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Abstract

The Navier-Stokes strain equation with applications to enstrophy growth and global regularity

Evan Miller

Doctor of Philosophy

Graduate Department of Mathematics

University of Toronto

2019

This thesis derives an evolution equation for the symmetric part of the gradient of the velocity

(the strain tensor) for the incompressible Navier-Stokes equation. We use this equation to

obtain a simplified identity for the growth of enstrophy for mild solutions that depends only on

the determinant of the strain tensor, not on the nonlocal interaction of the strain tensor with

the vorticity.

The resulting identity allows us to prove a new family of scale-critical necessary and sufficient

conditions for blow-up of the solution in finite time Tmax < +∞, which depend only on the

history of the positive part of the second eigenvalue of the strain matrix. Since this matrix

is trace-free, this severely restricts the geometry of any finite-time blow-up. This regularity

criterion provides analytic evidence of the numerically observed tendency of the vorticity to

align with the eigenvector corresponding to the middle eigenvalue of the strain matrix.

We then consider a vorticity approach to the question of almost two-dimensional initial data,

using this same identity for enstrophy growth and an isometry relating the third column of the

strain matrix to the first two components of the vorticity. We prove a new global regularity

result for initial data with two components of the vorticity sufficiently small. Finally, we prove

the existence and stability of blowup for a toy model ODE of the strain equation.
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Chapter 1

Introduction

The Navier-Stokes equation, which governs viscous, incompressible flow, is one of the most

fundamental equations in fluid dynamics. The incompressible Navier-Stokes equation is given

by

∂tu− ν∆u+ (u · ∇)u+∇p = f,

∇ · u = 0,
(1.1)

where u ∈ R3 denotes the velocity, p the pressure, f the external force, and ν > 0 is the

viscosity. The pressure is completely determined in terms of u and f, by taking the divergence

of both sides of the equation, which yields

−∆p =
3∑

i,j=1

∂ui
∂xj

∂uj
∂xi
−∇ · f. (1.2)

We refer here to the Navier-Stokes equation, rather than the Navier-Stokes equations, because

this PDE is best viewed not as a system of equations, but as an evolution equation on the space

of divergence free vector fields.

Two other objects which play a crucial role in Navier-Stokes analysis are the vorticity and

the strain, which represent the anti-symmetric and symmetric parts of the ∇⊗ u respectively.

The vorticity is given by taking the curl of the velocity, ω = ∇ × u, while the strain is the

matrix given by Sij = 1
2

(
∂uj
∂xi

+ ∂ui
∂xj

)
. The vorticity ω is related to the anti-symmetric part of

the gradient, Aij = 1
2

(
∂uj
∂xi
− ∂ui

∂xj

)
by

A =
1

2

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 . (1.3)

The evolution equation for vorticity is given by

∂tω − ν∆ω + (u · ∇)ω − Sω = ∇× f, (1.4)

1



Chapter 1. Introduction 2

and the evolution equation for the strain is given by

∂tS + (u · ∇)S − ν∆S + S2 +
1

4
ω ⊗ ω − 1

4
|ω|2I3 + Hess(p) = ∇symf. (1.5)

In addition to the curl operator, it is also useful to define a differential operator that maps a

vector to the symmetric part of it’s gradient tensor: ∇sym(v)ij = 1
2

(
∂vj
∂xi

+ ∂vi
∂xj

)
. Note that

S = ∇symu.
Before we proceed further we should define a number of spaces. For all s ∈ R, Hs

(
R3
)

will

be the Hilbert space with norm

‖f‖2Hs =

∫
R3

(
1 + (2π|ξ|)2s

)
|f̂(ξ)|2dξ =

∥∥∥(1 + (2π|ξ|)2s
) 1

2 f̂
∥∥∥2

L2
, (1.6)

and for all −3
2 < s < 3

2 , Ḣ
s
(
R3
)

will be the homogeneous Hilbert space with norm

‖f‖2
Ḣs =

∫
R3

(2π|ξ|)2s|f̂(ξ)|2dξ =
∥∥∥(2π|ξ|)sf̂

∥∥∥2

L2
. (1.7)

Note that when referring to Hs
(
R3
)
, Ḣs

(
R3
)
, or Lp

(
R3
)
, the R3 will often be omitted for

brevity’s sake. All Hilbert and Lebesgue norms are taken over R3 unless otherwise specified.

Finally we will define the subspace of divergence free vector fields inside each of these spaces.

Definition 1.1. For all s ∈ R define Hs
df ⊂ Hs

(
R3;R3

)
by

Hs
df =

{
u ∈ Hs

(
R3;R3

)
: ξ · û(ξ) = 0, almost everywhere ξ ∈ R3

}
. (1.8)

For all −3
2 < s < 3

2 , define Ḣs
df ⊂ Ḣs

(
R3;R3

)
by

Ḣs
df =

{
u ∈ Ḣs

(
R3;R3

)
: ξ · û(ξ) = 0, almost everywhere ξ ∈ R3

}
. (1.9)

For all 1 ≤ q ≤ +∞, define Lqdf ⊂ L
q
(
R3;R3

)
by

Lqdf =
{
u ∈ Lq

(
R3;R3

)
such that for all f ∈ C∞c

(
R3
)
, 〈u,∇f〉 = 0.

}
(1.10)

Note that this definition makes sense, because in u ∈ Hs or u ∈ Ḣs implies that û(ξ) is

well defined almost everywhere. We will also note that Ḣ0 = L2, so we have two different

definitions of L2
df . This is not a problem as both definitions are equivalent. We will also note

that throughout this thesis, we will take the magnitude of a matrix, M ∈ R3×3, to be the

Euclidean norm

|M |2 =

3∑
i,j=1

M2
ij . (1.11)

The standard notion of weak solutions to PDEs corresponds to integrating against test

functions. Leray first proved the existence of just such weak solutions to the Navier-Stokes

equation satisfying a certain energy inequality [36]. To be precise, Leray defined weak solutions,

sometimes referred to as Leray-Hopf weak solutions, to the Navier-Stokes equation as follows.

Definition 1.2 (Leray weak solutions). Suppose u0 ∈ L2
df . Then u ∈ L∞

(
[0,+∞);L2

df

)
∩
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L2
(

[0,+∞); Ḣ1
(
R3
))

is a Leray weak solution to the Navier-Stokes equation if for all φ ∈
C∞c

(
(0,+∞)× R3;R3

)
,∇ · φ = 0,∫ +∞

0

∫
R3

(u · ∂tφ+ νu ·∆φ+ u⊗ u : ∇φ) dxdt = 0, (1.12)

and for all t > 0
1

2
‖u(·, t)‖2L2 + ν

∫ t

0
‖u(·, τ)‖2

Ḣ1dτ ≤
1

2
‖u0‖2L2 . (1.13)

We will note that this definition can also be generalized to the case with a nonzero external

force, f 6= 0. Leray proved the existence of weak solutions in this class for all initial data

u0 ∈ L2
df by mollifying the advection term with some smooth mollifier θ, replacing (u ·∇)u with

((θ ∗ u) · ∇)u. This mollification guarantees the existence of smooth solutions globally in time

to the mollified equation, and furthermore these solutions to the mollified equation satisfy an

energy equality, which is (1.13) with equality. Passing to weak limits, we obtain a weak solution

satisfying the energy inequality, which now does not necessarily hold with equality because the

solutions to the mollified equation only converge weakly in CtL
2
x∩L2

t Ḣ
1
x, and do not necessarily

converge in norm. The proof of existence by weak convergence of solutions to the mollified

problem also means that Leray weak solutions may not be unique.

For solutions to the Navier-Stokes equation denote the energy by

K(t) =
1

2
‖u(·, t)‖2L2 . (1.14)

The energy inequality (1.13) holds with equality for smooth solutions to the Navier-Stokes

equations, but a weak solution in u ∈ L∞
(
[0,+∞);L2

(
R3
))
∩L2

(
[0,+∞); Ḣ1

(
R3
))

does not

have enough regularity for us to integrate by parts to conclude that 〈(u · ∇)u, u〉 = 0, which is

what is needed to prove that the energy equality holds.

While the global existence of Leray solutions to the Navier-Stokes equations is well estab-

lished, the global existence of smooth solutions remains a major open problem. Because Leray

solutions are not necessarily smooth, they are not the best adapted to studying the Navier-

Stokes regularity problem. For this reason we will turn our focus to mild solutions, a notion of

solution better adapted to the Navier-Stokes regularity problem that was introduced by Kato

and Fujita in [18]. Before defining mild solutions, we will define the Helmholtz decomposition.

Proposition 1.3 (Helmholtz decomposition). Suppose 1 < q < +∞. For all v ∈ Lq(R3;R3)

there exists a unique u ∈ Lq(R3;R3), ∇ · u = 0 and ∇f ∈ Lq(R3;R3) such that v = u + ∇f.
Note because we do not have any assumptions of higher regularity, we will say that ∇ · u = 0,

if for all φ ∈ C∞c (R3) ∫
R3

u · ∇φ = 0, (1.15)

and we will say that ∇f is a gradient if for all w ∈ C∞c (R3;R3),∇ · w = 0, we have∫
R3

∇f · w = 0. (1.16)



Chapter 1. Introduction 4

Furthermore there exists Bq ≥ 1 depending only on q, such that

‖u‖Lq ≤ Bq‖v‖Lq , (1.17)

and

‖∇f‖Lq ≤ Bq‖v‖Lq . (1.18)

Define Pdf : Lq(R3;R3) → Lq(R3;R3) and Pg : Lq(R3;R3) → Lq(R3;R3) by Pdf (v) = u and

Pg(v) = ∇f, where v, u, and ∇f are taken as above.

Furthermore, suppose −3
2 < s < 3

2 . Then for all v ∈ Ḣs
(
R3;R3

)
there exists a unique

u ∈ Ḣs
df ,∇f ∈ Ḣs

(
R3;R3

)
such that u = v +∇f and

‖v‖2
Ḣs = ‖u‖2

Ḣs + ‖∇f‖2
Ḣs . (1.19)

Likewise define Pdf : Ḣs
(
R3;R3

)
→ Ḣs

(
R3;R3

)
and Pg : Ḣs

(
R3;R3

)
→ Ḣs

(
R3;R3

)
by

Pdf (v) = u and Pg(v) = ∇f, where v, u, and ∇f are taken as above.

This is a well-known, classical result. For details, see for instance [35]. We will also note

here that the Lq bounds above are equivalent to the Lq boundedness of the Riesz transform.

Take the Riesz transform to be given by R = ∇(−∆)−
1
2 , then Pdf (v) = R × (R × v), and

Pg(v) = −R(R · v). Pdf is often referred to as the Leray projection because of its use by Leray

in developing weak solutions to the Navier-Stokes equation.

Note that Pdf (∇p) = 0, so the Helmholtz decomposition allows us to define solutions to the

incompressible Navier-Stokes equation without making any reference to pressure at all. With

this technical detail out of the way, we will now define mild solutions of the Navier-Stokes

equation.

Definition 1.4 (Mild solutions). Suppose u ∈ C
(

[0, T ]; Ḣ1
df

)
∩ L2

(
[0, T ]; Ḣ2

(
R3
))
. Then u

is a mild solution to the Navier-Stokes equation with external force f ∈ L2
(
[0, T ];L2

(
R3
))

if

u(·, t) = eνt∆u0 +

∫ t

0
eν(t−τ)∆Pdf ((−u · ∇)u+ f) (·, τ)dτ, (1.20)

where et∆ is the heat operator given by convolution with the heat kernel; that is to say, et∆u0

is the solution of the heat equation after time t, with initial data u0.

Fujita and Kato proved the local existence of mild solutions for initial data in Ḣ1
df in [18],

a result we will state precisely below. In fact, mild solutions exist for initial data in Ḣs
df , s >

1
2 .

This was later extended to initial data in Lqdf , q > 3 by Kato in [26].

Theorem 1.5 (Mild solutions exist for short times). Suppose f = 0. Then there exists a

constant C > 0, independent of ν, such that for all u0 ∈ Ḣ1
df , for all 0 < T < Cν3

‖u0‖4˙
H1

, there

exists a unique mild solution to the Navier-Stokes equation u ∈ C
(

[0, T ]; Ḣ1(R3)
)

. Furthermore

for all 0 < ε < T , u ∈ C
(

[ε, T ]; Ḣα(R3)
)

for all α > 1, and therefore u ∈ C∞
(
(0, T ]× R3;R3

)
.

In the case where f 6= 0 for all u0 ∈ Ḣ1(R3),∇ · u = 0 and all f ∈ L2
loc

(
(0, T ∗);L2(R3)

)
there exists 0 < T ≤ T ∗ and u ∈ C

(
[0, T ]; Ḣ1(R3)

)
∩ L2

(
[0, T ]; Ḣ2(R3)

)
such that u is the



Chapter 1. Introduction 5

unique mild solution to the Navier-Stokes equation. Note that mild solutions with a non-smooth

force are not smooth in general, because the bootstrapping argument will not work in this case.

The proof is based on a Picard iteration scheme, as the map associated with Definition 1.4,

T (u) = eνt∆u0 +

∫ t

0
eν(t−τ)∆Pdf (−(u · ∇)u+ f) (·, τ)dτ, (1.21)

is a contraction mapping from Lqdf to Lqdf , for q > 3 and for sufficiently small times. These

arguments, however, cannot guarantee the existence of a smooth solutions for arbitrarily large

times. When discussing regularity for the Navier-Stokes equation it is useful to define Tmax,

the maximal time of existence for a smooth solution corresponding to some initial data.

Definition 1.6 (Maximial time of existence). For all u0 ∈ Ḣ1
df , if there is a mild solution of

the Navier-Stokes equation u ∈ C
(

[0,+∞); Ḣ1
df

)
, u(·, 0) = u0, then Tmax = +∞. If there

is not a mild solution globally in time with initial data u0, then let Tmax < +∞ be the time

such that u ∈ C
(

[0, Tmax); Ḣ1
df

)
, u(·, 0) = u0, is a mild solution to the Navier-Stokes equation

that cannot be extended beyond Tmax. That is, for all T > Tmax there is no mild solution

u ∈ C
(

[0, T ); Ḣ1
df

)
, u(·, 0) = u0.

It remains one of the biggest open questions in nonlinear PDEs, indeed one of the Millennium

Problems put forward by the Clay Mathematics Institute, whether the Navier-Stokes equation

has smooth solutions globally in time for arbitrary smooth initial data [17]. Note in particular

that the Clay Millennium problem can be equivalently stated in terms of Definition 1.6 as: if

f = 0, show Tmax = +∞ for all initial data u0 ∈ H1
df , or provide a counterexample.

Theorem 1.5 states that a solution must exist locally in time for all initial data u0 ∈ Ḣ1,

which implies that in order for a mild solution to develop singularities in finite time it must

blow up in Ḣ1. The square of the Ḣ1 norm for solutions to the Navier-Stokes equation is known

as enstrophy, and can be defined equivalently as

E(t) =
1

2
‖u(·, t)‖2

Ḣ1 =
1

2
‖ω(·, t)‖2L2 = ‖S(·, t)‖2L2 . (1.22)

We will prove the equivalence of these definitions in chapter 3.

It is well known that

∂t
1

2
‖ω(·, t)‖2L2 = −ν‖ω‖2

Ḣ1
+ 〈S, ω ⊗ ω〉 . (1.23)

Using the Sobolev embedding of Ḣ1
(
R3
)

into L6
(
R3
)

it follows from (1.23) that

∂t‖ω(·, t)‖2L2 ≤ C‖ω(·, t)‖6L2 , (1.24)

which is sufficient to guarantee regularity at least locally in time, but cannot prevent blowup

because it is a cubic differential inequality.

In chapter 3 of this thesis, we will prove the following identity for enstrophy growth:

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1
− 4

3

∫
tr(S3). (1.25)
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Using the fact that S must be trace free, because tr(S) = ∇ · u = 0, this identity can also be

expressed in terms of the determinant of S as

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1
− 4

∫
det(S). (1.26)

The nonlinearity in (1.26) is still of the same degree as in (1.23). Both nonlinearities are

of degree 3, and so cannot be controlled by the dissipation in either case, however the identity

(1.26) does have several advantages. First, unlike (1.23), this identity is entirely local. The

identity (1.23) is nonlocal with a singular integral kernel, because S can be determined in terms

of ω with a zeroth order pseudo-differential operator, S = ∇sym(−∆)−1∇ × ω. The identity

(1.26) also reveals very significant information about the relationship between blowup and the

eigenvalues of the strain tensor S. In fact, this identity leads to a new regularity criterion in

terms of the middle eigenvalue of the strain tensor that encodes information about the geometric

structure of potential blow-up solutions.

Theorem 1.7 (Middle eigenvalue of strain characterizes blowup time). Let u ∈ C
(

[0, T ]; Ḣ1
(
R3
))

for all T < Tmax be a mild solution to the Navier-Stokes equation with f = 0, and let

λ1(x) ≤ λ2(x) ≤ λ3(x) be the eigenvalues of the strain tensor S(x) = ∇symu(x). Let λ+
2 (x) =

max{λ2(x), 0}. If 2
p + 3

q = 2, with 3
2 < q ≤ +∞, then

‖u(·, T )‖2
Ḣ1 ≤ ‖u0‖2

Ḣ1 exp

(
Cq

∫ T

0
‖λ+

2 (·, t)‖p
Lq(R3)

dt

)
, (1.27)

with the constant Cq depending only on q and ν. In particular if Tmax < +∞, where Tmax is

the maximal existence time for a smooth solution, then∫ Tmax

0
‖λ+

2 (·, t)‖p
Lq(R3)

dt = +∞. (1.28)

It goes back to the classic work of Kato [26] that smooth solutions must exist locally in time

for any initial data u0 ∈ Lqdf when q > 3. In particular, this implies that a smooth solution

of the Navier-Stokes equations developing singularities in finite time requires that the Lq norm

of u must blow up for all q > 3. This was extended to the case q = 3 by Escauriaza, Seregin,

and Šverák [16]. The regularity criteria implied by the local existence of smooth solutions for

initial data in Lq
(
R3
)

when q > 3 are all subcritical with respect to the scaling that preserves

the solution set of the Navier-Stokes equations:

uλ(x, t) = λu(λx, λ2t). (1.29)

If u is a solution to the Navier-Stokes equations on R3, then so is uλ for all λ > 0, although

the time interval may have to be adjusted, depending on what notion of a solution (Leray-

Hopf [36], mild, strong [18]) we are using. L3
(
R3
)

is the scale critical Lebesgue space for the

Navier-Stokes equations, so the Escauriaza-Seregin-Šverák condition is scale critical.

Critical regularity criteria for solutions to the Navier-Stokes equations go back to the work

of Prodi, Serrin, and Ladyzhenskaya [33,44,48], who proved that if a smooth solution blows up
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in finite time Tmax < +∞, then ∫ Tmax

0
‖u‖pLqdt = +∞, (1.30)

where 2
p + 3

q = 1, and 3 < q ≤ +∞. This result was then extended in the aforementioned

Escauriaza-Seregin-Šverák paper [16] to the endpoint case p = +∞, q = 3. They proved that if

a smooth solution u of the Navier-Stokes equation blows up in finite time Tmax < +∞, then

lim sup
t→Tmax

‖u(·, t)‖L3(R3) = +∞. (1.31)

Gallagher, Koch, and Planchon [21] also proved the above statement using a different approach

based on profile decomposition. The other endpoint case of this family of criteria is the Beale-

Kato-Majda criterion [3], which holds for solutions of the Euler as well as for Navier-Stokes,

and states that if a smooth solution to either the Euler or Navier-Stokes equations develops

singularities in finite time, then ∫ Tmax

0
‖ω(·, t)‖L∞dt = +∞. (1.32)

This result was also extended to the strain tensor [27].

The regularity criterion in Theorem 1.7 also offers analytical evidence of the numerically

observed tendency [19] of the vorticity to align with the eigenvector corresponding to the in-

termediate eigenvalue λ2. If it is true that the vorticity tends to align with the intermediate

eigenvalue we would heuristically expect that

tr
(
S(x)ω(x)⊗ ω(x)

)
∼ λ2(x)|ω(x)|2. (1.33)

We would then heuristically expect that

〈S;ω ⊗ ω〉 ∼
∫
R3

λ2(x)|ω(x)|2dx, (1.34)

and so we would expect that there would be some inequality of the form

〈S;ω ⊗ ω〉 ≤ C
∫
R3

λ+
2 (x)|ω(x)|2dx. (1.35)

This is all, of course, entirely heuristic, but it is interesting that the regularity criterion we have

proven is precisely of the form that would be predicted by the observed tendency of the vorticity

to align with the eigenvector associated with the intermediate eigenvalue. This suggests that

significant information about the geometric structure of incompressible flow is encoded in the

regularity criterion in Theorem 1.7.

The family of regularity criteria in (1.30) has since been generalized to the critical Besov

spaces [1, 13, 22, 29, 30, 43]. These criteria have also been generalized to criteria controlling the

pressure [46,49,52]. In addition to strengthening regularity criteria to larger spaces, there have

also been results not involving all the components of u, for instance regularity criteria on the

gradient of one component ∇uj [54], involving only the derivative in one direction, ∂xiu [32],
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involving only one component uj [7, 11], involving only one component of the gradient tensor
∂uj
∂xi

[4], and involving only two components of the vorticity [6]. For a more thorough overview

of the literature on regularity criteria for solutions to the Navier-Stokes equation see Chapter

11 in [35]. We will discuss the relationship between these results and Theorem 1.7 in chapter 5,

where we will prove the following critical one direction type regularity criterion for a range of

exponents for which no critical one component regularity criteria were previously known. First

we must define, for any unit vector v ∈ R3, |v| = 1, the directional derivative in the v direction,

which is given by ∂v = v · ∇, and the v-th component of u, which is given by uv = u · v.

Theorem 1.8 (One direction regularity criterion). Let {vn(t)}n∈N ⊂ R3 with |vn(t)| = 1. Let

{Ωn(t)}n∈N ⊂ R3 be Lebesgue measurable sets such that for all m 6= n, Ωm(t) ∩ Ωn(t) = ∅,
and R3 =

⋃
n∈N Ωn(t). Let u ∈ C

(
[0, T ]; Ḣ1

df

)
, for all T < Tmax be a mild solution to the

Navier-Stokes equation with f = 0. If 2
p + 3

q = 2, with 3
2 < q ≤ +∞, then

‖u(·, T )‖2
Ḣ1 ≤ ‖u0‖2

Ḣ1 exp

Cq ∫ T

0

( ∞∑
n=1

∣∣∣∣∣∣∣∣12∂vnu(·, t) +
1

2
∇uvn(·, t)

∣∣∣∣∣∣∣∣q
Lq(Ωn(t))

) p
q

dt

 , (1.36)

with the constant Cq depending only on q and ν. In particular if the maximal existence time for

a smooth solution Tmax < +∞, then

∫ Tmax

0

( ∞∑
n=1

∥∥∂vnu(·, t) +∇uvn(·, t)
∥∥q
Lq(Ωn(t))

) p
q

dt = +∞. (1.37)

Note that if we take vn(t) =

0

0

1

 for each n ∈ N, then (1.37) reduces to

∫ Tmax

0
‖∂3u(·, t) +∇u3(·, t)‖p

Lq(R3)
dt = +∞. (1.38)

Theorem 1.8 is in fact a corollary of the following more general theorem, which states that

for a solution of the Navier-Stokes equation to blow up, the strain must blow up in every

direction.

Theorem 1.9 (Blowup requires the strain to blow up in every direction). Let u ∈ C
(

[0, T ]; Ḣ1
df

)
,

for all T < Tmax be a mild solution to the Navier-Stokes equation with f = 0 and let v ∈
L∞

(
R3 × [0, Tmax];R3

)
, with |v(x, t)| = 1 almost everywhere. If 2

p + 3
q = 2, with 3

2 < q ≤ +∞,
then

‖u(·, T )‖2
Ḣ1 ≤ ‖u0‖2

Ḣ1 exp

(
Cq

∫ T

0
‖S(·, t)v(·, t)‖p

Lq(R3)
dt

)
, (1.39)

with the constant Cq depending only on q and ν. In particular if the maximal existence time for

a smooth solution Tmax < +∞, then∫ Tmax

0
‖S(·, t)v(·, t)‖p

Lq(R3)
dt = +∞. (1.40)

Note that like the Prodi-Serrin-Ladyzhenskaya regularity criterion, the regularity criteria
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we prove on λ+
2 and ∂3u+∇u3 are critical with respect to scaling. The reason we require that

2
p + 3

q = 2, not 2
p + 3

q = 1 is because λ2 is an eigenvalue of S, and therefore scales like ∇⊗ u,
not like u. In addition, both regularity criteria, as well as Theorem 1.7, can be generalized to

the Navier-Stokes equation with an external force f ∈ L2
tL

2
x, which will be discussed in chapter

5, but is left out of the introduction for the sake of brevity.

Remark 1.10. After circulating a preprint of his paper [41], the author learned of previous

work by Dongho Chae on the role of the eigenvalues of the strain matrix in enstrophy growth

in the context of the Euler equation [5]. In this paper, Chae proves that sufficiently smooth

solutions to the Euler equation satisfy the following growth identity for enstrophy:

∂t‖S(·, t)‖2L2 = −4

∫
det(S). (1.41)

This is analogous to what we have proven for the growth of enstrophy for solution of the Navier-

Stokes equation (1.26) without the dissipation term, because the Euler equation has no viscosity.

The methods used are somewhat different than ours; in particular the constraint space for the

strain tensor and the evolution equation for the strain tensor are not used in [5]. While it is

possible to establish the identity (1.25) without an analysis of the constraint space, we expect

the results characterizing the constraint space in this paper, particularly Proposition 2.3 and

Proposition 2.4, to be useful in future investigations. Chae also proves the q = +∞ case of

the regularity criterion in Theorem 1.7, but this criterion is new for the rest of the range of

parameters. We will discuss the relationship between our method of proof and that in [5] in

more detail after we have proven the identity (1.25), which is Corollary 3.3 in this paper. The

author would like to thank Alexander Kiselev for bringing Chae’s paper to his attention.

While global regularity for the Navier-Stokes equation with arbitrary, smooth initial data

remains a major open problem, it is known that the Navier-Stokes equation must have global

smooth solutions for small initial data in certain scale-critical function spaces. In particular,

Fujita and Kato also proved in [18] the global existence of smooth solutions to the Navier-Stokes

equation for small initial data in Ḣ
1
2
df .

Theorem 1.11 (Global regularity for small initial data). Suppose f = 0. There exists C >

0, independent of ν, such that for all u0 ∈ Ḣ
1
2
df , ‖u

0‖
Ḣ

1
2
< Cν, there exists a unique global

smooth solution to the Navier-Stokes equation u ∈ C
(

[0,+∞); Ḣ
1
2
df

)
∩C∞

(
(0,+∞)× R3;R3

)
,

u(·, 0) = u0.

This result was then extended to L3 by Kato [26] and to BMO−1 by Koch and Tataru [28].

We will note here that the Navier-Stokes equation is invariant under the rescaling uλ(x, t) =

λu(λx, λ2t), and therefore u0 generates a global smooth solution if and only if, u0,λ(x) = λu0(λx)

generates a global smooth solution for all λ > 0. It is easy to check that each of these norms

are invariant with respect to this rescaling of the initial data.

In chapter 6 of this thesis, we will establish a new result guaranteeing the existence of

global smooth solutions for initial data that are arbitrarily large, so long two components of

the vorticity are sufficiently small in the critical Hilbert space.
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Theorem 1.12 (Global regularity for two components of vorticity small). Let R1 =
√

3
2
√

2
π,R2 =

32π4

3(1+
√

2)4
. Let ωh = (ω1, ω2, 0) and let f = 0. For all u0 ∈ H1

df such at

‖ω0
h‖Ḣ− 1

2
exp

(
K0E0 − 6, 912π4ν4

R2ν3

)
< R1ν, (1.42)

u0 generates a unique, global smooth solution to the Navier-Stokes equation u ∈ C
(

(0,+∞);H1
df

)
,

that is Tmax = +∞. Note that the smallness condition can be equivalently stated as

K0E0 < 6, 912π4ν4 +R2ν
3 log

(
R1ν

‖ωh‖
Ḣ−

1
2

)
. (1.43)

Very little is known in general about the existence of smooth solutions globally in time with

arbitrarily large initial data. Ladyzhenskaya proved the existence of global smooth solutions for

swirl-free axisymmetric initial data [34], which gives a whole family of arbitrarily large initial

data with globally smooth solutions. Mahalov, Titi, and Leibovich showed global regularity for

solutions with a helical symmetry in [40]. In light of the Koch-Tataru theorem guaranteeing

global regularity for small initial data in BMO−1, it has been an active area of research to find

examples of solutions that are large in BMO−1 that generate global smooth solutions, or even

stronger, to find initial data large in B−1
∞,∞ ⊃ BMO−1, which is the maximal scale invariant

space. Because both swirl free, axisymetric vector fields and helically symmetric vector fields

form subspaces of divergence free vector fields, clearly these are examples of initial data large in

B−1
∞,∞. Gallagher and Chemin showed the existence of initial data that generate global smooth

solutions that are large in B−1
∞,∞ on the torus by taking highly oscillatory initial data [8]. More

recently Kukavica, Rusin, and Ziane exhibited a class of non-oscillatory initial data, large in

B−1
∞,∞, that generate global smooth solutions [31].

Unlike the three dimensional case, there are global smooth solutions to the Navier-Stokes

equation in two dimensions. This is because in two dimensions the energy equality is scale

critical, while in three dimensions the energy inequality is supercritical. This is also because

vortex stretching occurs in three dimensions, but not in two dimensions, so the enstrophy is

decreasing for solutions of the two dimensional Navier-Stokes equations. Given that the Navier-

Stokes equation has global smooth solutions in two dimensions, one natural approach to the

extending small data regularity results to arbitrarily large initial data, would be to show global

regularity for the solutions that are, in some sense, approximately two dimensional.

There are also a number of previous results guaranteeing global regularity for solutions

three dimensional solutions of the Navier-Stokes equations with almost two dimensional initial

data. One approach to almost two dimensional initial data on the torus is to consider three

dimensional initial data that is a perturbation of two dimensional initial data. Note that this

approach is available on the torus, because L2
df

(
T2
)

forms a subspace of L2
df

(
T3
)
, so we can

consider perturbations of this subspace. It is not, however, available on the whole space, as

nonzero vector fields in L2
df

(
R2
)
, lose integrability when extended to three dimensions under

the map above, and so L2
df

(
R2
)

does not define a subspace of L2
df (R3). Iftimie proved that small

perturbations of two dimensional initial data must have smooth solutions to the Navier-Stokes

equation globally in time. Another approach is based on re-scaling, to make the the initial

data vary slowly in one direction. This approach was used by Gallagher and Chemin in [9]
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and extended by Gallagher, Chemin, and Paicu in [10] and by Paicu and Zhang in [42]. We

will prove global regularity based on rescaling the vorticity, rather than the velocity, as this

rescaling operates better with the divergence free constraint. The result we will prove is the

following.

Theorem 1.13 (Global regularity for rescaled vorticity). Fix a > 0. For all u0 ∈ H1
df , 0 < ε < 1

let

ω0,ε(x) = ε
2
3

(
log

(
1

εa

)) 1
4 (
εω0

1, εω
0
2, ω

0
3

)
(x1, x2, εx3), (1.44)

and define u0,ε using the Biot-Savart law by

u0,ε = ∇× (−∆)−1 ω0,ε. (1.45)

For all u0 ∈ H1
df and for all 0 < a < 4R2ν3

C2
2‖ω0

3‖2
L

6
5

‖ω0
3‖2L2

, there exists ε0 > 0 such that for all 0 < ε <

ε0, there is a unique, global smooth solution to the Navier-Stokes equation u ∈ C
(

(0,+∞);H1
df

)
with u(·, 0) = u0,ε. Furthermore if ω0

3 is not identically zero, then the initial vorticity is large in

the critical space L
3
2 , as ε→ 0, that is

lim
ε→0
‖ω0,ε‖

L
3
2

= +∞. (1.46)

In chapter 2, we will derive an evolution equation for the strain tensor and define mild

solutions to the strain and vorticity equations. In chapter 3, we will prove an isometry showing

the equivalence of defining the enstrophy in terms of the strain and in terms of the vorticity, and

we will prove a new identity for enstrophy growth. In chapter 4, we will consider the question

of maximal enstrophy growth locally in time. In chapter 5, we will prove Theorem 1.7, the

regularity criterion on λ+
2 , as well as a number of immediate corollaries. In chapter 6, we will

consider a vorticity approach to almost two dimensional initial data, proving Theorem 1.12. In

chapter 7, we will discuss the relationship between this result and previous global regularity

results for almost two dimensional initial data. In chapter 8, we will prove the existence and

stability of blowup for a toy model ODE of the strain equation. Finally, in chapter 9, we will

consider the strain equation in two dimensions.



Chapter 2

Evolution equation for the strain

tensor

We will begin this chapter by deriving the Navier-Stokes strain equation (1.5) in three spatial

dimensions.

Proposition 2.1 (Strain reformulation of the dynamics). Suppose u is a classical solution to

the Navier-Stokes equation with external force f. Then S= ∇sym(u) is a classical solution to

the Navier-Stokes strain equation

∂tS + (u · ∇)S − ν∆S + S2 +
1

4
ω ⊗ ω − 1

4
|ω|2I3 + Hess(p) = ∇symf. (2.1)

Proof. We begin by applying the operator ∇sym to the Navier-Stokes Equation (1.1); we find

immediately that

∂tS − ν∆S + Hess(p) +∇sym ((u · ∇)u) = ∇symf. (2.2)

It remains to compute ∇sym ((u · ∇)u) .

∇sym ((u · ∇)u)ij =
1

2
∂xi

3∑
k=1

uk
∂uj
∂xk

+
1

2
∂xj

3∑
k=1

uk
∂ui
∂xk

. (2.3)

∇sym ((u · ∇)u)ij =
3∑

k=1

uk∂xk

(
1

2

(
∂uj
∂xi

+
∂ui
∂xj

))
+

1

2

3∑
k=1

∂uk
∂xi

∂uj
∂xk

+
∂ui
∂xk

∂uk
∂xj

. (2.4)

We can see from our definitions of S and A that

S2
ij =

1

4

3∑
k=1

(
∂uk
∂xi

+
∂ui
∂xk

)(
∂uj
∂xk

+
∂uk
∂xj

)
=

1

4

3∑
k=1

∂uk
∂xi

∂uj
∂xk

+
∂ui
∂xk

∂uk
∂xj

+
∂uk
∂xi

∂uk
∂xj

+
∂ui
∂xk

∂uj
∂xk

,

(2.5)

and

A2
ij =

1

4

3∑
k=1

(
∂uk
∂xi
− ∂ui
∂xk

)(
∂uj
∂xk
− ∂uk
∂xj

)
=

1

4

3∑
k=1

∂uk
∂xi

∂uj
∂xk

+
∂ui
∂xk

∂uk
∂xj
− ∂uk
∂xi

∂uk
∂xj
− ∂ui
∂xk

∂uj
∂xk

.

(2.6)

12
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Taking the sum of these two equation, we find that

(
S2 +A2

)
ij

=
1

2

3∑
k=1

∂uk
∂xi

∂uj
∂xk

+
∂ui
∂xk

∂uk
∂xj

. (2.7)

From this we can conclude that

∇sym ((u · ∇)u) = (u · ∇)S + S2 +A2. (2.8)

Recall that

A =
1

2

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 , (2.9)

so we can express A2 as

A2 =
1

4
ω ⊗ ω − 1

4
|ω|2I3. (2.10)

This concludes the proof.

We also can see that tr(S) = ∇·u = 0, so in order to maintain the divergence free structure

of the flow, we require that the strain tensor be trace free. For the vorticity the only consistency

condition is that the vorticity be divergence free. Any divergence free vorticity can be inverted

back to a unique velocity field, assuming suitable decay at infinity, with u = ∇ × (−∆)−1ω.

This is not true of the strain tensor, for which an additional consistency condition is required.

If we know the strain tensor S, this is enough for us to reconstruct the flow. We take

− 2 div(S) = −∆u−∇(∇ · u) = −∆u. (2.11)

Therefore we find that

u = −2 div(−∆)−1S. (2.12)

This allows us to reconstruct the flow u from the strain tensor S, but it doesn’t guarantee

that if we start with a general trace free symmetric matrix, the u we reconstruct will actually

have this symmetric matrix as its strain tensor. We will need to define a consistency condition

guaranteeing that the strain tensor is actually the symmetric part of the gradient of some

divergence free vector field. This condition for the strain equation will play the same role that

the divergence free condition plays in the vorticity equation. We will now define the subspace

of strain matrices L2
st ⊂ L2(R3;S3×3) as follows:

Definition 2.2 (Strain subspace). We will define the subspace of strain matrices to be

L2
st =

{
1

2
∇⊗ u+

1

2
(∇⊗ u)∗ : u ∈ Ḣ1

(
R3;R3

)
,∇ · u = 0

}
. (2.13)

This subspace of L2(R3;S3×3) can in fact be characterized by a partial differential equation,

although in this case, it is significantly more complicated than the equation ∇ · u = 0, that

characterizes the space of divergence free vector fields.

Proposition 2.3 (Characterization of the strain subspace). Suppose S ∈ L2(R3;S3×3). Then
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S ∈ L2
st if and only if

tr(S) = 0, (2.14)

−∆S + 2∇sym (div(S)) = −∆S + (∇⊗∇)S + ((∇⊗∇)S)∗ = 0. (2.15)

Note that because by hypothesis we only have S ∈ L2, we will consider S to be a solution to

(2.15) if the condition is satisfied pointwise almost everywhere in Fourier space, that is if

|ξ|2Ŝ(ξ)− (ξ ⊗ ξ)Ŝ(ξ)− Ŝ(ξ)(ξ ⊗ ξ) = 0, (2.16)

almost everywhere ξ ∈ R3. The partial differential equation (2.15) can be written out in compo-

nents as

−∆Sij +

3∑
k=1

∂xi∂xkSkj + ∂xj∂xkSki = 0. (2.17)

Proof. First suppose S ∈ L2
st, so there exists a u ∈ Ḣ1, ∇ · u = 0, such that

S = ∇symu. (2.18)

As we have already shown, tr(S) = ∇ · u = 0. Next we will take the divergence of (2.18), and

find that,

− 2 div(S) = −2 div(∇symu) = −∆u−∇(∇ · u) = −∆u. (2.19)

Applying ∇sym to (2.19) we find that

− 2∇sym(div(S)) = ∇sym(−∆u) = −∆S, (2.20)

so the condition (2.15) is also satisfied.

Now suppose tr(S) = 0 and −∆S + 2∇sym(div(S)) = 0. Define u by

u = (−∆)−1(−2 div(S)). (2.21)

Applying ∇sym to this definition we find that

∇symu = (−∆)−1 (−2∇sym(div(S))) = (−∆)−1(−∆S) = S. (2.22)

Clearly u ∈ Ḣ1 because S ∈ L2 and (−∆)−1(−2 div) is a pseudo-differential operator with

order −1. It only remains to show that ∇·u = 0. Next we will take the trace of (2.17) and find

that

(div)2(S) =
3∑

i,j=1

∂xi∂xjSij = 0. (2.23)

Using this we compute that

∇ · u = (−∆)−1(−2(div)2(S)) = 0. (2.24)

This completes the proof.

Note that the the consistency condition (2.15) is linear, so the set of matrices satisfying
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it form a subspace of L2. The Navier-Stokes equation (1.1) and the vorticity equation (1.4)

can best be viewed not as systems of equations, but as evolution equations on the space of

divergence free vector fields. Similarly, we can view the Navier-Stokes strain equation (1.5) as

an evolution equation on L2
st.

When compared with the vorticity equation, the evolution equation for the strain tensor,

while it requires additional terms, has a quadratic nonlinearity whose structure is far better

from an algebraic point of view. This is because a vector cannot be squared, and the square of

an anti-symmetric matrix (the other representation of vorticity) is a symmetric matrix, while

the square of a symmetric matrix is again a symmetric matrix.

The Navier-Stokes strain equation has already been examined in [14, 19, 23], however the

consistency condition (2.15) does not play a role in this analysis. The role of the strain was

also considered by Chae in [5], although the evolution equation for strain does not play a role

in this analysis. In [19], the authors focus on the relationship between vorticity and the strain

tensor in enstrophy production, as the strain tensor and vorticity are related by a linear zero

order pseudo-differential operator, S = ∇sym(−∆)−1∇×ω. However, the consistency condition

is actually very useful in dealing with the evolution of the strain tensor, because a number of

the terms in the evolution equation (1.5) are actually in the orthogonal compliment of L2
st with

respect to the L2 inner product. This will allow us to prove an identity for enstrophy growth

involving only the strain, where previous identities involved the interaction of the strain and

the vorticity. We will now make an observation about what matrices in L2(R3;S3×3) are in the

orthogonal complement of L2
st with respect to the L2 inner product.

Proposition 2.4 (Orthogonal subspaces). For all f ∈ Ḣ2(R3), for all g ∈ L2(R3), and for all

S ∈ L2
st

〈S, gI3〉 = 0, (2.25)

〈S,Hess(f)〉 = 0. (2.26)

Proof. First we’ll consider the case of gI3. Fix S ∈ L2
st and we’ll take the inner product

〈gI3, S〉 =

∫
R3

3∑
i,j=1

gIijSij =

∫
R3

tr(S)g = 0. (2.27)

In order to show that Hess(f) ∈
(
L2
st

)⊥
, we will use the property that for S ∈ L2

st

tr ((∇⊗∇)S) =

3∑
i,j=1

∂xi∂xjSij = 0. (2.28)

Because S ∈ L2 and therefore Ŝ ∈ L2, the above condition can be expressed as

3∑
i,j=1

ξiξjŜij(ξ) = 0, (2.29)

almost everywhere ξ ∈ R3. Using the fact that the Fourier transform is an isometry on L2, and
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Hess(f), S ∈ L2 we compute that

〈Hess(f), S〉 =
〈

Ĥess(f), Ŝ
〉

= −4π2

∫
R3

¯̂
f(ξ)

3∑
i,j=1

ξiξjŜij(ξ)dξ = 0. (2.30)

This completes the proof.

This means that as long as u is sufficiently regular, Hess(p) and −1
4 |ω|

2I3 are in the orthog-

onal compliment of L2
st. This fact will play a key role in the new identity for enstrophy growth

that we will prove in chapter 3.

Note that u is uniquely determined in terms of both S and ω. We have already established

that u can be reconstructed from S using the formula u = −2 div(−∆)−1S. Likewise we know

that ∇ × ω = −∆u, so u can be reconstructed from the vorticity using the formula u =

∇ × (−∆)−1ω. This in particular means that S can be determined in terms of ω and vice

versa with zero order pseudo-differential operators as follows: S = ∇sym∇ × (−∆)−1ω, and

ω = −2∇ × div(−∆)−1S. This in particular makes it possible to define mild solutions to the

strain equation or the vorticity equation purely in terms of S and ω respectively.

Before we proceed further, we need to show the existence of solutions to the Navier-Stokes

strain equation in a suitable space. Leray solutions are not the most well adapted to studying

regularity, which is our focus, so we will work with mild solutions developed by Kato and Fujita

instead [18]. Using the Ḣ1 mild solutions to the Navier-Stokes equation in Theorem 1.5, we will

adapt these solutions to define for mild solutions in L2 for the Navier-Stokes strain equation and

the vorticity equation. We will define L2 solutions to the strain evolution equation as follows.

Definition 2.5 (Mild strain solutions). Suppose S ∈ C
(
[0, T ];L2

st

)
∩ L2

(
[0, T ] : Ḣ1(R3)

)
.

Then we will call S a mild solution to the Navier-Stokes strain equation (1.5) with external

force f ∈ L2
(
[0, T ];L2

(
R3
))

if and only if for all 0 < t ≤ T,

S(·, t) = eνt∆S0 +

∫ t

0
eν(t−τ)∆(

−(u · ∇)S − S2 − 1

4
ω ⊗ ω +

1

4
|ω|2I3 −Hess(p) +∇symf

)
(·, τ)dτ, (2.31)

where u = −2 div(−∆)−1S, ω = ∇× u, and p = (−∆)−1
(
|S|2 − 1

2 |ω|
2 −∇ · f

)
We will define L2 mild solutions to the vorticity equation likewise.

Definition 2.6 (Mild vorticity solutions). Suppose ω ∈ C
(

[0, T ];L2
df

)
∩L2

(
[0, T ] : Ḣ1

(
R3
))
.

Then we will call ω a mild solution to the vorticity equation with external force f ∈ L2
(
[0, T ];L2

(
R3
))

if and only if for all 0 < t ≤ T,

ω(·, t) = eνt∆ω0 +

∫ t

0
eν(t−τ)∆ (−(u · ∇)ω + Sω −∇× f) (·, τ)dτ, (2.32)

where u = ∇× (−∆)−1ω and S = ∇symu.

Proposition 2.7 (Equivalence of mild solutions). If u ∈ C
(

[0, T ]; Ḣ1
df

)
∩L2

(
[0, T ] : Ḣ2

(
R3
))

is a mild solution to the Navier-Stokes equation with external force f ∈ L2
(
[0, T ];L2

(
R3
))

then
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S = ∇symu is an L2 mild solution to the Navier-Stokes strain equation and ω = ∇ × u is an

L2 mild solution to the vorticity equation

Proof. By hypothesis u satisfies

u(x, t) = eνt∆u0 +

∫ t

0
eν(t−τ)∆Pdf (−(u · ∇)u+ f) dτ. (2.33)

Stated in terms of the pressure, rather than the projection Pdf , this statement becomes

u(x, t) = eνt∆u0 +

∫ t

0
eν(t−τ)∆ (−(u · ∇)u−∇p+ f) dτ. (2.34)

When differentiating a convolution, the derivative can be applied to either function being con-

volved, so taking the curl of (2.34) and applying the differential operator to −(u ·∇)u−∇p+ f

rather than the heat kernel, we find that

ω(·, t) = eνt∆ω0 +

∫ t

0
eν(t−τ)∆ (−(u · ∇)ω + Sω −∇× f) (·, τ)dτ. (2.35)

Likewise if we take the symmetric part of the gradient of (2.34) we find that

S(·, t) = eνt∆S0 +

∫ t

0
eν(t−τ)∆(

−(u · ∇)S − S2 − 1

4
ω ⊗ ω +

1

4
|ω|2I3 −Hess(p) +∇symf

)
(·, τ)dτ. (2.36)

This completes the proof.

We will note that Proposition 2.7 and Theorem 1.5 imply the existence of L2 mild solutions

to the strain and vorticity equations, simply by taking the curl or symmetric gradient of Ḣ1

mild solutions to the Navier-Stokes equation.



Chapter 3

Isometries and the enstrophy growth

identity

We have already shown that S and ω are related to each other by zeroth order pseudo-differential

operators. Because these zeroth order operators are related to the Riesz transform, which is

bounded from Lq to Lq for 1 < q < +∞, the Lq norms of strain and vorticity are equivalent,

but we will only have Calderon-Zygmund type estimates, so our control will be very bad. More

precisely, for all 1 < q < +∞, there exists Bq > 0, such that 1
Bq
‖ω‖Lq ≤ ‖S‖Lq ≤ Bq‖ω‖Lq .

We can say something much stronger in the case of L2, and in fact for every Hilbert space

Ḣα,−3
2 < α < 3

2 .

Proposition 3.1 (Hilbert space isometries for strain and vorticity). For all −3
2 < α < 3

2 , and

for all u divergence free in the sense that ξ · û(ξ) = 0 almost everywhere,

‖S‖2
Ḣα = ‖A‖2

Ḣα =
1

2
‖ω‖2

Ḣα =
1

2
‖u‖2

Ḣα+1 . (3.1)

Proof. First fix s, −3
2 < s < 3

2 . We will begin relating the Hs norms of the anti-symmetric part

and the vorticity. Recall that

A =
1

2

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 , (3.2)

Therefore, for all x ∈ R3,

|(−∆)
s
2A(x)|2 =

1

2
|(−∆)

s
2ω(x)|2. (3.3)

Because in general we have that ‖f‖Ḣs = ‖(−∆)
s
2 f‖L2 , it immediately follows that

‖A‖2
Ḣs =

1

2
‖ω‖2

Ḣs . (3.4)

Because u is divergence free, in Fourier space

|ω̂(ξ)| = |2πiξ × û(ξ)| = 2π|ξ||û(ξ)| = |∇̂ ⊗ u(ξ)|. (3.5)

18
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From this we can conclude that

‖ω‖2
Ḣs = ‖∇ ⊗ u‖2

Ḣs = ‖u‖2
Ḣs+1 . (3.6)

Finally we will compute∣∣∣(−∆)
s
2 (∇⊗ u)

∣∣∣2 = tr
((
−∆)

s
2S + (−∆)

s
2A
)(

(−∆)
s
2S∗ + (−∆)

s
2A∗

))
. (3.7)

However, we know that the trace of the product of a symmetric matrix and an antisymmetric

matrix is always zero, so we can immediately see that∣∣∣(−∆)
s
2 (∇⊗ u)

∣∣∣2 =
∣∣∣(−∆)

s
2S
∣∣∣2 +

∣∣∣(−∆)
s
2A
∣∣∣2 . (3.8)

From this it follows that

‖∇ ⊗ u‖2
Ḣs = ‖S‖2

Ḣs + ‖A‖2
Ḣs , (3.9)

but we have already established that

‖A‖2
Ḣs =

1

2
‖∇ ⊗ u‖2

Ḣs , (3.10)

so we can conclude that

‖A‖2
Ḣs = ‖S‖2

Ḣs =
1

2
‖∇ ⊗ u‖2

Ḣs . (3.11)

This concludes the proof.

Now that we have established this isometry between vorticity and strain, we will proceed

to proving an identity for enstrophy growth involving only S, not the interaction of S and ω.

Theorem 3.2 (Enstrophy growth identity). Suppose S ∈ C
(
[0, T ];L2

st

)
∩L2

(
[0, T ] : Ḣ1(R3)

)
is a mild solution to the Navier-Stokes strain equation. Then

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1
− 4

3

∫
R3

tr(S3) + 〈−∆u, f〉 , (3.12)

almost everywhere t ∈ (0, T ].

Proof. Using (1.4), we can compute the rate of change of enstrophy

∂t
1

2
‖ω(·, t)‖2L2 = −ν 〈−∆ω, ω〉 − 〈(u · ∇)ω, ω〉+ 〈Sω, ω〉 − 〈∇ × f, ω〉 . (3.13)

Next we can integrate by parts to show that 〈∇ × f, ω〉 = 〈f,−∆u〉 and 〈ω, (u · ∇)ω〉 = 0, using

the divergence free condition in the latter case. Therefore we find that

∂t
1

2
‖ω(·, t)‖2L2 = −ν‖ω‖2

Ḣ1
+ 〈S;ω ⊗ ω〉+ 〈−∆u, f〉 . (3.14)

This is the standard identity for enstrophy growth, based on the interaction of the Strain

matrix and the vorticity. See chapter 7 in [35] for more details. We can use the isometry in
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Proposition 2.4 to restate (3.14) in terms of strain:

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1

+ 〈S;ω ⊗ ω〉+ 〈−∆u, f〉 . (3.15)

However we can also calculate the L2 growth of the strain tensor directly from our evolution

equation for the strain tensor (1.5),

∂t‖S(·, t)‖2L2 = −2ν 〈−∆S, S〉 − 2 〈(u · ∇)S, S〉 − 2
〈
S2, S

〉
− 1

2
〈ω ⊗ ω;S〉 − 2 〈Hess(p), S〉+

1

2

〈
|ω|2I3, S

〉
+ 2 〈∇symf, S〉 . (3.16)

Integrating by parts we know that 〈(u · ∇)S, S〉 = 0. Note that S ∈ C
(
[0, T ], L2

)
∩L2

(
(0, T ], Ḣ1

)
.

In particular this implies that S(·, t), ω(·, t) ∈ L2∩L6 almost everywhere 0 < t ≤ T. This means

that S(·, t), ω(·, t) ∈ L3, so 〈S;ω ⊗ ω〉 and
∫

tr(S3) are both well defined. This also means that

|ω(·, t)|2,Hess(p)(·, t) ∈ L2 almost everywhere 0 < t ≤ T. Therefore we can apply Proposition

2.4 and find that |ω|2I3,Hess(p) ∈
(
L2
st

)⊥
, so〈

S,
1

2
|ω|2I3

〉
= 0, (3.17)

〈Hess(p), S〉 = 0. (3.18)

Now we can use the fact that S is symmetric to compute that

〈
S2, S

〉
=

∫
R3

tr(S3). (3.19)

We also compute that

2 〈∇symf, S〉 = 2 〈∇ ⊗ f, S〉 (3.20)

= 〈f,−2 div(S)〉 (3.21)

= 〈f,−∆u〉 . (3.22)

Putting all of these together we find that

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1
− 1

2
〈S;ω ⊗ ω〉 − 2

∫
R3

tr(S3) + 〈−∆u, f〉 . (3.23)

Note that the vortex stretching term 〈S;ω ⊗ ω〉 has the opposite sign as in the well known

identity for enstrophy growth (3.14). Taking advantage of this fact, we will add 1
3 (3.15) to 2

3

(3.23) to cancel the term 〈S, ω ⊗ ω〉, and we find

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1
− 4

3

∫
R3

tr(S3) + 〈−∆u, f〉 . (3.24)

Finally we will note that because the subcritical quantity ‖S(·, t)‖L2 is controlled uni-

formly on [0, T ], the smoothing due to the heat kernel guarantees that S is smooth when

f = 0, so the identity (3.12) can be understood as a derivative of a smooth quantity in the

classical sense. When f 6= 0, the expression for ∂t‖S(·, t)‖2L2 is integrable in time because



Chapter 3. Isometries and the enstrophy growth identity 21

S ∈ L2
(

[0, T ]; Ḣ1
(
R3
))
, and so must be the derivative of the continuous function ‖S(·, t)‖2L2

almost everywhere in time.

Now that we have improved the estimate for enstrophy growth from one that involved the

interaction of the vorticity and the strain tensor to an estimate that only involves the strain

tensor. We can still extract more geometric information about the flow, however. The identity

for enstrophy growth in Theorem 3.2 can also be expressed in terms of det(S).

Corollary 3.3 (Alternative enstrophy growth identity). Suppose S ∈ C
(
[0, T ];L2

st

)
∩L2

(
[0, T ] : Ḣ1(R3)

)
is a mild solution to the Navier-Stokes strain equation. Then

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1
− 4

∫
R3

det(S) + 〈−∆u, f〉 , (3.25)

almost everywhere 0 < t ≤ T.

Proof. Because S is symmetric it will be diagonalizable with three real eigenvalues, and because

S is trace free, we have tr(S) = λ1 + λ2 + λ3 = 0. This allows us to relate tr(S3) to det(S) by

tr(S3) = λ3
1 + λ3

2 + λ3
3 (3.26)

= λ3
1 + λ3

2 + (−λ1 − λ2)3 (3.27)

= −3λ2
1λ2 − 3λ1λ

2
2 (3.28)

= 3(−λ1 − λ2)λ1λ2 (3.29)

= 3λ1λ2λ3 (3.30)

= 3 det(S). (3.31)

So we can write our growth estimate as:

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1
− 4

∫
R3

det(S) + 〈−∆u, f〉 . (3.32)

This completes the proof.

Remark 3.4. As mentioned in the introduction, Dongho Chae proved the analogous result,

∂t‖S(·, t)‖2L2 = −4

∫
R3

det(S), (3.33)

in the context of smooth solutions to the Euler equation with no external force [5]. In this paper

he shows directly that

∂t
1

2
‖∇ ⊗ u(·, t)‖2L2 = 〈(u · ∇)u,∆u〉 = −

∫
R3

tr(S3) +
1

4
〈S;ω ⊗ ω〉 . (3.34)

In the context of the Euler equation, the familiar estimate for enstrophy growth following from

the vorticity equation is

∂t
1

2
‖∇ ⊗ u(·, t)‖2L2 = ∂t

1

2
‖ω(·, t)‖2L2 = 〈S;ω ⊗ ω〉 . (3.35)
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Adding 4
3 (3.34) and −1

3 (3.35), it follows that

∂t‖S(·, t)‖2L2 = ∂t
1

2
‖∇ ⊗ u(·, t)‖2L2 = −4

3

∫
R3

tr(S3) = −4

∫
R3

det(S). (3.36)

The identity for enstrophy growth in Corollary 3.3 gives us a significantly better under-

standing of enstrophy production than the classical enstrophy growth identity (3.14), because

we now have the growth controlled solely in terms of the strain tensor, rather than both the

strain tensor and the vorticity. This estimate also provides analytical confirmation of the well

known result that the vorticity tends to align with the eigenvector corresponding to the inter-

mediate eigenvalue of the strain matrix [19,53]. Comparing the identities in (3.12), (3.14), and

(3.25) we see that

〈S, ω ⊗ ω〉 = −4

∫
R3

det(S) = −4

3

∫
tr(S3). (3.37)

When det(S) tends to be positive, it means there are two negative eigenvalues and one positive

eigenvalue, so 〈S, ω ⊗ ω〉 being negative means the vorticity tends to align, on average when

integrating over the whole space, with the negative eigenspaces. Likewise, when det(S) tends

to be negative, it means there are two positive eigenvalues and one negative eigenvalue, so

〈S, ω ⊗ ω〉 being positive means the vorticity tends to align, on average when integrating over

the whole space, with the positive eigenspaces. When det(S) tends to be zero when integrated

over the whole space, the vorticity tends clearly to be aligned with the intermediate eigenvalue,

as well. Growth in all cases geometrically corresponds to the strain matrix S stretching in two

directions, while strongly contracting in the third direction.



Chapter 4

Maximal enstrophy growth

In this chapter, we will consider the maximal rate of enstrophy growth. We will prove an upper

bound on the rate of enstrophy growth, which will also allow us to improve the constants in

some small initial data results for Navier-Stokes. Throughout this chapter we will consider

the Navier-Stokes equation with no external force, setting f = 0. We will begin by bounding

−4 det(S) in terms of |S|3, and see what this matrix looks like in the sharp case of this bound.

Proposition 4.1 (Determinant bound). Let M be a three by three, symmetric, trace free matrix,

then

− 4 det(M) ≤ 2

9

√
6|M |3, (4.1)

with equality if and only if −1
2λ1 = λ2 = λ3, where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of M .

Proof. In the case where M = 0, it holds trivially. In the case where M 6= 0, then we have

λ1 < 0, λ3 > 0. This allows us to define a parameter r = −λ1
λ3

. The two parameters λ3 and r

completely define the system because λ1 = −rλ3 and λ2 = −λ1−λ3 = (r−1)λ3. We must now

say something about the range of values the parameter r can take on. λ1 ≤ λ2 ≤ λ3 implies

that −r ≤ r − 1 ≤ 1, so therefore 1
2 ≤ r ≤ 2. Now we can observe that

− 4 det(M) = −4λ1λ2λ3 = 4r(r − 1)λ3
3, (4.2)

and that

|M |2 = λ2
1 + λ2

2 + λ2
3 = (r2 + (r − 1)2 + 1)λ2

3 = (2r2 − 2r + 2)λ2
3. (4.3)

We can combine the two equations above to find that

− 4 det(M) =
√

2
r2 − r

(r2 − r + 1)
3
2

|M |3. (4.4)

Next we will observe that

√
2

r2 − r
(r2 − r + 1)

3
2

∣∣∣
r=2

=
√

2
2

3
√

3
=

2

9

√
6. (4.5)

This is exactly as we want, as r = 2 is the case that we want to correspond to equality. Finally

23
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we observe that for all 1
2 ≤ r < 2, we have that

√
2

r2 − r
(r2 − r + 1)

3
2

<
2

9

√
6. (4.6)

This completes the proof.

The structure of the quadratic term in relation to r = −λ1
λ3

= 2, the extremal case, will

be investigated further in chapter 8 when we consider blow up for a toy model ODE for the

Navier-Stokes strain equation. It is an interesting open question whether or not there is a strain

matrix which saturates this inequality globally in space. More precisely, does there exist an

S ∈ L2
st, not identically zero, such that λ2(x) = λ3(x) almost everywhere x ∈ R3?

Corollary 4.2 (Bound on enstrophy growth). Suppose S ∈ C
(
[0, T ];L2

st

)
∩L2

(
[0, T ] : Ḣ1(R3)

)
is a mild solution to the Navier-Stokes strain equation. Then for all 0 < t ≤ T,

∂t‖S(·, t)‖2L2 ≤ −2ν‖S‖2
Ḣ1

+
2

9

√
6

∫
R3

|S|3. (4.7)

Proof. This corollary follows immediately from Proposition 4.1 and Corollary 3.3.

Using Corollary 4.2 and the fractional Sobolev inequality we will be able to prove a cubic

differential inequality for the growth of enstrophy. The sharp fractional Sobolev inequality was

first proven by Lieb [37].

Lemma 4.3 (Fractional Sobolev inequality). Let C1 = 1

2
1
6 π

1
3
. Then for all f ∈ Ḣ−

1
2

(
R3
)
,

‖f‖
Ḣ−

1
2
≤ C1‖f‖

L
3
2
, (4.8)

and for all f ∈ L3
(
R3
)

‖f‖L3 ≤ C1‖f‖
Ḣ

1
2
. (4.9)

We will note in particular that the two inequalities in Lemma 4.3 are dual to each other

because L3 and L
3
2 are dual spaces, and Ḣ

1
2 and Ḣ−

1
2 are dual spaces, which is why the

two ineqaulities have the same sharp constant. For more references on this inequality see also

chapter 4 in [38] and the summary of these results in [15]. We can now prove a cubic differential

inequality for the growth of enstrophy.

Proposition 4.4 (Cubic bound on enstrophy growth). Let u ∈ C
(

[0, Tmax); Ḣ1
df

)
be a mild so-

lution to the Navier-Stokes equation. Then for all 0 < t < Tmax, we have E′(t) ≤ 1
3,456π4ν3

E(t)3.

Furthermore, if u ∈ C
(

[0, Tmax);H1
df

)
, then for all 0 < t < Tmax, we have K ′(t) = −2νE(t).

Proof. The equality K ′(t) = −2νE(t) is the classic energy equality for smooth solutions of the

Navier-Stokes equations first proven by Leray [36]. We will now prove the first inequality. We

begin with the estimate for enstrophy growth in Corollary 4.2:

∂t‖S(·, t)‖2L2 ≤ −2ν‖S‖2
Ḣ1

+
2

9

√
6‖S‖3L3 . (4.10)
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Next we apply the fractional Sobolev inequality in Lemma 4.3 and interpolate between L2 and

Ḣ1 and find

∂t‖S(·, t)‖2L2 ≤ −2ν‖S‖2
Ḣ1

+
2

9

√
6

1√
2π
‖S‖3

Ḣ
1
2

(4.11)

≤ −2ν‖S‖2
Ḣ1

+
2

3
3
2π
‖S‖

3
2

L2‖S‖
3
2

Ḣ1
. (4.12)

Substituting r = ‖S‖Ḣ1 , we find

∂t‖S(·, t)‖2L2 ≤ sup
r≥0
−2νr2 +

2

3
3
2π
‖S‖

3
2

L2r
3
2 . (4.13)

Let B = 1

3
3
2 π
‖S‖

3
2

L2 , and let

f(r) = −2νr2 + 2Br
3
2 . (4.14)

Computing the derivative we find that

f ′(r) = −4νr + 3Br
1
2 . (4.15)

This means f has a global maximum at r0 =
(

3B
4ν

)2
. Plugging in we find that

f(r0) = −2ν

(
3B

4ν

)4

+ 2B

(
3B

4ν

)3

=
33B4

27ν3
. (4.16)

Recalling that B = 1

3
3
2 π
‖S‖

3
2

L2 and that f attains its global maximum at r0, we conclude that

sup
r≥0
−2νr2 +

2

3
3
2π
‖S‖

3
2

L2r
3
2 = f(r0) =

1

3, 456π4ν3
‖S‖6L2 . (4.17)

Therefore

∂t‖S(·, t)‖2L2 ≤
1

3, 456π4ν3
‖S‖6L2 . (4.18)

This completes the proof.

The cubic bound on the growth of enstrophy is not new, however a closer analysis of the

strain allows a major improvement in the constant. The best known estimate [2, 39, 45] for

enstrophy growth that does not make use of the identity for enstrophy growth in terms of the

determinant of strain in Proposition 3.12 is

E′(t) ≤ 27

8π4ν3
E(t)3. (4.19)

The author then improved the constant in this inequality significantly; using Proposition 3.12,

the author proved in [41] a cubic differential inequality controlling the growth of enstrophy,

E′(t) ≤ 1

1, 458π4ν3
E(t)3, (4.20)

in the case where ν = 1, although there is no loss of generality in the proof: the proof in the
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case of ν > 0 is entirely analogous. The proof in [41] relied on the sharp Sobolev inequality

proven by Talenti [50], which we will state below.

Lemma 4.5 (Sobolev inequality). Let C2 = 1√
3

(
2
π

) 2
3 . Then for all f ∈ L6

(
R3
)

‖f‖L6 ≤ C2‖∇f‖L2 = C2‖f‖Ḣ1 , (4.21)

and for all f ∈ L
6
5

(
R3
)

‖f‖Ḣ−1 ≤ C2‖f‖
L

6
5
. (4.22)

As in the fractional Sobolev inequality, we will note in particular that the two inequalities

in Lemma 4.5 are dual to each other because L6 and L
6
5 are dual spaces, and Ḣ1 and Ḣ−1 are

dual spaces, which is why the constant in both inequalities is the same.

In [41], the author first interpolated between L2 and L6 and then applied Lemma 4.5,

showing

‖S‖3L3 ≤ ‖S‖
3
2

L2‖S‖
3
2

L6 ≤ C
3
2
2 ‖S‖

3
2

L2‖S‖
3
2

Ḣ1
. (4.23)

It is possible to obtain a sharper constant by first applying the fractional Sobolev inequality

and then interpolating between L2 and Ḣ1. Proceeding this way, we conclude

‖S‖3L3 ≤ C3
1‖S‖3

Ḣ
1
2
≤ C3

1‖S‖
3
2

L2‖S‖
3
2

Ḣ1
. (4.24)

Because C3
1 < C

3
2
2 , using the fractional Sobolev inequality results in a sharper bound on enstro-

phy growth.

Using the bounds in Proposition 4.4, we will be able to prove a small data global existence

result in terms of the product of energy and enstrophy.

Proposition 4.6 (Small data in terms of energy and enstrophy). Suppose u0 ∈ H1
df . If

K0E0 < 6, 912π4ν4, or equivalently, if ‖u0‖2L2‖ω0‖2L2 < 27, 648π4ν4, then Tmax = +∞. That is,

there exists a unique, smooth solution to the Navier-Stokes equation u ∈ C
(

[0,+∞);H1
df

)
with

u(·, 0) = u0. Furthermore, for all t > 0,

E(t) ≤ E0

1− 1
6,912π4ν4

E0K0
. (4.25)

Proof. Let f(t) = K(t)E(t). Then we can use the product rule and Proposition 4.4 to compute

that

f ′(t) ≤ −2νE(t)2 +K(t)
E(t)3

3, 456π4ν3
(4.26)

≤ −2νE(t)2

(
1− f(t)

6, 912π4ν4

)
. (4.27)

Therefore, if f(t) < 6, 912π4ν4, then f ′(t) < 0. This implies that if f(0) < 6, 912π4ν4, then for

all 0 < t < Tmax, we have f(t) < 2, 916π4ν4. Interpolating between L2 and Ḣ1, we can see that

‖u‖4L3 ≤ C4
1‖u(·, t)‖4

Ḣ
1
2
≤ C4

1‖u(·, t)‖2L2‖u(·, t)‖2
Ḣ1 = 4C4

1K(t)E(t) = 4C4
1f(t). (4.28)
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Šverák, Seregin, and Escauriaza showed in [16] that if Tmax < +∞, then

lim sup
t→Tmax

‖u(·, t)‖L3 = +∞. (4.29)

Therefore, f(0) < 6, 912π4ν4 implies that Tmax = +∞.
Now we will consider the bound on enstrophy globally in time. We know that

E′(t) ≤ 1

3, 456π4ν4
E(t)3 =

1

3, 456π4ν4
E(t)E(t)2 (4.30)

Fix t > 0. Integrating this differential inequality and making use of the energy inequality, we

find

1

E0
− 1

E(t)
≤ 1

3, 456π4ν4

∫ t

0
E(τ)dτ, (4.31)

≤ 1

6, 912π4ν4
K0. (4.32)

Rearranging terms we find that

E(t) ≤ E0

1− 1
6,912π4ν4

E0K0
. (4.33)

We took t > 0 arbitrary, so this completes the proof.

Similar estimates were considered by Protas and Ayala in [2]. In particular, they proved

that if E0K0 <
16π4ν4

27 , then there must be a smooth solution globally in time, and enstrophy is

bounded uniformly in time, with E(t) < E0

1− 27
16π4ν4

E0K0
, for all t > 0. By improving the constant

for enstrophy growth instantaneously in time, we significantly expand the set of initial data for

which we are guaranteed to have global smooth solutions. The initial data must be in H1 for the

product of initial energy and initial enstrophy to be bounded, so the condition in Proposition

4.6 is more restrictive than the condition in the small initial data results for Ḣ
1
2 [18], L3 [26],

or BMO−1 [28]. However, the product of energy and enstrophy is the most physically relevant

of the scale invariant quantities, and so we are able to sharpen the bound on the size initial

data for which solutions are guaranteed to be smooth globally in time more effectively in this

case by taking advantage of the structure of the nonlinear term. The proofs of the bounds for

small initial data in Ḣ
1
2 , L3, and BMO−1 would all work just as well for the Navier-Stokes

model equation introduced by Tao [51], as would the estimates used by Protas and Ayala. The

estimates used to prove Proposition 4.6, on the other hand, take advantage of the structure of

the evolution equations for vorticity and strain, and the constraint spaces, and so would not

hold with the same constants in Tao’s model equation.

We will now prove an immediate corollary of Proposition 4.6, that any solution that blows

up in finite time must be bounded away from zero that will be useful later on.

Corollary 4.7. Suppose u ∈ C
(

[0, Tmax);H1
df

)
is a mild solution to the Navier-Stokes equation

and Tmax < +∞, then for all 0 ≤ t < Tmax,

K(t)E(t) ≥ 6, 912π4ν4. (4.34)
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Proof. We will prove the contrapositive. Suppose that there exists 0 ≤ t < Tmax such that

K(t)E(t) < 6, 912π4ν4. Then by Proposition 4.6, u(·, t) generates a global smooth solution to

the Navier-Stokes equations. Smooth solutions of the Navier-Stokes equations are unique, so if

u(·, t) generates a global smooth solution to the Navier-Stokes equations, then so does u0, and

so we conclude that Tmax = +∞.

Using Proposition 4.4, we can also prove an upper bound on blowup time, assuming there

is finite time blowup, in terms of the initial energy, and a lower bound on blowup time in terms

of the initial enstrophy. We will prove these results below.

Proposition 4.8 (Upper bound on Tmax). For all initial data u0 ∈ H1
df , either Tmax ≤

K2
0

13,824π4ν5
or Tmax = +∞.

Proof. Suppose toward contradiction that
K2

0
13,824π4ν5

< Tmax < +∞. We know from the energy

equality that ∫ Tmax

0
E(τ)dτ ≤ 1

2ν
K0. (4.35)

This implies that there exists t ∈ (0, Tmax) such that TmaxE(t) ≤ 1
2νK0. We also know from the

energy equality that K(t) < K0. Combining these two inequalities as well as our hypothesis on

Tmax, we find that

E(t)K(t) <
K2

0

2νTmax
< 6, 912π4ν4. (4.36)

Using Proposition 4.6, this implies that if we take u(·, t) to be initial data, it generates a global

smooth solution, which contradicts the assumption that Tmax < +∞. The uniqueness of strong

solutions means that if u(·, t) generates a global smooth solution for some 0 < t < Tmax, then

so does u0. This contradicts the assumption that Tmax < +∞, and completes the proof.

Proposition 4.9 (Lower bound on Tmax). For all initial data u0 ∈ Ḣ1
df , and for all 0 < t <

1,728π4ν3

E2
0

,

E(t) ≤ E0√
1− E2

0
1,728π4ν3

t
. (4.37)

In particular, for all u0 ∈ Ḣ1
df , Tmax ≥

1,728π4ν3

E2
0

Proof. Integrating the differential inequality

∂tE(t) ≤ 1

3, 456π4ν3
E(t)3, (4.38)

we find that for all 0 < t < 1,728π4ν3

E2
0

1

E2
0

− 1

E(t)2
≤ 1

1, 728π4ν3
t. (4.39)
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Rearranging terms we find that for all 0 < t < 1,728π4ν3

E2
0

,

E(t) ≤ E0√
1− E2

0
1,728π4ν3

t
. (4.40)

The mild solution can be continued further in time as long as enstrophy is bounded, so this

completes the proof.



Chapter 5

Regularity criteria

In this chapter we will prove Theorem 1.7, as well as some immediate corollaries that were also

stated in the introduction. Before we can prove these regularity criteria, we will need to prove

a lemma bounding the growth of enstrophy in terms of λ+
2 .

Lemma 5.1 (Middle eigenvalue determinant bound). Suppose S ∈ C
(
[0, T ];L2

st

)
∩L2

(
[0, T ] : Ḣ1(R3)

)
is a mild solution to the Navier-Stokes strain equation with external force f ∈ L2

loc

(
[0, T ];L2

(
R3
))
,

and S(x) has eigenvalues λ1(x) ≤ λ2(x) ≤ λ3(x). Define

λ+
2 (x) = max{λ2(x), 0}. (5.1)

Then

− det(S) ≤ 1

2
|S|2λ+

2 . (5.2)

and for all 0 < t ≤ T,

∂t‖S(·, t)‖2L2 ≤ −ν‖S‖2Ḣ1 + 2

∫
R3

λ+
2 |S|

2 +
2

ν
‖f‖2L2 . (5.3)

Proof. We will begin by noting that λ1 ≤ 0 and λ3 ≥ 0, so clearly, −λ1λ3 ≥ 0. This implies

that

− det(S) = (−λ1λ3)λ2 ≤ (−λ1λ3)λ+
2 . (5.4)

Next we can apply Young’s Inequality to show that

− λ1λ3 ≤
1

2
(λ2

1 + λ2
3) ≤ 1

2
(λ2

1 + λ2
2 + λ2

3) =
1

2
|S|2. (5.5)

We can combine these inequalities and conclude that

− det(S) ≤ 1

2
|S|2λ+

2 . (5.6)

30
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Next apply Hölder’s inequality, Proposition 3.1, and Young’s inequality to find

〈−∆u, f〉 ≤ ‖ −∆u‖L2‖f‖L2 (5.7)

=
√

2‖S‖Ḣ1‖f‖L2 (5.8)

≤ ν‖S‖2
Ḣ1 +

2

ν
‖f‖2L2 . (5.9)

Recall from Corollary 3.3, that

∂t‖S‖2L2 = −2ν‖S‖2
Ḣ1 − 4

∫
det(S) + 〈−∆u, f〉 , (5.10)

and this completes the proof.

With this bound, we are now ready to prove the main result of this chapter. This is Theorem

1.7 from the introduction, which is restated here for the reader’s convenience.

Theorem 5.2 (Middle eigenvalue of strain characterizes the blow-up time). Let u ∈ C
(

[0, T ]; Ḣ1
(
R3
))
∩

L2
(

[0, T ]; Ḣ2
(
R3
))
, for all T < Tmax be a mild solution to the Navier-Stokes equation with

force f ∈ L2
loc

(
(0, T ∗);L2

(
R3
))

. If 2
p + 3

q = 2, with 3
2 < q ≤ +∞, then

‖u(·, T )‖2
Ḣ1 ≤

(
‖u0‖2

Ḣ1 +
4

ν

∫ T

0
‖f(·, t)‖2L2

)
exp

(
Cq

∫ T

0
‖λ+

2 (·, t)‖p
Lq(R3)

dt

)
, (5.11)

with the constant Cq depending only on q and ν. In particular if the maximal existence time for

a mild solution Tmax < T ∗, then∫ Tmax

0
‖λ+

2 (·, t)‖p
Lq(R3)

dt = +∞. (5.12)

Proof. First we will note that ‖u(·, t)‖2
Ḣ1 must become unbounded as t → Tmax if the mild

solution cannot be extended beyond some time Tmax < T ∗, so it suffices to prove the bound

(5.11). Applying Proposition 3.1, it is equivalent to show that

‖S(·, T )‖2L2 ≤
(
‖S0‖2L2 +

2

ν

∫ T

0
‖f(·, t)‖2L2dt

)
exp

(
Cq

∫ T

0
‖λ+

2 (·, t)‖p
Lq(R3)

dt

)
. (5.13)

To begin we recall the conclusion in Lemma 5.1 (5.3)

∂t‖S(·, t)‖2L2 ≤ −ν‖S‖2Ḣ1 + 2

∫
R3

λ+
2 |S|

2 +
2

ν
‖f‖2L2 . (5.14)

First we will consider the case q = +∞. Applying Hölder’s inequality with exponents 1 and

+∞ we see that,

∂t‖S(·, t)‖2L2 ≤ 2‖λ+
2 ‖L∞‖S‖

2
L2 +

2

ν
‖f‖2L2 . (5.15)

Now we can apply Gronwall’s inequality and find that

‖S(·, T )‖2L2 ≤
(
‖S0‖2L2 +

2

ν

∫ T

0
‖f(·, t)‖2L2dt

)
exp

(
2

∫ T

0
‖λ+

2 ‖L∞dt
)
. (5.16)
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Now we will consider the case 3
2 < q < +∞. We will begin by applying Hölder’s inequality to

(5.3), so take 1
q + 1

a = 1, and so

∂t‖S(·, t)‖2L2 ≤ −ν‖S‖2Ḣ1 + 2‖λ+
2 ‖Lq‖S‖

2
L2a +

2

ν
‖f‖2L2 . (5.17)

Applying the Sobolev inequality we find

∂t‖S(·, t)‖2L2 ≤ −C2ν‖S‖2L6 + 2‖λ+
2 ‖Lq‖S‖

2
L2a +

2

ν
‖f‖2L2 . (5.18)

Noting that q > 3
2 , it follows that a < 3, so 2a < 6. Take σ ∈ (0, 1), such that 1

2a = σ 1
2 +(1−σ)1

6 .

Then interpolating between L2 and L6 we find that

∂t‖S(·, t)‖2L2 ≤ −C2ν‖S‖2L6 + 2‖λ+
2 ‖Lq‖S‖

2σ
L2‖S‖2(1−σ)

L6 +
2

ν
‖f‖2L2 . (5.19)

We know that σ
3 + 1

6 = 1
2a , so σ = 3

2a −
1
2 . By definition we have that 1

a = 1− 1
q , so σ = 1− 3

2q .

Therefore we conclude that

∂t‖S(·, t)‖2L2 ≤ −C2ν‖S‖2L6 + 2‖λ+
2 ‖Lq‖S‖

2− 3
q

L2 ‖S‖
3
q

L6 +
2

ν
‖f‖2L2 . (5.20)

Now take b = 2q
3 . That means 1 < b < +∞. Define p by 1

p + 1
b = 1, and apply Young’s inequality

with exponents p and b, and we find that

∂t‖S(·, t)‖2L2 ≤ −C2ν‖S‖2L6 + Cq

(
‖λ+

2 ‖Lq‖S‖
2− 3

q

L2

)p
+ C2ν‖S‖

b 3
q

L6 +
2

ν
‖f‖2L2 . (5.21)

Note that 1
p = 1− 1

b = 1− 3
2q . This means that p(2− 3

q ) = 2 and that 2
p + 3

q = 2, and we know

by definition that b3
q = 2, so

∂t‖S(·, t)‖2L2 ≤ Cq‖λ+
2 ‖

p
Lq‖S‖

2
L2 +

2

ν
‖f‖2L2 . (5.22)

Applying Gronwall’s inequality we find that

‖S(·, T )‖2L2 ≤
(
‖S0‖2L2 +

2

ν

∫ T

0
‖f‖2L2dt

)
exp

(
Cq

∫ T

0
‖λ+

2 ‖
p
Lq(R3)

dt

)
. (5.23)

This completes the proof.

We will note here that the case p = 1, q = +∞ corresponds to the Beale-Kato-Majda

criterion, so it may be possible to show that in this case the regularity criterion holds for the

Euler equations as well as the Navier-Stokes equations. Note in particular that we did not

use the dissipation to control the enstrophy, so there is a natural path to extend the result

to solutions of the Euler equation as well. There is more work to do however, as bounded

enstrophy is not sufficient to guarantee regularity for solutions to the Euler equations.

There is also an open question at the other boundary case, p = +∞ q = 3
2 . This would

likely be quite difficult as the methods used in [16,22] to extend the Prodi-Serrin-Ladyzhenskaya

regularity criterion to the boundary case p = +∞, q = 3 were much more technical than the
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methods in [33, 44, 48]. In particular, when p = +∞ it is no longer adequate to rely on the

relevant Sobolev embeddings, because we cannot apply Gronwall’s inequality. Nonetheless, it

is natural to suspect based on Theorem 5.2 that if u is a smooth solution to the Navier-Stokes

equation with a maximal time of existence, Tmax < +∞, then

lim sup
t→Tmax

‖λ+
2 (·, t)‖

L
3
2

= +∞. (5.24)

While we cannot prove this result, we can prove the following weaker statement.

Theorem 5.3 (Regularity criterion in the borderline case). Let u ∈ C
(

[0, T ]; Ḣ1
(
R3
))
∩

L2
(

[0, T ]; Ḣ2
(
R3
))
, for all T < Tmax be a mild solution to the Navier-Stokes equation with

force f ∈ L2
loc

(
(0, T ∗);L2

(
R3
))

. If Tmax < T ∗, then

lim sup
t→Tmax

‖λ+
2 (·, t)‖

L
3
2
≥ ν

C2
2

, (5.25)

where C2 is the constant in the sharp Sobolev inequality, Lemma 4.5.

Proof. Suppose toward contradiction that Tmax < T ∗ and

lim sup
t→Tmax

‖λ+
2 (·, t)‖

L
3
2
<

ν

C2
2

. (5.26)

Then there must exist ε, δ > 0, such that for all Tmax − δ < t < Tmax,

C2
2‖λ+

2 (·, t)‖
L

3
2
< ν − ε. (5.27)

Recall from the proof of Lemma 5.1 that

∂t‖S(·, t)‖2L2 ≤ −2ν‖S‖2
Ḣ1 + 2

∫
R3

λ+
2 |S|

2 +
√

2‖S‖Ḣ1‖f‖L2 (5.28)

≤ −2ν‖S‖2
Ḣ1 + 2‖λ+

2 ‖L 3
2
‖S‖2L6 +

√
2‖S‖Ḣ1‖f‖L2 (5.29)

≤ −2ν‖S‖2
Ḣ1 + 2C2

2‖λ+
2 ‖L 3

2
‖S‖2

Ḣ1 +
√

2‖S‖Ḣ1‖f‖L2 , (5.30)

where we have applied Hölder’s inequality and the sharp Sobolev inequality.

Next we recall that by hypothesis, for all Tmax − δ < t < Tmax,

C2
2‖λ+

2 ‖L 3
2
− ν < −ε. (5.31)

Using this fact and applying Young’s inequality, we find

∂t‖S(·, t)‖2L2 ≤ −2ε‖S‖2
Ḣ1 +

√
2‖S‖Ḣ1‖f‖L2 (5.32)

≤ 1

ε
‖f‖2L2 . (5.33)

Integrating this differential inequality we find that

lim sup
t→Tmax

‖S(·, t)‖2L2 ≤ ‖S(·, Tmax − δ)‖2L2 +
1

ε

∫ Tmax

Tmax−δ
‖f(·, t)‖2L2dt < +∞, (5.34)
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which is a contradiction because Tmax < T ∗ implies that

lim sup
t→Tmax

‖S(·, t)‖2L2 = +∞. (5.35)

This completes the proof.

Note that the boundary case in our paper is q = 3
2 , not q = 3. This is because the regularity

criterion in [16, 22] is on u, whereas our regularity criterion is on an eigenvalue of the strain

matrix, which scales like ∇⊗u. This is directly related to the Sobolev embedding W 1, 3
2

(
R3
)
⊂

L3
(
R3
)
.

Theorem 5.2 is one of few regularity criteria for the Navier-Stokes equations involving a

signed quantity, which is not too surprising, given that the Navier-Stokes equation is a vector

valued equation. Even the scalar regularity criteria based on only one component of u do not

involve signed quantities [7]. The only other regularity criterion for the Navier-Stokes equation

involving a signed quantity—at least to the knowledge of the author—is the regularity criterion

proved by Seregin and Šverák [46] that for a smooth solution to the Navier-Stokes equation to

blowup in finite time, p must become unbounded below and p+ 1
2 |u|

2 must become unbounded

above.

We will also make a remark about the relationship between this result and the regularity

criterion on one component of the gradient tensor
∂uj
∂xi

in [4]. A natural question to ask in light

of this regularity criterion is whether it is possible to prove a regularity criterion on just one

entry of the strain tensor Sij . This paper does not answer this question, however we do prove

a regularity criterion on just one diagonal entry of the diagonalization of the strain tensor.

Corollary 5.4 (Any eigenvalue of strain characterizes the blow-up time). Let u ∈ C
(

[0, T ]; Ḣ1
(
R3
))
∩

L2
(

[0, T ]; Ḣ2
(
R3
))
, for all T < Tmax be a mild solution to the Navier-Stokes equation with

force f ∈ L2
loc

(
(0, T ∗);L2

(
R3
))

. If 2
p + 3

q = 2, with 3
2 < q ≤ +∞, then

‖u(·, T )‖2
Ḣ1 ≤

(
‖u0‖2

Ḣ1 +
4

ν

∫ T

0
‖f(·, t)‖2L2dt

)
exp

(
Cq

∫ T

0
‖λi(·, t)‖pLq(R3)

dt

)
, (5.36)

with the constant Cq depending only on q and ν. In particular if Tmax < T ∗, then∫ Tmax

0
‖λi(·, t)‖pLq(R3)

dt = +∞. (5.37)

Proof. λ1 ≤ λ2 ≤ λ3 and λ1 + λ2 + λ3 = 0 implies that |λ1|, |λ3| ≥ |λ2| ≥ |λ+
2 |. Therefore∫ T

0
‖λ+

2 (·, t)‖pLqdt ≤
∫ T

0
‖λi(·, t)‖pLqdt. (5.38)

Applying this inequality to both conclusions in Theorem 5.2, this completes the proof.

We will also note that there is a gap to be closed in the regularity criterion on
∂uj
∂xi

, because

it is not the optimal result with respect to scaling and requires subcritical control on
∂uj
∂xi

. That

is, the result only holds for 2
p + 3

q = q+3
2q < 2, for i 6= j and 2

p + 3
q = 3q+6

4q < 2, for i = j, whereas

the regularity criterion on one of the eigenvalues in Corollary 5.4 is critical with respect to the
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scaling. It is natural, however, to ask whether Theorem 5.2 can be extended to the critical

Besov spaces, so in that sense the result may be pushed further.

Corollary 5.4 is only really a new result, however, for λ2. This is because |λ1| and |λ3| both

control |S|. As we will see from the following proposition, the regularity criteria in terms of

λ1 or λ3 follow immediately from the Prodi-Serrin-Ladyzhenskaya regularity criterion without

needing to use strain evolution equation at all, so in this case Corollary 5.3 is just an unstated

corollary of previous results.

Proposition 5.5 (Lower bounds on the magnitude of the extermal eigenvalues). Suppose M ∈
S3×3 is a symmetric trace free matrix with eigenvalues λ1 ≤ λ2 ≤ λ3. Then

λ3 ≥
1√
6
|S|, (5.39)

with equality if and only if −1
2λ1 = λ2 = λ3, and

λ1 ≤ −
1√
6
|S|, (5.40)

with equality if and only if λ1 = λ2 = −1
2λ3.

Furthermore, for all S ∈ L2
st and for all 1 ≤ q ≤ +∞

‖S‖Lq ≤
√

6‖λ1‖Lq (5.41)

and

‖S‖Lq ≤
√

6‖λ3‖Lq . (5.42)

Proof. We will prove the statement for λ3. The proof of the statement for λ1 is entirely analogous

and is left to the reader. First observe that if −1
2λ1 = λ2 = λ3, then

|S|2 = λ2
1 + λ2

2 + λ2
3 = 6λ2

3, (5.43)

So we have proven that if λ2 = λ3, then λ3 = 1√
6
|S|. Now suppose λ2 < λ3. Recall that

tr(M) = λ1 + λ2 + λ3 = 0, (5.44)

so

λ1 = −λ2 − λ3. (5.45)

Therefore we find that

|S|2 = (−λ2 − λ3)2 + λ2
2 + λ2

3 = 2λ2
2 + 2λ2

3 + 3λ2λ3. (5.46)

Applying Young’s Inequality we can bound

2λ2λ3 ≤ λ2
2 + λ2

3, (5.47)

so

|S|2 ≤ 3λ2
2 + 3λ2

3 < 6λ2
3. (5.48)
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λ3 ≥ 0, so this completes the proof. We leave the analogous proof for λ1 to the reader. The

Lq bounds follow immediately from integrating these bounds pointwise when one recalls that

tr(S) = 0. We will note here that the Lq norms may be infinite, as by hypothesis we only have

S ∈ L2, but by convention the inequality is satisfied if both norms are infinite.

In particular this implies that regularity criteria involving λ1 or λ3 follow immediately from

regularity criteria involving S, so while the regularity criteria on λ1 and λ3 in Corollary 5.4

do not appear in the literature to the knowledge of the author, these criteria do not offer a

real advance over the Prodi-Serrin-Ladyzhenskaya criterion [33, 44, 48], as the critical norm on

u can be controlled by the critical norm on S using Sobolev embedding, which can in turn be

bounded by the critical norm on λ1 or λ3 using Proposition 5. That is

‖u‖Lq∗ ≤ C‖S‖Lq ≤
√

6C‖λ3‖Lq . (5.49)

It is the regularity criterion in terms of λ+
2 that is really significant, because it encodes geometric

information about the strain beyond just its size.

We will also note that none of the regularity criteria involving ∇uj [54], ∂xiu [32], or

∂xiuj [4], have been proven for the Navier-Stokes equation with an external force. However,

the regularity criterion in Theorem 5.2 is also valid for Navier-Stokes equation with an external

force. It may only be an exercise to extend the results cited above to the case with an external

force, but because these papaers do not establish their regularity criteria by applying Grönwall

type estimates to the enstrophy, it is not immediately clear that this is is the case.

Lemma 5.6 (The middle eigenvector is minimal). Suppose S ∈ L2
st and v ∈ L∞(R3;R3) with

|v(x)| = 1 almost everywhere x ∈ R3. Then

|λ2(x)| ≤ |S(x)v(x)| (5.50)

almost everywhere x ∈ R3.

Proof. By the spectral theorem, we know that there is an orthonormal eigenbasis for Rn.
In particular, take v1(x), v2(x), v3(x) to be eigenvectors of S(x) corresponding to eigenvalues

λ1(x), λ2(x), λ3(x) such that |v1(x)|, |v2(x)|, |v3(x)| = 1 almost everywhere x ∈ R3. Then from

the spectral theorem we know that {v1(x), v2(x), v3(x)} is an orthonormal basis for R3 almost

everywhere x ∈ R3. Therefore

Sv = λ1(v · v1)v1 + λ2(v · v2)v2 + λ3(v · v3)v3. (5.51)

tr(S) = 0 implies that |λ2| ≤ |λ1|, |λ3|, so we can see that

|Sv|2 = λ2
1(v · v1)2 + λ2

2(v · v2)2 + λ2
3(v · v3)2 (5.52)

≥ λ2
2

(
(v · v1)2 + (v · v2)2 + (v · v3)2

)
. (5.53)

Because {v1(x), v2(x), v3(x)} is an orthonormal basis for R3 almost everywhere x ∈ R3, we

conclude that

(v · v1)2 + (v · v2)2 + (v · v3)2 = |v|2 = 1. (5.54)

Therefore

|Sv|2 ≥ λ2
2. (5.55)
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This concludes the proof.

Now that we have proven Lemma 5.6, we will prove a new regularity criterion for the strain

tensor. This regularity criterion is Theorem 1.9 in the introduction, and is restated here for the

reader’s convenience.

Theorem 5.7 (Blowup requires the strain to blow up in every direction). Let u ∈ C
(

[0, T ]; Ḣ1
(
R3
))
∩

L2
(

[0, T ]; Ḣ2
(
R3
))
, for all T < Tmax be a mild solution to the Navier-Stokes equation with

force f ∈ L2
loc

(
(0, T ∗);L2

(
R3
))

, and let v ∈ L∞
(
R3 × [0, Tmax];R3

)
, with |v(x, t)| = 1 almost

everywhere. If 2
p + 3

q = 2, with 3
2 < q ≤ +∞, then

‖u(·, T )‖2
Ḣ1 ≤

(
‖u0‖2

Ḣ1 +
4

ν

∫ T

0
‖f(·, t)‖2L2

)
exp

(
Cq

∫ T

0
‖S(·, t)v(·, t)‖p

Lq(R3)
dt

)
, (5.56)

with the constant Cq depending only on q and ν. In particular if the maximal existence time for

a mild solution Tmax < T ∗, then∫ Tmax

0
‖S(·, t)v(·, t)‖p

Lq(R3)
dt = +∞. (5.57)

Proof. This follows immediately from Lemma 5.6 and Theorem 5.2.

We can use Theorem 5.7 to prove a new one-direction-type regularity criterion involving the

sum of the derivative of the whole velocity in one direction, and the gradient of the component

in the same direction. In fact, Theorem 5.7 allows us to prove a one direction regularity

criterion that involves different directions in different regions of R3. First off, for any unit

vector v ∈ R3, |v| = 1 we define ∂v = v · ∇ and uv = u · v. We will now prove Theorem 1.8,

which is restated here for the reader’s convenience.

Corollary 5.8 (Local one direction regularity criterion). Let {vn(t)}n∈N ⊂ R3 with |vn(t)| = 1.

Let {Ωn(t)}n∈N ⊂ R3 be Lebesgue measurable sets such that for all m 6= n, Ωm(t) ∩ Ωn(t) = ∅,
and R3 =

⋃
n∈N Ωn(t). Let u ∈ C

(
[0, T ]; Ḣ1

(
R3
))
∩L2

(
[0, T ]; Ḣ2

(
R3
))
, for all T < Tmax be a

mild solution to the Navier-Stokes equation with force f ∈ L2
loc

(
(0, T ∗);L2

(
R3
))
. If 2

p + 3
q = 2,

with 3
2 < q ≤ +∞, then

‖u(·, T )‖2
Ḣ1 ≤

(
‖u0‖2

Ḣ1 +
4

ν

∫ T

0
‖f(·, t)‖2L2

)
exp

Cq ∫ T

0

( ∞∑
n=1

∥∥∂vnu(·, t) +∇uvn(·, t)
∥∥q
Lq(Ωn(t))

) p
q

dt

 ,

(5.58)

with the constant Cq depending only on q and ν. If the maximal existence time for a mild

solution Tmax < T ∗, then

∫ Tmax

0

( ∞∑
n=1

∥∥∂vnu(·, t) +∇uvn(·, t)
∥∥q
Lq(Ωn(t))

) p
q

dt = +∞. (5.59)
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In particular if we take vn(t) =

0

0

1

 for all n ∈ N, then (5.59) reduces to

∫ Tmax

0
‖∂3u(·, t) +∇u3(·, t)‖pLqdt = +∞. (5.60)

Proof. Let v(x, t) =
∑∞

n=1 vn(t)IΩn(t)(x), where IΩ is the indicator function IΩ(x) = 1 for all

x ∈ Ω and IΩ(x) = 0 otherwise. Note that in this case we clearly have

S(x, t)v(x, t) =
∞∑
n=1

IΩn(t)(x)S(x, t)vn(t). (5.61)

Because {Ωn}n∈N are disjoint, we have

‖S(·, t)v(·, t)‖q
Lq(R3)

=

∞∑
n=1

‖S(·, t)vn(t)‖qLq(Ωn(t)). (5.62)

Therefore we find that

‖S(·, t)v(·, t)‖p
Lq(R3)

=

( ∞∑
n=1

‖S(·, t)vn(t)‖qLq(Ωn(t))

) p
q

. (5.63)

Finally observe that

S(x, t)vn(t) =
1

2
∂vnu(x, t) +

1

2
∇uvn(x, t), (5.64)

so

‖S(·, t)v(·, t)‖p
Lq(R3)

=

( ∞∑
n=1

∥∥∥∥1

2
∂vnu(·, t) +

1

2
∇uvn(·, t)

∥∥∥∥q
Lq(Ωn(t))

) p
q

. (5.65)

Applying Theorem 5.7, this completes the proof.

There are previous regularity criteria involving only one direction. For instance, Kukavica

and Ziane [32] showed that if Tmax < +∞, and if 2
p + 3

q = 2, with 9
4 ≤ q ≤ 3, then∫ Tmax

0
‖∂3u(·, t)‖p

Lq(R3)
dt = +∞. (5.66)

More recently, it was shown by Chemin, Zhang, and Zhang [11,12] that if Tmax < +∞ and

4 < p < +∞, then ∫ Tmax

0
‖u3(·, t)‖p

Ḣ
1
2+ 2

p
= +∞. (5.67)

Corollary 5.8 extends regularity criteria involving one fixed direction to regularity criteria in

which the direction may vary in time and space. In the case where there is no external force,

f = 0, these results both imply the special case of Corollary 5.8, that if Tmax < +∞ then∫ Tmax

0
‖∂3u(·, t) +∇u3(·, t)‖pLq = +∞, (5.68)
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in the range of exponents 9
4 ≤ q ≤ 3 and 3

2 < q < 6 respectively. This follows from the

Helmholtz decomposition in Proposition 1.3, as we will now show.

Observe that the projections associated with the Helmholtz decomposition allow us to con-

trol ‖∂3u‖Lq and ‖u3‖
Ḣ

1
2+

p
2

by ‖∂3u+∇u3‖Lq . In particular, we find

‖∂3u‖Lq = ‖Pdf (∂3u+∇u3) ‖Lq ≤ Bq‖∂3u+∇u3‖Lq . (5.69)

Applying the the Sobolev embedding Ḣ
1
2

+ p
2

(
R3
)
⊂ W 1,q

(
R3
)

when 2
p + 3

q = 2, and the Lq

boundedness of Pg, we can also see that

‖u3‖
Ḣ

1
2+ 2

p
≤ D‖∇u3‖Lq = D‖Pg (∂3u+∇u3) ‖Lq ≤ DBq‖∂3u+∇u3‖Lq . (5.70)

This means that the regularity criterion requiring ∂3u +∇u3 ∈ LptL
q
x is not new in the range

3
2 < q ≤ 6. In fact, for 3

2 < q < +∞ this special case of Corollary 5.8, is equivalent to a

regularity criterion on two components of the vorticity, which we will discuss in chapter 6, once

we have developed the necessary isometry between ∂3u+∇u3 and (ω1, ω2, 0).

While the special case of Corollary 5.8 involving the regularity criterion on ∂3u + ∇u3 is

not new, Corollary 5.7 and Corollary 5.8 are stronger than previous results in that they do

not require regularity in a fixed direction, but allow this direction to vary. One interpretation

of component reduction results for Navier-Stokes regularity criteria, is that if the solution

is approximately two dimensional, then it must be smooth. The only reason that we have

component reduction regularity criteria for the 3D Navier-Stokes equation, is because the 2D

Navier-Stokes equation has smooth solutions globally in time. All of the previous component

reduction regularity criteria involve some fixed direction, and so can be interpreted as saying

if a solution is globally approximately two dimensional, then it must be smooth. Corollary 5.7

and Corollary 5.8 strengthen these statements to the requirement that the solution must be

regular even if it is only locally two dimensional, and furthermore requires the solution to have

a specific three dimensional structure with unbounded planar stretching by the strain matrix.

This shows the deep geometric significance of the Theorem 5.2, that λ+
2 controls the growth of

enstrophy.



Chapter 6

A vorticity approach to almost two

dimensional initial data

In order to prove the Theorem 1.12, we will need to prove some bounds on the growth of

‖ωh‖
Ḣ−

1
2
, as well as bound the growth of enstrophy in terms of ‖ωh‖

Ḣ−
1
2
. In order to do this

we will need to consider the evolution equation for the horizontal components of vorticity, ωh,

which is given in the following proposition. Throughout this chapter and the next, we will

consider the Navier-Stokes equation with no external force, setting f = 0.

Proposition 6.1 (Two component vorticity equation). Suppose u ∈ C
(

[0, Tmax);H1
df

)
is a

mild solution, and therefore a classical solution to the Navier-Stokes equation. Then ωh is a

classical solution of

∂tωh + (u · ∇)ωh −∆ωh − Sωh − Shω = 0, (6.1)

where ωh =

ω1

ω2

0

 and Sh =

 0 0 S13

0 0 S23

−S13 −S23 0

 .

Proof. Kato and Fujita proved that mild solutions must be smooth [18], so clearly u is a classical

solution to the Navier-Stokes equation. Therefore ω = ∇× u is also smooth and is a classical

solution to the vorticity equation:

∂tω + (u · ∇)ω −∆ω − Sω = 0. (6.2)

Let Ih =

1 0 0

0 1 0

0 0 0

 . Then we clearly have ωh = Ihω. Multiply the vorticity equation through

by Ih and find that

∂tωh + (u · ∇)ωh −∆ωh − IhSω = 0. (6.3)

Next we add and subtract SIhω. Therefore,

∂tωh + (u · ∇)ωh −∆ωh − IhSω + SIhω − SIhω = 0. (6.4)

Regrouping terms we find that

∂tωh + (u · ∇)ωh −∆ωh − (IhS − SIh)ω − S (Ihω) = 0. (6.5)

40
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Recall that Ihω = ωh and compute that Sh = IhS − SIh, and this completes the proof.

One of the key aspects in our proof is a generalization of the isometry in Proposition 3.1

that tells us ‖S‖2L2 = 1
2‖ω‖

2
L2 , to an isometry that involves just one column of S and just two

components of ω. In order to state this isometry, we will define the vectors v1, v2, v3 as follows.

Definition 6.2. For i ∈ {1, 2, 3} define vi = ∂iu+∇ui. Note in particular that vij = 2Sij , for

all i, j ∈ {1, 2, 3}. Equivalently, note that v1, v2, v3 are the columns of 2S.

With these vectors defined, we can restate our identity for enstrophy growth in Corollary

3.3 in terms of v1, v2, v3.

Proposition 6.3 (Triple product enstrophy identity). Let u ∈ C
(

[0, Tmax);H1
df

)
be a mild

solution to the Navier-Stokes equation. Then for all 0 ≤ t < Tmax, we have

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1 −

1

2

∫
R3

(
v1 × v2

)
· v3. (6.6)

Proof. We know that v1, v2, v3 are the columns of 2S, so by the triple product representation

of the determinant of a three by three matrix

det (2S) =
(
v1 × v2

)
· v3. (6.7)

The three by three determinant is homogeneous of order three, so

det (2S) = 8 det (S) . (6.8)

Therefore we conclude that

− 4 det (S) =
(
v1 × v2

)
· v3. (6.9)

Recalling from Proposition 3.12 that

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1 − 4

∫
R3

det(S), (6.10)

this completes the proof.

We will now prove an isometry that relates Hilbert norms v3 and ωh to each other and to

∂3u and ∇u3, as well as bounding Hilbert norms of Sh by ωh.

Lemma 6.4 (Two component isometry). Suppose u ∈ H1
df . Then for all −1 ≤ α ≤ 0,

‖v3‖2
Ḣα = ‖ωh‖2Ḣα = ‖∂3u‖2Ḣα + ‖∇u3‖2Ḣα (6.11)

and

‖Sh‖Ḣα ≤
1√
2
‖ωh‖Ḣα . (6.12)

Proof. First we observe that

∂3u−∇u3 =

∂3u1 − ∂1u3

∂3u2 − ∂2u3

0

 =

 ω2

−ω1

0

 . (6.13)
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Therefore clearly

‖ωh‖Ḣα = ‖∂3u−∇u3‖Ḣα . (6.14)

This means we can compute that

‖ωh‖2Ḣα = ‖∂3u−∇u3‖2Ḣα = ‖∂3u‖2Ḣα + ‖∇u3‖2Ḣα − 2 〈∂3u,∇u3〉Ḣα , (6.15)

‖v3‖2
Ḣα = ‖∂3u+∇u3‖2Ḣα = ‖∂3u‖2Ḣα + ‖∇u3‖2Ḣα + 2 〈∂3u,∇u3〉Ḣα . (6.16)

Next we observe that because ∇ · u = 0, then clearly ∇ · ∂3u = 0. Therefore ∂3u and ∇u3 are

orthogonal in Ḣα, so

〈∂3u,∇u3〉Ḣα = 0. (6.17)

Therefore we conclude that

‖ωh‖2Ḣα = ‖v3‖2
Ḣα = ‖∂3u‖2Ḣα + ‖∇u3‖2Ḣα . (6.18)

Finally we see that

|Sh|2 = 2S2
13 + 2S2

23 ≤ 2S2
13 + 2S2

23 + 2S2
33 =

1

2
|v3|2. (6.19)

Therefore we can conclude that

‖Sh‖2Ḣα ≤
1

2
‖v3‖2

Ḣα =
1

2
‖ωh‖2Ḣα . (6.20)

This completes the proof.

Remark 6.5. Another way to see this isometry, is that

‖Se3‖2Ḣα =
1

4
‖e3 × ω‖2Ḣα . (6.21)

In fact, for any fixed vector v ∈ R3 we will have

‖Sv‖2
Ḣα =

1

4
‖v × ω‖2

Ḣα . (6.22)

This is directly related to Proposition 3.1, because

‖S‖2
Ḣα = ‖Se1‖2Ḣα + ‖Se2‖2Ḣα + ‖Se3‖2Ḣα (6.23)

=
1

4

(
‖e1 × ω‖2Ḣα + ‖e2 × ω‖2Ḣα + ‖e3 × ω‖2Ḣα

)
(6.24)

=
1

2
‖ω‖2

Ḣα . (6.25)

This shows that the isometry between the symmetric and anti-symmetric part of the gradient,

between strain and vorticity, not only holds overall, but also in any fixed direction.

This isometry, together with the identity for enstrophy growth in Proposition 6.3, will allow

us to prove a new bound on the growth of enstrophy in terms of the critical Hilbert norm of

ωh. Before we proceed with this estimate, we will note that there is also a generalization of this

result in Lq. The Lq norms of v3 and ωh are also equivalent, although not necessarily equal.
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Proposition 6.6 (Two component equivalence). Fix 1 < q < +∞ and let Bq ≥ 1 be the

constant from the Helmholtz decomposition, Proposition 1.3. Then for all u ∈ Ẇ 1,q
df

(
R3
)
,

1

2Bq
‖ωh‖Lq ≤ ‖v3‖Lq ≤ 2Bq‖ωh‖Lq . (6.26)

Proof. As we have already seen,

∂3u−∇u3 =

 ω2

−ω1

0

 , (6.27)

so clearly

‖ωh‖Lq = ‖∂3u−∇u3‖Lq . (6.28)

Observing that ∂3u = Pdf (∂3u−∇u3) , and ∇u3 = Pg (∂3u−∇u3) , we can apply Proposition

1.3 and find that

‖∂3u‖Lq ≤ Bq‖ωh‖Lq , (6.29)

‖∇u3‖Lq ≤ Bq‖ωh‖Lq . (6.30)

Recalling that v3 = ∂3u+∇u3, we apply the triangle inequality and find that

‖v3‖Lq ≤ ‖∂3u‖Lq + ‖∇u3‖Lq ≤ 2Bq‖ωh‖Lq . (6.31)

We have proven the second inequality. Now we need to show that ‖ωh‖Lq ≤ 2Bq‖v3‖Lq . The

argument is essentially the same. Observe that ∂3u = Pdf
(
v3
)

and ∇u3 = Pg
(
v3
)
. Therefore

from Proposition 1.3, we find that

‖∂3u‖Lq ≤ Bq‖v3‖Lq , (6.32)

‖∇u3‖Lq ≤ Bq‖v3‖Lq . (6.33)

Applying the triangle inequality, we find that

‖ωh‖Lq ≤ ‖∂3u‖Lq + ‖∇u3‖Lq ≤ 2Bq‖v3‖Lq . (6.34)

This completes the proof.

Proposition 6.7 (Two vorticity components control enstrophy growth). Taking C1 and C2

as in Lemmas 4.3 and 4.5, let R1 = 1
2C1C2

. Then for all mild solutions to the Navier-Stokes

equation u ∈ C
(

[0, Tmax);H1
df

)
, we have

∂t‖ω(·, t)‖2L2 ≤ −
2

R1
‖ω‖2

Ḣ1

(
R1ν − ‖ωh‖

Ḣ−
1
2

)
. (6.35)

In particular, if Tmax < +∞, then

lim sup
t→Tmax

‖ωh(·, t)‖
Ḣ−

1
2
≥ R1ν. (6.36)
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Proof. We begin by applying Proposition 6.3, Lemma 6.4, and the duality of Ḣ−
1
2 and Ḣ

1
2 . We

find that:

∂t‖S(·, t)‖2L2 = −2ν‖S‖2
Ḣ1 −

1

2

∫
R3

(
v1 × v2

)
· v3 (6.37)

≤ −2ν‖S‖2
Ḣ1 +

1

2
‖v3‖

Ḣ−
1
2
‖v1 × v2‖

Ḣ
1
2

(6.38)

= −2ν‖S‖2
Ḣ1 +

1

2
‖ωh‖

Ḣ−
1
2
‖v1 × v2‖

Ḣ
1
2

(6.39)

= −2ν‖S‖2
Ḣ1 +

1

2
‖ωh‖

Ḣ−
1
2
‖∇
(
v1 × v2

)
‖
Ḣ−

1
2
. (6.40)

Next we apply the fractional Sobolev inequality, the chain rule for gradients, the generalized

Hölder inequality, and the Sobolev inequality to find that

∂t‖S(·, t)‖2L2 ≤ −2ν‖S‖2
Ḣ1 +

1

2
C1‖ωh‖

Ḣ−
1
2
‖∇
(
v1 × v2

)
‖
L

3
2

(6.41)

≤ −2ν‖S‖2
Ḣ1 +

1

2
C1‖ωh‖

Ḣ−
1
2

(
‖
(
|∇v1||v2|

)
‖
L

3
2

+ ‖
(
|v1||∇v2|

)
‖
L

3
2

)
(6.42)

≤ −2ν‖S‖2
Ḣ1 +

1

2
C1‖ωh‖

Ḣ−
1
2

(
‖∇v1‖L2‖v2‖L6 + ‖v1‖L6‖∇v2‖L2

)
(6.43)

≤ −2ν‖S‖2
Ḣ1 + C1C2‖ωh‖

Ḣ−
1
2
‖∇v1‖L2‖∇v2‖L2 . (6.44)

Finally observe that the vectors vi are the columns of 2S, so

‖∇vi‖L2 = ‖vi‖Ḣ1 ≤ 2‖S‖Ḣ1 . (6.45)

Therefore we find that

∂t‖S(·, t)‖2L2 ≤ −2ν‖S‖2
Ḣ1 + 4C1C2‖ωh‖

Ḣ−
1
2
‖S‖2

Ḣ1 . (6.46)

Applying Proposition 3.1 and recalling that 1
R1

= 2C1C2, we find that

∂t‖ω(·, t)‖2L2 ≤ −2ν‖ω‖2
Ḣ1 + 4C1C2‖ωh‖

Ḣ−
1
2
‖ω‖2

Ḣ1 (6.47)

= − 2

R1
‖ω‖2

Ḣ2

(
R1ν − ‖ωh‖

Ḣ−
1
2

)
. (6.48)

This completes the proof of the bound.

Now we will prove the second piece. Suppose Tmax < +∞. Then

lim sup
t→Tmax

‖ω(·, t)‖2L2 = +∞. (6.49)

Therefore, for all ε > 0, ‖ω(·, t)‖L2 is not nonincreasing on the interval (Tmax − ε, Tmax).

Therefore, for all ε > 0, there exists t ∈ (Tmax − ε, Tmax), such that ∂t‖ω(·, t)‖L2 > 0. Applying

the bound we have just proven, this implies that for all ε > 0, there exists t ∈ (Tmax − ε, Tmax)

such that

‖ωh(·, t)‖
Ḣ−

1
2
> R1ν. (6.50)
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Therefore,

lim sup
t→Tmax

‖ωh(·, t)‖
Ḣ−

1
2
≥ R1ν. (6.51)

This completes the proof.

We will note that this is the Ḣ−
1
2 version of a theorem proved in L

3
2 by Chae and Choe

in [6]. Their result is the following.

Theorem 6.8 (Two component regularity criterion). Let u ∈ C
(

[0, Tmax); Ḣ1
df

)
, be a mild

solution to the Navier-Stokes equation. There exists C > 0 independent of ν such that if

Tmax < +∞, then

lim sup
t→Tmax

‖ωh‖
L

3
2
≥ Cν. (6.52)

Furthermore, for all 3
2 < q < +∞, let 3

q + 2
p = 2. There exists Cq > 0 defending on only p, q

and ν such that

E(t) ≤ E0 exp

(
Cq

∫ t

0
‖ωh(·, t)‖pLqdt

)
. (6.53)

Proposition 6.7 extends the result of Chae and Choe from a lower bound on ωh in L
3
2 near

a possible singularity to a lower bound in Ḣ−
1
2 near a possible singularity. The analysis of the

relationship between ωh and v3 also sheds some light on a relationship between Theorem 6.8

and Corollary 5.8.

We will note here that Proposition 6.6 implies that the regularity criterion on ∂3u+∇u3, the

special case of Corollary 5.8 when the direction is taken to be fixed, is equivalent to Chae and

Choe’s result in Theorem 6.8 for 3
2 < q < +∞, because we have shown that for 1 < q < +∞,

‖ωh‖Lq and ‖∂3u+∇u3‖Lq are equivalent norms.

We previously found a bound for enstrophy growth in terms of ‖ωh‖
Ḣ−

1
2
. The next step

will be to prove a bound on the growth of ‖ωh‖
Ḣ−

1
2

using the evolution equation for ωh in

Proposition 6.1 and the bounds in Proposition 6.4.

Proposition 6.9 (Grönwall type bound for two vorticity components). Taking C1 and C2

as in Lemmas 4.3 and 4.5, let 1
R2

= 27
128

(
1 +
√

2
)4
C4

1C
4
2 . Then for all mild solutions to the

Navier-Stokes equation u ∈ C
(

[0, Tmax);H1
df

)
and for all 0 ≤ t < Tmax,

∂t‖ωh(·, t)‖2
Ḣ−

1
2
≤ 1

R2ν3
‖ω‖4L2‖ωh‖2

Ḣ−
1
2
. (6.54)

Furthermore, for all 0 ≤ t < Tmax

‖ωh(·, t)‖2
Ḣ−

1
2
≤ ‖ω0

h‖2
Ḣ−

1
2

exp

(
1

R2ν3

∫ t

0
‖ω(·, τ)‖4L2dτ

)
. (6.55)

Proof. We begin by using the evolution equation for ωh in Proposition 6.1 to compute that

∂t
1

2
‖ωh(·, t)‖2

Ḣ−
1
2

= −ν‖ωh‖2
Ḣ

1
2
−
〈

(−∆)−
1
2ωh, (u · ∇)ωh

〉
+
〈

(−∆)−
1
2ωh, Sωh + Shω

〉
. (6.56)
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Next we bound the last term using the duality of Ḣ1 and Ḣ−1 :〈
(−∆)−

1
2ωh, Sωh + Shω

〉
≤ ‖(−∆)−

1
2ωh‖Ḣ1‖Sωh + ωhS‖Ḣ−1 (6.57)

= ‖ωh‖L2‖Sωh + ωhS‖Ḣ−1 (6.58)

≤ C2‖ωh‖L2‖Shω + Sωh‖
L

6
5
, (6.59)

where we have applied the definition of the Ḣ1 to show that ‖(−∆)−
1
2ωh‖Ḣ1 = ‖ωh‖L2 , and then

applied the Sobolev inequality in Lemma 4.5. Applying the triangle inequality, the generalized

Hölder inequality, and the fractional Sobolev inequality we can see that〈
(−∆)−

1
2ωh, Sωh + Shω

〉
≤ C2‖ωh‖L2

(
‖Shω‖

L
6
5

+ ‖Sωh‖
L

6
5

)
(6.60)

≤ C2‖ωh‖L2

(
‖Sh‖L3‖ω‖L2 + ‖S‖L2‖ωh‖L3

)
(6.61)

≤ C1C2‖ωh‖L2

(
‖Sh‖

Ḣ
1
2
‖ω‖L2 + ‖S‖L2‖ωh‖

Ḣ
1
2

)
. (6.62)

Applying Lemma 6.4 we observe that ‖Sh‖
Ḣ

1
2
≤ 1√

2
‖ωh‖

Ḣ
1
2
, and applying Proposition 3.1 we

observe that ‖S‖L2 = 1√
2
‖ω‖L2 . Finally we can conclude that〈

(−∆)−
1
2ωh, Sωh + Shω

〉
≤
√

2C1C2‖ωh‖L2‖ω‖L2‖ωh‖
Ḣ

1
2

(6.63)

≤
√

2C1C2‖ω‖L2‖ωh‖
1
2

Ḣ−
1
2
‖ωh‖

3
2

Ḣ
1
2
, (6.64)

where we have interpolated between Ḣ−1 and Ḣ1, observing that ‖ωh‖L2 ≤ ‖ωh‖
1
2

Ḣ−
1
2
‖ωh‖

1
2

Ḣ
1
2
.

We now turn our attention to the term −
〈

(−∆)−
1
2ωh, (u · ∇)ωh

〉
. First we note that u ∈

C ((0, Tmax);H∞) , due to the higher regularity of mild solutions, so we have sufficient regularity

to integrate by parts. Using the fact that ∇ · u = 0, conclude that

−
〈

(−∆)−
1
2ωh, (u · ∇)ωh

〉
=
〈

(u · ∇)(−∆)−
1
2ωh, ωh

〉
. (6.65)

Applying the generalized Hölder inequality, the Sobolev inequality, and the isometry in Propo-

sition 3.1, and interpolating between Ḣ−1 and Ḣ1 as above, we find that〈
(u · ∇)(−∆)−

1
2ωh, ωh

〉
≤ ‖u‖L6‖∇(−∆)−

1
2ωh‖L2‖ωh‖L3 (6.66)

= ‖u‖L6‖ωh‖L2‖ωh‖L3 (6.67)

≤ C1C2‖u‖Ḣ1‖ωh‖L2‖ωh‖
Ḣ

1
2

(6.68)

= C1C2‖ω‖L2‖ωh‖L2‖ωh‖
Ḣ

1
2

(6.69)

≤ C1C2‖ω‖L2‖ωh‖
1
2

Ḣ−
1
2
‖ωh‖

3
2

Ḣ
1
2
. (6.70)

Combining the bounds in (6.64) and (6.70), we find that

∂t
1

2
‖ωh(·, t)‖2

Ḣ−
1
2
≤ −ν‖ωh‖2

Ḣ
1
2

+
(

1 +
√

2
)
C1C2‖ω‖L2‖ωh‖

1
2

Ḣ−
1
2
‖ωh‖

3
2

Ḣ
1
2
. (6.71)
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Setting r = ‖ωh‖
Ḣ

1
2
, we can see that

∂t
1

2
‖ωh(·, t)‖2

Ḣ−
1
2
≤ sup

r>0

(
−νr2 +

(
1 +
√

2
)
C1C2‖ω‖L2‖ωh‖

1
2

Ḣ−
1
2
r

3
2

)
. (6.72)

Let f(r) = −νr2 +Mr
3
2 , where M =

(
1 +
√

2
)
C1C2‖ω‖L2‖ωh‖

1
2

Ḣ−
1
2
. Observe that

f ′(r) = −2νr +
3

2
Mr

1
2 . (6.73)

Therefore f has a global max at r0 =
√

3M
4ν . This implies that

sup
r>0

(
−νr2 +

(
1 +
√

2
)
C1C2‖ω‖L2‖ωh‖

1
2

Ḣ−
1
2
r

3
2

)
= f(r0) =

27

256ν3
M4. (6.74)

Substituting in for M, we find that

∂t
1

2
‖ωh(·, t)‖2

Ḣ−
1
2
≤

27
(
1 +
√

2
)4
C4

1C
4
2

256ν3
‖ω‖4L2‖ωh‖2

Ḣ−
1
2
. (6.75)

Multiplying both sides by 2, and substituting in 1
R2

=
27(1+

√
2)

4
C4

1C
4
2

128 , observe that

∂t‖ωh(·, t)‖2
Ḣ−

1
2
≤ 1

R2ν3
‖ω‖4L2‖ωh‖2

Ḣ−
1
2
. (6.76)

Applying Grönwall’s inequality, this completes the proof.

With this bound, we now have developed all the machinery we need to prove the main result

of this chapter, Theorem 1.12, which is restated here for the reader’s convenience.

Theorem 6.10 (Global regularity for two components of vorticity small). For each initial

condition u0 ∈ Ḣ1
df such that

‖ω0
h‖Ḣ− 1

2
exp

(
K0E0 − 6, 912π4ν4

R2ν3

)
< R1ν, (6.77)

u0 generates a unique, global smooth solution to the Navier-Stokes equation u ∈ C
(

(0,+∞);H1
df

)
,

that is Tmax = +∞. Note that the smallness condition can be equivalently stated as

K0E0 < 6, 912π4ν4 +R2ν
3 log

(
R1ν

‖ωh‖
Ḣ−

1
2

)
, (6.78)

and that the constants R1 and R2 are taken as in Propositions 6.7 and 6.9.

Proof. We will prove the contrapositive. That is we will show that Tmax < +∞ implies that

‖ω0
h‖Ḣ− 1

2
exp

(
K0E0 − 6, 912π4ν4

R2ν3

)
≥ R1ν. (6.79)
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Using Proposition 4.6, Tmax < +∞ implies that K0E0 ≥ 6, 912π4ν4. This means that

exp

(
K0E0 − 6, 912π4ν4

R2ν3

)
≥ 1. (6.80)

If ‖ω0
h‖ ˙
H−

1
2
≥ R1ν, this completes the proof.

Now Suppose ‖ω0
h‖ ˙
H−

1
2
< R1ν. We know that

lim sup
t→Tmax

‖ω(·, t)‖L2 = +∞. (6.81)

Therefore ‖ω(·, t)‖L2 cannot be non-decreasing on (0, Tmax). There exists 0 < t̃ < Tmax such

that ∂t‖ω(·, t̃)‖2L2 > 0. By Proposition 6.7, we can conclude that there exists 0 < t̃ < Tmax such

that ‖ωh(·, t̃)‖
Ḣ−

1
2
> R1ν. ωh ∈ C

(
[0, Tmax); Ḣ−

1
2

)
, so by the intermediate value theorem,

there exists 0 < t < t̃, such that ‖ωh(·, t)‖
Ḣ−

1
2

= R1ν. Let T be the first such time. That is,

define T < Tmax by

T = inf
{
t < Tmax : ‖ωh(·, t)‖

Ḣ−
1
2

= R1ν
}
. (6.82)

It is clear from the intermediate value theorem and the fact that ‖ω0
h‖Ḣ− 1

2
< R1ν, that for all

t < T, ‖ωh(·, t)‖
Ḣ−

1
2
< R1ν.

Applying Proposition 6.7, this implies that for all t < T, ∂t‖ω(·, t)‖2L2 < 0. Using Proposition

6.9, observe that

R1ν = ‖ωh(·, T )‖
Ḣ−

1
2
≤ ‖ω0

h‖Ḣ− 1
2

exp

(
1

2R2ν3

∫ T

0
‖ω(·, t)‖4L2dt

)
. (6.83)

Using the fact that ‖ω(·, t)‖L2 is decreasing on the interval [0, T ], we can pull out a factor of

‖ω0‖2L2 , and conclude

R1ν ≤ ‖ω0
h‖Ḣ− 1

2
exp

(
1

2R2ν3
‖ω0‖2L2

∫ T

0
‖ω(·, t)‖2L2dt

)
. (6.84)

We know from the energy equality that∫ T

0
‖ω(·, t)‖2L2dt =

1

2
‖u0‖L2 −

1

2
‖u(·, T )‖2L2 . (6.85)

Therefore

R1ν ≤ ‖ω0
h‖Ḣ− 1

2
exp

(
1

2R2ν3
‖ω0‖2L2

(
1

2
‖u0‖2L2 −

1

2
‖u(·, T )‖2L2

))
. (6.86)

Again using the fact that ‖ω(·, t)‖L2 is decreasing on the interval [0, T ], and therefore that

‖ω(·, T )‖L2 < ‖ω0‖L2 , we may conclude that

R1ν ≤ ‖ω0
h‖Ḣ− 1

2
exp

(
1

R2ν3

(
1

2
‖u0‖2L2

1

2
‖ω0‖2L2 −

1

2
‖ω(·, T )‖2L2

1

2
‖u(·, T )‖2L2

))
. (6.87)

This means that

R1ν ≤ ‖ω0
h‖Ḣ− 1

2
exp

(
1

R2ν3
(K0E0 −K(T )E(T ))

)
. (6.88)
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Applying Corollary 4.7, K(T )E(T ) ≥ 6, 912π4ν4, so

‖ω0
h‖Ḣ− 1

2
exp

(
K0E0 − 6, 912π4ν4

R2ν3

)
≤ ‖ω0

h‖Ḣ− 1
2

exp

(
1

R2ν3

(
K0E0 − 6, 912π4ν4

))
. (6.89)

Therefore Tmax < +∞ implies that

‖ω0
h‖Ḣ− 1

2
exp

(
1

R2ν3

(
K0E0 − 6, 912π4ν4

))
≥ R1ν. (6.90)

This completes the proof.



Chapter 7

Relationship of the vorticity

approach to previous results

In this chapter we will consider the relationship between the vorticity approach to almost two

dimensional initial data developed in chapter 6 and previous global regularity results for almost

two dimensional initial data. Gallagher and Chemin proved in [9] that initial data re-scaled so

it varies slowly in one direction must generate global smooth solutions.

Theorem 7.1 (Global regularity in the well prepared case). Let v0
h = (v1, v2) be a smooth diver-

gence free vector field on R3 that belongs, along with all of its derivatives, to L2
(
Rx3 ; Ḣ−1

(
R2
))
,

and let w0 be any smooth divergence free vector field from R3 to R3. For each ε > 0 define the

re-scaled initial data by

u0,ε(x) = (v0
h + εw0

h, w
0
3)(xh, εx3). (7.1)

Then there exists ε0 > 0, such that for all 0 < ε < ε0, the initial data u0,ε generates a global

smooth solution to the Navier-Stokes equations.

This is often referred to as the well-prepared case, because v0
3 = 0, and so v0,ε converges to

a two dimensional vector field in the sense that for all x ∈ R3.

lim
ε→0

u0,ε(x) = (v0
h, w

0
3)(xh, 0). (7.2)

We will also note that global regularity in Theorem 7.1 is not a consequence of Koch and

Tataru’s theorem on global regularity for small initial data in BMO−1, because, subject to

certain conditions, v0,ε is large in B−1
∞,∞, the largest scale-critical space.

Gallagher, Chemin, and Paicu generalized this result to the ill-prepared case in [10].

Theorem 7.2 (Global regularity in the ill prepared case). Let u0 be a divergence free vector

field on T2 × R, and for each ε > 0 let our rescaling be given by

u0,ε(x) = (u0
h,

1

ε
u0

3)(xh, εx3). (7.3)

For all a > 0 there exists ε0, µ > 0 such that if

‖ exp(a|D3|)u0‖H4(T2×R) ≤ µ, (7.4)

50
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then for all 0 < ε < ε0, the initial data u0,ε generates a global smooth solution to the Navier-

Stokes equation.

This is referred to as the ill-prepared case because whenever u0
3 is not identically zero, this

clearly does not converge to any almost two dimensional vector field. The proof of this result is

quite technical, in particular because all control over u0,ε
3 is lost as ε→ 0. This means that the

proofs do not rely on Lp or Sobolev space estimates, but are based on controlling regularity via

a Banach space, Bs that is introduced. The theorem in the paper is actually proved in terms

of B
7
2 and the result in terms of H4 follows as a corollary.

The underlying reason for these technical difficulties is that, in order to maintain the diver-

gence free structure needed for the Navier-Stokes equation, making the solution vary slowly in

x3 requires us to make u0,ε
3 large, so that applying the chain rule,

∇ · u0,ε(x) = (∂1u
0
1 + ∂2u

0
2 + ε

1

ε
∂3u

0
3)(xh, εx3) = (∇ · u0)(xh, εx3) = 0. (7.5)

One way to get around this technical difficulty without the restriction that v0
3 = 0, is to perform

the rescaling in terms of the vorticity, rather than the velocity. For a solution to be almost two

dimensional, we want both and u3 to be small and for the solution to vary slowly with respect

to x3, but the divergence free condition doesn’t let us scale both out simultaneously.

On the vorticity side however, a two dimensional flow has its vorticity in the vertical direc-

tion, so an almost two dimensional flow corresponds to one in which ω1 and ω2 are small, and

which varies slowly with respect to x3. Take

ω0,ε = (εωh, ω3)(xh, εx3). (7.6)

This re-scaling preserves the divergence free condition, because applying the chain rule

∇ · ω0,ε(x) = ε(∇ · ω0)(xh, εx3) = 0. (7.7)

Furthermore, this is a re-scaling which allows us to to converge to an almost two dimensional

initial data without any restrictions such as v0
3 = 0. Theorem 1.12, is not strong enough to

prove there is global regularity for sufficiently small ε with this re-scaling, because it is only a

logarithmic correction. We will, however prove an analogous result that is slightly weaker in

terms of scaling, because it grows more slowly in the critical norms as ε→ 0, but still becomes

large in the critical space L
3
2 ; this result in Theorem 1.13 in the introduction, which is restated

here for the reader’s convenience.

Theorem 7.3 (Global regularity for rescaled vorticity). Fix a > 0. For all u0 ∈ H1
df , 0 < ε < 1

let

ω0,ε(x) = ε
2
3

(
log

(
1

εa

)) 1
4 (
εω0

1, εω
0
2, ω

0
3

)
(x1, x2, εx3), (7.8)

and define u0,ε using the Biot-Savart law by

u0,ε = ∇× (−∆)−1 ω0,ε. (7.9)

For all u0 ∈ H1
df and for all 0 < a < 4R2ν3

C2
2‖ω0

3‖2
L

6
5

‖ω0
3‖2L2

, there exists ε0 > 0 such that for all 0 < ε <
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ε0, there is a unique, global smooth solution to the Navier-Stokes equation u ∈ C
(

(0,+∞);H1
df

)
with u(·, 0) = u0,ε. Furthermore if ω0

3 is not identically zero, then the initial vorticity becomes

large in the critical space L
3
2 as ε→ 0, that is

lim
ε→0
‖ω0,ε‖

L
3
2

= +∞. (7.10)

We note that while Theorem 7.3 is weaker in terms of scaling than Theorem 7.2 proven in

[10], it is stronger in the sense that it allows us to take as initial data the re-scalings of arbitrary

u0 ∈ H1
df , whereas Theorem 7.2 requires that the we re-scale u0 ∈ H4 that is also smooth with

respect to x3. The regularity hypotheses on u0 in Theorem 7.3 are the weakest available in

order to ensure global regularity for initial data rescaled to be almost two dimensional. Before

proving Theorem 7.3, we will need to state a corollary of Theorem 1.12 that guarantees global

regularity purely in terms of Lp norms of ω.

Corollary 7.4. For all u0 ∈ Ḣ1
df such at

C1‖ω0
h‖L 3

2
exp

(
1
4C

2
2‖ω0‖

L
6
5
‖ω0‖2L2 − 6, 912π4ν4

R2ν3

)
< R1ν, (7.11)

u0 generates a unique, global smooth solution to the Navier-Stokes equation u ∈ C
(

(0,+∞);H1
df

)
,

that is Tmax = +∞, with C2 taken as in Lemma 4.5, and R1 and R2 taken as in Theorem 1.12.

Proof. This is a corollary of Theorem 1.12. Suppose

C1‖ω0
h‖L 3

2
exp

 1
4C

2
2‖ω0‖2

L
6
5
‖ω0‖2L2 − 6, 912π4ν4

R2ν3

 < R1ν. (7.12)

We know from the fractional Sobolev inequality, Lemma 4.3, that

‖ω0
h‖Ḣ− 1

2
≤ C1‖ω0

h‖L 3
2
, (7.13)

and from the Sobolev inequality, Lemma 4.5, that

K0 =
1

2
‖ω0‖2L2 ≤

1

2
C2

2‖ω0‖2
L

6
5
. (7.14)

Therefore we can conclude that

‖ω0
h‖Ḣ− 1

2
exp

(
K0E0 − 6, 912π4ν4

R2ν3

)
≤ C1‖ω0

h‖L 3
2

exp

(
1
4C

2
2‖ω0‖

L
6
5
‖ω0‖2L2 − 6, 912π4ν4

R2ν3

)
.

(7.15)

This implies that

‖ω0
h‖Ḣ− 1

2
exp

(
K0E0 − 6, 912π4ν4

R2ν3

)
< R1ν. (7.16)

Applying Theorem 1.12, this completes the proof.
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Remark 7.5. For all 1 ≤ q < +∞, and for all f ∈ Lq
(
R3
)

‖f ε‖Lq = ε
− 1
q ‖f‖Lq , (7.17)

where f ε(x) = f(x1, x2, εx3), ε > 0. This is an elementary computation for the rescaling of the

Lq norm in one direction.

We will now prove Theorem 7.3.

Proof. Fix u0 ∈ H1
df and 0 < a < 4R2ν3

C2
2‖ω0

3‖2
L

6
5

ω0
3 |‖2L2

. We will prove the result using Corollary 7.4.

Applying Remark 7.5, we find that

‖ω0,ε
h ‖L 3

2
= ε log

(
ε−a
) 1

4 ‖ω0
h‖L 3

2
. (7.18)

Similarly we apply Remark 7.5, to compute the other relevant Lq norms in Corollary 7.4:

‖ω0,ε
3 ‖L2 = ε

1
6 log

(
ε−a
) 1

4 ‖ω0
h‖L2 , (7.19)

‖ω0,ε
h ‖L2 = ε

7
6 log

(
ε−a
) 1

4 ‖ω0
h‖L2 , (7.20)

‖ω0,ε
3 ‖L 6

5
= ε−

1
6 log

(
ε−a
) 1

4 ‖ω0
h‖L 6

5
, (7.21)

‖ω0,ε
h ‖L 6

5
= ε

5
6 log

(
ε−a
) 1

4 ‖ω0
h‖L 6

5
. (7.22)

Using the triangle inequality for norms we can see that

‖ω0,ε‖L2 ≤ ‖ω0,ε
3 ‖L2 + ‖ω0,ε

h ‖L2 (7.23)

= ε
1
6 log

(
ε−a
) 1

4 ‖ω0
3‖L2 + ε

7
6 log

(
ε−a
) 1

4 ‖ω0
h‖L2 . (7.24)

Likewise we may compute that

‖ω0,ε‖
L

6
5
≤ ‖ω0,ε

3 ‖L 6
5

+ ‖ω0,ε
h ‖L 6

5
(7.25)

= ε−
1
6 log

(
ε−a
) 1

4 ‖ω0
3‖L 6

5
+ ε

5
6 log

(
ε−a
) 1

4 ‖ω0
h‖L 6

5
. (7.26)

Combining these inequalities and factoring out the log (ε−a)
1
4 terms we find that

‖ω0,ε‖2
L

6
5
‖ω0,ε‖2L2 ≤ log

(
ε−a
) (
‖ω0

3‖L2 + ε‖ω0
h‖L2

)2 (‖ω0
3‖L 6

5
+ ε‖ω0

h‖L 6
5

)2
. (7.27)

Dividing by R2ν
3 and taking the exponential of both sides of this inequality, we find that

exp

C2
2‖ω0,ε‖2

L
6
5
‖ω0,ε‖2L2

4R2ν3

 ≤ ε−aC2
2(‖ω03‖L2+ε‖ω0h‖L2)

2
(
‖ω03‖

L
6
5
+ε‖ω0h‖

L
6
5

)2

4R2ν
3 . (7.28)
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Combining this with the estimate (7.18), we find that

‖ω0,ε
h ‖L 3

2
exp

C2
2‖ω0,ε‖2

L
6
5
‖ω0,ε‖2L2

4R2ν3

 ≤ ε1−aC2
2(‖ω03‖L2+ε‖ω0h‖L2)

2
(
‖ω03‖

L
6
5
+ε‖ω0h‖

L
6
5

)2

4R2ν
3 log

(
ε−a
) 1

4 ‖ω0
h‖L 3

2
.

(7.29)

We know from the definition of a that

a
‖w0

3‖2L2‖ω0
3‖2
L

6
5

R2ν3
< 1, (7.30)

so fix

0 < δ < 1− a
‖w0

3‖2L2‖ω0
3‖2
L

6
5

R2ν3
. (7.31)

Clearly we can see that

lim
ε→0

1− a

(
‖ω0

3‖L2 + ε‖ω0
h‖L2

)2 (‖ω0
3‖L 6

5
+ ε‖ω0

h‖L 6
5

)2

R2ν3
= 1− a

‖w0
3‖2L2‖ω0

3‖2
L

6
5

R2ν3
. (7.32)

Therefore, there exists r > 0, such that for all 0 < ε < r,

1− a

(
‖ω0

3‖L2 + ε‖ω0
h‖L2

)2 (‖ω0
3‖L 6

5
+ ε‖ω0

h‖L 6
5

)2

R2ν3
> δ. (7.33)

Then for all 0 < ε < min(1, r),

ε
1−a

(‖ω03‖L2+ε‖ω0h‖L2)
2
(
‖ω03‖

L
6
5
+ε‖ω0h‖

L
6
5

)2

R2ν
3 < εδ. (7.34)

Combining this estimate with the estimate (7.29), we find

lim
ε→0
‖ω0,ε

h ‖L 3
2

exp

C2
2‖ω0,ε‖2

L
6
5
‖ω0,ε‖2L2

4R2ν3

 ≤ lim
ε→0
‖ω0

h‖L 3
2
εδ log

(
ε−a
) 1

4 . (7.35)

Making the substitution k = 1
ε , we find

lim
ε→0
‖ω0

h‖L 3
2
εδ log

(
ε−a
) 1

4 = lim
k→+∞

‖ω0
h‖L 3

2

log (ka)
1
4

kδ
= 0, (7.36)

because the logarithm grows more slowly than any power. Putting these inequalities together

we find that

lim
ε→0
‖ω0,ε

h ‖L 3
2

exp

C2
2‖ω0,ε‖2

L
6
5
‖ω0,ε‖2L2

4R2ν3

 ≤ 0. (7.37)
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This limit is clearly non-negative, so we can conclude that

lim
ε→0
‖ω0,ε

h ‖L 3
2

exp

C2
2‖ω0,ε‖2

L
6
5
‖ω0,ε‖2L2

4R2ν3

 = 0. (7.38)

Therefore there exists ε0 > 0, such that for all 0 < ε < ε0,

‖ω0,ε
h ‖L 3

2
exp

C2
2‖ω0,ε‖2

L
6
5
‖ω0,ε‖2L2

4R2ν3

 < exp

(
6, 912π4ν4

R2ν3

)
R1ν. (7.39)

Applying Corollary 7.4, this means for all 0 < ε < ε0 there is a unique global smooth solution

for initial data u0,ε ∈ H1
df .

Next we will show that unless ω0
3 is identically zero,

lim
ε→0
‖ω0,ε‖

L
3
2

= +∞. (7.40)

We know that

‖ω0,ε‖
L

3
2
≥ ‖ω0,ε

3 ‖L 3
2
, (7.41)

so it suffices to show that

lim
ε→0
‖ω0,ε

3 ‖L 3
2

= +∞. (7.42)

We can see from Remark 7.5, that

‖ω0,ε
3 ‖L 3

2
= log

(
ε−a
)
‖ω0

3‖L 3
2
. (7.43)

Therefore we may compute that

lim
ε→0
‖ω0,ε

3 ‖L 3
2

= ‖ω0
3‖L 3

2
lim
ε→0

log
(
ε−a
)

= +∞. (7.44)

This completes the proof.

Iftimie proved the global existence of smooth solutions for the Navier-Stokes equation with

three dimensional initial data that are a perturbation of two dimensional initial data. As

we mentioned in the introduction, this is possible on the torus, but not on the whole space, in

particular because L2
(
T2
)

defines a subspace of L2
(
T3
)
, but L2

(
R2
)

does not define a subspace

of L2
(
R3
)

because we lose integrability. The precise result Iftime showed is the following [24].

Theorem 7.6 (Perturbations of two dimensional initial data). There exists C > 0, such that

for all v0 ∈ L2
df (T2;R3), and for all w0 ∈ H

1
2
df

(
T3;R3

)
, such that

‖w0‖
Ḣ

1
2

exp

(‖v0‖2L2

Cν2

)
≤ Cν, (7.45)

there exists a unique, global smooth solution to the Navier-Stokes equation with initial data

u0 = v0 + w0.

In fact, Iftimie proves something slightly stronger. The result still holds if the space H
1
2

is replaced by the anisotrophic space Hδ,δ, 1
2
−δ, 0 < δ < 1

2 which is the space given by taking
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the H
1
2
−δ norm with respect to x3, leaving x1, x2 fixed, giving us a function of x1 and x2, then

taking the Hδ norm with respect to x2 and so forth. In the range 0 < δ < 1
2 , these spaces

strictly contain H
1
2 . This result was also extended to the case of the Navier-Stokes equation

with an external force by Gallagher [20], but only where the control in w0 is in the critical

Hilbert space Ḣ
1
2 , not in these more complicated, anisotropic spaces. These anisotropic spaces

are quite messy; in particular we will note that for α 6= 0, Hα,α,α 6= Hα
(
T3
)
. For this reason,

and because the results in this thesis deal with Hilbert spaces, we will focus our comparison

of Iftimie’s result with ours in the setting of Ḣ
1
2 . For more details on these anisotropic spaces,

see [25].

We will find that Iftimie’s result neither implies, nor is implied by, our result, but that

they are closely related. In order to compare the results in this thesis to the result proven by

Iftimie, it is first necessary to state a version of Theoerem 1.12 on the torus. The result will be

essentially the same, although possibly with different constants.

Theorem 7.7 (Global regularity for two components of vorticity on the torus). There exists

R̃1, R̃2, R̃3 > 0 independent of ν, such that or all u0 ∈ H1
df

(
T3
)

such at

‖ω0
h‖Ḣ− 1

2 (T3)
exp

(
K0E0 − R̃3ν

4

R̃2ν3

)
< R̃1ν, (7.46)

u0 generates a unique, global smooth solution to the Navier-Stokes equation u ∈ C
(

(0,+∞);H1
df

(
T3
))
,

that is Tmax = +∞.

The proof of the this result on the torus is exactly the same as the proof of the result on

the whole space. The only reason the constants may be different is because the sharp Sobolev

constant may be worse on the torus than the whole space. We will note that when considering

solutions to the Navier-Stokes equations on the torus, we include the stipulation that the flow

over the whole torus integrates to zero, so

û(0, 0, 0) =

∫
T3

u(x)dx = 0. (7.47)

This normalization is necessary in order to mod out constant functions on the torus, so without

this stipulation, we would not in fact be able to make use of Sobolev and fractional Sobolev

inequalities.

In order to relate Theorem 7.6 and Theorem 7.7, we will need to define a projection from

three dimensional vector fields to two dimensional vector fields, following the approach of Iftimie

[24] and Gallagher [22].

Proposition 7.8 (Projection onto two dimensional velocities). Define P2d by

P2d(u)(xh) =

∫ 1

0
u(xh, x3)dx3. (7.48)

Then for all 1 ≤ q ≤ +∞, P2d : Lqdf
(
T3
)
→ Lqdf

(
T2
)
. In particular,

∇ · P2d(u) = 0, (7.49)
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and

‖P2d(u)‖Lq(T2) ≤ ‖u‖Lq(T3). (7.50)

Proof. Notice that we are projecting onto two dimensional vector fields by taking the average

in the vertical direction. First we will observe that P2d is a bounded linear map from Lq to Lq.

Linearity is clear. As for boundedness, applying Minkowski’s inequality, we find

‖P2d(u)‖Lq(T2) ≤
∫ 1

0
‖uh(·, x3)‖Lq(T2)dx3. (7.51)

Let f(x3) = ‖uh(·, x3)‖Lq(T3), g(x3) = 1, and let 1
p + 1

q = 1, then apply Hölder’s inequality to

observe ∫ 1

0
‖u(·, x3)‖Lqdx3 ≤ ‖f‖Lq‖g‖Lp = ‖u‖Lq(T3)1. (7.52)

So we may conclude that

‖P2d(u)‖Lq(T2) ≤ ‖u‖Lq(T3). (7.53)

Now we need to show that for all u ∈ Lqdf
(
T3
)
,∇·P2d(u) = 0. First we will show this by formal

computation for u smooth, and then we will extend by density. Fix u ∈ C∞
(
T3
)
,∇ · u = 0.

Observe that

∇ · P2d(u)(x1, x2) =

∫ 1

0
(∂1u1 + ∂2u2)(x1, x2, x3)dx3. (7.54)

Using the fact that ∇ · u = 0, we can conclude that ∂1u1 + ∂2u2 = −∂3u3. Applying the

fundamental theorem of calculus, and using the fact that u3 is continuous and periodic, we find

∇ · P2d(u)(x1, x2) = −
∫ 1

0
∂3u3(x1, x2, x3)dx3 = −u3(x1, x2, 1) + u3(x1, x2, 0) = 0. (7.55)

We will proceed to proving that ∇ · P2d(u) for all u ∈ Lqdf
(
T3
)
. Note, we here refer to

divergence free in the sense of integrating against test functions, as u is not differentiable a

priori. Fix u ∈ Lqdf
(
T3
)

and f ∈ C∞
(
T2
)
. C∞

(
T3
)

is dense in Lqdf
(
T3
)
, so for some arbitrary

ε > 0, fix v ∈ C∞
(
T3
)
,∇ · v = 0, such that

‖u− v‖Lq(T3) < ε. (7.56)

As we have shown above ∇ · P2d(v) = 0 in the classical sense, so clearly

〈P2d(v),∇f〉 = 0. (7.57)

Using the linearity of P2d observe that

〈P2d(u),∇f〉 = 〈P2d(u− v),∇f〉 . (7.58)

Applying Hölder’s inequality we find that

| 〈P2d(u− v),∇f〉 | ≤ ‖P2d(u− v)‖Lq‖∇f‖Lp . (7.59)
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We know from the bound we have already shown that

‖P2d(u− v)‖Lq(T2) ≤ ‖u− v‖Lq(T3) < ε, (7.60)

so therefore

| 〈P2d(u),∇f〉 | < ε‖∇f‖Lp . (7.61)

But ε > 0 was arbitrary, so taking ε→ 0, we find that

〈P2d(u),∇f〉 = 0. (7.62)

This completes the proof.

We will also define the projection onto the subspace orthogonal to L2
df

(
T2;R3

)
.

Definition 7.9 (Projection onto the perpendicular space). Let P⊥2d : L2
df

(
T3;R3

)
→ L2

df

(
T3;R3

)
,

be given by

P⊥2d (u) = u− P2d (u) . (7.63)

Note that this is well defined, because we have already shown that u ∈ L2
df

(
T3
)

implies that

P2d(u) ∈ L2
df

(
T3
)
, so clearly their difference, u − P2d(u), is also in this space, which means it

is a well defined linear map.

Remark 7.10. Note that Theorem 7.6 can be reformulated in terms of P2d and P⊥2d as saying

there exists C > 0 such that for all u0 ∈ H
1
2
df

(
T3
)
, such that

‖P⊥2d
(
u0
)
‖
Ḣ

1
2

exp

(
‖P2d

(
u0
)
‖2L2

Cν2

)
≤ Cν, (7.64)

u0 generates a global smooth solution to the Navier-Stokes equation.

Next we will note that P2d decomposes the support of the Fourier transform of u into the

plane where k3 = 0 and the rest of Z3.

Proposition 7.11 (Fourier decomposition). Fix u ∈ H
1
2
df

(
T3
)
. Let v = P2d(u), w = P⊥2d(u).

Then

v̂(k) =

{
û(k), k3 = 0

0, k3 6= 0
(7.65)

and

ŵ(k) =

{
û(k), k3 6= 0

0, k3 = 0
. (7.66)

Proof. First we note that it is obvious that ŵ = û− v̂, so it suffices to prove (7.65). First note

that ∂3v = 0, so

∂̂3v(k) = 2πik3v̂(k) = 0. (7.67)

Therefore we see that k3 6= 0 implies that v̂(k) = 0. Now we will proceed to the case where

k3 = 0. Observe that

v̂(k1, k2, 0) =

∫
T2

v(xh) exp (−2πi(k1x1 + k2x2)) dxh. (7.68)
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Recalling the definition of P2d, we can see that

v̂(k1, k2, 0) =

∫
T2

∫ 1

0
u(xh, z) exp (−2πi(k1x1 + k2x2)) dxhdz. (7.69)

Taking x = (xh, z) ∈ T3 we can express this integral as

v̂(k1, k2, 0) =

∫
T3

u(x) exp (−2πi(k1x1 + k2x2)) dx = û(k1, k2, 0). (7.70)

This completes the proof.

This Fourier decomposition allows us to control P⊥2d(u) by ∂3u, although in doing so we lose

criticality.

Proposition 7.12. For all u ∈ H
1
2
df

(
T3
)
,

‖P⊥2d (u) ‖
Ḣ

1
2
≤ 1

2π
‖∂3u‖

Ḣ
1
2
. (7.71)

Proof. Let w = P⊥2d (u) = u− P2d(u). Observe that

‖w‖2
Ḣ

1
2

=
∑
k∈Z3

2π|k||ŵ(k)|2 =
∑
k3 6=0

2π|k||û(k)|2. (7.72)

Note that for all k3 6= 0, k2
3 ≥ 1, so we can see that

‖w‖2
Ḣ

1
2
≤
∑
k3 6=0

2π|k|k2
3|û(k)|2 =

1

4π2

∑
k∈Z3

2π|k||2πik3û(k)|2. (7.73)

Recalling that ˆ∂3u(k) = 2πik3û(k), we can compute that

‖w‖2
Ḣ

1
2
≤
∑
k3 6=0

2π|k|k2
3|û(k)|2 =

1

4π2

∑
k∈Z3

2π|k||∂̂3u(k)|2 =
1

4π2
‖∂3u‖2

Ḣ
1
2
. (7.74)

This inequality allows us to prove a corollary of Iftimie’s result, Theorem 7.6, that is stated

as bound on in terms of the size of ∂3u in H
1
2 , rather than in terms of perturbations of L2

df

(
T2
)
.

Corollary 7.13. There exists C > 0 independent of ν, such that for all u0 ∈ H
1
2
df

(
T3
)
,

‖∂3u
0‖
Ḣ

1
2

exp

(‖u0‖2L2

Cν2

)
≤ 2πCν, (7.75)

implies u0 generates a global, smooth solution to the Navier-Stokes equations.

Proof. We will take C > 0 as in Theorem 7.6. Suppose u0 ∈ H
1
2
df and

‖∂3u
0‖
Ḣ

1
2

exp

(‖u0‖2L2

Cν2

)
≤ 2πCν. (7.76)
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Note that we do not assume that u ∈ H
3
2 , but the bound on ‖∂3u‖

Ḣ
1
2

clearly implies that

∂3u ∈ H
1
2 nonetheless. Let v0 = P2d

(
u0
)

and let w0 = u0 − P2d

(
u0
)
. From Proposition 7.8,

we know that

‖v0‖L2(T2) ≤ ‖u0‖L2(T3). (7.77)

We also know from Proposition 7.12, that

‖w0‖
Ḣ

1
2
≤ 1

2π
‖∂3‖

Ḣ
1
2
. (7.78)

Putting these two inequalities together we find that

‖w0‖
Ḣ

1
2

exp

(‖v0‖2L2

Cν2

)
≤ Cν. (7.79)

Applying Theorem 7.6, this completes the proof.

We should note here that Corollary 7.13 is not equivalent to Iftimie’s result Theorem 7.6;

the corollary is implied by this result, but does not imply it. That is because Iftimie’s result

involves controlling ‖P⊥2d
(
u0
)
‖
Ḣ

1
2
, which is scale critical, but Corollary 7.13 involves controlling

‖∂3u‖
Ḣ

1
2
, which is not scale critical.

Corollary 7.13 neither implies, nor is implied by Theorem 7.7, which is the main result of

this chapter translated to the setting of the torus rather than the whole space. This is because

on the torus, as on the whole space,

‖ωh‖2
Ḣ−

1
2

= ‖∂3u‖2
Ḣ−

1
2

+ ‖∇u3‖2
Ḣ−

1
2
. (7.80)

This means that Theorem 7.7 is weaker than Corollary 7.13 in the sense that it requires control

on both ∂3u and ∇u3, but it is stronger in the sense that it requires control in the critical space

Ḣ−
1
2 , rather than the subcritical space Ḣ

1
2 .

In fact we will show that Theorem 7.7 is not implied by Theorem 7.6, because it is not

possible to control ‖P⊥2d
(
u0
)
‖
Ḣ

1
2

by ‖ω0
h‖Ḣ− 1

2
. The precise result will be as follows.

Proposition 7.14.

sup

u∈H
1
2
df(T

3)
‖ωh‖

Ḣ
− 1

2
=1

‖P⊥2d(u)‖
Ḣ

1
2

= +∞. (7.81)

Proof. For all n ∈ N, define un ∈ H
1
2
df , in terms of its Fourier transform by

ûn(k) = an

{
(n,−1, 0), k = ±(1, n, 1)

0, otherwise
, (7.82)

where an is a normalization factor given by

an =

( √
n2 + 2

4π (n2 + 1)

) 1
2

. (7.83)
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It is easy to check that for all n, k ∈ N, k · ûn(k) = 0, so ∇ · un = 0, and for each n ∈ N, un ∈
H

1
2
df

(
T3
)
.

It is not essential to the proof, but we will also note for the sake of clarity that

un(x) = 2an(n,−1, 0) cos (2π(x1 + nx2 + x3)) . (7.84)

Note that for all n ∈ N un3 = 0, so we have

‖ωnh‖Ḣ− 1
2

= ‖∂3u
n‖

Ḣ−
1
2
. (7.85)

We know that ∂̂3u(k) = 2πik3ûn(k), so we can conclude that

∂̂3un(k) = 2πian

{
(n,−1, 0), k = ±(1, n, 1)

0, otherwise
. (7.86)

Therefore we can compute that

‖ωnh‖2
Ḣ−

1
2

= ‖∂3u
n‖2

Ḣ−
1
2

= 2
1

2π|(1, n, 1)|
|an2πi(n,−1, 0)|2 (7.87)

Simplifying terms we find that

‖ωnh‖2
Ḣ−

1
2

=
4πa2

n

(
n2 + 1

)
√
n2 + 2

. (7.88)

Recalling that

a2
n =

√
n2 + 2

4π (n2 + 1)
, (7.89)

we conclude that for all n ∈ N,

‖ωnh‖Ḣ− 1
2

= ‖∂3u
n‖

Ḣ−
1
2

= 1. (7.90)

We know from Proposition 7.11, that the Fourier transform of P2d(u) is supported on the

plane k3 = 0 in Z3. For all k1, k2 ∈ N, ûn(k1, k2, 0) = 0. This implies that for all n ∈ N, P2d(u
n) =

0, and therefore P⊥2d(u
n) = un. Observe that

‖un‖2
Ḣ

1
2

= 2 (2π|(1, n, 1)|) a2
n|(n,−1, 0)|2 = 4πa2

n(n2 + 1)
√
n2 + 2. (7.91)

Again recalling that

a2
n =

√
n2 + 2

4π (n2 + 1)
, (7.92)

we conclude that for all n ∈ N,
‖un‖2

Ḣ
1
2

= n2 + 2. (7.93)

Note that we have shown that for all n ∈ N, ‖ωnh‖Ḣ− 1
2

= 1, and ‖P⊥2d(un)‖
Ḣ

1
2

=
√
n2 + 2.
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Therefore we may conclude that

sup

u∈H
1
2
df(T

3)
‖ωh‖

Ḣ
− 1

2
=1

‖P⊥2d(u)‖
Ḣ

1
2

= +∞. (7.94)

By proving that ‖P2d(u
0)‖

Ḣ
1
2

cannot be controlled by ‖ωnh‖Ḣ− 1
2
, we have shown definitively

that Theorem 7.7 is not a corollary of earlier work by Iftimie and separately by Gallagher, and

so this result is new on the torus as well as on the whole space.



Chapter 8

Blowup for a toy model ODE of the

strain equation

Now that we have outlined the main advances for Navier-Stokes regularity that are possible by

utilizing strain equation, we will consider a toy model ODE. The main advantage of the strain

equation formulation of the Navier-Stokes equation compared with the vorticity formulation is

that the quadratic term S2+1
4w⊗w has a much nicer structure than the quadratic term Sω in the

vorticity formulation. The price we pay for this is that there are additional terms, particularly

Hess(p) which are not present in the vorticity formulation. There is also the related difficulty

that the consistency condition in the strain formulation is significantly more complicated than

in the vorticity formulation.

We will now examine a toy model ODE, prove the existence and stability of blowup, and

examine asymptotic behavior near blowup. The simplest toy model equation would be to keep

only the local part of the quadratic term (vorticity depends non-locally on S), and to study the

ODE ∂tM + M2 = 0. As long as the initial condition M(0) is an invertible matrix, this has

the solution (M(t))−1 = (M(0))−1 + tI3. This equation will blow up in finite time assuming

that M(0) has at least one negative eigenvalue. Blowup is unstable in general, because any

small perturbation into the complex plane will mean there will not be blowup. However, if

we restrict to symmetric matrices, then blowup is stable, because then the eigenvalues must

be real valued, so a small perturbation will remain on the negative real axis. The negative

real axis is an open set of R, but not of C, so blowup is stable only when we are restricted to

matrices with real eigenvalues, which is the case we are concerned with as the strain tensor is

symmetric. This equation does not preserve the family of trace free matrices however, because

tr(M2) = |M |2 6= 0, and therefore doesn’t really capture any of the features of the strain

equation (1.5). We will instead take our toy model ODE on the space of symmetric, trace free

matrices to be

∂tM +M2 − 1

3
|M |2I3 = 0. (8.1)

Because every symmetric matrix is diagonalizable over R, and every diagonalizable matrix

is mutually diagonalizable with the identity matrix, this equation can be treated as a system

of ODEs for the evolution of the eigenvalues λ1 ≤ λ2 ≤ λ3 with for every 1 ≤ i ≤ 3,

∂tλi = −λ2
i +

1

3
(λ2

1 + λ2
2 + λ3

3). (8.2)

63
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This equation has two families of solutions with a type of scaling invariance. Let S(0) =

Cdiag(−2, 1, 1), with C > 0 then S(t) = f(t)diag(−2, 1, 1), where ft = f2, f(0) = C. Therefore

we have blowup in finite time, with S(t) = 1
1
C
−tdiag(−2, 1, 1). The reverse case, one positive

eigenvalue and two equal, negative eigenvalues, also preserves scaling, but decays to zero as

t→∞. Let S(0) = Cdiag(−1,−1, 2), with C > 0. Then S(t) = 1
1
C

+t
diag(−1,−1, 2).

We will show that the blow up solution is stable, while the decay solution is unstable.

Furthermore the blow up solution is asymptotically a global attractor except for the unstable

family of solutions that decay to zero (i.e two equal negative eigenvalues and the zero solution).

To prove this we will begin by rewriting our system. First of all, we will assume without loss of

generality, that S 6= 0, because clearly if S(0) = 0, then S(t) = 0, is the solution. If S 6= 0, then

clearly λ1 < 0 and λ3 > 0. Our system of equations really only has two degrees of freedom,

because of the condition tr(S) = λ1 + λ2 + λ3 = 0, but because we are interested in the ratios

of the eigenvalues asymptotically, we will reduce the system to the two parameters λ3 and

r = −λ1
λ3

. These two parameters completely determine our system because λ1 = −rλ3 and

λ2 = −λ1 − λ3 = (r − 1)λ3. We now will rewrite our system of ODEs:

∂tλ3 =
1

3
(λ2

1 + λ2
2 − 2λ2

3) =
1

3
λ2

3

(
r2 + (r − 1)2 + 2

)
, (8.3)

∂tλ3 =
1

3
λ2

3

(
2r2 − 2r − 1

)
. (8.4)

∂tr =
λ1∂tλ3 − λ3∂tλ1

λ2
3

= λ3

(
−r(−1

3
− 2

3
r +

2

3
r2) + (−2

3
+

2

3
r +

1

3
r2)

)
, (8.5)

∂tr =
1

3
λ3(−2r3 + 3r2 + 3r − 2). (8.6)

At this point it will be useful to remark on the range of values our two variables can take.

Clearly the largest eigenvalue λ3 ≥ 0, and λ3 = 0 if and only if λ1, λ2, λ3 = 0. Now we turn

to the range of values for r. Recall that λ2 = (r − 1)λ3, and that λ1 ≤ λ2 ≤ λ3. Therefore

−r ≤ r − 1 ≤ 1, so 1
2 ≤ r ≤ 2. If we take f(r) = −2r3 + 3r2 + 3r − 2, we find that f(r) is

positive for 1
2 < r < 2 with f(1

2), f(2) = 0. This is the basis for the blowup solution being the

asymptotic attractor. We are now ready to state our theorem on the existence and algebraic

structure of finite time blow up solutions.

Theorem 8.1 (Toy model dynamics). Suppose λ3(0) > 0 and r(0) > 1
2 , then there exists T > 0

such that limt→T λ3(t) = +∞, and furthermore limt→T r(t) = 2

Proof. We’ll start by showing that finite time blow up exists, and then we will show that r goes

to 2 as we approach the blow up time. First we observe that g(r) = 2r2 − 2r − 1, has a zero

at 1+
√

3
2 . g(r) < 0, for 1

2 ≤ r < 1+
√

3
2 , and g is both positive and increasing on 1+

√
3

2 < r ≤ 2.

We will begin with the case where r(0) = r0 > 1+
√

3
2 . Clearly ∂tr ≥ 0, so r(t) > r0, and

g (r(t)) > g(r0). Let C = 1
3g(r0), then we find that:

∂tλ3 =
1

3
g (r(t))λ2

3 ≥ Cλ2
3. (8.7)
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From this differential inequality, we find that

λ3(t) ≥ 1
1

λ3(0) − Ct
, (8.8)

so clearly there exists a time T ≤ 1
Cλ3(0) , such that limt→T λ3(t) = +∞.

Now we consider the case where 1
2 < r0 ≤ 1+

√
3

2 . It suffices to show that there exists a

Ta > 0 such that r(Ta) >
1+
√

3
2 , then the proof above applies. Note that g is increasing on the

interval
[
−1

2 , 2
]
, so g (r(t)) > g(r0). Let B = −1

3g(r0) > 0, and let C = 1
3 min

(
f(r0), f(1+

√
3

2 )
)

.

Suppose towards contradiction that for all t > 0, r(t) ≤ 1+
√

3
2 . Then we will have the differential

inequalities,

∂tr ≥ Cλ3, (8.9)

∂tλ3 ≥ −Bλ2
3. (8.10)

From (8.10) it follows that

λ3(t) ≥ 1
1

λ3(0) +Bt
. (8.11)

Plugging (8.11) into (8.9), we find that

r(t) ≥ r0 + C

∫ t

0

1
1

λ3(0) +Bτ
dτ = r0 +

C

B
log (1 +Bλ3(0)t) . (8.12)

However, this estimate (8.12) clearly contradicts our hypothesis that r(t) ≤ 1+
√

3
2 for all t > 0.

Therefore, we can conclude that there exists Ta > 0, such that r(Ta) >
1+
√

3
2 , and then we have

reduced the problem to the case that we have already proven.

Now we will show that limt→T r(t) = 2. Suppose toward contradiction that limt→T r(t) =

r1 < 2. First take a(t) = 1
3f (r(t)). Observe that a(t) > 0 for 0 ≤ t ≤ T . Our differential

equation is now given by ∂tλ3 = a(t)λ2
3, which must satisfy

1

λ3(t1)
− 1

λ3(t2)
=

∫ t2

t1

a(τ)dτ. (8.13)

If we take t2 = T , the blow up time, then (8.13) reduces to

1

λ3(t)
=

∫ T

t
a(τ)dτ. (8.14)

Let A(t) =
∫ T
t a(τ)dτ . Clearly A(T ) = 0, A′(T ) = −a(T ) < 0. By the fundamental theorem of

calculus, for all m > a(T ), there exists δ > 0, such that for all t, T − δ < t < T ,

A(t) ≤ −m(t− T ) = m(T − t). (8.15)

Using the definition of A and plugging in to (8.14) we find that for all T = δ < t < T ,

λ3(t) ≥ 1

m(T − t)
. (8.16)
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Let B = 1
3min (f(r0), f(r1)). It then follows from our hypothesis that

∂tr ≥ Bλ3. (8.17)

Therefore we can apply the estimate (8.16) to the differential inequality (8.17) to find that for

all T − δ < t < T ,

r(t) ≥ r(T − δ) +B

∫ t

T−δ

1

m(T − τ)
dτ = r(T − δ) +

B

M
log

(
δ

T − t

)
. (8.18)

However, it is clear from (8.18) that limt→T r(t) = +∞, contradicting our hypothesis that

limt→T r(t) < 2, so we can conclude that limt→T r(t) = 2.

This toy model ODE shows that the local part of the quadratic nonlinearity tends to drive

the intermediate eigenvalue λ2 upward to λ3, unless λ1 = λ2. Given the nature of the regularity

criterion on λ+
2 , the dynamics of the eigenvalues of the strain matrix are extremely important.

The fact that the toy model ODE blows up from all initial conditions where λ1 < λ2, and that

λ2 = λ3 is a global attractor on all initial conditions where λ1 < λ2, provides a mechanism for

blowup, but of course the very complicated nonlocal effects make it impossible to say anything

definitive about blowup for the full Navier-Stokes strain equation without a much more detailed

analysis.



Chapter 9

The strain equation in two

dimensions

We will conclude this thesis with a brief analysis of the Navier-Stokes strain equation in two

spatial dimensions. It is natural, given the difficulties that exist in three dimensions, to want

to look at the simpler two dimensional case. However, none of the interesting features of the

three dimensional case will turn up in two dimensions, there simply are not enough degrees of

freedom for the eigenvalues of the strain matrix. We will be able to prove a statement about the

change in enstrophy for two dimensions, however this will not be a new result, as the vorticity

equation is already well understood in two dimensions.

First we will define the scalar vorticity as w = ∂u2
∂x1
− ∂u1

∂x2
. The evolution equation for the

vorticity is given by

∂tω + (u · ∇)ω − ν∆ω = 0. (9.1)

Note in particular that there is no vortex stretching in two dimensions, there is only the ad-

vection term, and the dissipation term. This means that enstrophy will be non-decreasing, in

particular that for a smooth solution

∂t
1

2
‖ω(·, t)‖2L2 = −ν‖ω‖2

Ḣ1 . (9.2)

The equation for the strain will have more terms than just advection and dissipation, but

nonetheless this identity for enstrophy growth can be proven using the strain equation as well,

which we will state now.

Proposition 9.1 (Strain equation in two dimensions). The Navier-Stokes strain equation can

be written as an evolution equation on L2
st in two dimensions as

∂tS + (u · ∇)S − ν∆S +

(
1

2
|S|2 − 1

4
w2

)
I2 + Hess(p) = 0 (9.3)

Proof. We will begin by recalling that the general form of the Navier-Stokes vorticity equation

in n dimensions is

∂tS + (u · ∇)S − ν∆S + S2 +A2 + Hess(p) = 0. (9.4)

67
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Note that in two dimensions the entries A are defined by the scalar vorticity with

A =
1

2

(
0 w

−w 0

)
, (9.5)

so clearly we have

A = −1

4
w2I2 (9.6)

Next observe that because S is symmetric and real valued and trace free it will have the form

S =

(
a b

b −a

)
, (9.7)

for some a, b ∈ R. This means that

S2 =

(
a2 + b2 0

0 a2 + b2

)
=

1

2
|S|2I2. (9.8)

This completes the proof.

We will note here that while the Navier-Stokes strain equation has more terms than the

vorticity equation in two dimensions, beyond just dissipation and advection,
(

1
2 |S|

2 + 1
4ω

2
)
I2 +

Hess(p) ∈
(
L2
st

)⊥
, so these additional terms are only projecting back into the constraint space,

and cannot drive blowup in L2 as we will now see. This contrasts with the vorticity, which is

a scalar in two dimensions, and so there is no constraint space–the vorticity is a generic scalar

function.

Theorem 9.2 (Enstrophy in two dimensions). For all S0 ∈ L2 satisfying the consistency

condition there exists a global smooth solution to the Navier-Stokes strain equation with for all

t > 0

‖S(·, t)‖2L2 + 2ν

∫ t

0
‖S(·, τ)‖2

Ḣ1
dτ = ‖S0‖2L2 . (9.9)

Proof. Just as in the three dimensional case, here we have ‖S0‖2L2 = 1
2‖w

0‖2L2 . It is well known

that for two dimensional Navier-Stokes, enstrophy is a monotone quantity and therefore that

initial vorticity in L2 is sufficent to guaruntee global smooth solutions. For the second piece we

can observe that integrating by parts 〈(u · S)S, S〉 = 0. We also know that〈(
1

2
|S|2 − 1

4
w2

)
I2, S

〉
=

∫
R2

(
1

2
|S|2 − 1

4
w2

)
tr(S) = 0. (9.10)

Finally we observe that as in the three dimensional case

〈Hess(p), S〉 = 0. (9.11)

From this we can conclude that

∂t‖S(·, t)‖2L2 = −2‖S(·, t)‖2
Ḣ1

(9.12)

Integrating this differential equality, this completes the proof.
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This does not provide any new identity, though; this is simply equivalent to what is already

known about enstrophy for two dimensional Navier-Stokes using the scalar vorticity equation.

We cannot get any insight into the three dimensional Navier-Stokes strain equation by looking

at the two dimensional case, because the trace free condition in two dimensions means that

the eigenvalues of the strain matrix have only one degree of freedom, so none of the difficult

aspects from the three dimensional equation can play a role in two dimensions. Studying the

Navier-Stokes strain equation in two dimensions, therefore, will unfortunately not be of any use

in understanding the three dimensional case.
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