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Abstract

The Navier-Stokes strain equation with applications to enstrophy growth and global regularity

Evan Miller
Doctor of Philosophy
Graduate Department of Mathematics
University of Toronto
2019

This thesis derives an evolution equation for the symmetric part of the gradient of the velocity
(the strain tensor) for the incompressible Navier-Stokes equation. We use this equation to
obtain a simplified identity for the growth of enstrophy for mild solutions that depends only on
the determinant of the strain tensor, not on the nonlocal interaction of the strain tensor with
the vorticity.

The resulting identity allows us to prove a new family of scale-critical necessary and sufficient
conditions for blow-up of the solution in finite time T;,4, < +00, which depend only on the
history of the positive part of the second eigenvalue of the strain matrix. Since this matrix
is trace-free, this severely restricts the geometry of any finite-time blow-up. This regularity
criterion provides analytic evidence of the numerically observed tendency of the vorticity to
align with the eigenvector corresponding to the middle eigenvalue of the strain matrix.

We then consider a vorticity approach to the question of almost two-dimensional initial data,
using this same identity for enstrophy growth and an isometry relating the third column of the
strain matrix to the first two components of the vorticity. We prove a new global regularity
result for initial data with two components of the vorticity sufficiently small. Finally, we prove

the existence and stability of blowup for a toy model ODE of the strain equation.
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Chapter 1

Introduction

The Navier-Stokes equation, which governs viscous, incompressible flow, is one of the most
fundamental equations in fluid dynamics. The incompressible Navier-Stokes equation is given
by

Ou —vAu+ (u-V)u+ Vp = f,

1.1

V-u=0, (L)
where u € R3 denotes the velocity, p the pressure, f the external force, and v > 0 is the
viscosity. The pressure is completely determined in terms of v and f, by taking the divergence
of both sides of the equation, which yields

Cape gy (12)

] Oxj Ox;

We refer here to the Navier-Stokes equation, rather than the Navier-Stokes equations, because
this PDE is best viewed not as a system of equations, but as an evolution equation on the space
of divergence free vector fields.

Two other objects which play a crucial role in Navier-Stokes analysis are the vorticity and
the strain, which represent the anti-symmetric and symmetric parts of the V ® u respectively.
The vorticity is given by taking the curl of the velocity, w = V x u, while the strain is the

matrix given by S;; = 5 <8u7 + 8%) . The vorticity w is related to the anti-symmetric part of
the gradient, A;; = % (ZZZ — axy) by
1 0 w3  —Wo
A== —w3 0 w1 . (13)
2
w2 —W1 0

The evolution equation for vorticity is given by

Ow —vAw+ (u - V)w — Sw =V X f, (1.4)
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and the evolution equation for the strain is given by

1 1
S+ (u-V)S —vAS + 5% + @O Z|w\213 + Hess(p) = Vymf- (1.5)

In addition to the curl operator, it is also useful to define a differential operator that maps a

vector to the symmetric part of it’s gradient tensor: Vym(v);; = % (g;ﬁ + 37”;). Note that
S = Veymu.

Before we proceed further we should define a number of spaces. For all s € R, H® (R3) will
be the Hilbert space with norm

. 1.2
191 = [ (1 Cmle)™) 1F(€) P = || 1+ c2mle®)* £ (1.6)
R3
and for all —% <s< %, H* (R3) will be the homogeneous Hilbert space with norm
. 12
1913 = [ (erleD®li©Pa = || ], (1.7)
R3

Note that when referring to H*® (Rd) H® (R3) ,or LP (RS) , the R? will often be omitted for
brevity’s sake. All Hilbert and Lebesgue norms are taken over R? unless otherwise specified.
Finally we will define the subspace of divergence free vector fields inside each of these spaces.

Definition 1.1. For all s € R define Hg C H* (R3;R3) by

Hy = {u € H® (R3;R3) :&-u(§) =0, almost everywhere & € Rs} : (1.8)
For all —% <s < %, define ij c H® (R3;R3) by

ij = {u € H* (R*R?) : - a(¢) = 0, almost everywhere £ € R3} . (1.9)
For all 1 < q < +o0, define Ly, C L1 (R%R?) by

LZlf = {u e L9 (R3;R3) such that for all f € C° (R3) u, Vf) = 0.} (1.10)

Note that this definition makes sense, because in u € H® or u € H*® implies that @(¢) is
well defined almost everywhere. We will also note that H® = L2, so we have two different
definitions of Lflf. This is not a problem as both definitions are equivalent. We will also note
that throughout this thesis, we will take the magnitude of a matrix, M € R3*3, to be the
Euclidean norm

3
IMPP =" M (1.11)
ij=1
The standard notion of weak solutions to PDEs corresponds to integrating against test
functions. Leray first proved the existence of just such weak solutions to the Navier-Stokes

equation satisfying a certain energy inequality |36]. To be precise, Leray defined weak solutions,
sometimes referred to as Leray-Hopf weak solutions, to the Navier-Stokes equation as follows.

Definition 1.2 (Leray weak solutions). Suppose u® € L?if. Then u € L ([0,+oo);L?lf> N
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L? ([0,—1—00);H1 (R3)) is a Leray weak solution to the Navier-Stokes equation if for all ¢ €
c ((0,—|—oo) X R3;R3) ,V-¢=0,

/+Oo/ (u-Op+rvu-Ap+u®u: Vo)drdt =0, (1.12)
0 R3

and for all t > 0
1 ¢ 1
Q\U(nt)Hiz-%lfjg lu(, D Fpdr < S llulll7. (1.13)

We will note that this definition can also be generalized to the case with a nonzero external
force, f # 0. Leray proved the existence of weak solutions in this class for all initial data
ul € sz by mollifying the advection term with some smooth mollifier 6, replacing (u-V)u with
((0 % u) - V) u. This mollification guarantees the existence of smooth solutions globally in time
to the mollified equation, and furthermore these solutions to the mollified equation satisfy an
energy equality, which is with equality. Passing to weak limits, we obtain a weak solution
satisfying the energy inequality, which now does not necessarily hold with equality because the
solutions to the mollified equation only converge weakly in CyL2N L H}, and do not necessarily
converge in norm. The proof of existence by weak convergence of solutions to the mollified
problem also means that Leray weak solutions may not be unique.

For solutions to the Navier-Stokes equation denote the energy by

K1) = 3 Ju(1)]32. (114)

The energy inequality holds with equality for smooth solutions to the Navier-Stokes
equations, but a weak solution in u € L> ([0, +00); L? (R%)) N L? <[0, +00); H! (R?’)) does not
have enough regularity for us to integrate by parts to conclude that ((u - V)u,u) = 0, which is
what is needed to prove that the energy equality holds.

While the global existence of Leray solutions to the Navier-Stokes equations is well estab-
lished, the global existence of smooth solutions remains a major open problem. Because Leray
solutions are not necessarily smooth, they are not the best adapted to studying the Navier-
Stokes regularity problem. For this reason we will turn our focus to mild solutions, a notion of
solution better adapted to the Navier-Stokes regularity problem that was introduced by Kato
and Fujita in [18]. Before defining mild solutions, we will define the Helmholtz decomposition.

Proposition 1.3 (Helmholtz decomposition). Suppose 1 < q < +o0. For all v € LI(R3;R3)
there exists a unique u € LY(R3R3), V- u = 0 and Vf € LI(R3R3) such that v = u + Vf.
Note because we do not have any assumptions of higher reqularity, we will say that V - u = 0,
if for all ¢ € C°(R3)

/ u-Vo =0, (1.15)
R3

and we will say that V f is a gradient if for all w € C(R3;R3),V - w = 0, we have

Vf-w=0. (1.16)
R3
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Furthermore there exists By > 1 depending only on q, such that
lullzo < Bollvlloa, (1.17)

and
IV fllLa < Bgllvl|La- (1.18)

Define Py : LY(R3R3) — LIY(R3;R3) and P, : LY(R3R3) — LI(R3%R3) by Py(v) = u and
Py(v) =V f, where v,u, and V f are taken as above.

Furthermore, suppose —% <s < % Then for all v € H? (R3;R3) there exists a unique
u€ Hy VfeH? (RS;R?’) such that u=v+ Vf and

ol = llullZ. + IV £l (1.19)

Likewise define Py : H® (R%R3) — H* (R%R3) and P, : H® (R%R3) — H* (R%R3) by
Py (v) = u and Py(v) = V f, where v,u, and V f are taken as above.

This is a well-known, classical result. For details, see for instance [35]. We will also note
here that the L? bounds above are equivalent to the LY boundedness of the Riesz transform.
Take the Riesz transform to be given by R = V(—A)fé, then Py(v) = R x (R x v), and
Py(v) = —R(R - v). Py is often referred to as the Leray projection because of its use by Leray
in developing weak solutions to the Navier-Stokes equation.

Note that Py (Vp) = 0, so the Helmholtz decomposition allows us to define solutions to the
incompressible Navier-Stokes equation without making any reference to pressure at all. With
this technical detail out of the way, we will now define mild solutions of the Navier-Stokes
equation.

Definition 1.4 (Mild solutions). Suppose u € C ([O T); H} ) NnL? ([0 T); H? (R?) ) Then u

is a mild solution to the Navier-Stokes equation with external force f € L? ([0 T); L* )) if
t
u(-t) = el + / /AP (—u - V)u+ f) (-, 7)dr, (1.20)
0
where e® is the heat operator given by convolution with the heat kernel; that is to say, e!®ud

is the solution of the heat equation after time t, with initial data u®.

Fujita and Kato proved the local existence of mild solutions for initial data in H f in [18]

a result we will state precisely below. In fact, mild solutions exist for initial data in Hs ar s> 5.
This was later extended to initial data in Lgf, q > 3 by Kato in [26].

Theorem 1.5 (Mild solutions exist for short times). Suppose f = 0. Then there exists a

constant C > 0, independent of v, such that for all u® € H df> for all0 < T < %, there
H1

exists a unique mild solution to the Navier-Stokes equation uw € C ([0, T, Hl(R3)>. Furthermore
forall0<e<T,uecC ([e,T]; HO‘(R?’)) for all a« > 1, and therefore u € C* ((O,T] X R3;R3) )

In the case where f # 0 for all u’ € HY(R?),V -u = 0 and all f € L}, ((0,T%); L*(R?))
there exists 0 < T < T* and u € C ([O,T];HI(R3)> N L2 ([O,T];HZ(R3)) such that u is the
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unique mild solution to the Navier-Stokes equation. Note that mild solutions with a non-smooth
force are not smooth in general, because the bootstrapping argument will not work in this case.

The proof is based on a Picard iteration scheme, as the map associated with Definition

¢

T(u) = e""Pu® + / e”(t_T)APdf (—(u-V)u+ f)(-,7)dr, (1.21)
0

is a contraction mapping from Lgf to Lgf, for ¢ > 3 and for sufficiently small times. These

arguments, however, cannot guarantee the existence of a smooth solutions for arbitrarily large

times. When discussing regularity for the Navier-Stokes equation it is useful to define Tiq4,

the maximal time of existence for a smooth solution corresponding to some initial data.

Definition 1.6 (Maximial time of existence). For all u’ € HJ, if there is a mild solution of
the Navier-Stokes equation u € C ([0,+oo);H1df>, u(-,0) = u’, then Typar = +o00. If there
is not a mild solution globally in time with initial data u®, then let Tee < +00 be the time
such thatu € C <[0, Tinaz); Hldf> , u(-,0) = u0, is a mild solution to the Navier-Stokes equation
that cannot be extended beyond Tar. That is, for all T > Ta: there is no mild solution
ueC <[O,T);H1df) , u(-,0) = ul.

It remains one of the biggest open questions in nonlinear PDESs, indeed one of the Millennium
Problems put forward by the Clay Mathematics Institute, whether the Navier-Stokes equation
has smooth solutions globally in time for arbitrary smooth initial data [17]. Note in particular
that the Clay Millennium problem can be equivalently stated in terms of Definition as: if
f =0, show T}, = +oc for all initial data weH C} , or provide a counterexample.

Theorem states that a solution must exist locally in time for all initial data u® € H',
which implies that in order for a mild solution to develop singularities in finite time it must
blow up in H'. The square of the H! norm for solutions to the Navier-Stokes equation is known
as enstrophy, and can be defined equivalently as

1

lul-, )1 = %Ha)(-,t)\l%z = ISC, )17 (1.22)

We will prove the equivalence of these definitions in chapter 3.
It is well known that

1
3t§\\w(',t)H%2 = —v|wl3;, + {(Swew). (1.23)
Using the Sobolev embedding of H'! (]R3) into LS (R3) it follows from (1.23)) that
Orllw (-, O)I72 < Cllw(, )22, (1.24)

which is sufficient to guarantee regularity at least locally in time, but cannot prevent blowup
because it is a cubic differential inequality.
In chapter 3 of this thesis, we will prove the following identity for enstrophy growth:

4
OISOl = ~20lSIE, - 5 [ ex(s%). (1.25)
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Using the fact that S must be trace free, because tr(S) = V - u = 0, this identity can also be
expressed in terms of the determinant of S as

NSO = —2v]S|1%, — 4/det(S). (1.26)

The nonlinearity in is still of the same degree as in ([1.23)). Both nonlinearities are
of degree 3, and so cannot be controlled by the dissipation in either case, however the identity
does have several advantages. First, unlike , this identity is entirely local. The
identity is nonlocal with a singular integral kernel, because S can be determined in terms
of w with a zeroth order pseudo-differential operator, S = Vsym(—A)_lv X w. The identity
also reveals very significant information about the relationship between blowup and the
eigenvalues of the strain tensor S. In fact, this identity leads to a new regularity criterion in
terms of the middle eigenvalue of the strain tensor that encodes information about the geometric
structure of potential blow-up solutions.

Theorem 1.7 (Middle eigenvalue of strain characterizes blowup time). Letu € C ([O, T); H! (R3))
for all T < Ther be a mild solution to the Navier-Stokes equation with f = 0, and let
A () < Ao(x) < A3(x) be the eigenvalues of the strain tensor S(z) = Vgymu(x). Let Ay (z) =
max{Az(x),0}. If% + % = 2, with % < g < 400, then

(-, DI < Il 1exp< /HV( Do sy ) (1.27)

with the constant Cy depending only on q and v. In particular if Tiee < +oo, where Ty s
the maximal existence time for a smooth solution, then

Tmu.z
LI Ol (1.28)

It goes back to the classic work of Kato [26] that smooth solutions must exist locally in time
for any initial data u® € Lgf when ¢ > 3. In particular, this implies that a smooth solution
of the Navier-Stokes equations developing singularities in finite time requires that the L? norm
of u must blow up for all ¢ > 3. This was extended to the case ¢ = 3 by Escauriaza, Seregin,
and Sverdk [16]. The regularity criteria implied by the local existence of smooth solutions for
initial data in LY (R3) when ¢ > 3 are all subcritical with respect to the scaling that preserves
the solution set of the Navier-Stokes equations:

uMx, t) = Mu(Ax, N2t). (1.29)

If u is a solution to the Navier-Stokes equations on R?, then so is u* for all A > 0, although
the time interval may have to be adjusted, depending on what notion of a solution (Leray-
Hopf [36], mild, strong [18]) we are using. L? (R?) is the scale critical Lebesgue space for the
Navier-Stokes equations, so the Escauriaza-Seregin-Sverdk condition is scale critical.

Critical regularity criteria for solutions to the Navier-Stokes equations go back to the work
of Prodi, Serrin, and Ladyzhenskaya [33,44.48|, who proved that if a smooth solution blows up
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in finite time 15,4, < +00, then
Tmam
/ lull?ydt = +oc, (1.30)
0

where % + 2 =1, and 3 < ¢ < 4o0o. This result was then extended in the aforementioned

Escauriaza-Seregin-Sverak paper [16] to the endpoint case p = 400, ¢ = 3. They proved that if
a smooth solution u of the Navier-Stokes equation blows up in finite time T},4, < 400, then

limsup [[u(:, )| 13ws) = +o0. (1.31)
—Tmax
Gallagher, Koch, and Planchon [21] also proved the above statement using a different approach
based on profile decomposition. The other endpoint case of this family of criteria is the Beale-
Kato-Majda criterion [3], which holds for solutions of the Euler as well as for Navier-Stokes,
and states that if a smooth solution to either the Euler or Navier-Stokes equations develops
singularities in finite time, then

Tmax
/ (-, 8)|| e dt = +o0. (1.32)
0

This result was also extended to the strain tensor [27].

The regularity criterion in Theorem also offers analytical evidence of the numerically
observed tendency [19] of the vorticity to align with the eigenvector corresponding to the in-
termediate eigenvalue Ao. If it is true that the vorticity tends to align with the intermediate
eigenvalue we would heuristically expect that

tr(S(2)w(z) @ w(x)) ~ Ao (2)|w(x) > (1.33)

We would then heuristically expect that
(S0 ® w) ~ /R No()|w(z) 2dz, (1.34)
and so we would expect that there would be some inequality of the form
(Siw@w) < C /R M@)o (@) 2da. (1.35)

This is all, of course, entirely heuristic, but it is interesting that the regularity criterion we have
proven is precisely of the form that would be predicted by the observed tendency of the vorticity
to align with the eigenvector associated with the intermediate eigenvalue. This suggests that
significant information about the geometric structure of incompressible flow is encoded in the
regularity criterion in Theorem

The family of regularity criteria in has since been generalized to the critical Besov
spaces [1,1312229,30,/43]. These criteria have also been generalized to criteria controlling the
pressure [46,49,52]. In addition to strengthening regularity criteria to larger spaces, there have
also been results not involving all the components of u, for instance regularity criteria on the
gradient of one component Vu; [54], involving only the derivative in one direction, 0,,u [32],
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involving only one component u; [7,11], involving only one component of the gradient tensor
% [4], and involving only two components of the vorticity [6]. For a more thorough overview
of the literature on regularity criteria for solutions to the Navier-Stokes equation see Chapter
11 in [35]. We will discuss the relationship between these results and Theorem in chapter 5,
where we will prove the following critical one direction type regularity criterion for a range of
exponents for which no critical one component regularity criteria were previously known. First
we must define, for any unit vector v € R3, |v| = 1, the directional derivative in the v direction,
which is given by 0, = v - V, and the v-th component of u, which is given by u, = u - v.

Theorem 1.8 (One direction regularity criterion). Let {vn(t)},cny € R?® with |vn(t)| = 1. Let
{0} ,,eny C R? be Lebesgue measurable sets such that for all m # n, Qp(t) N Q(t) = 0,

and R® = (J,cny Qn(t). Let u € C ([O,T];Héf) , for all T < Tz be a mild solution to the
Navier-Stokes equation with f = 0. If}zJ + % = 2, with % < q < +o0, then

[e.9]

T
lul-, D)%, < a0, exp | C /0 (Z

n=1

q

1 1
58’1771,“(.7 t) + ivuvn (" t)

)th . (1.36)

LA (1))

with the constant Cy depending only on q and v. In particular if the mazimal existence time for
a smooth solution Ty,q. < +00, then

P
q

Tmax
/0 (ZH&’HU + vu”n HL‘I Qn(t ))) dt = +o0. (1.37)

0
Note that if we take v, (t) = | 0| for each n € N, then (1.37)) reduces to
1
Tmaf])
L ot t) + Va1 oyt = +oc. (1.38)
0

Theorem is in fact a corollary of the following more general theorem, which states that
for a solution of the Navier-Stokes equation to blow up, the strain must blow up in every
direction.

Theorem 1.9 (Blowup requires the strain to blow up in every direction). Letu € C ([0, T); H df)

for all T < Ty be a mild solution to the Navier-Stokes equation with f = 0 and let v €
L (R?® x [0, Tyao; R?) , with |v(z,t)| = 1 almost everywhere. If% + % =2, with 3 < ¢ < +o0,
then

T
A T e A A E R e B (1.39)

with the constant Cy depending only on q and v. In particular if the mazimal existence time for
a smooth solution Ty, < +00, then

Trmax
LIS 0 gt = o (1.40)

Note that like the Prodi-Serrin-Ladyzhenskaya regularity criterion, the regularity criteria
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we prove on )\; and dsu + Vug are critical with respect to scaling. The reason we require that
% + % = 2, not % + % = 1 is because A9 is an eigenvalue of S, and therefore scales like V ® u,
not like . In addition, both regularity criteria, as well as Theorem can be generalized to
the Navier-Stokes equation with an external force f € L?L2, which will be discussed in chapter
5, but is left out of the introduction for the sake of brevity.

Remark 1.10. After circulating a preprint of his paper [41)], the author learned of previous
work by Dongho Chae on the role of the eigenvalues of the strain matriz in enstrophy growth
in the context of the Euler equation [5]. In this paper, Chae proves that sufficiently smooth
solutions to the Fuler equation satisfy the following growth identity for enstrophy:

OIS, )22 = —4/det(S). (1.41)

This is analogous to what we have proven for the growth of enstrophy for solution of the Navier-
Stokes equation without the dissipation term, because the Euler equation has no viscosity.
The methods used are somewhat different than ours; in particular the constraint space for the
strain tensor and the evolution equation for the strain tensor are not used in [5]. While it is
possible to establish the identity without an analysis of the constraint space, we expect
the results characterizing the constraint space in this paper, particularly Proposition [2.3 and
Proposition to be useful in future investigations. Chae also proves the ¢ = +o0o case of
the regularity criterion in Theorem but this criterion is new for the rest of the range of
parameters. We will discuss the relationship between our method of proof and that in [5] in
more detail after we have proven the identity , which s C’omllary in this paper. The
author would like to thank Alexander Kiselev for bringing Chae’s paper to his attention.

While global regularity for the Navier-Stokes equation with arbitrary, smooth initial data
remains a major open problem, it is known that the Navier-Stokes equation must have global
smooth solutions for small initial data in certain scale-critical function spaces. In particular,
Fujita and Kato also proved in [1§] t?e global existence of smooth solutions to the Navier-Stokes

equation for small initial data in H dif.

Theorem 1.11 (Global regularity for small initial data). Suppose f = 0. There exists C >
L1
0, independent of v, such that for all u® € Hdzf, ||’LL0”H% < Cu, there exists a unique global

1 .
smooth solution to the Navier-Stokes equation u € C ([0, +00); Hd2f> NC> ((0,+00) x R%;R3),
u(-,0) = u’.

This result was then extended to L3 by Kato [26] and to BMO~! by Koch and Tataru [28].
We will note here that the Navier-Stokes equation is invariant under the rescaling u(z,t) =
Au(Az, A°t), and therefore u° generates a global smooth solution if and only if, u%*(z) = Mu®(A\z)
generates a global smooth solution for all A > 0. It is easy to check that each of these norms
are invariant with respect to this rescaling of the initial data.

In chapter 6 of this thesis, we will establish a new result guaranteeing the existence of
global smooth solutions for initial data that are arbitrarily large, so long two components of
the vorticity are sufficiently small in the critical Hilbert space.
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Theorem 1.12 (Global regularity for two components of vorticity small). Let Ry = ﬁw, Ry =

2v2
%. Let wy, = (w1, w,0) and let f = 0. For all u® € Héf such at

lwnl -3 exp

KoEy — 6,9121%14
H 2

< Ryv, 1.42
Rov3 > ! (1.42)
u generates a unique, global smooth solution to the Navier-Stokes equationu € C ((0, +00); Héf> ,
that is Tinee = +00. Note that the smallness condition can be equivalently stated as

R
KoEp < 6,9127%* + Ror3 log <H||1”> . (1.43)
whl| -1
H 2

Very little is known in general about the existence of smooth solutions globally in time with
arbitrarily large initial data. Ladyzhenskaya proved the existence of global smooth solutions for
swirl-free axisymmetric initial data [34], which gives a whole family of arbitrarily large initial
data with globally smooth solutions. Mahalov, Titi, and Leibovich showed global regularity for
solutions with a helical symmetry in [40]. In light of the Koch-Tataru theorem guaranteeing
global regularity for small initial data in BM O™, it has been an active area of research to find
examples of solutions that are large in BMO~! that generate global smooth solutions, or even
stronger, to find initial data large in BO_O{OO D BMO™!, which is the maximal scale invariant
space. Because both swirl free, axisymetric vector fields and helically symmetric vector fields
form subspaces of divergence free vector fields, clearly these are examples of initial data large in
Bgolyoo. Gallagher and Chemin showed the existence of initial data that generate global smooth
solutions that are large in Bo_ol’oo on the torus by taking highly oscillatory initial data [8]. More
recently Kukavica, Rusin, and Ziane exhibited a class of non-oscillatory initial data, large in
B!, that generate global smooth solutions [31].

Unlike the three dimensional case, there are global smooth solutions to the Navier-Stokes
equation in two dimensions. This is because in two dimensions the energy equality is scale
critical, while in three dimensions the energy inequality is supercritical. This is also because
vortex stretching occurs in three dimensions, but not in two dimensions, so the enstrophy is
decreasing for solutions of the two dimensional Navier-Stokes equations. Given that the Navier-
Stokes equation has global smooth solutions in two dimensions, one natural approach to the
extending small data regularity results to arbitrarily large initial data, would be to show global
regularity for the solutions that are, in some sense, approximately two dimensional.

There are also a number of previous results guaranteeing global regularity for solutions
three dimensional solutions of the Navier-Stokes equations with almost two dimensional initial
data. One approach to almost two dimensional initial data on the torus is to consider three
dimensional initial data that is a perturbation of two dimensional initial data. Note that this
approach is available on the torus, because L?lf (T2) forms a subspace of L(Qlf (T3) , SO we can
consider perturbations of this subspace. It is not, however, available on the whole space, as
nonzero vector fields in Lg (RQ) , lose integrability when extended to three dimensions under
the map above, and so Lgf (Rz) does not define a subspace of L%(R?’). Iftimie proved that small
perturbations of two dimensional initial data must have smooth solutions to the Navier-Stokes
equation globally in time. Another approach is based on re-scaling, to make the the initial
data vary slowly in one direction. This approach was used by Gallagher and Chemin in [9)
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and extended by Gallagher, Chemin, and Paicu in [10] and by Paicu and Zhang in [42]. We
will prove global regularity based on rescaling the vorticity, rather than the velocity, as this
rescaling operates better with the divergence free constraint. The result we will prove is the
following.

Theorem 1.13 (Global regularity for rescaled vorticity). Fiz a > 0. For allu’ € Hcllf, O<exl1
let

1
2 LY)*
wh€(z) = €3 <log (ea>> (ew?, ewg,wg) (z1, 2, €x3), (1.44)

and define u*¢ using the Biot-Savart law by
u% =V x (=A) 1wl (1.45)

%, there exists g > 0 such that for all0 < € <
C3llwsll g”"-’gHLQ
L

For allu® € Héf and for all 0 < a <

€0, there is a unique, global smooth solution to the Navier-Stokes equation u € C ((0, +00); Hcllf)

with u(-,0) = u®€. Furthermore if w§ is not identically zero, then the initial vorticity is large in
the critical space L%, as € = 0, that is

: 0,¢e _
11_1)15 [lw HL% = +o00. (1.46)

In chapter 2, we will derive an evolution equation for the strain tensor and define mild
solutions to the strain and vorticity equations. In chapter 3, we will prove an isometry showing
the equivalence of defining the enstrophy in terms of the strain and in terms of the vorticity, and
we will prove a new identity for enstrophy growth. In chapter 4, we will consider the question
of maximal enstrophy growth locally in time. In chapter 5, we will prove Theorem the
regularity criterion on )\;, as well as a number of immediate corollaries. In chapter 6, we will
consider a vorticity approach to almost two dimensional initial data, proving Theorem In
chapter 7, we will discuss the relationship between this result and previous global regularity
results for almost two dimensional initial data. In chapter 8, we will prove the existence and
stability of blowup for a toy model ODE of the strain equation. Finally, in chapter 9, we will
consider the strain equation in two dimensions.



Chapter 2

Evolution equation for the strain
tensor

We will begin this chapter by deriving the Navier-Stokes strain equation (1.5 in three spatial
dimensions.

Proposition 2.1 (Strain reformulation of the dynamics). Suppose u is a classical solution to
the Navier-Stokes equation with external force f. Then S= Vgym(u) is a classical solution to
the Navier-Stokes strain equation

%S + (u-V)S — vAS + % + -

1
oW Z!w\Qfg + Hess(p) = Veym f. (2.1)

Proof. We begin by applying the operator Vg, to the Navier-Stokes Equation (1.1)); we find
immediately that

0¢S — vAS + Hess(p) + Vym ((u - V)u) = Vgym f- (2.2)

It remains to compute Vg, ((u- V)u).

8’LL 1 aul
VSym (( ax,b Z uk J axj Z U 8:Ek, . (23)
k=1
3 3
1 (Ou;  Ou; 1 Ouy, Ou; ~ Ou; Ouy,
Vaym (u- V), =Y upd, <2 (8% + 8%)) +3 > 5: Oa T B 0, (2.4)
k=1 k=1

We can see from our definitions of S and A that

2 _ li Oouy, n ou; auj Ouy, Z Oouy, auj Ou; Ouy, ~ Ouy Ouy,  Ou; Ouj
4 ox; Oz axk ox;j Ox; Oxy, 8:1% dxj  Ox; Ox;  Omy, Oxy’

(2.5)

$2 EZ <8uk Bui> <8Uj auk) Z Ouy, (9u] Ou; Oug,  Oug, Oug,  Ou; Ouyj

Ox; Oy Oz 87553 Ox; Oz, c%sk 0z - 0w oz; Oz, Oxp
(2.6)

12
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Taking the sum of these two equation, we find that

ouy, Ou; 8u~ ouy,
52 A2 J L 2.7
( + Z sz al’k 8:Uk (9:13]' ( )
From this we can conclude that
Ve (- V)u) = (u- V) + 5 + A2, (2.8)
Recall that
1 0 w3 —W9
A=—-—-ws3 O w1 |, (2.9)
2
w9 —W1 0
so we can express A2 as
1 1
A? = Zw@w—zywﬁlg. (2.10)
This concludes the proof. ]

We also can see that tr(S) = V-u = 0, so in order to maintain the divergence free structure
of the flow, we require that the strain tensor be trace free. For the vorticity the only consistency
condition is that the vorticity be divergence free. Any divergence free vorticity can be inverted
back to a unique velocity field, assuming suitable decay at infinity, with u = V x (=A)"lw.
This is not true of the strain tensor, for which an additional consistency condition is required.

If we know the strain tensor S, this is enough for us to reconstruct the flow. We take

—2div(S) = —Au—V(V - u) = —Au. (2.11)

Therefore we find that
u = —2div(-A)7LS. (2.12)

This allows us to reconstruct the flow u from the strain tensor S, but it doesn’t guarantee
that if we start with a general trace free symmetric matrix, the u we reconstruct will actually
have this symmetric matrix as its strain tensor. We will need to define a consistency condition
guaranteeing that the strain tensor is actually the symmetric part of the gradient of some
divergence free vector field. This condition for the strain equation will play the same role that
the divergence free condition plays in the vorticity equation. We will now define the subspace
of strain matrices L2, C L?(R3; $3*3) as follows:

Definition 2.2 (Strain subspace). We will define the subspace of strain matrices to be
th:{ Veu+ = (V®u) ueHl(RS;RS),V-uzo}. (2.13)

This subspace of L?(IR3; $3%3) can in fact be characterized by a partial differential equation,
although in this case, it is significantly more complicated than the equation V - v = 0, that
characterizes the space of divergence free vector fields.

Proposition 2.3 (Characterization of the strain subspace). Suppose S € L?(R3; $3%3). Then
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S € L2, if and only if
tr(S) =0, (2.14)

— AS 4 2V (div(S)) = —AS + (V@ V)S + ((V & V)S)* = 0. (2.15)

Note that because by hypothesis we only have S € L?, we will consider S to be a solution to
(2.15) if the condition is satisfied pointwise almost everywhere in Fourier space, that is if

€125(€) — (€@ €)S(€) = S(E)(E®€) =0, (2.16)

almost everywhere & € R3. The partial differential equation (2.15) can be written out in compo-

nents as
3

— ASij+ Y 0x,0n, Skj + On, 0, Spi = 0. (2.17)
k=1

Proof. First suppose S € L?,, so there exists a u € H', V-u =0, such that
S = Veymu. (2.18)

As we have already shown, tr(S) = V - u = 0. Next we will take the divergence of (2.18)), and
find that,

—2div(S) = -2div(Veymu) = —Au - V(V - u) = —Au. (2.19)
Applying Vym, to (2.19) we find that
— 2Vym (div(S)) = Veym(—Au) = —AS, (2.20)

so the condition ([2.15) is also satisfied.
Now suppose tr(S) =0 and —AS + 2V 4, (div(S)) = 0. Define u by

u=(—A)"1(=2div(9)). (2.21)
Applying Vg, to this definition we find that
Vsymt = (—A) ™ (=2V gy (div(S))) = (~A)"H(~AS) = S. (2.22)

Clearly u € H' because S € L? and (—A)~'(—2div) is a pseudo-differential operator with
order —1. It only remains to show that V-u = 0. Next we will take the trace of (2.17)) and find
that

3
(div)*(S) = Y 92,04, Sij = 0. (2.23)
ij=1
Using this we compute that
V-u=(-A)"'(=2(div)*(S)) = 0. (2.24)
This completes the proof. ]

Note that the the consistency condition (2.15)) is linear, so the set of matrices satisfying
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it form a subspace of L?. The Navier-Stokes equation and the vorticity equation
can best be viewed not as systems of equations, but as evolution equations on the space of
divergence free vector fields. Similarly, we can view the Navier-Stokes strain equation as
an evolution equation on L?2,.

When compared with the vorticity equation, the evolution equation for the strain tensor,
while it requires additional terms, has a quadratic nonlinearity whose structure is far better
from an algebraic point of view. This is because a vector cannot be squared, and the square of
an anti-symmetric matrix (the other representation of vorticity) is a symmetric matrix, while
the square of a symmetric matrix is again a symmetric matrix.

The Navier-Stokes strain equation has already been examined in [14,/19,23], however the
consistency condition does not play a role in this analysis. The role of the strain was
also considered by Chae in [5], although the evolution equation for strain does not play a role
in this analysis. In [19], the authors focus on the relationship between vorticity and the strain
tensor in enstrophy production, as the strain tensor and vorticity are related by a linear zero
order pseudo-differential operator, S = Vsym(—A)*IV X w. However, the consistency condition
is actually very useful in dealing with the evolution of the strain tensor, because a number of
the terms in the evolution equation are actually in the orthogonal compliment of L%, with
respect to the L? inner product. This will allow us to prove an identity for enstrophy growth
involving only the strain, where previous identities involved the interaction of the strain and
the vorticity. We will now make an observation about what matrices in L?(R3; $3*3) are in the
orthogonal complement of L%, with respect to the L? inner product.

Proposition 2.4 (Orthogonal subspaces). For all f € H*(R?), for all g € L*(R?), and for all
SelL?
(S, gI3) =0, (2.25)

(S,Hess(f)) = 0. (2.26)

Proof. First we’ll consider the case of gI3. Fix S € L? and we'll take the inner product
3
<g[g,S> :/ Z gIZ-jSij = / tr(S)g =0. (2.27)
R3 501 R3
In order to show that Hess(f) € (Lgt)J‘, we will use the property that for S € L2,
3
tr(VeVv)s)= > dxdx;S; =0. (2.28)
ij=1
Because S € L? and therefore S € L2, the above condition can be expressed as
3
D &gSi;©) =0, (2.29)
ij=1

almost everywhere ¢ € R3. Using the fact that the Fourier transform is an isometry on L?, and
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Hess(f), S € L? we compute that

B 3
(Hess(1).8) = (Hess(7). §) = —4* | f() 3 ee,S@ds =0, (230)

ij=1
This completes the proof. ]

This means that as long as u is sufficiently regular, Hess(p) and —|w|?I; are in the orthog-
onal compliment of L?. This fact will play a key role in the new identity for enstrophy growth
that we will prove in chapter 3.

Note that u is uniquely determined in terms of both S and w. We have already established
that u can be reconstructed from S using the formula u = —2div(—A)~1S. Likewise we know
that V x w = —Awu, so u can be reconstructed from the vorticity using the formula u =
V x (—=A)"lw. This in particular means that S can be determined in terms of w and vice
versa with zero order pseudo-differential operators as follows: S = Vg,V x (=A)"lw, and
w = —2V x div(—A)~1S. This in particular makes it possible to define mild solutions to the
strain equation or the vorticity equation purely in terms of S and w respectively.

Before we proceed further, we need to show the existence of solutions to the Navier-Stokes
strain equation in a suitable space. Leray solutions are not the most well adapted to studying
regularity, which is our focus, so we will work with mild solutions developed by Kato and Fujita
instead [18]. Using the H! mild solutions to the Navier-Stokes equation in Theorem we will
adapt these solutions to define for mild solutions in L? for the Navier-Stokes strain equation and
the vorticity equation. We will define L? solutions to the strain evolution equation as follows.

Definition 2.5 (Mild strain solutions). Suppose S € C ([0,T]; L%,) N L* ([0, T] :Hl(R3)>.
Then we will call S a mild solution to the Navier-Stokes strain equation (1.5 with external
force f € L? ([O,T]; L? (R3)) if and only if for all 0 <t < T,

t
S(',t) :6VtASO+/ el/(t—T)A
0

1 1
(—(u V)8 — 5% — v Qw + Z\w|213 — Hess(p) + Vsymf> (-,7)dr, (2.31)

where u = —2div(—A) 1S, w =V x u, and p = (—A) 7 (|S|? = L{w|> =V - f)
We will define L? mild solutions to the vorticity equation likewise.
Definition 2.6 (Mild vorticity solutions). Suppose w € C ([O, TY; L3f> NL? ([0, T]: H! (]R3) i

Then we will callw a mild solution to the vorticity equation with external force f € L? ([0,T]; L? (R?))
if and only if for all0 <t < T,

t

w(-,t) = P’ + / /EA (_(u - V)w + Sw —V x f) (-, 7)dr, (2.32)
0

where u =V x (=A) lw and S = Vsymu.

Proposition 2.7 (Equivalence of mild solutions). Ifu € C ([0, T; Héf) NL? ([O, T): H? (]R3)>

is a mild solution to the Navier-Stokes equation with external force f € L? ([0, T]; L? (R3)) then
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S = Veymu is an L? mild solution to the Navier-Stokes strain equation and w = V X u is an
L? mild solution to the vorticity equation

Proof. By hypothesis u satisfies
u(z, t) = e ud + /0 t /APy (—(u - Vu+ f) dr. (2.33)
Stated in terms of the pressure, rather than the projection Py, this statement becomes
u(z, t) = e ud + /0 t /A (—(u- V)u— Vp + f)dr. (2.34)

When differentiating a convolution, the derivative can be applied to either function being con-
volved, so taking the curl of (2.34)) and applying the differential operator to —(u-V)u—Vp+ f
rather than the heat kernel, we find that

w(-,t) = "0 + /t A (0 Vw + Sw—V x f) (-, 7)dr. (2.35)
0

Likewise if we take the symmetric part of the gradient of (2.34) we find that
t
S(',t) — eutASO +/ eu(tfr)A
0

(—(u -V)S — 8% - iw Rw+ i\w[QIg — Hess(p) + Vsymf) (-, 7)dr. (2.36)

This completes the proof. ]

We will note that Proposition and Theorem imply the existence of L? mild solutions
to the strain and vorticity equations, simply by taking the curl or symmetric gradient of H'
mild solutions to the Navier-Stokes equation.



Chapter 3

Isometries and the enstrophy growth
identity

We have already shown that S and w are related to each other by zeroth order pseudo-differential
operators. Because these zeroth order operators are related to the Riesz transform, which is
bounded from L9 to LY for 1 < ¢ < 400, the L? norms of strain and vorticity are equivalent,
but we will only have Calderon-Zygmund type estimates, so our control will be very bad. More
precisely, for all 1 < ¢ < 400, there exists B, > 0, such that B%HWHLQ < ||S|lre < Byllwl|La-
We can say something much stronger in the case of L?, and in fact for every Hilbert space
He -3 <a<i

Proposition 3.1 (Hilbert space isometries for strain and vorticity). For all —% <a< %, and
for all u divergence free in the sense that & - 4(§) = 0 almost everywhere,
Hoa+1®

1 1
1150 = 14150 = llwllfa = 5lull; (3.1)

Proof. First fix s, —% <s < % We will begin relating the H® norms of the anti-symmetric part
and the vorticity. Recall that

1 0 w3 —Ww9
A= 5 —Wws3 0 w1 y (32)
w2 —W1 0
Therefore, for all z € R3,
s 1 s
(=82 A@)* = SI(=A)2w(@)]. (3-3)
Because in general we have that || f|| ;. = [(=A)Z f|| 12, it immediately follows that
2 Lo
1AW = Sl (3.4)

Because u is divergence free, in Fourier space

&(€)] = |2mie x a(€)| = 2nl€]|a(©)] = |V @ u(€)]. (3.5)

18
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From this we can conclude that

lwll%s = IV @ull%, = llullZ - (3.6)
Finally we will compute
S 2 S S S S
(—A)3 (V& u)‘ =t ((-2)is+ (-8)i4) (—A)is"+ (-a)iar)).  (37)

However, we know that the trace of the product of a symmetric matrix and an antisymmetric
matrix is always zero, so we can immediately see that

s 2 s |2 2
)(_A)a (v ®u)] - ‘(—A)ES’ + ‘(—A)EA‘ . (3.8)
From this it follows that
IV @ ullF. = 118117, + All%., (3.9)
but we have already established that
| A Ly 2 3.10
Al = IV @ullg., (3.10)
so we can conclude that !
1A% = ISI%. = IV ® ul % (3.11)
This concludes the proof. ]

Now that we have established this isometry between vorticity and strain, we will proceed
to proving an identity for enstrophy growth involving only .S, not the interaction of S and w.

Theorem 3.2 (Enstrophy growth identity). Suppose S € C ([0,T]; L2,) N L? ([0, T]: Hl(R?’))
18 a mild solution to the Navier-Stokes strain equation. Then

4
OISR = ~2vlSI%, - 5 [ (5% + (-, ), (3.12)
R3

almost everywhere t € (0,T].
Proof. Using (|1.4), we can compute the rate of change of enstrophy
1
8t§”w(7t)||%2 =V <_Aw7w> - <(U ! V)w,w> + <Sw7w> - <v X f,(/.)) . (313)

Next we can integrate by parts to show that (V x f,w) = (f, —Au) and (w, (u - V)w) = 0, using
the divergence free condition in the latter case. Therefore we find that

1
8@”6«}(%)”%2 = —v|wl%, + (S;w@w) + (~Au, f). (3.14)

This is the standard identity for enstrophy growth, based on the interaction of the Strain
matrix and the vorticity. See chapter 7 in [35] for more details. We can use the isometry in
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Proposition [2.4] to restate (3.14]) in terms of strain:
OISC, )17 = =281, + (S;w @ w) + (~Au, f). (3.15)

However we can also calculate the L? growth of the strain tensor directly from our evolution
equation for the strain tensor ((1.5)),

S, t)||22 = =20 (=AS, S) —2((u-V)S,S) —2(S%S)

1 1
—5 (w®w; Sy — 2 (Hess(p), S) + 3 (Jw|*I5, S) + 2 (Veymf, S). (3.16)
Integrating by parts we know that ((u - V)5, S) = 0. Note that S € C ([0, 7], L*)NL? ((O, 1], Hl) .
In particular this implies that S(-,t),w(-,t) € L2N LS almost everywhere 0 < ¢t < T. This means
that S(-,t),w(-,t) € L3, so (S;w ® w) and [ tr(S3) are both well defined. This also means that
w(-,t)|?, Hess(p)(-,t) € L? almost everywhere 0 < ¢ < T. Therefore we can apply Proposition
and find that |w|?I3, Hess(p) € (Lgt)J', Slo)

1
<S, 2|w2[3>

(Hess(p), S)

0, (3.17)

0. (3.18)

Now we can use the fact that S is symmetric to compute that

2 = r(S%). .
<575>—/Rgt(5) (3.19)
We also compute that
2(Veymf,S) =2(V®f>S) (3.20)
= (f,—2div(95)) (3.21)
= (f, —Au). (3.22)

Putting all of these together we find that

1
OISC O = 2SI, - 3 (Siwsw) -2 [ (S +(-du . (323)
R
Note that the vortex stretching term (S;w ® w) has the opposite sign as in the well known
identity for enstrophy growth (3.14)). Taking advantage of this fact, we will add % (3.15) to %
(3.23) to cancel the term (S,w ® w), and we find

4
OSC IR = 2SI, = 5 [ 4x(5%) + (~Auf). (3.24)

Finally we will note that because the subcritical quantity ||S(-,t)||z2 is controlled uni-
formly on [0,7], the smoothing due to the heat kernel guarantees that S is smooth when
f =0, so the identity (3.12)) can be understood as a derivative of a smooth quantity in the

classical sense. When f # 0, the expression for 0;||S(-,t)[|%, is integrable in time because
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SelL? ([O, T); H' (R3)) , and so must be the derivative of the continuous function ||S(-, )|/,

almost everywhere in time. O

Now that we have improved the estimate for enstrophy growth from one that involved the
interaction of the vorticity and the strain tensor to an estimate that only involves the strain
tensor. We can still extract more geometric information about the flow, however. The identity
for enstrophy growth in Theorem can also be expressed in terms of det(S5).

Corollary 3.3 (Alternative enstrophy growth identity). Suppose S € C ([0, T]; L% )NL? ([O, T]: HI(R3)>

is a mild solution to the Navier-Stokes strain equation. Then
OIS = —2lSI%, —4 [ det(S)+ (—Au.f), (3.25)

almost everywhere 0 <t < T.

Proof. Because S is symmetric it will be diagonalizable with three real eigenvalues, and because
S is trace free, we have tr(S) = A1 + Mg + A3 = 0. This allows us to relate tr(S%) to det(S) by

tr(S%) = XY + A3 + )3 (3.26)
=X A3+ (A — A0)? (3.27)
= -3\ — 3\ )3 (3.28)
=3(—=A1 — A2) A\ e (3.29)
= 3123 (3.30)
= 3det(S). (3.31)
So we can write our growth estimate as:
OIS = ~2SI, —4 [ det(S)+ (~Au.f), (3.32)
This completes the proof. O

Remark 3.4. As mentioned in the introduction, Dongho Chae proved the analogous result,
IS0l = 1 [ det(s), (3.33)
R3

in the context of smooth solutions to the Euler equation with no external force [5]. In this paper
he shows directly that

&%HV @u( )72 = ((u-V)u, Au) = —/ tr(S°%) + % (S;wew). (3.34)

RS

In the context of the Fuler equation, the familiar estimate for enstrophy growth following from
the vorticity equation is

1 1
K31V @ult)llze = gl Ol = (Siw @ w). (3.35)
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Adding § (3:34) and —3% (3:35)), it follows that

1 4
AISCIE: = 0517 Dul 0l = —3 [ () =4 [ det(s).  (330)
2 3 R3 R3

The identity for enstrophy growth in Corollary gives us a significantly better under-
standing of enstrophy production than the classical enstrophy growth identity , because
we now have the growth controlled solely in terms of the strain tensor, rather than both the
strain tensor and the vorticity. This estimate also provides analytical confirmation of the well
known result that the vorticity tends to align with the eigenvector corresponding to the inter-
mediate eigenvalue of the strain matrix [19,53]. Comparing the identities in , , and
(3.25)) we see that

(S,w@w) =—4 /

det () = — / r(5%). (3.37)
R3 3
When det(S) tends to be positive, it means there are two negative eigenvalues and one positive
eigenvalue, so (S,w ® w) being negative means the vorticity tends to align, on average when
integrating over the whole space, with the negative eigenspaces. Likewise, when det(S) tends
to be negative, it means there are two positive eigenvalues and one negative eigenvalue, so
(S,w ® w) being positive means the vorticity tends to align, on average when integrating over
the whole space, with the positive eigenspaces. When det(.S) tends to be zero when integrated
over the whole space, the vorticity tends clearly to be aligned with the intermediate eigenvalue,
as well. Growth in all cases geometrically corresponds to the strain matrix S stretching in two
directions, while strongly contracting in the third direction.



Chapter 4

Maximal enstrophy growth

In this chapter, we will consider the maximal rate of enstrophy growth. We will prove an upper
bound on the rate of enstrophy growth, which will also allow us to improve the constants in
some small initial data results for Navier-Stokes. Throughout this chapter we will consider
the Navier-Stokes equation with no external force, setting f = 0. We will begin by bounding
—4det(9) in terms of |S|3, and see what this matrix looks like in the sharp case of this bound.

Proposition 4.1 (Determinant bound). Let M be a three by three, symmetric, trace free matriz,
then 5
—4det(M) < §\/6|M|3, (4.1)

with equality if and only if —%/\1 = Ao = A3, where Ay < Ay < A3 are the eigenvalues of M.

Proof. In the case where M = 0, it holds trivially. In the case where M # 0, then we have

AL

A1 < 0,A3 > 0. This allows us to define a parameter r = —5%. The two parameters A3 and r

3
completely define the system because \; = —rA3 and Ao = —A; — A3 = (r — 1)\3. We must now
say something about the range of values the parameter r can take on. Ay < Ao < A3 implies
that —r <r —1 < 1, so therefore % < r < 2. Now we can observe that

—4det(M) = —4X dodg = 4r(r — 1)A3, (4.2)

and that
IMP =X+ X+ X2 =2+ —12+ 1A= (22 —2r +2))2. (4.3)

We can combine the two equations above to find that
re—r 3
—4det(M) = V25 | M. (4.4)
3

Next we will observe that

r2—r 2 2
\@m o == \@ﬁ - §\/6 (45)

This is exactly as we want, as r = 2 is the case that we want to correspond to equality. Finally

23
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we observe that for all % <r < 2, we have that

TZ—-T

This completes the proof. O

The structure of the quadratic term in relation to r = —21 = 2, the extremal case, will
be investigated further in chapter 8 when we consider blow up for a toy model ODE for the
Navier-Stokes strain equation. It is an interesting open question whether or not there is a strain
matrix which saturates this inequality globally in space. More precisely, does there exist an
S € L2, not identically zero, such that A\s(z) = A3(z) almost everywhere x € R3?

Corollary 4.2 (Bound on enstrophy growth). Suppose S € C ([0, T]; L2,)NL? ([O, T): H (R3)>
is a mild solution to the Navier-Stokes strain equation. Then for all 0 <t < T,

2
OIS, 01 < ~2SI%, + 26 [ ISP (@)
gV L
Proof. This corollary follows immediately from Proposition [4.1] and Corollary O

Using Corollary and the fractional Sobolev inequality we will be able to prove a cubic
differential inequality for the growth of enstrophy. The sharp fractional Sobolev inequality was
first proven by Lieb [37].

Lemma 4.3 (Fractional Sobolev inequality). Let C; = —*. Then for all f € jin (R3) ,

1 1
2613
17,3 <Gl (48)

and for all f € L3 (R?’)
1£llzs < CLlfIl - (4.9)

We will note in particular that the two inequalities in Lemma 4.3| are dual to each other
because L? and L> are dual spaces, and H 3 and H~3 are dual spaces, which is why the
two ineqaulities have the same sharp constant. For more references on this inequality see also
chapter 4 in [38] and the summary of these results in [15]. We can now prove a cubic differential
inequality for the growth of enstrophy.

Proposition 4.4 (Cubic bound on enstrophy growth). Let u € C ([0, Tnaz); Héf) be a mild so-
lution to the Navier-Stokes equation. Then for all0 < t < Tynqz, we have E'(t) < mE(t)?’.

Furthermore, if u € C ([O,me); H(}f> , then for all 0 < t < Tyyqq, we have K'(t) = —2vE(t).
Proof. The equality K'(t) = —2vE(t) is the classic energy equality for smooth solutions of the

Navier-Stokes equations first proven by Leray [36]. We will now prove the first inequality. We
begin with the estimate for enstrophy growth in Corollary [4.2}

2
oS¢ Oz < —2v[ISI15; + §\/6HS||?£3- (4.10)
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Next we apply the fractional Sobolev inequality in Lemma and interpolate between L? and
H' and find

2 1
S 0)172 < =205, + 5\/5E||5H2% (4.11)
2 3 3
< =20||S|1%, + ——IIS12051%,- (4.12)
32m

Substituting r = ||.S|| 1, we find

2

3
OIS D72 < sup —2vr® + S| Fur2. (4.13)
r>0 327
3
Let B = %HSHEQ, and let
32w 3
f(r) = —2vr* 4 2Br2. (4.14)
Computing the derivative we find that

f'(r) = —dvr + 3Br2. (4.15)

This means f has a global maximum at rp = (%)2 . Plugging in we find that

3B\ 3B\° 3°B*

=-2v|— 2B — | = . 4.16

3
Recalling that B = ——||S |72 and that f attains its global maximum at ry, we conclude that
327

2 3 3 1
2 3 _ 6
iglg —2vr® + 3%7TH5H227'2 = f(ro) = W”SHLQ' (4.17)
Therefore )
2 6
KHSC D72 < Wﬂsﬂm- (4.18)
This completes the proof. ]

The cubic bound on the growth of enstrophy is not new, however a closer analysis of the
strain allows a major improvement in the constant. The best known estimate [2,39,|45] for
enstrophy growth that does not make use of the identity for enstrophy growth in terms of the
determinant of strain in Proposition is

E) < 2

< WE(t)g. (4.19)

The author then improved the constant in this inequality significantly; using Proposition [3.12
the author proved in |41] a cubic differential inequality controlling the growth of enstrophy,

1

3
E'(t) < WE@) : (4.20)

in the case where v = 1, although there is no loss of generality in the proof: the proof in the
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case of v > 0 is entirely analogous. The proof in [41] relied on the sharp Sobolev inequality
proven by Talenti [50], which we will state below.

win

Lemma 4.5 (Sobolev inequality). Let Cy = % (%) . Then for all f € LS (R3)

[fllze < ColV fllz2 = Coll fll (4.21)

and for all f € L3 (R3)
[l < CallfIl g (4.22)

As in the fractional Sobolev inequality, we will note in particular that the two inequalities
in Lemma are dual to each other because LS and L? are dual spaces, and H' and H! are
dual spaces, which is why the constant in both inequalities is the same.

In [41], the author first interpolated between L? and LS and then applied Lemma
showing

3 3 3 3 3
3 3 3 3 3 3
1S117s < 1SN 7015176 < CENSNZMS1F,.- (4.23)
It is possible to obtain a sharper constant by first applying the fractional Sobolev inequality
and then interpolating between L? and H'. Proceeding this way, we conclude

3 3
11175 < CEISIE, 4 < CRISIZ=NS1F,- (4.24)

2

Because C5 < C’Q%, using the fractional Sobolev inequality results in a sharper bound on enstro-
phy growth.

Using the bounds in Proposition |4.4] we will be able to prove a small data global existence
result in terms of the product of energy and enstrophy.

Proposition 4.6 (Small data in terms of energy and enstrophy). Suppose u’ € Hcllf. If
KoEy < 6,9127% 0%, or equivalently, if |[u®||3,[|wP||32 < 27,6487**, then Tz = +o00. That is,
there exists a unique, smooth solution to the Navier-Stokes equation u € C ([0, +00); H;f) with
u(-,0) = u®. Furthermore, for all t >0,

Ey

1 .
1= 6,9127r4p4 EOKO

E(t) < (4.25)

Proof. Let f(t) = K(t)E(t). Then we can use the product rule and Proposition 4.4 to compute
that

3
f'(t) < —20E(t)* + K (t)gfég% (4.26)
< —2uE(t)? (1 - 69"10;34%> : (4.27)

Therefore, if f(t) < 6,9127%%, then f’(t) < 0. This implies that if f(0) < 6,9127%v*, then for
all 0 < t < Tynaz, we have f(t) < 2,9167*v. Interpolating between L? and H', we can see that

lullzs < CtlluC OIF, 1 < ColluC, )1 llu(-, )

HZ L = 4C{K (t)E(t) = 4C1 f(1). (4.28)

I3
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Sverdk, Seregin, and Escauriaza showed in [16] that if T},,4, < 400, then

lim sup ||u(-, t)||z3 = +o0. (4.29)

t—Tmax

Therefore, f(0) < 6,9127%v* implies that T},q: = +00.
Now we will consider the bound on enstrophy globally in time. We know that

1
P
~ 3,456

1

= WE@)E@)? (4.30)

E'(t) E(t)*

Fix t > 0. Integrating this differential inequality and making use of the energy inequality, we
find

1 1 1 t
— - < E(r)dr, 4.31
Eo  E(t) = 3,4567404 /0 (7)dr (4.31)
1

< —Kj. 4.32
= 6,912744 0 (4.32)

Rearranging terms we find that

E
E(t) < = . (4.33)
L- 6,9127%2 Eo Ko

We took t > 0 arbitrary, so this completes the proof. O

Similar estimates were considered by Protas and Ayala in [2]. In particular, they proved

that if FoKy < 16“4”4, then there must be a smooth solution globally in time, and enstrophy is

27
bounded uniformly in time, with E(t) < 20 for all ¢ > 0. By improving the constant

1— EoKo'

16744
for enstrophy growth instantaneously in time, we significantly expand the set of initial data for
which we are guaranteed to have global smooth solutions. The initial data must be in H! for the
duct of initial energy and initial enstrophy to be bounded, so the condition in Proposition

6] is more restrictive than the condition in the small initial data results for Hz (18], L3 |26],
or BMO~! [28]. However, the product of energy and enstrophy is the most physically relevant
of the scale invariant quantities, and so we are able to sharpen the bound on the size initial
data for which solutions are guaranteed to be smooth globally in time more effectively in this
case by taking advantage of the structure of the nonlinear term. The proofs of the bounds for
small initial data in H %, L3, and BMO~! would all work just as well for the Navier-Stokes
model equation introduced by Tao [51], as would the estimates used by Protas and Ayala. The
estimates used to prove Proposition 4.6 on the other hand, take advantage of the structure of
the evolution equations for vorticity and strain, and the constraint spaces, and so would not
hold with the same constants in Tao’s model equation.

We will now prove an immediate corollary of Proposition [4.6] that any solution that blows
up in finite time must be bounded away from zero that will be useful later on.

Corollary 4.7. Supposeu € C ([0, Tinaz); H%) is a mild solution to the Navier-Stokes equation
and Thae < 400, then for all 0 <t < Thhaz,

K(t)E(t) > 6,912rx%%, (4.34)
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Proof. We will prove the contrapositive. Suppose that there exists 0 < ¢ < T4, such that
K(t)E(t) < 6,9127%*. Then by Proposition u(+,t) generates a global smooth solution to
the Navier-Stokes equations. Smooth solutions of the Navier-Stokes equations are unique, so if
u(-,t) generates a global smooth solution to the Navier-Stokes equations, then so does u", and
so we conclude that T}, = +00. ]

Using Proposition 4.4, we can also prove an upper bound on blowup time, assuming there
is finite time blowup, in terms of the initial energy, and a lower bound on blowup time in terms
of the initial enstrophy. We will prove these results below.

Proposition 4.8 (Upper bound on Tj,4:). For all initial data ud e Hcllf, either Thar <
K2
13,824(;41/5 o1 Trmaz = +00.

Proof. Suppose toward contradiction that
equality that

K2
m < Thaz < +00. We know from the energy

Trmax 1
E(r)dr < —Kj. 4.
[ B < o (4.35)

This implies that there exists t € (0, Tinaz) such that Tya. E(t) < %K{). We also know from the
energy equality that K (t) < Ky. Combining these two inequalities as well as our hypothesis on

Tinaz, we find that
2

K,
E®K(t 0 6,9127% 4, 4.36
(t) ()<2miax<, TV (4.36)

Using Proposition this implies that if we take u(-,t) to be initial data, it generates a global
smooth solution, which contradicts the assumption that T;,,, < +00. The uniqueness of strong

solutions means that if u(-,t) generates a global smooth solution for some 0 < t < Tyqz, then
so does u’. This contradicts the assumption that T},q, < +00, and completes the proof. ]

Proposition 4.9 (Lower bound on T,4.). For all initial data ud e Hé , and for all 0 < t <
1,7287413
B
E
E(t) < 0 . (4.37)
E2
1= 1 72804 5l
, 7128y

- 4.3
In particular, for all u® € Hé Tz > %

Proof. Integrating the differential inequality

3
we find that for all 0 < ¢ < ”ﬁﬁ
0
1 1 1
(4.39)
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1,7287%13

Rearranging terms we find that for all 0 <? < ==5—,
0

Ey

/ E2 '
0
1 1,72874u3 t

The mild solution can be continued further in time as long as enstrophy is bounded, so this

E(t) < (4.40)

completes the proof. ]



Chapter 5

Regularity criteria

In this chapter we will prove Theorem as well as some immediate corollaries that were also
stated in the introduction. Before we can prove these regularity criteria, we will need to prove
a lemma bounding the growth of enstrophy in terms of )\2+.

Lemma 5.1 (Middle eigenvalue determinant bound). Suppose S € C ([0, T7]; L2,)NL? <[O, T]: Hl(R3)>

is a mild solution to the Navier-Stokes strain equation with external force f € LZZOC ([(), T); L* (RS)) ,
and S(x) has eigenvalues Ai(z) < Aa(z) < A3(z). Define

AS (z) = max{Az(z), 0}. (5.1)
Then .
—det(8) < 5]5|ZA; (5.2)
and for all0 <t < T,
2
OIS, < —vISIE +2 [ AFISE -+ 2. (53)

Proof. We will begin by noting that \; < 0 and A3 > 0, so clearly, —A;As > 0. This implies
that
—det(S) = (—AA3) A2 < (—AiA3)A]. (5.4)

Next we can apply Young’s Inequality to show that

1 1 1
“ A < 508+ < SO3 A3+ N = SIS (5.5)
We can combine these inequalities and conclude that
1
—det(S) < 515&; (5.6)

30
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Next apply Holder’s inequality, Proposition [3.1 and Young’s inequality to find

(=Au, f) < || = Aul 2] fll 2 (5.7)
= V2| S|l 1 £l 2
2
< w815 + SN (5.9)

Recall from Corollary that
3t||5’||%2 = _QVHSH%p — 4/det(5) + (—Au, f), (5.10)

and this completes the proof. ]

With this bound, we are now ready to prove the main result of this chapter. This is Theorem
from the introduction, which is restated here for the reader’s convenience.

Theorem 5.2 (Middle eigenvalue of strain characterizes the blow-up time). Letu € C ([0, T); H! (]Rg)) N

L? ([0 T]‘H2 (R3)) , for all T < Tier be a mild solution to the Navier-Stokes equation with
force f € Lloc ((O,T*);L2 (R3)). If % + % =2, with % < q < 400, then

T < (1900 + 2 [ 17l (G [ IS0 gd) . G

with the constant Cy depending only on q and v. In particular if the mazimal existence time for
a mild solution Tya, < T, then

Tmaz
L1 Ol = 4. (5.12)

Proof. First we will note that Hu(,t)”é1 must become unbounded as ¢t — Tjq; if the mild
solution cannot be extended beyond some time T},., < T, so it suffices to prove the bound

(5.11}). Applying Proposition it is equivalent to show that

HS(-,T)H%2<<HS°HL2+ / 1£C, >||L2dt)exp< / I3 )2 ) (5.13)

To begin we recall the conclusion in Lemma (15.3))
2
OISC, )17 < —vISIF, + 2/R3 ASISIP + I F e (5.14)

First we will consider the case ¢ = +oo. Applying Hélder’s inequality with exponents 1 and
400 we see that,

2
ONSC AN < 2003 e ISNZ2 + SIIFIZ- (5.15)

Now we can apply Gronwall’s inequality and find that

I 712 < (1501 + 2 [ sc. it exp 2 /OTHA;HLoodt). (5.16)
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Now we will consider the case % < g < +o00. We will begin by applying Hélder’s inequality to

(5.3), so take %—i— % =1, and so
2
ANSCOIL: < —vISIG + 20 Ll STa0 + S IIZ2- (5.17)
Applying the Sobolev inequality we find
2
au[S( D172 < —CovlIS|l7e + 2/IAS el S 72a + ;Ilflliz- (5.18)

Noting that ¢ > %, it follows that a < 3, so 2a < 6. Take o € (0, 1), such that i = 0%4—(1—0)%.
Then interpolating between L? and L® we find that

2
ASC )22 < —CavlISI3o + 2IAf ll2a SIS IS I~ ;Ilflliz- (5.19)
We know that g + % = 21(1, S0 0 = % — 5 By definition we have that =1- %, soo=1-— 2%.

Therefore we conclude that

3

2-3 2 2
ASC AL < =CovlISIlLs + 2025 leall Sl 2 1SN s + = 111 7- (5.20)

Now take b = %. That means 1 < b < +00. Define p by %—l—% = 1, and apply Young’s inequality
with exponents p and b, and we find that

2-3\P b3 2
ONSC A2 < =CovllSIlEs + Cq (HHHMHSIILQ‘Z> + Cov||S|Ih + ~ [ £lI72- (5.21)

Note that 1 =1— 4 =1— 3. This means that p(2 E) = 2 and that % + % = 2, and we know
by deﬁn1t1on that bg = 2, SO

2
ONSCONL: < Cal A ILalISIZ + SN2 (5.22)

Applying Gronwall’s inequality we find that

2
I < (10 + 2 [ 1t ) (o [ IS uoytt) - (529

This completes the proof. O

We will note here that the case p = 1,g = 400 corresponds to the Beale-Kato-Majda
criterion, so it may be possible to show that in this case the regularity criterion holds for the
Euler equations as well as the Navier-Stokes equations. Note in particular that we did not
use the dissipation to control the enstrophy, so there is a natural path to extend the result
to solutions of the Euler equation as well. There is more work to do however, as bounded
enstrophy is not sufficient to guarantee regularity for solutions to the Euler equations.

There is also an open question at the other boundary case, p = 400 ¢ = % This would
likely be quite difficult as the methods used in [16,22] to extend the Prodi-Serrin-Ladyzhenskaya
regularity criterion to the boundary case p = 400, ¢ = 3 were much more technical than the
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methods in [33,/44,48]. In particular, when p = +o00 it is no longer adequate to rely on the
relevant Sobolev embeddings, because we cannot apply Gronwall’s inequality. Nonetheless, it
is natural to suspect based on Theorem that if u is a smooth solution to the Navier-Stokes
equation with a maximal time of existence, Ti,q. < +00, then

limsup |\ (+,t)]| s = +oo. (5.24)

t—Tmax Lz

While we cannot prove this result, we can prove the following weaker statement.

Theorem 5.3 (Regularity criterion in the borderline case). Let u € C ([O,T];H ! (RS)) N

L? ([0,T];H2 (R3)> , for all T < T be a mild solution to the Navier-Stokes equation with
force f € L? ((O,T*);L2 (R3)). If Thhae < T, then

loc

v
limsup [AS (-, 0)]| 3 > =, 5.25
lim suf A2 GOl 8 2 (5.25)
where Cy is the constant in the sharp Sobolev inequality, Lemma [{.5.
Proof. Suppose toward contradiction that T;,., < T* and
v
li (-t < —. 5.26
lim sup [REACI 2 (5.26)
Then there must exist €,d > 0, such that for all Ty — 0 < t < Thnae,
CENF )l 5 <v—e (5.27)
Recall from the proof of Lemma [5.1] that
OIS )72 < —201S|I%, + Q/R3 A 1S+ V2181 gl £ 2 (5.28)
< 2083 + 200511 3 1S 176 + V21IS gl 1l 2 (5.29)
< =208}, + 2G5S 1| g 1S1%, + V20181l lIf Il 2, (5.30)
where we have applied Holder’s inequality and the sharp Sobolev inequality.
Next we recall that by hypothesis, for all Tie, — 6 < t < Tinae,
C%HA;HL% —v< —e (5.31)
Using this fact and applying Young’s inequality, we find
AS( D172 < 26185, + V21|11l 2 (5.32)
1
< =112 (5.33)
Integrating this differential inequality we find that
~ 2 o 1 [Tmes 2
limsup S, )l|72 < IS¢, Tmaz = 0)l72 + - 1f (5 D)l 72dt < 400, (5.34)
t_>Tmaac Tmax_
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which is a contradiction because T;,q,; < T implies that

limsup [|S(-,t)||32 = +o0. (5.35)

t—=Tmaz

This completes the proof. ]

Note that the boundary case in our paper is g = %, not ¢ = 3. This is because the regularity
criterion in [16},[22] is on u, whereas our regularity criterion is on an eigenvalue of the strain
matrix, which scales like V ® u. This is directly related to the Sobolev embedding w3 (RS) C
I3 (BY).

Theorem is one of few regularity criteria for the Navier-Stokes equations involving a
signed quantity, which is not too surprising, given that the Navier-Stokes equation is a vector
valued equation. Even the scalar regularity criteria based on only one component of u do not
involve signed quantities [7]. The only other regularity criterion for the Navier-Stokes equation
involving a signed quantity—at least to the knowledge of the author—is the regularity criterion
proved by Seregin and Sverdk [46] that for a smooth solution to the Navier-Stokes equation to
blowup in finite time, p must become unbounded below and p + %|u|2 must become unbounded
above.

We will also make a remark about the relationship between this result and the regularity
criterion on one component of the gradient tensor g in [4]. A natural question to ask in light
of this regularity criterion is whether it is possible to prove a regularity criterion on just one
entry of the strain tensor S;;. This paper does not answer this question, however we do prove
a regularity criterion on just one diagonal entry of the diagonalization of the strain tensor.

Corollary 5.4 (Any eigenvalue of strain characterizes the blow-up time). Letu € C ([0, T); H! (R3)) N

L? ([0 T; H? (R3)) , for all T < Tipee be a mild solution to the Navier-Stokes equation with
force f € Lloc ((O,T”‘);L2 (Rg)). If % + % =2, with % < g < 400, then

T < (100 + 5 [ 1ol e (0 [ NGOy} 639

with the constant Cy depending only on q and v. In particular if Tye, < T, then

Tmaz
/0 1A DI gyt = +oo. (5.37)

Proof. A1 < X2 < A3 and A\ + Ay + A3 = 0 implies that |A1], |[A3| > [Xa| > |AS|. Therefore

T T
[ IOl < [ ol (5.38)
Applying this inequality to both conclusions in Theorem this completes the proof. ]

We will also note that there is a gap to be closed in the regularity criterion on g because
it is not the optimal result with respect to scaling and requlres subcritical control on 2% . That

is, the result only holds for 2 S+ 3 q+3 < 2, for i # j and 2 stz 3 3ng6 < 2, for i = j, Whereas
the regularity criterion on one of the elgenvalues in Corollary - is critical with respect to the
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scaling. It is natural, however, to ask whether Theorem can be extended to the critical
Besov spaces, so in that sense the result may be pushed further.

Corollary is only really a new result, however, for Ao. This is because |A1| and |A3| both
control |S|. As we will see from the following proposition, the regularity criteria in terms of
A1 or Az follow immediately from the Prodi-Serrin-Ladyzhenskaya regularity criterion without
needing to use strain evolution equation at all, so in this case Corollary 5.3 is just an unstated
corollary of previous results.

Proposition 5.5 (Lower bounds on the magnitude of the extermal eigenvalues). Suppose M €
S3%3 s a symmetric trace free matriz with eigenvalues A1 < Ao < A3. Then

1
Az > —6|S\, (5.39)
with equality if and only if —%/\1 = Ay = A3, and

1
A < ——1S], 5.40
1> \/6|‘ ( )

with equality if and only if Ay = Ao = —%)\3.
Furthermore, for all S € L2, and for all 1 < q < +o0

1Sl zs < V6|l (5.41)
and
15]lza < V6| Az La- (5.42)
Proof. We will prove the statement for A\3. The proof of the statement for A; is entirely analogous
and is left to the reader. First observe that if —%)\1 = Ao = A3, then
512 = A + 23 + A3 = 63, (5.43)

So we have proven that if Ao = A3, then A3 = %\S\. Now suppose Ay < A3. Recall that

tr(M) = Ay + g + A3 = 0, (5.44)
SO
AL = —Az — 3. (5.45)
Therefore we find that
1S12 = (=X2 — A3)* + A3 + A3 = 2)3 + 2)2 + 3\a)s. (5.46)

Applying Young’s Inequality we can bound
2X0)3 < A3+ A3, (5.47)

SO
|S12 < 3X3 +3)\% < 6)2. (5.48)
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Ag > 0, so this completes the proof. We leave the analogous proof for A; to the reader. The
L2 bounds follow immediately from integrating these bounds pointwise when one recalls that
tr(S) = 0. We will note here that the L? norms may be infinite, as by hypothesis we only have
S € L?, but by convention the inequality is satisfied if both norms are infinite. O

In particular this implies that regularity criteria involving A; or Az follow immediately from
regularity criteria involving S, so while the regularity criteria on A\; and A3 in Corollary
do not appear in the literature to the knowledge of the author, these criteria do not offer a
real advance over the Prodi-Serrin-Ladyzhenskaya criterion [33,|44}48|, as the critical norm on
u can be controlled by the critical norm on S using Sobolev embedding, which can in turn be
bounded by the critical norm on Ay or A3 using Proposition [5} That is

lull po < ClIS|za < V6C| As]l Lo (5.49)

It is the regularity criterion in terms of )\5L that is really significant, because it encodes geometric
information about the strain beyond just its size.

We will also note that none of the regularity criteria involving Vu; [54], 0,,u [32], or
Og,u; [4], have been proven for the Navier-Stokes equation with an external force. However,
the regularity criterion in Theorem is also valid for Navier-Stokes equation with an external
force. It may only be an exercise to extend the results cited above to the case with an external
force, but because these papaers do not establish their regularity criteria by applying Gronwall
type estimates to the enstrophy, it is not immediately clear that this is is the case.

Lemma 5.6 (The middle eigenvector is minimal). Suppose S € L?, and v € L™ (R3;R3) with
lv(z)| = 1 almost everywhere x € R3. Then

[A2(2)| < [S(x)v(2)] (5.50)

almost everywhere € R3,

Proof. By the spectral theorem, we know that there is an orthonormal eigenbasis for R™.
In particular, take vi(x),v2(x),v3(x) to be eigenvectors of S(z) corresponding to eigenvalues
A1(), A2(2), A3(w) such that |vy(x)], |va ()], |vs3(z)| = 1 almost everywhere 2 € R3. Then from
the spectral theorem we know that {v(z),v2(x),v3(z)} is an orthonormal basis for R? almost
everywhere x € R3. Therefore

Sv = A (v-v1)vy + A2(v - v2)ve + A3(v - v3)v3. (5.51)
tr(S) = 0 implies that |Aa| < |A1],|A3], so we can see that

1Sv)2 = X2 (v-v1)% 4+ A3(v - v2)? + Mi(v - v3)? (5.52)
> A3 ((v-v1)? + (v v2)? + (v-v3)?). (5.53)

Because {v1(),va(r),v3(x)} is an orthonormal basis for R? almost everywhere x € R3, we
conclude that
(v-v1)? + (v-v2)% + (v-v3)% = [v]? = 1. (5.54)

Therefore
|Sv|? > A3 (5.55)
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This concludes the proof. O

Now that we have proven Lemma we will prove a new regularity criterion for the strain
tensor. This regularity criterion is Theorem in the introduction, and is restated here for the
reader’s convenience.

Theorem 5.7 (Blowup requires the strain to blow up in every direction). Letu € C ([0, T); H' (R3) ) N

L? ([0 T]'H2 (R3)> , for all T < T be a mild solution to the Navier-Stokes equation with
force f € LE . ((O,T*);L2 (R%)), and let v € L™ (R® x [0, Tyaa|; R?) , with |v(z,t)| =1 almost
everywhere. If 2 5+ % = 2, with % < q < 400, then

T < (1000 + 5 [ 17600 e (o [ 186000 tt) . 650

with the constant Cy depending only on q and v. In particular if the mazimal existence time for
a mild solution Tye, < T, then

Tma.z‘
L IGO0l gyt = +o0. (5.57)
Proof. This follows immediately from Lemma and Theorem O

We can use Theorem to prove a new one-direction-type regularity criterion involving the
sum of the derivative of the whole velocity in one direction, and the gradient of the component
in the same direction. In fact, Theorem allows us to prove a one direction regularity
criterion that involves different directions in different regions of R3. First off, for any unit
vector v € R3,|v| = 1 we define 9, = v-V and u, = u - v. We will now prove Theorem
which is restated here for the reader’s convenience.

Corollary 5.8 (Local one direction regularity criterion). Let {v,(t)}, oy C R® with |vn( )| =1.
Let {Q(t)},eny C R? be Lebesque measurable sets such that for all m # n, Qu,(t) N Qy(¢) = 0,

and R® =, oy n(t). Letu € C ([O T); H' (R3)) NL? ([0 T); H? (R3)> s for allT < Thpaq be a
mild solution to the Navier-Stokes equation with force f € LloC ((O, T*); L? (R3)) f % + % =2,
with 3 5 < q < +oo, then

P

4 T q
A (e M AT Y (Z!\aunu )+ Vit (- Hm(m> )

(5.58)
with the constant C; depending only on q and v. If the mazimal existence time for a mild
solution Thee < T, then

b
q

Tmaz
/0 (ZH&,nu )+ Vg, (- HLqmn(m) dt = 400, (5.59)
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0
In particular if we take v,(t) = | 0| for alln € N, then (5.59)) reduces to
1
T’VTL(ZCL'
/0 185, 1) + Vg (-, )|yt = +oo. (5.60)

Proof. Let v(x,t) = > 72, vn(t)Iq, @ (), where Ig is the indicator function In(x) = 1 for all
x € Q and Ig(x) = 0 otherwise. Note that in this case we clearly have

Sz, t(x,t) = > Ig, 4 (@)S(x, thvn(t). (5.61)

Because {2, } are disjoint, we have

neN

HS('7t Lq (R3) Z HS (Qn(t)) (562)

Therefore we find that

2
q

[S(t)v(-t Lq(]R?: = (ZHS ( ())) . (5.63)

Finally observe that

1 1
S(x, t)op(t) = §8Unu(x,t) + §Vuvn (x,1), (5.64)
S0
P
o 1 1 q q
||S(7t) ( )HLq(RS = Z §8Unu(’t) + §vuvn(7t) . (565)
el La(Qn(t))
Applying Theorem this completes the proof. O

There are previous regularity criteria involving only one direction. For instance, Kukavica
and Ziane [32] showed that if T4, < +00, and if % + g = 2, with % < q < 3, then

Tmaz
L 105l (5.66)

More recently, it was shown by Chemin, Zhang, and Zhang [11,|{12] that if T},4, < +o00 and
4 < p < 400, then

l\)

Tmaz
L7 a0y 5 = oo (567)
0

p

Corollary extends regularity criteria involving one fixed direction to regularity criteria in
which the direction may vary in time and space. In the case where there is no external force,
f =0, these results both imply the special case of Corollary that if T4 < +00 then

Tmaz
/ 185u(-, 1) + Vg (-, |2, = 4o, (5.68)
0
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in the range of exponents % < qg < 3 and % < q < 6 respectively. This follows from the

Helmholtz decomposition in Proposition [1.3] as we will now show.
Observe that the projections associated with the Helmholtz decomposition allow us to con-
trol ||Osu| Le and ||“3HH%+% by ||0su + Vus||ra. In particular, we find

|03u|| e = || Pas (O3u + Vug) ||La < Byl|03u + Vus||ra. (5.69)

Applying the the Sobolev embedding math (R3) c wha (]R3) when 12; + g = 2, and the L1
boundedness of Py, we can also see that
< D||Vus||re = D||Py (O3u + Vug) ||ra < DByl||03u + Vus||ra. (5.70)

Jusl 32

This means that the regularity criterion requiring dsu + Vug € LYL% is not new in the range
3 3

5 < q < 6. In fact, for § < g < +o0 this special case of Corollary [5.8 is equivalent to a
regularity criterion on two components of the vorticity, which we will discuss in chapter 6, once
we have developed the necessary isometry between dsu + Vugz and (wy,ws, 0).

While the special case of Corollary involving the regularity criterion on dsu + Vug is
not new, Corollary and Corollary are stronger than previous results in that they do
not require regularity in a fixed direction, but allow this direction to vary. One interpretation
of component reduction results for Navier-Stokes regularity criteria, is that if the solution
is approximately two dimensional, then it must be smooth. The only reason that we have
component reduction regularity criteria for the 3D Navier-Stokes equation, is because the 2D
Navier-Stokes equation has smooth solutions globally in time. All of the previous component
reduction regularity criteria involve some fixed direction, and so can be interpreted as saying
if a solution is globally approximately two dimensional, then it must be smooth. Corollary
and Corollary strengthen these statements to the requirement that the solution must be
regular even if it is only locally two dimensional, and furthermore requires the solution to have
a specific three dimensional structure with unbounded planar stretching by the strain matrix.
This shows the deep geometric significance of the Theorem n that A controls the growth of

enstrophy.



Chapter 6

A vorticity approach to almost two
dimensional initial data

In order to prove the Theorem [1.12] we will need to prove some bounds on the growth of
HwhHH%, as well as bound the growth of enstrophy in terms of ”Wthr%- In order to do this
we will need to consider the evolution equation for the horizontal components of vorticity, wy,
which is given in the following proposition. Throughout this chapter and the next, we will
consider the Navier-Stokes equation with no external force, setting f = 0.

Proposition 6.1 (Two component vorticity equation). Suppose u € C ([O,Tmm);H al,f> is a
mild solution, and therefore a classical solution to the Navier-Stokes equation. Then wy is a
classical solution of

Oywp, + (u - V)wp, — Awp, — Swp, — Spw = 0, (6.1)
w1 0 0 513
where wy, = | wo | and Sy, = 0 0 So93
0 —S13 —S23 0

Proof. Kato and Fujita proved that mild solutions must be smooth [18], so clearly u is a classical
solution to the Navier-Stokes equation. Therefore w = V X u is also smooth and is a classical
solution to the vorticity equation:

Ow + (u-V)w — Aw — Sw = 0. (6.2)
100
Let I, = |0 1 0] . Then we clearly have wy = Ipw. Multiply the vorticity equation through
0 00
by I, and find that
Oywp, + (u . V)wh — Awyp, — I,5w = 0. (63)

Next we add and subtract SIw. Therefore,
Oy, + (u . V)wh — Awy, — IpSw + STw — STw = 0. (6.4)
Regrouping terms we find that

8twh + (u . V)wh — Awh — (IhS — th)w -5 (Ihw) =0. (6.5)

40
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Recall that Ipw = wp and compute that S, = IS — S, and this completes the proof. ]

One of the key aspects in our proof is a generalization of the isometry in Proposition

that tells us [|S[|2, = 3||w||2., to an isometry that involves just one column of S and just two

components of w. In order to state this isometry, we will define the vectors v!,v2,v3 as follows.

Definition 6.2. Fori € {1,2,3} define v' = d;u + Vu;. Note in particular that v;- = 25, for
all i,7 € {1,2,3}. Equivalently, note that v*,v? v3 are the columns of 2S.

With these vectors defined, we can restate our identity for enstrophy growth in Corollary
in terms of v!,v?, v3.

Proposition 6.3 (Triple product enstrophy identity). Let u € C ([O,Tmm);H éf> be a mild
solution to the Navier-Stokes equation. Then for all 0 <t < Tyae, we have

1
ONSCIE = 2813 — 5 [ (01 x0?) o (6.6)

Proof. We know that v!,v? v are the columns of 25, so by the triple product representation
of the determinant of a three by three matrix

det (29) = (v! x v?) - 7. (6.7)
The three by three determinant is homogeneous of order three, so
det (25) = 8det (5). (6.8)

Therefore we conclude that
—4det (9) = (v! x v?) - P (6.9)

Recalling from Proposition that
OIS =~ —4 | det(s). (6.10)

this completes the proof. ]

We will now prove an isometry that relates Hilbert norms v3 and wy, to each other and to
Osu and Vug, as well as bounding Hilbert norms of Sy, by wy,.

Lemma 6.4 (Two component isometry). Suppose u € Hcllf. Then for all —1 < a <0,

100 = lloonll e = 105ull%e + [ Vus|. (6.11)
and .
1Shll o < ﬁ“whﬂga- (6.12)

Proof. First we observe that

J3uy — Orug w2
83u - V’U,g = 8311,2 — 82U3 = —W1 . (6.13)
0 0
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Therefore clearly

lwnll o = [|03u — Vus]| ga- (6.14)

This means we can compute that
lwnll e = 185w = Vug|[Fa = 105ulFa + [IVuslZ. —2 (85w, Vuz) g (6.15)
0% = 1050 + V|3 = 03ullFa + [IVusl|%. + 2 (95u, Vuz) - (6.16)

Next we observe that because V - u = 0, then clearly V - 03u = 0. Therefore dsu and Vus are
orthogonal in H%, so

<33u, VU3>HQ =0. (6.17)
Therefore we conclude that
lwnl|Fe = 10°11%0 = 105ul%0 + Vs (6.18)
Finally we see that
1
|Sh|? = 2575 + 283 < 2573 + 2555 + 2535 = 5‘”3‘2~ (6.19)
Therefore we can conclude that
2 L3 1 2
198 ll57a < 5107 5a = 5 lwnlia- (6.20)
This completes the proof. O

Remark 6.5. Another way to see this isometry, is that
2 1 2
ISes = glles x il (621)
In fact, for any fized vector v € R3 we will have
2 1 2
150l = llv > Wi (6.22)

This is directly related to Proposition [3.1], because

1810 = ISerl + ISesl% + l1Ses (6.23)
1

= 7 (llex x il + llez x @l + lles x wl%, ) (6.24)
1

= §||w|!2-a- (6.25)

This shows that the isometry between the symmetric and anti-symmetric part of the gradient,
between strain and vorticity, not only holds overall, but also in any fized direction.

This isometry, together with the identity for enstrophy growth in Proposition [6.3] will allow
us to prove a new bound on the growth of enstrophy in terms of the critical Hilbert norm of
wp,. Before we proceed with this estimate, we will note that there is also a generalization of this
result in L4. The L9 norms of v and wy, are also equivalent, although not necessarily equal.
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Proposition 6.6 (Two component equivalence). Fiz 1 < ¢ < 400 and let By > 1 be the
constant from the Helmholtz decomposition, Proposition . Then for all u € W;f’q (RS) ,

1
—|lwnllze < v*||ze < 2BglwnllLe- (6.26)
2B,

Proof. As we have already seen,

w2
agu — VUg = —Ww1 s (6.27)
0
so clearly
lwhllLa = [|Osu — Vus|| La. (6.28)

Observing that dsu = Py (03u — Vus), and Vug = P, (03u — Vug), we can apply Proposition
[[.3l and find that

|03ul| s < Bgllwnl|La, (6.29)
IVus||za < Byllwn| za- (6.30)

Recalling that v3 = 93u + Vus, we apply the triangle inequality and find that
[0z < [|05ull e + | Vus|l Lo < 2Bylwnl|ze- (6.31)

We have proven the second inequality. Now we need to show that |lwp| e < 2By||v3||La. The
argument is essentially the same. Observe that dzu = Py (03) and Vug = P, (U3) . Therefore
from Proposition we find that

1051l s < Byllv|| 2, (6.32)
IVusllze < Byllv?|za. (6.33)

Applying the triangle inequality, we find that
lwnllze < 185ullLe + [[Vus|| Lo < 2Bgl[v*||za. (6.34)

This completes the proof. ]

Proposition 6.7 (Two vorticity components control enstrophy growth). Taking C; and Cs

as in Lemmas cmd let Ry = m Then for all mild solutions to the Navier-Stokes

equation u € C ([0, Trnaz); Héf> , we have

2
Al DlEz <~ g llelifn (R = lnl -y ) (6.35)
In particular, if T < +00, then

lim sup Hwh(-,t)HH_% > Ryv. (6.36)

t—Tmax
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Proof. We begin by applying Proposition Lemma and the duality of H =3 and H3. We
find that:

1

ASC. I = 2SI =5 [ (0 x0?)o? (6.37)
1

< 2SI+ Pyt xRl (6.39)
1

= 2SI+ Slenl g0t x oy (6.39)

= 2|ISI, + Slenll, 1 IV (0t x ) [,y (6.40)

T gl et :

Next we apply the fractional Sobolev inequality, the chain rule for gradients, the generalized
Holder inequality, and the Sobolev inequality to find that

DS )32 < ~20ISI2 + 5 Chllonll 3 IV (0 < 0?) I3 (6.41)
< 2|81 + 5O llwnllyy (1 (V) U5 +1 (02 1g)  (6.42)
< —2w||S|% + %CﬂIWhIIH-% (Vo2 10®]] s + v | o V02| 2) (6.43)
< —20|18|I}, + CLCallwnll s V0! |2 ([ V02| 2. (6.44)
Finally observe that the vectors v are the columns of 25, so
IVo'llzz = [0l ga < 2018 - (6.45)
Therefore we find that
OIS )72 < —20[SII%, +4C1Collwnll -4 1S - (6.46)
Applying Proposition and recalling that R% = 2C1Cy, we find that
Orllw (-, )72 < —2v|wllF +4C1Callwnll g wllF (6.47)
= =l (Buv = el -y ) (6.48)
This completes the proof of the bound.
Now we will prove the second piece. Suppose Tyqr < +00. Then
lim sup ||w(-, 2)||22 = +o0. (6.49)

t—Tmax

Therefore, for all € > 0, ||w(,¢)||z2 is not nonincreasing on the interval (Tnae — € Timaz)-
Therefore, for all € > 0, there exists t € (Tynaz — €, Tmaz), such that O||w(-,t)| L2 > 0. Applying
the bound we have just proven, this implies that for all € > 0, there exists t € (T)az — €, Tinaz)
such that

Hwh(-,t)HH% > Ryv. (6.50)
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Therefore,
lim sup Hwh(-,t)HH_% > Ryv. (6.51)

This completes the proof. O

We will note that this is the /2 version of a theorem proved in L3 by Chae and Choe
in [6]. Their result is the following.

Theorem 6.8 (Two component regularity criterion). Let u € C ([O,Tmm) de) be a mild

solution to the Navier-Stokes equation. There exists C > 0 independent of v such that if
Tnar < +00, then

lim sup ||WhH 3 =Cv. (6.52)
t—Tmax
Furthermore, for all % < q < 400, let % 2 = 2. There exists Cq > 0 defending on only p,q

and v such that

E(t)SEoeXP< / lon (DI, dt) (6.53)

Proposition E extends the result of Chae and Choe from a lower bound on wy, in L2 near
a possible singularity to a lower bound in H~2 near a possible singularity. The analysis of the
relationship between wy, and v also sheds some light on a relationship between Theorem [6.§] -
and Corollary

We will note here that Proposition[6.6) implies that the regularity criterion on ds3u+ Vug, the
special case of Corollary when the direction is taken to be fixed, is equivalent to Chae and
Choe’s result in Theorem for % < g < 400, because we have shown that for 1 < g < 400,
lwn||Le and ||O3u 4+ Vus||re are equivalent norms.

We previously found a bound for enstrophy growth in terms of HwhHI.r 3 The next step
_1 using the evolution equation for wy in

will be to prove a bound on the growth of |jwy]| .
Proposition [6.1] and the bounds in Proposition [6.4]

Proposition 6.9 (Gronwall type bound for two Vorticity components). Taking C1 and Co
as in Lemmas cmdm let R% = 128 ( + \f) C’4C4. Then for all mild solutions to the

Navier-Stokes equation u € C ([0, Tnaz); de> and for all 0 < t < Tz,

1
wllallnll?, - (6.54)

Rov3 3

/ Jeo(- HdeT) (6.55)

Proof. We begin by using the evolution equation for wy, in Proposition [6.1] to compute that

8t||wh('vt)||§-{_% <

Furthermore, for all 0 <t < Tiaq

IIwh(.jt)Hj.r < MH;% exp (

1
2

1 _1 _1
Oug o2y = =vilonl?y = {(=8)Bwn, (u- Vhwn ) +{ (~8)Bwn, Swn + S - (6.56)

1
2
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Next we bound the last term using the duality of H' and H ! :

((=8)3eon, S + S ) < [1(=A) " Feonll 1 1Seon +wn Sl (6.57)
= [|wnll 2| Swn + wnS|| g (6.58)
< Callwnl| 2 [|Shw + Sewnll s, (6.59)

where we have applied the definition of the H! to show that || (—A)_%wh | 1 = llwnl/ 2, and then
applied the Sobolev inequality in Lemma Applying the triangle inequality, the generalized
Holder inequality, and the fractional Sobolev inequality we can see that

((=8)2n, Swn + S0 ) < Callunllz ([1Swll g + 1Sl ) (6.60)
< Callen = (ISl ol 22 + 118 ] 2 llonl o) (6.:61)
< CaCallnllza (15nl g Il + IS eellonl ). (6:62)

Applying Lemma we observe that HShHH% < %HwhHH%, and applying Proposition we

observe that |52 = %Hw” 2. Finally we can conclude that

_1
(=) en, Sen + Suw) < VRO Calleon| el 2 Jen (6.63)
1 3

< V2010wl 2 lwnl? _y llwnll? (6.64)

H™32 [z

X ) 1 1

where we have interpolated between H ! and H', observing that ||wp|/z2 < ||wnl® 1 |lwsl® .-
H™ 2 H?2

We now turn our attention to the term — <(—A)_%wh, (u- V)wh> . First we note that v €

C ((0, Thnaz); H*) , due to the higher regularity of mild solutions, so we have sufficient regularity
to integrate by parts. Using the fact that V - u = 0, conclude that

- <(—A)’%wh, (u- V)wh> - <(u : V)(—A)’%wh,wh>. (6.65)

Applying the generalized Holder inequality, the Sobolev inequality, and the isometry in Propo-
sition and interpolating between H~' and H! as above, we find that

1 1

<(u : V)(—A)_ic%wh> < ullps[[V(=A) " 2wn|| p2llwn | 15 (6.66)

= [lullzs lwnll 22 lwnl| s (6.67)

< CrCallull g llwnll 2 llwnll ;3 (6.68)

= C1Co|lw| 2 [lwnll 2 llwnll ;1 (6.69)

1 3
< C1Galwlzzllwnll? _y llwnll” 4 - (6.70)
Combining the bounds in (6.64) and (6.70), we find that
1 1 3
Oz leon( DIy < —vlwnl?y + (14+V2) CuCallwllpzlwnll?_ylwnl? . (6.71)
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Setting r = HwhHH%, we can see that

NI

1 3
67&5”&)]1(-,25)”2_% < i1>113 (—mﬂ + (1 + \f2> 0102||w||L2||Wh|H%7"2> ) (6.72)

1

Let f(r) = —vr? + MT%, where M = (1 + v/2) C1Cy||wl|2[|wn||? . Observe that
-2

T

f(r) = —2ur + ;Mr%. (6.73)

Therefore f has a global max at ro = \/%. This implies that

1 3 27
ig}g <—1/r2 + (1 + \/§> 0102||w]L2Hwh||2_%r2> = f(ro) = 2565 4 (6.74)
Substituting in for M, we find that
4
1 ) 27 (1+V2) Ci{Ccy )
Bugllon(,OIR, 4 < T2 TR ol e, . (6.75)
4 a4
Multiplying both sides by 2, and substituting in R% = %, observe that
Aillwn ()% _y < ! o [|72lon]? (6.76)
tI|WYh " H_% >~ R2V3 12 |Wh H_% .
Applying Gronwall’s inequality, this completes the proof. O

With this bound, we now have developed all the machinery we need to prove the main result
of this chapter, Theorem [1.12], which is restated here for the reader’s convenience.

Theorem 6.10 (Global regularity for two components of vorticity small). For each initial
condition u® € Hcllf such that

KoEy — 6,91214 04
e,y exp ( ik < R, (6.77)

u® generates a unique, global smooth solution to the Navier-Stokes equation v € C ((O, +00); Hcllf> ,

that is Tiae = +00. Note that the smallness condition can be equivalently stated as

KoEy < 6,9127 0% 4+ Ry1® log <|| ]7‘1” ) : (6.78)
Whl -1
H™ 2

and that the constants R and Ry are taken as in Propositions and[6.9

Proof. We will prove the contrapositive. That is we will show that T}, < +oc implies that

KoEy — 6,9121% 4
lcopll 3 exp < Ror? > Ryv. (6.79)
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Using Proposition Trnaz < 400 implies that KoEy > 6,9127%%. This means that

KoEy — 6,9127%04
exp < R > 1. (6.80)
If |w)|| -, > Ry, this completes the proof.
H 2
Now Suppose [|w?|| -, < Riv. We know that
H™2
limsup ||w(+, )| 2 = +o0. (6.81)

t—Tmax

Therefore ||w(-,t)| ;2 cannot be non-decreasing on (0, Tynaz). There exists 0 < £ < Tjqe such
that y|jw(-,1)|[32 > 0. By Proposition we can conclude that there exists 0 < t < Tj,q0 such

that |lwp(-, 1) . > Rwv.owy, € C ([O,Tmax);H_%> , so by the intermediate value theorem,

1

there exists 0 < ¢ < , such that Hwh(',t)HH% = Ryv. Let T be the first such time. That is,
define T' < Tyuqz by
T = inf {t < Toae * lon (- D,y = Rlu} . (6.82)

It is clear from the intermediate value theorem and the fact that ||w2||H_ 3 < Ryv, that for all

t<T, Hwh(‘vt)HH,% < Ryv.

Applying Proposition this implies that for all ¢t < T', 9y ||w(-, t)||%2 < 0. Using Proposition
observe that

1 T
Rav = Jlon (D, 3 < I,y exp (2 i /0 ”w<.,t>||§2dt>. (6.83)

Using the fact that ||w(:,t)||z2 is decreasing on the interval [0, 7], we can pull out a factor of

[wP[|32, and conclude
1 T
Ruv < ol 0 (g 01 [ ot )3 ). (6.59)
We know from the energy equality that
r 1 1
101t = 51z = 5l T, (6.85)
Therefore
Rov < el y o0 (all (51001 - GG DIE) ). 050

Again using the fact that ||w(-,¢)||z2 is decreasing on the interval [0, 7], and therefore that
lw(-, T2 < [|w°|| 2, we may conclude that

1 1 1 1 1
Rav < Rl g 50 (g (501 101 = ot DIBaghC TR ). 68)

This means that

Rav < ol -y oxp (s (Ko = K(DE(T)) ) (6.58)
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Applying Corollary K(T)E(T) > 6,9127%*, so

KoEy — 6,9127%04
ol -y exp (ST ETET) <l e

1
73 (KoEo — 6,9127T4V4)>. (6.89)
2

Therefore T},q: < +00 implies that

1
lopll -3 exp (W (KoEo — 6, 9127r4y4)> > Ryv. (6.90)

This completes the proof. ]



Chapter 7

Relationship of the vorticity
approach to previous results

In this chapter we will consider the relationship between the vorticity approach to almost two
dimensional initial data developed in chapter 6 and previous global regularity results for almost
two dimensional initial data. Gallagher and Chemin proved in [9] that initial data re-scaled so
it varies slowly in one direction must generate global smooth solutions.

Theorem 7.1 (Global regularity in the well prepared case). Let v) = (v1,v2) be a smooth diver-
gence free vector field on R? that belongs, along with all of its derivatives, to L? (Rm; H! (Rz)) ,

and let w° be any smooth divergence free vector field from R? to R3. For each € > 0 define the
re-scaled initial data by

u®(x) = (V) + ewl), w) (zp, €x3). (7.1)
Then there exists g > 0, such that for all 0 < € < €, the initial data u® generates a global

smooth solution to the Navier-Stokes equations.

This is often referred to as the well-prepared case, because vg =0, and so v%¢

a two dimensional vector field in the sense that for all x € R3.

converges to

hII(l) u®(x) = (v), w3)(x, 0). (7.2)
€E—r

We will also note that global regularity in Theorem is not a consequence of Koch and
Tataru’s theorem on global regularity for small initial data in BMO™!, because, subject to
0_01700, the largest scale-critical space.

Gallagher, Chemin, and Paicu generalized this result to the ill-prepared case in [10].

certain conditions, v%¢ is large in B

Theorem 7.2 (Global regularity in the ill prepared case). Let u® be a divergence free vector
field on T? x R, and for each € > 0 let our rescaling be given by

u®(x) = (u), %ug)(mh, €rs). (7.3)

For all a > 0 there exists e, u > 0 such that if

I exp(alDs)u’l| g rexmy < b, (7.4)

50
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then for all 0 < € < g, the initial data u*¢ generates a global smooth solution to the Navier-
Stokes equation.

This is referred to as the ill-prepared case because whenever ug is not identically zero, this

clearly does not converge to any almost two dimensional vector field. The proof of this result is
quite technical, in particular because all control over ug’E is lost as € — 0. This means that the
proofs do not rely on LP or Sobolev space estimates, but are based on controlling regularity via
a Banach space, B® that is introduced. The theorem in the paper is actually proved in terms
of B3 and the result in terms of H* follows as a corollary.

The underlying reason for these technical difficulties is that, in order to maintain the diver-
gence free structure needed for the Navier-Stokes equation, making the solution vary slowly in
T3 requires us to make ug’€ large, so that applying the chain rule,

V- u%(z) = (011 + Oqul + eéagug)(a:h, ex3) = (V- u®)(xp, ex3) = 0. (7.5)

One way to get around this technical difficulty without the restriction that vg = 0, is to perform
the rescaling in terms of the vorticity, rather than the velocity. For a solution to be almost two
dimensional, we want both and us to be small and for the solution to vary slowly with respect
to x3, but the divergence free condition doesn’t let us scale both out simultaneously.

On the vorticity side however, a two dimensional flow has its vorticity in the vertical direc-
tion, so an almost two dimensional flow corresponds to one in which w; and wy are small, and
which varies slowly with respect to x3. Take

W = (ewp, ws)(zp, €23). (7.6)

This re-scaling preserves the divergence free condition, because applying the chain rule
V- w(x) = €(V - w°) (xp, ex3) = 0. (7.7)

Furthermore, this is a re-scaling which allows us to to converge to an almost two dimensional
initial data without any restrictions such as vJ = 0. Theorem is not strong enough to
prove there is global regularity for sufficiently small € with this re-scaling, because it is only a
logarithmic correction. We will, however prove an analogous result that is slightly weaker in
terms of scaling, because it grows more slowly in the critical norms as € — 0, but still becomes
large in the critical space L%; this result in Theorem in the introduction, which is restated
here for the reader’s convenience.

Theorem 7.3 (Global regularity for rescaled vorticity). Fiz a > 0. For all u® € Héf, O<exl
let

1
2 1 4
whe(x) = €3 <log <Ea>> (ew?, ewd, wl) (z1, 22, €x3), (7.8)

and define u*¢ using the Biot-Savart law by
u€ =V x (=A) Tl (7.9)

3 .
%, there exists €y > 0 such that for all0 < € <
C3||lwg| QHW3H

For allu® € Héf and for all0 < a <
L2
L5
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€0, there is a unique, global smooth solution to the Navier-Stokes equation u € C ((0, +00); Héf>

with u(-,0) = u®. Furthermore if wg is not identically zero, then the initial vorticity becomes

large in the critical space L3 ase— 0, that is

lim [|w®€||
e—0 L2

= to0. (7.10)

We note that while Theorem is weaker in terms of scaling than Theorem proven in
[10], it is stronger in the sense that it allows us to take as initial data the re-scalings of arbitrary
u € Hc%f, whereas Theorem requires that the we re-scale u® € H* that is also smooth with
respect to x3. The regularity hypotheses on u" in Theorem are the weakest available in
order to ensure global regularity for initial data rescaled to be almost two dimensional. Before
proving Theorem we will need to state a corollary of Theorem that guarantees global
regularity purely in terms of LP norms of w.

Corollary 7.4. For all u® € H;f such at

Lo2)1w0 02 4,4
102110 s |2, — 6,9127%
— = g < Ryv, (7.11)

0
Cl||wh||L% €xp ( Rou3

u® generates a unique, global smooth solution to the Navier-Stokes equationu € C ((0, +00); Hcllf)

that is Traz = +00, with Cy taken as in Lemmal[].5, and Ry and Ry taken as in Theorem[1.13

Proof. This is a corollary of Theorem [I.12] Suppose

1311 ¢ [lwlI7. — 6, 91270

0
CIHWhHL% exp R’ < Ryv. (7.12)
We know from the fractional Sobolev inequality, Lemma that
-y < Culldll 5. (7.13)
and from the Sobolev inequality, Lemma, that
Ko = 563 < 53l (714)
2 Lz =92 L3’
Therefore we can conclude that
. KoEq — 6,912 . 1031l g lwl7 — 6, 912710
HwhHHf% exp N < ClHWhHLg exp Ryl® :

This implies that
KoEy — 6,9121% 4
ey exp ( 5 < R (7.16)

Applying Theorem this completes the proof. O
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Remark 7.5. For all 1 < q < 400, and for all f € L9 (R?’)

_1
1/l ze = € ]l fllza, (7.17)

where f¢(x) = f(x1,x2,ex3),e > 0. This is an elementary computation for the rescaling of the
L9 norm in one direction.

We will now prove Theorem [7.3]

C3llw H2 wglll7 5

Proof. Fix u’ € H c%f and 0 < a < 4R—” We will prove the result using Corollary
Applying Remark we find that

1
41 = €log ()l 5. (7.18)

Similarly we apply Remark to compute the other relevant L? norms in Corollary

=

w2 = €5 log (€7) T w2, (7.19)
1
e[|z = € log( ~) w2, (7.20)
1
<] ¢ = e log () ||w2HLg, (7.21)
5 _
<] g = €& log () |l ¢ (7.22)
Using the triangle inequality for norms we can see that
o[l 2 < Jlws| (7.23)
1 1
= ¢blog (¢79)1 ||w3||L2 + €6 log (€7 [|w| 2. (7.24)
Likewise we may compute that
[l s < llws ]l g + llwp ] 8 (7.25)
1 —a\ + 5 —a\ ¥
=€ log (e a)4 ngHLg + €6 log (e7*)* ngHLg. (7.26)
1
Combining these inequalities and factoring out the log (e7%)4 terms we find that
_ 2 2
o7 ¢ llw™ 172 < log (¢7%) (llw5ll2 + ellwplz2) (IIwglng + ellw?lHLg) : (7.27)
Dividing by Rov3 and taking the exponential of both sides of this inequality, we find that
2
022||w0,5||2 . Hwo,e”%} cg(uwguL2+e|\w2uL2)2 <ng|\L%+eHw2HL%>
exp L5 <e iRy : (7.28)

4R2V3
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Combining this with the estimate ([7.18]), we find that
2
C2|w®€|2 HWO’EH%Q c%(ngHLereHw?LHLQ)?<\Iw§|\L%+eHw2HLg> )
0, 2 l1—a —a\ >+
||whe||L% exp 4RL;V3 <e€ 4Ryv? log (¢7¢)* ||w2|]L%.
(7.29)
We know from the definition of a that
ol g2,
s0 fix 012 _|1,,,0(|2
01 lwslzelleos]l o -l
<o<l1l-— .
Clearly we can see that
9 2
o Bl clllze)” (ol +ellll ) S,
eg% ¢ R2V3 - R2V3 ( ’ )
Therefore, there exists r > 0, such that for all 0 < e < r,
9 2
(el ellelzn)® (8l + el ) .
—a Ryt (7.33)
Then for all 0 < € < min(1,7),
2
wg L2 ellwy, L2 2 w3 6 te Wi 6
(181l 2 +ellwfl 2) (u 31 g el OHL?>
e Rov? <é. (7.34)
Combining this estimate with the estimate ((7.29)), we find
C3llw®|1% ¢ llw®<1Z
: 0, L3 L . 0 5 —a\i
lgr(l) |y, L3 €XD 1Ry’ < lg]% HwhHLge log (e7%)*. (7.35)
Making the substitution k& = %, we find
o e : o log (k)
limg lwhl g€’ log (™) * = lim _[lwp]l g =5 =0, (7.36)

because the logarithm grows more slowly than any power. Putting these inequalities together

we find that
RO ¢ I

4R2 V3

lim ||y

3 €X
e—0 L2 P

(7.37)
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This limit is clearly non-negative, so we can conclude that

CHw|1% ¢ lw[175
|3 exp Lo =0. (7.38)

lim ||u)2’6
4R2 V3

e—0

Therefore there exists €g > 0, such that for all 0 < € < ¢,

2
L2 6,912740*
< exp <R2y3> Rly. (739)

Rl <

4R21/3

o[l 3 exp
L2

Applying Corollary [7.4] this means for all 0 < € < €y there is a unique global smooth solution
for initial data u%€ € Hc}f.
Next we will show that unless wg is identically zero,

lim ||w0’€|]L% = +o0. (7.40)

We know that

0,
el g = 13405 (7.41)
so it suffices to show that
. 0,¢e o
15% lws™[l 5 = +o0. (7.42)
We can see from Remark that
0,€e —
o1 5 = log (™) w3l - (7.43)
Therefore we may compute that
. 0,e _ 0 . —a\ _
i [ = S, 3 T log (¢7) = +oc. (7.44)
This completes the proof. O

Iftimie proved the global existence of smooth solutions for the Navier-Stokes equation with
three dimensional initial data that are a perturbation of two dimensional initial data. As
we mentioned in the introduction, this is possible on the torus, but not on the whole space, in
particular because L? (’]1‘2) defines a subspace of L? (']I‘?’) , but L? (]R2) does not define a subspace
of L? (R3) because we lose integrability. The precise result Iftime showed is the following [24].

Theorem 7.6 (Perturbations of two dimensional initial data). There exists C' > 0, such that
1
for all Y € Léf(’JIQ;]R‘g), and for all w® € H;f (’]I‘3;R3) , such that

0 1017
||w HH% S < Cv, (7.45)

there exists a unique, global smooth solution to the Navier-Stokes equation with initial data
u® = 00 + 0.

In fact, Iftimie proves something slightly stronger. The result still holds if the space H 3
1
is replaced by the anisotrophic space H*%279 (0 < § < % which is the space given by taking
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the H=~° norm with respect to xs, leaving x1, xs fixed, giving us a function of 21 and z9, then
taking the H° norm with respect to x5 and so forth. In the range 0 < § < %, these spaces

strictly contain H 2. This result was also extended to the case of the Navier-Stokes equation

0 is in the critical

with an external force by Gallagher [20], but only where the control in w
Hilbert space H %, not in these more complicated, anisotropic spaces. These anisotropic spaces
are quite messy; in particular we will note that for oo = 0, H®»%* £ H® (']I‘3) . For this reason,
and because the results in this thesis deal with Hilbert spaces, we will focus our comparison
of Iftimie’s result with ours in the setting of H. For more details on these anisotropic spaces,
see [25].

We will find that Iftimie’s result neither implies, nor is implied by, our result, but that
they are closely related. In order to compare the results in this thesis to the result proven by
Iftimie, it is first necessary to state a version of Theoerem [1.12| on the torus. The result will be

essentially the same, although possibly with different constants.

Theorem 7.7 (Global regularity for two components of vorticity on the torus). There exists
Ry, Ry, R3 > 0 independent of v, such that or all u°® € Héf (T3) such at

KoEy — Rav* -
0 0L 3
”whHH_%(’JN) exp <R2y3> < Ryv, (7.46)
u® generates a unique, global smooth solution to the Navier-Stokes equation u € C ((O, +00); Héf (T[‘3)> ,
that is Tipar = +00.

The proof of the this result on the torus is exactly the same as the proof of the result on
the whole space. The only reason the constants may be different is because the sharp Sobolev
constant may be worse on the torus than the whole space. We will note that when considering
solutions to the Navier-Stokes equations on the torus, we include the stipulation that the flow
over the whole torus integrates to zero, so

4(0,0,0) = /11‘3 u(z)dr = 0. (7.47)

This normalization is necessary in order to mod out constant functions on the torus, so without
this stipulation, we would not in fact be able to make use of Sobolev and fractional Sobolev
inequalities.

In order to relate Theorem and Theorem we will need to define a projection from
three dimensional vector fields to two dimensional vector fields, following the approach of Iftimie
[24] and Gallagher [22].

Proposition 7.8 (Projection onto two dimensional velocities). Define Pyyq by
1
Pastu)(on) = [ uonzs)dos (7.48)
0

Then for all 1 < g < 400, Pog: Lgf (TS) — Lgf (TQ) . In particular,

V- Poglu) = 0, (7.49)
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and
[ P2a(w)]|Lacr2y < [Jullpacrs)- (7.50)

Proof. Notice that we are projecting onto two dimensional vector fields by taking the average
in the vertical direction. First we will observe that Py is a bounded linear map from L9 to L9.
Linearity is clear. As for boundedness, applying Minkowski’s inequality, we find

1
| Paa(us) | sy < /0 lun (- 23) | ey decs. (751)

Let f(z3) = [lun(:,23)[|Le(r3), 9(x3) = 1, and let % + % = 1, then apply Holder’s inequality to
observe

1
/0 [uls z3)llLadzs < ([ fllLallglice = ]l Lacrs)1. (7.52)

So we may conclude that
[ Paa(w)]|Lacr2y < [Jullpacrs)- (7.53)

Now we need to show that for all u € Lglf (T3) , V- Pyg(u) = 0. First we will show this by formal
computation for u smooth, and then we will extend by density. Fix u € C* (T3) ,V-u=0.
Observe that

1
AV Pgd(u)(ml, CL‘Q) = / (81u1 + 82u2)(x1, x2, l’g)dﬂ?g. (754)
0

Using the fact that V -« = 0, we can conclude that 0ju; 4+ Osus = —0sus. Applying the
fundamental theorem of calculus, and using the fact that u? is continuous and periodic, we find

1
V- Pyg(u)(z1,22) = —/ O3ug (w1, T, x3)dr3 = —ug(w1, w2, 1) + ug(w1,22,0) = 0.  (7.55)
0

We will proceed to proving that V - Pyy(u) for all u € Lgf (T3). Note, we here refer to
divergence free in the sense of integrating against test functions, as u is not differentiable a
priori. Fix u € Lgf (’]I‘3) and f € C* (Tz). c> (T3) is dense in Lgf (T3) , so for some arbitrary
€e>0, fixveC® (’]I‘?’),V-v:O, such that

|u—vl[Lars) <e. (7.56)
As we have shown above V - Py;(v) = 0 in the classical sense, so clearly
(P2a(v),V[f) =0. (7.57)
Using the linearity of P4 observe that
(Pad(u), V) = (Paa(u—v),Vf). (7.58)
Applying Holder’s inequality we find that

| (Pra(u =), V)| < [[Paa(u —v)|[La]|V f|r- (7.59)
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We know from the bound we have already shown that
[ Pag(u = v)l[acrzy < [lu =0l paqray <€, (7.60)
so therefore
| (Paa(u), V) | <elVfllze. (7.61)

But € > 0 was arbitrary, so taking ¢ — 0, we find that
(Pyy(u),Vf)=0. (7.62)
This completes the proof. ]

We will also define the projection onto the subspace orthogonal to L?if ('IFQ; R3) .

Definition 7.9 (Projection onto the perpendicular space). Let led : Lif (T?’; R3) — Lflf (’H‘3; ]R3) ,
be given by
Py (u) = u — Py (u) . (7.63)

Note that this is well defined, because we have already shown that u € L?lf (']I‘3) implies that
Pyy(u) € L?lf (’]I‘3) , so clearly their difference, u — Pyq4(u), is also in this space, which means it
is a well defined linear map.

Remark 7.10. Note that Theorem m can be reformulated in terms of Pog and de as saying
1
there exists C > 0 such that for all u® € Hde (’]T3) , such that

P 0 2
1P3q (u®) Il 3 exp (W) <Cv, (7.64)

u generates a global smooth solution to the Navier-Stokes equation.

Next we will note that P,y decomposes the support of the Fourier transform of u into the
plane where k3 = 0 and the rest of Z3.

1
Proposition 7.11 (Fourier decomposition). Fiz u € Hg (T3). Let v = Pog(u),w = Pgy(u).

Then
) B u(k), ks =0
(k) = {0, ks £ 0 (7.65)
and
~ . ﬁ(k)a k3 7é 0
w(k) = {O, s — 0 . (7.66)

Proof. First we note that it is obvious that w = u — 0, so it suffices to prove (7.65)). First note
that dsv = 0, so

Therefore we see that k3 # 0 implies that (k) = 0. Now we will proceed to the case where
ks = 0. Observe that

f)(kl, ko, 0) = /2 v(a:h) exp (—277'@'(]{311’1 + kgxz)) dxy,. (768)
T
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Recalling the definition of P4, we can see that

1
0(k1, k2,0) :/ / u(zp, z) exp (—2mi(k1z1 + kaxe)) dzpdz. (7.69)
T Jo
Taking = = (z,2) € T3 we can express this integral as

(1, K, 0) = / (@) exp (—2milkrz + kows)) dz = ks, by, 0). (7.70)
T3

This completes the proof. ]

This Fourier decomposition allows us to control PQLd(u) by 0su, although in doing so we lose
criticality.

1
Proposition 7.12. For all u € HdZ} (T3) ,

H?2

1
1Psq () [l 3 < 2 10sull 3 (7.71)
Proof. Let w = P (u) = u — Pyq(u). Observe that
kui_[ > 2wkl (k) =D 2mlk|a(k (7.72)
kez3 k3#0
Note that for all k3 # 0, k‘§ > 1, so we can see that
1

lwly < D 2mlklESla(k)[* = . > 2rlkl|2miksa(k) . (7.73)
k3#0 kez3

Recalling that dsu(k) = 2miksi(k), we can compute that

|O5ul? ;. (7.74)

wl,y < 37 onliZIa(h) = £ 3 2m kBt = 5wl

k3#0 kez3
O

This inequality allows us to prove a Corollary of Iftimie’s result, Theorem [7.6] that is stated
as bound on in terms of the size of Jsu in H> , rather than in terms of perturbations of L2 (’]1‘2) .

Corollary 7.13. There exists C > 0 independent of v, such that for all u® € Hgf (’IF3) )

0 w2
||Osu HH% exp |~ < 27Cu, (7.75)

implies u® generates a global, smooth solution to the Navier-Stokes equations.

1
Proof. We will take C > 0 as in Theorem Suppose u’ € H ;} and

0 w7
||Osu HH% exp |~ < 27Cv. (7.76)
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Note that we do not assume that v € H %, but the bound on ||83UHH1 clearly implies that

Osu € H3 nonetheless. Let v0 = Pyy (uo) and let w® = u® — Py (uo) . From Proposition
we know that
100 L2 qrzy < Nlu®ll g2 (rs). (7.77)

We also know from Proposition that

1
1wl 3 < o=

it = 5108l 43 (7.78)

Putting these two inequalities together we find that

0 1v°]17
[|w HH% exp | =53 < Cu. (7.79)
Applying Theorem this completes the proof. O

We should note here that Corollary is not equivalent to Iftimie’s result Theorem
the corollary is implied by this result, but does not imply it. That is because Iftimie’s result
involves controlling || Py (u°) HH 3 » which is scale critical, but Corollary involves controlling
||83uHH 3» which is not scale critical.

Corollary neither implies, nor is implied by Theorem [7.7], which is the main result of
this chapter translated to the setting of the torus rather than the whole space. This is because
on the torus, as on the whole space,

(7.80)

HwhHZ,% = ||33UHZ it ”VUSHZ 1

This means that Theorem [7.7]is weaker than Corollary in the sense that it requires control

on both d3u and Vug, but it is stronger in the sense that it requires control in the critical space
. 1 -1

H™ 2, rather than the subcritical space H?2.

In fact we will show that Theorem is not implied by Theorem because it is not
possible to control || Py} (u°) HH 1 by HW?LHH*% . The precise result will be as follows.
Proposition 7.14.

L
sup P
ueHZ(T%)
lwnll  _1=1
H 2

= to0. (7.81)

1
Proof. For all n € N, define v € H de’ in terms of its Fourier transform by

) :an{(n,—l,o),k:i(l,n, D (7:82)

0, otherwise

where a,, is a normalization factor given by

n2 4+ 2
ap = (47r(n2+1)> . (7.83)

(NI
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It is easy to check that for all n,k € N, k - u/%(k:) =0,s80 V-u" =0, and for each n € N;u" €
H3 (T%).
It is not essential to the proof, but we will also note for the sake of clarity that
u"(x) = 2an(n, —1,0) cos (2w (x1 + nxe + x3)) . (7.84)
Note that for all n € N uf = 0, so we have

Jfll, 3 = 9w,y (7.85)

We know that 8/37L(k) = 2miksu”(k), so we can conclude that

— ,—1,0),k=+(1,n,1
o (k) = 2mian 4 @ 10 (L, 1) (7.86)
0, otherwise
Therefore we can compute that
1
n||2 _ n|2 _ ; _ 2
Hwh”H_% - ||83u ||H_% - 2271_’(1771/7 1)|‘(1n2ﬂ'2(n, 1’O)| (787)
Simplifying terms we find that
4ma? (n? + 1
ol = reale £ 1) (759
H™2 n?+2
Recalling that
Vn?Z+2
2= Y2 (7.89)
4w (n? + 1)
we conclude that for all n € N,
i,y = s,y =1. (7.90)

We know from Proposition that the Fourier transform of Ps4(u) is supported on the
plane k3 = 0in Z3. For all k1, ks € N, ﬁ(kl, k2,0) = 0. This implies that for all n € N, Pog(u™) =
0, and therefore Poo(u™) = u™. Observe that

"%y = 2(27|(1,n, D]) ag|(n, —1,0)* = drag (n* + 1)v/n? + 2. (7.91)
Again recalling that
2
9 n* +2
_ .92
we conclude that for all n € N,
Hu"Hiﬁ =n®+2. (7.93)

Note that we have shown that for all n € N, Hw,’j”H% = 1, and HPgld(u”)HH% = Vn?+2.
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Therefore we may conclude that

sup [ Pag(u)] 3 = +oo. (7.94)
ueHZ (%)

lwnll , 1=1
H 2

O]

that Theorem [7.7]is not a corollary of earlier work by Iftimie and separately by Gallagher, and
so this result is new on the torus as well as on the whole space.

By proving that || Pyg(u®) HHI cannot be controlled by [|wp| . _1, we have shown definitively



Chapter 8

Blowup for a toy model ODE of the
strain equation

Now that we have outlined the main advances for Navier-Stokes regularity that are possible by
utilizing strain equation, we will consider a toy model ODE. The main advantage of the strain
equation formulation of the Navier-Stokes equation compared with the vorticity formulation is
that the quadratic term S 2+iw®w has a much nicer structure than the quadratic term Sw in the
vorticity formulation. The price we pay for this is that there are additional terms, particularly
Hess(p) which are not present in the vorticity formulation. There is also the related difficulty
that the consistency condition in the strain formulation is significantly more complicated than
in the vorticity formulation.

We will now examine a toy model ODE, prove the existence and stability of blowup, and
examine asymptotic behavior near blowup. The simplest toy model equation would be to keep
only the local part of the quadratic term (vorticity depends non-locally on S), and to study the
ODE ;M + M? = 0. As long as the initial condition M (0) is an invertible matrix, this has
the solution (M (t))™! = (M(0))~" + tI3. This equation will blow up in finite time assuming
that M(0) has at least one negative eigenvalue. Blowup is unstable in general, because any
small perturbation into the complex plane will mean there will not be blowup. However, if
we restrict to symmetric matrices, then blowup is stable, because then the eigenvalues must
be real valued, so a small perturbation will remain on the negative real axis. The negative
real axis is an open set of R, but not of C, so blowup is stable only when we are restricted to
matrices with real eigenvalues, which is the case we are concerned with as the strain tensor is
symmetric. This equation does not preserve the family of trace free matrices however, because
tr(M?) = |M|?> # 0, and therefore doesn’t really capture any of the features of the strain
equation . We will instead take our toy model ODE on the space of symmetric, trace free
matrices to be

@M+AF—%WN&:O. (8.1)

Because every symmetric matrix is diagonalizable over R, and every diagonalizable matrix

is mutually diagonalizable with the identity matrix, this equation can be treated as a system

of ODEs for the evolution of the eigenvalues A\; < Ay < A3 with for every 1 < i < 3,

1
@M=—£+§ﬁ+g+@y (8.2)
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This equation has two families of solutions with a type of scaling invariance. Let S(0) =

Cdiag(—2,1,1), with C > 0 then S(t) = f(t)diag(—2,1,1), where f; = f2, f(0) = C. Therefore
1

we have blowup in finite time, with S(t) = i_tdiag(—2, 1,1). The reverse case, one positive
C

eigenvalue and two equal, negative eigenvalues, also preserves scaling, but decays to zero as
t — co. Let S(0) = Cdiag(—1,—1,2), with C > 0. Then S(t) = ;Hdiag(—l, -1,2).
C

We will show that the blow up solution is stable, while the decay solution is unstable.
Furthermore the blow up solution is asymptotically a global attractor except for the unstable
family of solutions that decay to zero (i.e two equal negative eigenvalues and the zero solution).
To prove this we will begin by rewriting our system. First of all, we will assume without loss of
generality, that S # 0, because clearly if S(0) = 0, then S(¢) = 0, is the solution. If S # 0, then
clearly A1 < 0 and A3 > 0. Our system of equations really only has two degrees of freedom,
because of the condition tr(S) = A1 + A2 + A3 = 0, but because we are interested in the ratios
of the eigenvalues asymptotically, we will reduce the system to the two parameters A3 and
r = —i—;. These two parameters completely determine our system because Ay = —rA3 and
A2 = —A1 — A3 = (r — 1)A3. We now will rewrite our system of ODEs:

1 1
Ods = 5 (N +23 =209 = 225 (P + (r = 1) +2), (8.3)
1
Did3 = §A§ (2r* —2r —1). (8.4)
A1OiAs — AsOA; 12 2, 2 2 1,
= = A - - — - - - oy oy .
Ogr X 3| —7( 3 3r+3r )+ ( 3 3r+ 3" ), (8.5)
1 3 2
Or = §>\3(—27“ +3r° +3r — 2). (8.6)

At this point it will be useful to remark on the range of values our two variables can take.
Clearly the largest eigenvalue A3 > 0, and A3 = 0 if and only if A, Ag, A3 = 0. Now we turn
to the range of values for r. Recall that Ao = (r — 1)A3, and that A\; < Ay < A3. Therefore
—-r<r-1<1,so % < r < 2. If we take f(r) = —2r3 + 3r2 + 3r — 2, we find that f(r) is
positive for § < r < 2 with f(3), f(2) = 0. This is the basis for the blowup solution being the
asymptotic attractor. We are now ready to state our theorem on the existence and algebraic

structure of finite time blow up solutions.

Theorem 8.1 (Toy model dynamics). Suppose A3(0) > 0 and r(0) > %, then there exists T > 0
such that limy_yp A3(t) = +o00, and furthermore limy_, 7 r(t) = 2

Proof. We’ll start by showing that finite time blow up exists, and then we will show that r goes
to 2 as we approach the blow up time. First we observe that g(r) = 2r? — 2r — 1, has a zero
at % g(r) <0, for % <r< 1+2\/§7 and ¢ is both positive and increasing on 1'27& <r <2
We will begin with the case where r(0) = rg > 1+T‘/§ Clearly 0 > 0, so r(t) > rp, and

g (r(t)) > g(ro). Let C = 1g(rg), then we find that:

Oh3 = ég (r(t)) A3 > C\3. (8.7)



CHAPTER 8. BLOWUP FOR A TOY MODEL ODE OF THE STRAIN EQUATION 65

From this differential inequality, we find that

1
)\3 (t) Z 1 )
N O

so clearly there exists a time T < ﬁ, such that lim_,p A3(t) = +oo.

0)

Now we consider the case where % <7y < # It suffices to show that there exists a
T, > 0 such that r(7,) > 1+2‘/§, then the proof above applies. Note that g is increasing on the
interval [—3,2], so g (r(t)) > g(ro). Let B = —1g(rg) > 0, and let C = 1 min (f(ro),f(%)).
Suppose towards contradiction that for all ¢ > 0, r(t) < 1+72\/§ Then we will have the differential
inequalities,

Or > Chg, (8.9)
Oid3 > —BM2. (8.10)
From ({8.10)) it follows that
1
A3(t) > ———. (8.11)
%0 T Bt
Plugging (8.11)) into (8.9), we find that
¢ 1 C
r(t) >ro+C ————dt =719+ - log (1 + BA3(0)t) . (8.12)
0 xmo T BT B

However, this estimate (8.12)) clearly contradicts our hypothesis that r(t) < 1‘;—‘/5 for all ¢ > 0.
Therefore, we can conclude that there exists T, > 0, such that r(T},) > #, and then we have
reduced the problem to the case that we have already proven.

Now we will show that lim;_,7r(t) = 2. Suppose toward contradiction that lim;_,7r(t) =
r1 < 2. First take a(t) = %f (r(t)). Observe that a(t) > 0 for 0 < ¢ < T. Our differential
equation is now given by 9;\3 = a(t)A3, which must satisfy

1 1 2
Ma(t)  As(ta) /n a(r)dr. (8.13)

If we take to = T', the blow up time, then (8.13]) reduces to

! —/Ta(T)dT. (8.14)

Let A(t) = ftT a(t)dr. Clearly A(T) =0, A (T) = —a(T) < 0. By the fundamental theorem of
calculus, for all m > a(T), there exists 0 > 0, such that for all t, 7 —d <t < T,

A(t) < —m(t —T) = m(T — t). (8.15)

Using the definition of A and plugging in to (8.14) we find that for all T =§ <t < T,

1

Malt) 2 o

(8.16)
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Let B = imin (f(ro), f(r1)). It then follows from our hypothesis that
at’l“ 2 B)\g (817)

Therefore we can apply the estimate (8.16) to the differential inequality (8.17)) to find that for
alT—-6<t<T,

r(t)Zr(T—5)+B/t !

75 (T —7)

dr =r(T —6) + % log (Té—t) . (8.18)

However, it is clear from (8.18) that lim;,77(t) = 400, contradicting our hypothesis that
lim;,77r(t) < 2, so we can conclude that lim; ,7 r(t) = 2. O

This toy model ODE shows that the local part of the quadratic nonlinearity tends to drive
the intermediate eigenvalue A2 upward to Az, unless A1 = Ag. Given the nature of the regularity
criterion on )\;, the dynamics of the eigenvalues of the strain matrix are extremely important.
The fact that the toy model ODE blows up from all initial conditions where A1 < A9, and that
Ao = A3 is a global attractor on all initial conditions where A\ < Ao, provides a mechanism for
blowup, but of course the very complicated nonlocal effects make it impossible to say anything
definitive about blowup for the full Navier-Stokes strain equation without a much more detailed
analysis.



Chapter 9

The strain equation in two
dimensions

We will conclude this thesis with a brief analysis of the Navier-Stokes strain equation in two
spatial dimensions. It is natural, given the difficulties that exist in three dimensions, to want
to look at the simpler two dimensional case. However, none of the interesting features of the
three dimensional case will turn up in two dimensions, there simply are not enough degrees of
freedom for the eigenvalues of the strain matrix. We will be able to prove a statement about the
change in enstrophy for two dimensions, however this will not be a new result, as the vorticity
equation is already well understood in two dimensions.

First we will define the scalar vorticity as w = g% — g—q;;. The evolution equation for the
vorticity is given by
Ow + (u-V)w — vAw = 0. (9.1)

Note in particular that there is no vortex stretching in two dimensions, there is only the ad-
vection term, and the dissipation term. This means that enstrophy will be non-decreasing, in
particular that for a smooth solution

1
O (s )T = —vllwllF- (9-2)
The equation for the strain will have more terms than just advection and dissipation, but

nonetheless this identity for enstrophy growth can be proven using the strain equation as well,
which we will state now.

Proposition 9.1 (Strain equation in two dimensions). The Navier-Stokes strain equation can
be written as an evolution equation on L2, in two dimensions as

1 1
S+ (u-V)S —vAS + (2512 — 4w2> I + Hess(p) =0 (9.3)

Proof. We will begin by recalling that the general form of the Navier-Stokes vorticity equation
in n dimensions is

oS + (u-V)S —vAS + S? + A? + Hess(p) = 0. (9.4)
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Note that in two dimensions the entries A are defined by the scalar vorticity with

A % (_Ow %’) , (9.5)

1
A= jw% (9.6)

Next observe that because S is symmetric and real valued and trace free it will have the form

s=(5 1), (97)

so clearly we have

for some a,b € R. This means that

2 2
2 a +b 0 _1 2
57 = < 0 a2+b2) - 2|S| Ip. (98)

This completes the proof. ]

We will note here that while the Navier-Stokes strain equation has more terms than the
vorticity equation in two dimensions, beyond just dissipation and advection, (%|S 2 + %wQ) L+
Hess(p) € (Lgt)J' , so these additional terms are only projecting back into the constraint space,
and cannot drive blowup in L? as we will now see. This contrasts with the vorticity, which is
a scalar in two dimensions, and so there is no constraint space—the vorticity is a generic scalar
function.

Theorem 9.2 (Enstrophy in two dimensions). For all S° € L? satisfying the consistency
condition there exists a global smooth solution to the Navier-Stokes strain equation with for all
t>0

t
ISC, )72 + 21//0 ISC, )1 3dr = 115°]Z. (9.9)

Proof. Just as in the three dimensional case, here we have ||S°(|2, = £[|w||2,. It is well known

that for two dimensional Navier-Stokes, enstrophy is a monotone quantity and therefore that
initial vorticity in L? is sufficent to guaruntee global smooth solutions. For the second piece we
can observe that integrating by parts ((u -S)S,.S) = 0. We also know that

<<;,s|2 - iuﬂ) 12,5> - /R (;\512 - iw2> () = 0. (9.10)

Finally we observe that as in the three dimensional case
(Hess(p), S) = 0. (9.11)
From this we can conclude that

QS t)lI7> = —2IIS(, ) (9.12)

1%,

Integrating this differential equality, this completes the proof. O
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This does not provide any new identity, though; this is simply equivalent to what is already
known about enstrophy for two dimensional Navier-Stokes using the scalar vorticity equation.
We cannot get any insight into the three dimensional Navier-Stokes strain equation by looking
at the two dimensional case, because the trace free condition in two dimensions means that
the eigenvalues of the strain matrix have only one degree of freedom, so none of the difficult
aspects from the three dimensional equation can play a role in two dimensions. Studying the
Navier-Stokes strain equation in two dimensions, therefore, will unfortunately not be of any use
in understanding the three dimensional case.
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