial data
u( · , t̃). To verify that consider u(x, t) and ũ(x, t) := U(x, t − 1, C, 0) as solutions
of (9) on (Rn\B1(0)) × [1,∞[. Since u is positive for t > 0 while ũ( · , 1) = 0
on the complement of the origin, u( · , t) > ũ( · , t) on ∂B1(0) for all t ∈ [1, t̃] for
some t̃ > 1. Therefore by comparison principle u ≥ ũ on (Rn\B1(0)) × [1, t̃].
Since ũ( · , t̃) has the desired lower bound on the decay of its tails so does u( · , t̃).
Furthermore, since ‖ũ( · , t̃)‖L∞(B1(0)) → 0 as C → ∞ the inequality between
u( · , t̃) and the scaling solution can be extended to all of Rn. In particular we can
also assume that u0( · ) > U( · , 0, C, t) on Rn for some C > 0 and t.

Similarly, we can obtain an upper bound on Rn. Since a(1) is finite and u( · , 1)
is a bounded function, by choosing t0 large and C = η−2α one has U( · , 1, C, t0) >
u( · , 1) on Rn. Therefore, by shifting time by one, we can also assume that for some
t and C, u0( · ) < U( · , 0, C, t).

By the definition of a and a:

0 < a ≤ lim inf
k→∞

γk ≤ lim sup
k→∞

γk ≤ a(0) < ∞.

Using this uniformity of tails of approximating solutions we can assume (adjusting
the choices of C , t, C, and t slightly if necessary) that for some k0 and all k > k0,

U( · , 0, C, t) ≤ uk,0( · ) ≤ U( · , 0, C, t).

By comparison principle it follows that

(25) U( · , t, C, t) ≤ uk( · , t) ≤ U( · , t, C, t).

for all t ≥ 0 and all k > k0.
We claim that there exists T > 0 such that for all k > k0, ‖uk( · , t)/ρ − 1‖L∞ <

δ1 := min
{

n+p
2(n+p−1)

αδ, 1
}

for each t > T . In other words we claim that the
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relative L∞ convergence (5) obtained by Vazquez occurs uniformly in k. Following
Vazquez’ proof of convergence we split Rn in two parts.

Tail analysis. From the expression (24) for the tail of U , it follows that there exist
T1 > 0 and R > 0 such that

1 − δ1 <
U(x, t, C, t)

ρ(x)
<

U(x, t, C, t)

ρ(x)
< 1 + δ1

for all t ≥ T1 and all |x| ≥ R. In this region, the desired estimates for uk(x, t) now
follow from (25).

Analysis on BR(0). It is enough to show that there exists T2 such that for all
t ≥ T2 and all x ∈ BR(0), |u(x, t) − ρ(x)| < δ2 := δ1 min{ρ(z) | z ∈ BR(0)}.

Let λ := inf{U(x, t, C, t) | |x| ≤ 2R, t ≥ 0} and Λ := sup{U(x, t, C, t) |
|x| ≤ 2R, t ≥ 0}. From (24) one can deduce that 0 < λ ≤ Λ < ∞. Therefore
the equation (9) is uniformly parabolic along the trajectories uk (for k > k0) and u.
Classical regularity results [25] yield the existence of some Hölder exponent θ > 0
such that uk( · , t) is in Cθ(BR(0)) for all k > k0 and t ≥ 1 with an upper bound on
Hölder norm independent of k and t.

To derive a contradiction, assume no such T2 exists. Then there exist sequences
tj → ∞ as j → ∞ and kj > k0 such that ‖ukj

( · , tj) − ρ( · )‖L∞(BR(0)) ≥ δ2.
But since the Hölder norm of functions ukj

( · , tj) is bounded from above they are
equicontinuous, and hence by Arzelà-Ascoli lemma there exists an L∞-convergent
subsequence. For notational simplicity we assume that the subsequence is the whole
sequence. So ukj

( · , tj) → ρ̃ in L∞(BR(0)) as j → ∞ for some function ρ̃. Note
that this also implies the convergence in L1(BR(0)).

Now observe from (25) that E(uk,0) is uniformly bounded. Looking into Carrillo
and Vazquez’ derivation of an L1 rate of convergence [11, Sec. 4], this can be seen
to imply uniformity of the limit

lim
t→∞

sup
k>k0

‖uk( · , t) − ρ( · )‖L1 = 0

with respect to k. Thus ukj
( · , tj) → ρ in L1. Therefore on BR(0), ρ̃ = ρ which

contradicts the hypothesis that ukj
remains distance δ2 from ρ somewhere in this

ball. The only conclusion can be that T2 exists after all.
Let T = max{T1, T2}. Since uk,0 satisfy the condition of Case 1o, and T satisfies

the desired condition used in the proof of Case 1o, we conclude that the decay rate
(15) holds for uk for all k ≥ k0. Since E(uk,0|ρ) → E(u0|ρ) as k → ∞ and since
E(u(t)|ρ) ≤ lim infk→∞ E(uk(t)|ρ) the theorem is established. �

It is well-known [11] [32] that the relative entropy controls the distance in the
L1 norm by a Csiszár–Kullback [15] [24] type inequality

(26) ‖u − ρ‖L1(Rn) ≤
(

8

m

∫

Rn

ρ2−m

)1/2
√

E(u|ρ).
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In the present setting, the relative L∞ convergence (5) of u to ρ yields similar in-
equalities for other Lq-spaces by combining Hölder’s inequality with a second order
Taylor expansion of the (convex) power law defining the entropy.

Lemma 7 (Csiszár-Kullback type interpolation inequality via Taylor expansion).
Fix p > 2 and u ∈ L1(Rn). Suppose |(u(x)− ρ(x))/ρ(x)| < ε < 1 for all x ∈ Rn.
Then for all 1 < q < 1 + 2(2−m)

n(1−m)
= 2 + p+2

n
,

∫

Rn

|u − ρ|2/q ≤
[

2(1 + ε)2−m

m
E(u|ρ)

]1/q [
∫

Rn

ρ(2−m)/(q−1)

](q−1)/q

< +∞.

Proof. Let φ(r) = 1
m−1

rm. Note that

(27) E(u|ρ) :=

∫

Rn

φ(u) − φ(ρ) − φ′(ρ)(u − ρ),

and all integrals converge due to the fact that p > 2 and |u − ρ| < ρ. Therefore

E(u|ρ) =
1

2

∫

Rn

φ′′(ρ + θ(u − ρ)) (u − ρ)2

for some function 0 ≤ θ ≤ 1. Using that φ′′(r) = mρm−2 and that−ερ < θ(u−ρ) <
ερ one obtains that

(28) E(u|ρ) ≥ m

2
(1 + ε)m−2

∫

Rn

ρm−2(u − ρ)2

Hölder’s inequality yields

(29)
∫

Rn

|u − ρ|2/q ≤
(

∫

Rn

(u − ρ)2ρm−2

)1/q (
∫

Rn

ρ(2−m)/(q−1)

)(q−1)/q

.

We now note that 1 < q < 1 + 2(2−m)
n(1−m)

implies 2−m
q−1

> n(1−m)
2

. On the other hand

it is easy to check that ρ ∈ Lr precisely for r > n
n+p

= n(1−m)
2

. Combining the
inequalities (28) and (29) now finishes the proof. �

The Csiszár–Kullback type interpolation inequalities of Lemma 7 are now used
to convert decay of the relative entropy from Theorem 3 into a nearly optimal Lr

convergence rate.

Corollary 8 (Lr convergence rates in similarity variables). Fix p ≥ n ≥ 2 with
p > 2 and u0 ∈ Mp

0. Let u(x, t) be the solution of (9) with initial data u0. For any

r ∈
]

2n
2n+p+2

, 2
[

and δ ∈]0, r
α
[ there exists t0 such that for all t > t0

(30)
∫

Rn

|u(x, t) − ρ(x)|r dx < e−(α−1r−δ)(t−t0).
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Proof. Recall m = 1− 2
n+p

and note q := 2
r
∈ ]1, 2+ p+2

n
[. Take T large enough (de-

pending on u0) that Theorem 3 yields h(t) := E(u(t)|ρ) ≤ h(0)e−2(α−1−δ/r)(t−T ).
Convergence in relative L∞ norm allows us to assume ε(t) ≤ 1/2 for all t >
T . Since h(t) → 0, taking t0 > T so large that 2

m
h(0) 22−m‖ρ2−m‖

L
1

q−1 (Rn)
<

e2(α−1−δ/r)(t0−T ) implies (30) via Lemma 7. �

For comparison with the standard Csiszár-Kullback result, notice that r = 1 is an
allowed value in (30). Transforming this estimate from similarity variables back to
original quantities using (7) yields the following rate of convergence, in terms of v.
Apart from δ > 0, which can be chosen arbitrarily small, these decay results achieve
the optimal power of τ , as example (3)–(4) reveals.

Corollary 9 (L1 convergence rate in original variables). Fix p ≥ n ≥ 2 with p > 2
and v0 ∈ Mp

0. Then for any δ > 0 there exists τ0 > 0 such that for all τ > τ0

(31) ‖v(τ) − V (τ + α)‖L1(Rn) ≤
(

α + τ0

α + τ

)1−αδ

.

Proof. Set τ0 := α(et0/α−1). Then (30) becomes equivalent to (31) via the changes
of variables (7)–(8) and definition (2). �

Corollary 10 (Near optimal bound on second order L1-asymptotics). Fix p ≥ n ≥
2 6= p, centers z0, z̃0 ∈ Rn, and a as in (4). Let v and ṽ solve the evolution (1) with
centered initial data v0, ṽ0 ∈ Mp

0. Then for any δ > 0,

(32) ‖v(· − z0, τ) − ṽ(· − z0, τ)‖L1(Rn) =
a

τα
|z0 − z̃0| + O(

1

τ 1−δ
) as τ → ∞.

Proof. Comparing v with V and ṽ with V separately, (32) follows from (3) and (31)
via the triangle inequality. �
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[7] P. B énilan and M. G. Crandall. The continuous dependence on ϕ of solutions of ut −∆ϕ(u) =
0. Indiana Univ. Math. J., 30:161–177, 1981.
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