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1 Introduction

Matching problems under transferable utility have attracted consider-

able attention in recent years within economic theory. The general goal

is to understand the stable equilibria of matches between distributions

of agents on two sides of a ‘market’ (for example, husbands and wives

in the marriage market, CEOs and firms in the labor market, produc-

ers and consumers in a market for differentiated commodities, etc.), as

well as the resulting division of surplus between partners. Until recently,

most work has focused on the setting in which a single characteristic is

used to distinguish between the agents on each side; for example, in the

marriage market, several models assume that individuals differ only by

their income (or their human capital). These models have the advan-

tage of being analytically tractable, and often allow explicit closed form

solutions. Under the classical Spence-Mirrlees condition, the only stable

matching is the positive assortative one, the nature of which (‘who mar-

ries whom’) is directly determined by the underlying distributions of the

male and female characteristic. However, these one dimensional models

are unsatisfactory in many situations, as both casual empiricism and

factual evidence indicate that agents often match on several traits. In

the marriage market, for instance, the suitability of a potential marriage

between a woman and man typically depends on several characteristics

of both, including income and education, but also age, tastes, ethnic

background, physical attractiveness, etc.

It is therefore important to study and understand multidimensional

matching problems, in which agents on both sides of the market are

differentiated using several characteristics. These models have garnered

increasing visibility in recent years, due to their wider applicability and

flexibility, but their introduction brings forth serious theoretical chal-

lenges. The nature of the equilibrium matching is more interesting but

also more complex; in contrast to the one dimensional case, it is no

longer determined by the sole knowledge of the distributions of individ-

ual characteristics, even under (a generalization of) the Spence-Mirrlees

condition. From a more technical perspective, it is generally not possi-

ble to derive closed form solutions; and discretising matching problems
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leads to a linear program, which often become numerically unwieldy

when type spaces are multidimensional.

The purpose of this paper is to provide a general characterization

of multidimensional matching models, in terms of existence, unique-

ness and qualitative properties of stable matches, and to provide a

new empirical approach for analyzing these models. Since the work of

[Shapley & Shubik (1971)] in the discrete setting, and [Gretsky, Ostroy & Zame (1992)]

in the continuum, it has been understood that transferable utility match-

ing is equivalent to a variational problem; this problem is known in

the mathematics literature as the Monge-Kantorovich optimal transport

problem. We put a particular emphasis on the case in which the dimen-

sions of heterogeneity on the two sides of the market are unequal (say,

m > n). These sorts of problems have received relatively little attention

from the mathematics community, but are quite natural economically;

the dimension essentially reflects the number of attributes used to dis-

tinguish between agents and there is no compelling reason in general to

expect this number to coincide for agents on the two different sides of the

market (say, for consumers and producers, or for employees and firms).

A typical pattern emerges in these situations, since for one side of the

market (the one with a lower dimension), identical agents are typically

matched with a continuum of different partners. We explore the prop-

erties of the ‘indifference sets’ thus defined, and argue that since such

indifference sets can often be empirically recovered, these properties can

provide testable consequences of multidimensional matching theory.

Of specific interest are the so-called ‘multi-to-one dimensional match-

ing problems’, in which agents on one side of the market are assumed to

be multidimensional, while those on the other side are unidimensional.

They include an economically important class of examples (for instance,

in [Chiappori, Oreffice & Quintana-Domeque (2012)] and [Low (2014)]),

for which we show one can often obtain explicitly the stable matchings;

see [Chiappori, McCann & Pass (2017)]. In this context, we describe our

general approach aimed at characterizing the equilibrium matching. We

describe a robust methodology that allows, under suitable conditions,

to explicitly characterize its solutions. We discuss some interesting fea-
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tures that the indifference sets exhibit, and which are typically absent

in purely unidimensional problems. For instance, the optimal mapping

may be discontinuous, and so women of similar types may marry men

of very different types.

Lastly, we discuss the empirical properties of multidimensional match-

ing models. We first provide a theoretical discussion of the two main

issues, namely testability of matching models and identifiability of the

underlying structure. Next, we introduce a novel, stochastic structure

aimed at capturing the presence of unobservable traits in the matching

game. Our structure generalizes existing models (including the seminal

contribution by [Choo & Siow (2006)]) by allowing for a continuous dis-

tribution of observable traits; in particular, following a formulation that

has become standard in empirical IO, we allow for individual-specific val-

uations of a partner’s characteristics. In addition, our approach clarifies

the connections between two commonly used approaches in the empiri-

cal matching literature,1 one based on a direct analysis of matching pat-

terns as in [Choo & Siow (2006)] and the other relying on cross-sectional

regressions of individual traits on the spouse’s characteristics (as pio-

neered by [Chiappori, Oreffice & Quintana-Domeque (2012)], from now

on COQ).

A basic distinction, in all contexts, is between ‘single-market’ and

‘multi-market’ frameworks. In the former case, we only observe the

matching patterns corresponding to one particular matching game. In

the latter, matching patterns are observed in several ‘markets’; while

the distributions of observable characteristics may freely differ across

markets, some aspects of the underlying structural models (namely, the

‘supermodular core’ of the surplus function and the distribution of un-

observable characteristics) are assumed to be identical across markets.

We show that, in the single-market context, the simplest version of the

model (in which the distribution of unobservable characteristics is known

a priori) is exactly identified. In a multi-market case, however, testable

restrictions are generated. In a specific, normal-quadratic version of

1See for instance the surveys by [Graham (2011)] and
[Chiappori & Salanié (2016)].
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the empirical model, in the line of [Tinbergen (1956)], one can derive

closed-form solutions for the surplus function (up to a normalization);

moreover, the model can be identified either directly or by OLS regres-

sions of individual characteristics.

The next section summarizes the main theoretical results, with a par-

ticular emphasis on the unequal dimensions case and the (new) notion

of ‘nestedness’. General results on testability and identification are pro-

vided in Section 3, whereas Section 4 is devoted to the general stochastic

structure and the specific, normal quadratic application.

2 Multidimensional matching under transferable util-

ity: theory

2.1 Basic properties

2.1.1 The framework

Matching: definition We consider sets X ⊆ Rm and Y ⊆ Rn,

parametrizing populations of agents on two sides of a market. In what

follows, we shall stick to the language of the marriage market interpreta-

tion (so that X and Y will denote the set of potential wives and husbands

respectively), although alternative interpretations are obviously possible.

They are distributed according to probability measures µ on X and ν on

Y , respectively. In the transferable utility framework, a potential match-

ing of agents x ∈ X and y ∈ Y generates a combined surplus s(x, y),

where s : X × Y → R. This surplus can be divided in any way between

the agents x and y. For simplicity, we assume that s and its derivatives

are smooth and bounded unless otherwise remarked; many of the results

we describe can also be extended to surpluses with less smoothness, as in

[Chiappori, McCann & Nesheim (2010)] and [Noldeke & Samuelson (2015)]

for example.

A matching is characterized by a probability measure γ on the prod-

uct X × Y , whose marginals are µ and ν, that is

γ(A× Y ) = µ(A) and γ(X ×B) = ν(B) (1)
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for all Borel A ⊂ X,B ⊂ Y . Intuitively, a matching is an assignment

of the agents in the sets X and Y into pairs, and γ (x, y) is related to

the probability that x will be matched to y; in particular, (x, y) /∈ spt γ

implies2 that agents x and y are not matched together. The marginal

condition is often called the market clearing criterion. We denote the

set of all matchings by Γ(µ, ν).3

Payoff functions and stability Integrable functions u : X → R and

v : Y → R are called payoff functions corresponding to γ if they satisfy

the budget constraint :

u(x) + v(y) ≤ s(x, y) (2)

γ almost everywhere — i.e., for any pair of agents who match with

positive probability. For such a pair (x, y) ∈ spt γ, the functions u(x)

and v(y) are interpreted respectively as the indirect utilities derived from

the match by agents x and y; the constraint (2) ensures that the total

indirect utility u(x) + v(y) collected by the two agents does not exceed

the total surplus s(x, y) available to them.

A matching γ is called stable if there exist payoff functions u(x) and

v(y) satisfying both (2) and the reverse inequality

u(x) + v(y)− s(x, y) ≥ 0 (3)

for all (x, y) ∈ X × Y . Condition (3) expresses the stability of the

matching in the following sense; if we had u(x) + v(y) < s(x, y) for any

(currently unmatched) pair of agents, it would be desirable for each of

them to leave their current partners and match together, dividing the

excess surplus s(x, y) − u(x) − v(y) > 0 in such a way as to increase

the payoffs to both x and y. Note that (2) and (3) together ensure

2Here spt γ refers to the support of γ, i.e. the smallest closed set containing the
full mass of γ.

3For simplicity, we shall assume that µ and ν have equal mass and that all
agents are matched. When this assumptions are violated it is well-known that
they can be restored by augmenting both sides of the market with a fictitious
type representing the outside option of remaining unmatched (see for instance
[Chiappori, McCann & Nesheim (2010)]).
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u(x) + v(y) = s(x, y), γ almost everywhere: if two agents match with

positive probability, then they split the surplus generated between them.

Although u and v will not generally be everywhere differentiable,

some mild regularity condition guarantees differentiability almost every-

where. Specifically, if the surplus function s is Lipschitz, so are the pay-

offs u and v — and with the same Lipschitz constant; if s ∈ C2(X ×Y ),

then u and v have second-order Taylor expansions Lebesgue almost-

everywhere (see e.g. [Villani (2009)] or [Santambrogio (2015)]). When

the probability measures µ and ν come from Lebesgue densities, this

almost-everywhere differentiability proves sufficient for many analytic

purposes. We use DomDu (respectively DomD2u) to denote those

x ∈ X at which u has a first- (respectively second-)order Taylor ex-

pansion, and Dom0D
iu :=

(
X
)0 ∩ DomDiu where X and X0 denote

the closure and interior of X, respectively.

First order conditions for stability Given a stable match γ and

associated matching functions u, v, the set

S = {(x, y) ∈ X × Y | u(x) + v(y) = s(x, y)}

is of particular interest; as spt γ ⊂ S, it tells us which agents can match

together. If S is concentrated on a graph {(x, F (x)) | x ∈ S} of some

function F : X −→ Y , the stable matching is called pure, the interpre-

tation being that almost all agents of type x must match with agents of

the same type y = F (x); in particular, purity excludes the presence of

randomization, whereby an agent x may be randomly assigned to differ-

ent partners. In this case, the distribution ν agrees with the image F#µ

of µ under F , which assigns mass

(F#µ)(V ) := µ[F−1(V )] (4)

to each V ⊂ Y .4

Note that this notion of purity in not symmetrical with respect to

X and Y . This asymmetry is unavoidable in the unequal dimensional

4Also called the push-forward F#µ of µ through F ; see e.g.
[Ahmad, Kim & McCann (2011)].
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cases m > n of particularly interest; in this case each male type y will

typically match with an m − n dimensional continuum of female types

x, so randomization is necessary in the male to female direction.

The fact that S is the zero-set of the non-negative function (3) en-

ters crucially. It implies in particular the first-order and second order

conditions

(Du(x), Dv(y)) = (Dxs(x, y), Dys(x, y)) (5)

and (
D2u(x) 0

0 D2v(y)

)
≥

(
D2
xxs(x, y)D2

xys(x, y)

D2
yxs(x, y)D2

yys(x, y)

)
(6)

are satisfied at each (x, y) ∈ S ∩ (X × Y )0 for which the derivatives

in question exist; here X0 denotes the interior of X, and inequality (6)

should be understood to mean the difference of these (m+n)× (m+n)

symmetric matrices is non-negative definite.

The equality

Du(x) = Dxs(x, y) (7)

has an interesting, economic interpretation for the case where charac-

teristics are not exogenously given but result from some investment

made by individuals before the beginning of the game (human capi-

tal being an obvious example). Indeed, if both x and y are endoge-

nously chosen by the agent before the matching game starts, then (7)

implies that the marginal gross return, for the individual, of an invest-

ment in characteristics is exactly equal to its gross social return (de-

fined as the contribution of the investment to aggregate surplus, which

is the natural definition in a TU context). In other words, one ex-

pects that for some equilibria such investments will be efficient, de-

spite being made non-cooperatively before the matching game; their im-

pact on global welfare is internalized by matching mechanisms, a point

made by [Cole, Mailath & Postlewaite (2001)], [Makowski (2004)] and

[Iyigun & Walsh (2007)] and generalized by [Noldeke & Samuelson (2015)].
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2.1.2 Variational interpretation: optimal transport and dual-

ity

The Monge-Kantorovich problem The problem of identifying sta-

ble matches turns out to have a variational formulation, known as the

optimal transport, or Monge-Kantorovich, problem in the mathematics

literature (see for instance [Villani (2009)], [Santambrogio (2015)] and

[Galichon (2016b)]). This is the problem of matching the measures µ

and ν so as the maximize the total surplus; that is, to find γ among the

set Γ(µ, ν) which maximizes

s[γ] :=

∫
X×Y

s(x, y)dγ(x, y). (MK)

The following theorem can be traced back to [Shapley & Shubik (1971)]

for finite type spaces X and Y , and to [Gretsky, Ostroy & Zame (1992)]

more generally. It asserts an equivalence between (MK) and stable

matchings.

Theorem 1 (Stable matching via linear optimization) A match-

ing measure γ ∈ Γ(µ, ν) is stable if and only if it maximizes (MK).

As the maximization of a linear functional over a convex set, problem

(MK) has a dual problem, which is useful both in studying it maximizers,

and in clarifying its relation with stable matching. The dual problem to

(MK) is to minimize

µ[u] + ν[v] :=

∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y). (MK∗)

among functions u ∈ L1(µ) and v ∈ L1(ν) satisfying the stability con-

dition (3). It is well known that under mild conditions, Kantorovich-

Koopmans duality holds (see, for instance, [Villani (2009)]), that is:

max
γ satisfying (1)

s[γ] = min
(u,v) satisfying (3)

(
µ[u] + ν[v]

)
. (8)

Note that for any u and v satisfying the stability constraint (3) and any

matching γ ∈ Γ(µ, ν), the marginal condition implies
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µ[u] + ν[v] =

∫
X×Y

(u(x) + v(y)) dγ(x, y) ≥
∫
X×Y

s(x, y)dγ(x, y)

and we can have equality if and only if u(x) + v(y) = s(x, y) holds γ-

almost everywhere. It then follows from the duality theorem that γ is a

maximizer in (MK) (and hence a stable match) and u, v are minimizers

in the dual problem (MK∗), precisely when u(x) + v(y) = s(x, y) holds

γ almost everywhere; in other words, the solutions to (MK∗) coincide

with the payoff functions. As a consequence, for any solution to (MK),

one can define a stable matching by considering the optimal measure γ

and the minimizers of the dual problem as payoff functions.

Existence of the stable matching easily follows from the previous

findings. Indeed, one only need to prove existence of a solution to the

associated, Monge-Kantorovich problem, which is a linear maximization

problem. For instance, if X ⊂ Rm and Y ⊂ Rn are bounded and s is

continuous, then there exists an optimizer γ to (MK), and therefore a

stable match.5

Moreover, an immediate corollary that has important empirical ap-

plications is the following:

Corollary 2 (Additive ambiguities in surplus identification) Let

s and s̄ be two surplus functions. Assume there exists two functions f

and g, mapping Rm to R and Rn to R respectively, such that

s (x, y) = s̄ (x, y) + ψ (x) + φ (y)

For any measures µ and ν, any stable matching for s is a stable matching

for s̄ and conversely.

Proof. Any stable measure γ for s solves the surplus maximization

problem:

max
γ satisfying (1)

∫
X×Y

s(x, y)dγ(x, y). (9)

5The literature on the topic is large in both mathematics and economics.
The interested reader is referred to (see [Villani (2009)], [Santambrogio (2015)]) or
[Galichon (2016b)] for recent surveys.
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which is equivalent to:

max
γ satisfying (1)

∫
X×Y

s̄(x, y)dγ(x, y) +

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

The last two integrals are given (by the marginal conditions on γ), and

so any γ that maximizes (9) also solves (10):

max
γ satisfying (1)

∫
X×Y

s̄(x, y)dγ(x, y). (10)

implying that the stable measure is associated with a stable matching for

s̄.

An important consequence of this result is that the observation of

matching patterns can only (at best) identify the surplus up to two ad-

ditive functions of x and y respectively. We shall see later on that, in

general, s cannot be identified even up to two such additive functions. A

second implication is that if the surplus function is additively separable

in x and y:

s (x, y) = ψ (x) + φ (y)

for some mappings φ and ψ, then any matching is stable; indeed, any

matching is stable for the degenerate surplus s̄ (x, y) = 0, and by the

Corollary the set of stable matchings is the same for s and s̄.

Uniqueness, purity, and the twist condition The issues of unique-

ness and purity are slightly more complex. Aside from its theoret-

ical interest, uniqueness of the optimal matching γ plays an impor-

tant computational role, as in its absence more sophisticated techniques

must be employed. In practice, solutions are often assumed to be pure

in empirical studies. Since this conclusion is not generically satisfied

[McCann & Rifford (2016)], it is desirable to know conditions on s, µ

and ν which guarantee it. Similarly, uniqueness is not guaranteed in

general; for instance, as noted above, if the surplus function is addi-

tively separable in x and y then any matching γ is optimal and hence

stable. It is therefore clear that certain structural conditions on s are

indeed needed to ensure purity and uniqueness.
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A sufficient condition for purity of the optimal matching, that in turn

implies uniqueness, is a nonlocal generalization of the Spence-Mirrlees

condition, known as the twist condition:

Definition 3 (Twist) The function s ∈ C1 satisfies the twist condition

provided

Dxs(x, y) 6= Dxs(x, y0) (11)

for all x and distinct y 6= y0.

The twist condition is therefore equivalent to the injectivity of y 7→
Dxs(x, y), for each fixed x. For instance, in a one-dimensional context

(m = 1 = n), the classical Spence-Mirrlees condition imposes that either
∂2s
∂x∂y

> 0 or ∂2s
∂x∂y

< 0 over X × Y , which implies that y 7→ ∂s
∂x

(x, y) is

strictly monotone (and hence injective) for each fixed x. It is in this sense

that the twist condition can be viewed as a non-local generalization of

the Spence-Mirrlees condition.6

It should be noted that our definition of twist breaks the symmetry

between X and Y . One could call it x-twist, and define y-twist in a

similar way. When both hold we say s is bi-twisted. However, if Y

has non-empty interior, then x-twist can hold only if m ≥ n, because it

asserts the existence of a continuous injection (11) from an open subset

Y 0 of Rn into Rm. Similarly, invariance of domain shows y-twist requires

n ≥ m unless X0 is empty, so bi-twist cannot hold unless m = n.

A well-known result7 is that the twist condition is sufficient to guar-

antee purity; specifically, if µ is absolutely continuous with respect to

Lebesgue measure and the surplus s satisfies the twist condition, then

any solution γ to (MK) is pure; that is, almost all women with a given

type x are matched with the same man y.8

6The twist condition is quite different from the non-local generalization of the
same condition by [McAfee & McMillan (1988)], as discussed in Remark 9 below.

7See for instance [Gangbo (1995)] or [Levin (1999)].
8The absolute continuity of µ is a technical condition required to ensure the util-

ities can be differentiated on a set of full µ measure; the payoff functions are guar-
anteed to be Lipschitz if the surplus is, and are hence differentiable Lebesgue almost
everywhere by Rademacher’s theorem (but not everywhere in general). The condi-
tion on the measure can be weakened somewhat, but some regularity is needed: as
a simple counterexample, if µ = δx0 is a Dirac mass but ν is not, then the optimal
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Two further remarks can be made at this point. First, in many

relevant situations, the twist condition does indeed fail; for example, if

we replace X and Y with compact smooth manifolds, it fails for any

smooth surplus function s. Second, the twist condition is not necessary

for purity. For instance, [Kitagawa & Warren (2012)] provide a setting

in which purity holds in the absence of twist.

A standard result is that purity implies uniqueness:

Corollary 4 (Purity yields uniqueness) Given µ, ν and s ∈ C(X ×
Y ), if all stable matches in Γ(µ, ν) are pure, then the stable match is

unique.

Proof. Theorem 1 asserts γ is stable if and only if it maximizes (MK)

on Γ(µ, ν). Suppose two maximizers γ0 and γ1 exist. Convexity of the

problem makes it clear that γ2 = (γ0 +γ1)/2 is again maximal. Purity

asserts that γ2 concentrates on the graph of a map F : X −→ Y , and

vanishes outside this graph. Non-negativity ensures the same must be

true for γ0 and γ1. But then γ0 = (F × id)#µ = γ1 by Lemma 3.1 of

[Ahmad, Kim & McCann (2011)]

The converse to this Corollary is not true; i.e., one can easily find

situations where the optimal matching is unique but not pure.9 Lastly,

even when s satisfies the twist condition, and the optimal matching is

therefore pure and unique, the mapping F : X → Y generating the

matching is not continuous in general, as a wide range of examples

throughout the literature on optimal transport show (see for instance

[Ma, Trudinger & Wang (2005)]). In practice, thus, even when the sta-

ble matching is pure, one cannot generally expect that two women x and

x′ whose types are ‘close’ will marry men with similar characteristics.

2.1.3 Recovering individual utilities

The stability condition allows information on individual utilities at the

stable match to be recovered. To see why, note first that stability implies

matching (indeed, the only measure in Γ(µ, ν)) is product measure δx0
⊗ ν, which

pairs every point y with x0 and is certainly not pure.
9Additional conditions which ensure uniqueness, but not purity, of the op-

timal matching can be found in [Chiappori, McCann & Nesheim (2010)] and
[McCann & Rifford (2016)].
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that, for µ almost every x,

u (x) = max
y

(s (x, y)− v (y)) . (12)

Assume, now, that the matching is pure (say, because the twist con-

dition is satisfied). The envelope theorem then yields, wherever u is

differentiable and y = F (x) is matched with x,

∂u

∂xi
(x) =

∂s

∂xi
(x, F (x)) . (13)

which gives the partials of u, and therefore defines u up to an additive

constant.10

2.2 Matching with unequal dimensions

We now turn special attention to the case in which the dimensions m ≥ n

of heterogeneity on the two sides of the market are unequal. In this case,

one expects stable matchings where almost every man y is matched with

positive probability to a continuum of potential wives x. Specifically, it

is natural to expect that at equilibrium the subset F−1(y) ⊂ X ⊂ Rm

of partners which a man of type y ∈ Dom0Dv is indifferent to will

generically have dimension m− n, or equivalently, codimension n.

10Note, incidentally, that these partial differential equations relating direct to indi-
rect payoffs must be compatible, which generates restrictions on the matching func-
tion F ; namely, assuming double differentiability:∑

k

∂2s

∂xi∂yk

∂Fk

∂xj
=
∑
k

∂2s

∂xj∂yk

∂Fk

∂xi
(14)

≥ ∂2s

∂xi∂xj
(x, F (x)) (15)

where yk = Fk (x) and the partials of s are taken at (x, F (x)) and the inequality
is from (6). In particular, in the case of multi to one dimensional matching, then
y = F (x1, ..., xm), and (14) becomes a system of partial differential equations that
F must satisfy (which reduces to a single equation in case m = 2 = n+ 1); together
with the measure restrictions and the matrix inequality (15), this typically identifies
the matching function F .
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2.2.1 General results

Potential indifference sets. For any equilibrium matching γ and

payoffs (u, v), we have already seen that γ-a.e. (x, y) produces equality

of marginal direct and indirect payoffs for both husband and wife (5).

In particular, all partner types x ∈ X for husband y ∈ Dom0Dv lie

in the same level set of the map x 7→ Dys(x, y) taking her type to his

marginal surplus. Knowing his marginal payoff Dv(y) would determine

this level set precisely; it depends on µ and ν as well as s. However, in the

absence of this knowledge it is useful to define the potential indifference

sets, which for given y ∈ Y are merely the level sets of the map x ∈ X 7→
Dys(x, y) taking her type to his marginal surplus. We can parameterize

these level sets by (cotangent) vectors k ∈ Rn:

X(y, k) := {x ∈ X | Dys(x, y) = k}, (16)

or we can think of his type y ∈ Y as inducing an equivalence relation

between female types, under which x and x̄ ∈ X are equivalent if and

only if they provide him the same marginal surplus

Dys(x, y) = Dys(x̄, y).

Under this equivalence relation, the equivalent classes take the form (16).

We call these equivalence classes potential indifference sets, since they

represent a set of partner types which y ∈ Dom0Dv has the potential to

be indifferent between. The equivalence class containing a given female

type x̄ ∈ X will also be denoted by

Lx̄(y) = X(y,Dys(x̄, y)) = {x ∈ X | Dys(x, y) = Dys(x̄, y)}. (17)

A key observation concerning potential indifference sets is the following

proposition showing — for surpluses satisfying a local non-degeneracy

condition as in [McAfee & McMillan (1988)] — that the potential indif-

ference set consists either of isolated points, curves, surfaces, etc. (re-

spectively) according to the difference between the dimensions of the

female and male types: n = m, m− 1,m− 2, etc. (respectively).
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Definition 5 (Surplus degeneracy) Given X ⊂ Rm and Y ⊂ Rn,

we say s ∈ C2(X×Y ) degenerates at (x, y) ∈ X×Y if rank(D2
xys(x̄, ȳ)) <

min{m,n}. Otherwise we say s is non-degenerate at (x̄, ȳ).

Proposition 6 (Structure of potential indifference sets) Let s ∈
C2(X × Y ), where X ⊂ Rm and Y ⊂ Rn with m ≥ n. If s does

not degenerate at (x̄, ȳ) ∈ X × Y , then near the female type x̄, the

potential indifference set Lx̄(ȳ) of ȳ passing through x̄ coincides with the

intersection of X with a C1-smooth, codimension n, submanifold of Rm.

Proof. Since s ∈ C2, the surplus extends to a neighborhood U × V of

(x̄, ȳ) on which s continues to be non-degenerate (by lower semicontinuity

of the rank). The set {x ∈ U | Dys(x, y) = Dys(x̄, ȳ)} forms a codimen-

sion n submanifold of U , by the preimage theorem [Guillemin & Pollack (1974),

§1.4]. More specifically, the rank condition implies that choosing a suit-

able orthonormal basis for Rm yields det[ ∂2s
∂xi∂yj

(x̄, ȳ)]1≤i,j≤n 6= 0. In these

coordinates, the potential indifference set is locally parameterized as the

inverse image under the C1 map x ∈ U 7→ (Dys(x, ȳ), xn+1, . . . , xm) of

the affine subspace {Dys(x̄, ȳ)} × Rn−m. Taking U and V smaller if

necessary, the inverse function theorem then shows Lx̄(ȳ) ∩ U to be C1.

Remark 7 (Smoother surpluses) For smooth surpluses s (with, say

r+1 continuous derivatives) the same proof shows the potential indiffer-

ence set to be correspondingly smoother (i.e. to be parametrized locally

as a graph over Rm−n having r continuous derivatives).

Although we have stated the proposition in local form, when s is

globally non-degenerate it implies that each potential indifference set

is the intersection of X with an m− n dimensional submanifold of Rm.

Indeed more is true: the potential indifference sets of ȳ foliate the interior

of X. On the other hand, this proposition says nothing about points

(x̄, ȳ) where s degenerates, which can happen throughout spt γ.

Potential versus actual indifference sets As argued above, the po-

tential indifference sets (16) and (17) are determined by the surplus func-

tion s(x, y) without reference to the populations µ and ν to be matched.

16



On the other hand, the indifference set actually realized by each y ∈ Y
depends on the relationship between µ, ν and s. This dependency is

generally complicated, as illustrated by the following example.

Example 8 Consider the surplus function:

s (x, y) = x1y1 + x2y2 + x3y1y2

where X ⊂ R3, Y ⊂ R2. The potential indifference sets are given, for

any k ∈ R2, by:

X(y, k) :=

x ∈ X |
x1 + x3y2 = k1

and

x2 + x3y1 = k2

 . (18)

These are straight lines in R3, parallel to the vector

y2

y1

−1

. Therefore,

for any given y ∈ R2, we know that the set of spouses matched with

y (the indifference set corresponding to husband y) will be contained in

such a straight line. However, it is certainly not true that any such line

(obtained for an arbitrary choice of k) will be an indifference set curve.

For a given y, the exact equation of the indifference set corresponding

to y is defined by the value of the specific vector k which is relevant for

that particular y — and this depends on the measures µ and ν.

Remark 9 Under the same non-degeneracy assumption, [McAfee & McMillan (1988)]

proposed a ‘generalized single crossing property’ on s which is equivalent

to the assertion that each potential indifference set Lx̄(y) parallel the ker-

nel of D2
xys : Tx̄X −→ TyY , hence be an affine subspace. Although satis-

fied in the preceding example, their condition is extremely non-generic:

even among twisted surpluses, the potential indifference sets are typically

curved rather than flat.
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2.2.2 Multi-to-one dimensional matching (n = 1)

Iso-husband surfaces We now consider a specific class of models,

largely unexplored in either the mathematics or economics literature, but

which can often be solved explicitly with the techniques outlined below

and developed more fully in [Chiappori, McCann & Pass (2017)]. These

are multi-to-one dimensional models, in which agents on one side of the

market (say wives) are bi-dimensional (or, potentially, higher dimen-

sional) while agents on the other side (husbands) are one-dimensional.

Thus, we are matching a distribution on x = (x1, ..., xm) ∈ Rm with

another on y ∈ R. The surplus s is then a function s (x1, ..., xm, y) of

m + 1 real variables. In our analysis, a key role is played by the actual

indifference sets; in line with the marriage market interpretation, we

call these iso-husband surfaces. In practice, the iso-husband surface of

a given husband y is defined as the submanifold of wives among which

husband y turns out to be indifferent facing the given market conditions.

We first provide a result that directly generalizes the notion of assor-

tative matching to a multidimensional setting:

Proposition 10 Assume that the surplus is such that

∂2s

∂xk∂y
> 0 for k = 1, ..., K

Consider two women (x1, ..., xK , xK+1, ...xm), matched with husband y,

and (x′1, ..., x
′
K , xK+1, ...xm), matched with husband y′. If x′k ≥ xk for

k = 1, ..., K then y′ ≥ y.

Proof. Assume not, then switching husbands would increase total sur-

plus, a contradiction.

In other words, the assortative matching argument can be generalized

in the following way: if the second cross derivative is positive for female

characteristics 1 to K, then among women with identical characteristics

K + 1, ...,m, those with higher values for the first K characteristics are

matched with husband with a higher characteristic y. This property

can actually be generalized under specific assumptions on the surplus

functions; see for instance [Lindenlaub (2015)].
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Next, the previous arguments, and particularly the relationship be-

tween potential and actual iso-husband surfaces, can sometimes be trans-

posed to the multi-to-one context. In general, the situation is compli-

cated by the fact that different types y 6= y′ need not agree on which

types of women are ‘higher’ that others. However, each given type of

man y has a clear order of preference among partners; one can in some

cases exploit this fact to characterize the features of the stable matching.

Specifically, suppose s is non-degenerate (i.e. D2
xys(·, y) is non-vanishing).

Then the potential indifference sets X(y, k) are codimension 1 in Rm;

that is, they are curves in R2, surfaces in R3, and hypersurfaces in higher

dimensions m ≥ 4. As k moves through R, these potential indifference

sets sweep out more and more of the female types. For each y ∈ Y

there will be some choice of k ∈ R for which the number of women in

{x | Dys(x, y) ≤ k} exactly coincides with the number of men in (−∞, y]

(assuming both are distributed absolutely continuously with respect to

Lebesgue, or at least that µ concentrates no mass on hypersurfaces and

ν has no atoms). In this case the potential indifference set X(y, k) is

said to split the population proportionately at y, making it a natural

candidate for being the iso-husband set F−1(y) to be matched with y.11

Our goal, now, is to distinguish situations in which this expectation

is born out and leads to a complete solution from those in which it does

not. This happens if the potential iso-husband surfaces that divide the

mass of µ in the same ratio as y divides ν may, when y is varied, fit

together to form the level sets of a function. When they do, we say the

model is nested, and in that case we show that the resulting function

F : X −→ Y produces a stable equilibrium match.

Constructing explicit solutions for nested data We now precisely

characterize the nestedness property. This property is satisfied in a wide

class of multi-to-one dimensional matching problems, that are illustrated

in the theorem and examples presented below. However, except in the

Spence-Mirrlees (with m = n = 1) and in the index and pseudo-index

11Since k = sy(x, y) can be recovered from any x ∈ X(y, k) and y, we may equiv-
alently say x splits the population proportionately at y, and vice versa. What is
meant in either case is that the mass of women who would generate less marginal
surplus for y than x does coincides with the mass of men of types lower than y.
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cases (discussed below), this nestedness depends not only on the surplus

s, but also on the measures µ and ν.

For each fixed y ∈ Y ⊆ R, our goal is to identify the iso-husband (or

indifference) set {x ∈ X | F (x) = y} of husband type y facing the given

market conditions. When differentiability of v holds at y, the equality

of his direct and indirect marginal payoffs implies that this is contained

in one of the potential indifference sets X(y, k) from (16). Proposition

6 indicates when this set will have codimension 1; it generally divides X

into two pieces: the sublevel set

X≤(y, k) := {x ∈ X | ∂s
∂y

(x, y) ≤ k}, (19)

consisting of female types for whom y has marginal surplus less than he

has on potential indifference set under discussion, and its complement

X>(y, k) := X \X≤(y, k). (We denote its strict variant by X<(y, k) :=

X≤(y, k) \X(y, k).)

We now choose the unique level set splitting the population propor-

tionately with y; that is, the k = k(y) for which the mass µ[X≤(y, k)] of

female types x below the potential indifference curve coincides with the

ν mass of male types below y. We then hypothesize y := F (x) for each

x in the corresponding potential indifference curve X(y, k).

The next definition specifies conditions under which the map F :

X −→ Y is well-defined; it precludesX(y, k(y)) from intersectingX(ȳ, k(ȳ))

unless y = ȳ. In this case the resulting match γ = (id × F )#µ turns

out to optimize the Kantorovich problem (MK), as Theorem 12 shows.

Thus nestedness is the natural generalization of the positive assortative

matching results of [Mirrlees (1971)] [Becker (1973)] and [Spence (1973)]

from the one-dimensional to the multi-to-one dimensional setting.

The precise definition is complicated slightly to allow for the possi-

bility that µ vanishes on subregions of X:

Definition 11 (Nestedness) Let X ⊂ Rm and Y ⊂ R be connected

open sets equipped with Borel probability measures µ and ν. Assume ν

has no atoms and µ vanishes on each C1 hypersurface. Use s ∈ C2(X ×
Y ) and sy = ∂s

∂y
to define X≤, X< etc., as in (19). Assume moreover
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that s is non-degenerate, |Dxsy| 6= 0, throughout X × Y . Then for each

y ∈ Y there is a maximal interval K(y) = [k−(y), k+(y)] 6= ∅ such that

µ[X≤(y, k)] = ν[(−∞, y)]. The model is said to be nested if both maps

y ∈ Y 7→ X≤(y, k±(y)) are non-decreasing, and moreover that
∫ y′
y
dν > 0

implies

X≤(y, k+(y)) ⊆ X<(y′−(y′)). (20)

A crucial point is that, unlike the Spence-Mirrlees (or supermodular-

ity) criterion, which depends only on s, the nestedness condition relates

s to µ and ν. The intuition for this additional degree of complexity is

simple: in a multidimensional context, there is no obvious ordering of

the women’s types, but generally a variety of possible orderings depend-

ing on population frequencies µ and ν. Nestedness essentially asserts

that under the given market conditions, the men’s indirect preferences

enjoy some degree of compatibility, in the sense that for y < ȳ, the

potential indifference curves X(y, k(y)) and X(ȳ, k(ȳ)) of female types

hypothesized on the basis of mass balance do not cross each other.

Under this hypothesis, one can show the following theorem. It states

that when the potential indifference sets selected on the basis of propor-

tionate splitting (i.e. mass balance) do not intersect each other, then

they coincide with the iso-husband sets of the unique stable match.

Theorem 12 (Optimality of nested matchings) Under the hypoth-

esis of the previous definition: if the model is nested, then k+ = k− holds

ν-a.e. Setting F (x) = y for each x ∈ X(y, k+(y)) defines a stable match

F : X −→ Y [µ-a.e.]. Moreover, γ = (id × F )#µ maximizes (MK)

uniquely on Γ(µ, ν). Finally, if spt ν is connected then F extends con-

tinuously to X.

Proof. A detailed proof can be found in [Chiappori, McCann & Pass (2017)].

The main intuition can be summarized as follows. Non-degeneracy im-

plies X(y, k) := X≤(y, k)\X<(y, k) is an m−1 dimensional C1 subman-

ifold of X orthogonal to Dxsy(x, y) 6= 0. Since both µ and ν vanish on

hypersurfaces, the function

h(y, k) := µ[X≤(y, k)]− ν[(−∞, y)] (21)
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is continuous, and for each y ∈ Y climbs monotonically from−ν[(−∞, y)]

to 1 − ν[(−∞, y)] with k ∈ R. This proves the existence of k±(y) and

confirms the zero set of h(y, k) is closed. In fact, k− is lower semicontinu-

ous, k+ is upper semicontinuous, and by the intermediate value theorem

[k−(y), k+(y)] is non-empty. The main strategy for the rest of the proof

is to use k+(y) to construct a Lipschitz equilibrium payoff function v by

solving v′+(y) = k+(y) a.e. Together with u from (12), it can be shown

that (u, v) minimizes the dual problem (MK∗) and γ = (id × F )#µ

maximizes the planners problem (MK).

Remark 13 (Twisted v. nested) Fix absolutely continuous distribu-

tions µ and ν of female and male types. Ignoring a (µ ⊗ ν)-negligible

set, we have already seen that equality (5) of the marginal direct and in-

direct payoffs of females and males is a necessary condition for stability

of the pairing (x, y). Conversely, when the surplus is twisted, then the

equalities
∂s

∂xi
(x, y) =

∂u

∂xi
(x) i = 1, . . . ,m (22)

relating the woman’s marginal payoffs alone are sufficient for the pairing

between x and y to be stable. (Indeed, injectivity of Dxs(x, ·) allows us

to recover the matching function y = F (x) = Dxs(x, ·)−1(Du(x)).) In

contrast, for nested models the single(!) (since n = 1) equality

∂s

∂yi
(x, y) =

∂v

∂yj
(y) j = 1, . . . , n (23)

relating the man’s marginal payoffs becomes sufficient for stability of

(x, y).12

Although either twist or nestedness alone would imply purity (hence

uniqueness) of the stable match, they are complementary notions. Nei-

ther implies the other; however, (23) consisting of fewer equations that

(22) somehow suggests nestedness is the more specialized of the two no-

tions, with correspondingly more powerful implications.

From these results it is clear that nestedness, when present, has

12We state this condition for general n since it suggests a generalization of nested-
ness to arbitrary dimensions m ≥ n ≥ 1 explored in [McCann & Pass (2017)].
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powerful implications. However, depending on the context, it may or

may not be guaranteed. It is important to emphasize that, in gen-

eral, nestedness is a property of the three-tuple (s, µ, ν). In particular,

for most surplus functions, the model may or may not be nested de-

pending on the measures under consideration. In a companion paper

([Chiappori, McCann & Pass (2017)]), we provide characterizations of

nestedness based on a description of the motion of the iso-husband set

in response to changes in the husband type. Here, we simply provide an

example of a surplus function and two measures such that the model is

nested for one measure but not for the other.

2.2.3 Index and pseudo-index models

Definition A special case of multi-to-one matching, which has been

largely used in practical applications, is obtained when the surplus func-

tion s is weakly separable in one vector of characteristics. Assume,

indeed, that there exist two functions I and σ, mapping Rn to R and

Rm+1 to R respectively, such that:

s (x,y) = σ (x, I (y)) . (24)

In words, the various male characteristics y affect the matching func-

tion only through some one dimensional index I (y). It is important

to understand why this assumption is restrictive. Start with its formal

translation. If s is smooth, then the index form requires that s satisfies

the following conditions:

∂

∂xh

(
∂s/∂yk
∂s/∂yl

)
= 0 ∀k, l, h. (25)

These conditions express the fact that the marginal rate of substitution

(MRS) σk,l between yk and yl (which defines the slope of tangent to

the corresponding iso-surplus curve) does not depend on x; indeed, (24)

implies that:

σk,l =
∂s/∂yk
∂s/∂yl

=
∂I/∂yk
∂I/∂yl

.
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Now, what are the practical implications of this form? The interpreta-

tion of the MRS between male characteristics is standard: it represents

the variation in characteristic k that is needed to compensate some given,

infinitesimal increase in characteristic l. Assume, for instance, that men

are characterized by two traits - say, income and physical attractiveness,

the latter being proxied by the person’s Body Mass Index (BMI) as in

COQ. Then the MRS indicates how much additional income would be

needed to ‘compensate’ for an additional unit of BMI - the ‘compensa-

tion’ implying simply that the husband’s global attractiveness remains

unchanged. If the surplus is a smooth and strictly monotonic function

of both characteristics, the existence, for any woman x, of such a com-

pensation stems from the implicit function theorem. The crucial point,

however, is that in general the MRS is woman-specific: potential wives

with different characteristics will weight the two male traits differently

(say, wealthier women may put relatively more weight on physical at-

tractiveness). Condition (25) imposes, on the contrary, that the trade-off

between male traits should be independent of female characteristics; in

practice, men with different characteristics y and y′ but the same index

(i.e., I (y) = I (y′)) must therefore be viewed as perfect substitutes on

the matching market by any potential spouse x. Or consider the model

by Heckman and Sedlacek (1985), where workers characterized by het-

erogeneous, multi-dimensional skills are allocated to sector-specific tasks.

In general, the agent’s productivity in any particular task is a smooth

function of the vector of skills, and one can define a MRS between skills

for that task; an index structure would require that this MRS be the

same for all tasks.

The main practical interest of index models is that, whenever (24) is

satisfied, the matching problems is de facto one-dimensional in y; techni-

cally, one can replace the space Y and the measure ν with Ỹ = ImI ⊂ R
and the push-forward ν̃ := I#ν of ν through I defined as in (4). In partic-

ular, when the index property (24) is satisfied, then the matching prob-

lem boils down to a multi-to-one dimensional problem, of the type dis-

cussed in Section 2.2 and [Chiappori, McCann & Pass (2017)].13

13A practical difficulty is that, for most empirical applications, the in-
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Pseudo-index models: The notion of index model can for some pur-

poses be slightly relaxed. Specifically, we define a pseudo-index model

by assuming that there exist three functions α, I and σ, mapping Rn to

R, Rn to R and Rm+1 to R respectively, such that:

s (x, y) = ψ (y) + σ (x, I (y)) . (26)

Formally, the pseudo-index assumption boils down to a standard sepa-

rability property; in particular, it implies that:

∂2s/∂yk∂xh
∂2s/∂yl∂xh

is independent of x for all h, k, l, (27)

Here, male characteristics y affect the matching function through two

one-dimensional indices ψ (y) and I (y). The crucial point, however, is

the following. Assume that the wife’s marginal direct payoff Dxσ (x, i)

is injective with respect to the husband’s index i; this will be the case,

for instance, if ∂σ/∂xk (x, i) is strictly monotonic in i for at least one

k. Then the reduced surplus σ is twisted, so the stable matching on

the reduced space Rm × R is unique and pure, meaning there exists a

matching function F : Rm → R such that any woman x is matched with

probability one to a man whose index is I(y) = F (x). On the other

hand, when n > 1 the original surplus s cannot be twisted since

y ∈ Y 7→ Dxs(x, y) = Dxσ (x, I (y))

does not distinguish between men y 6= y0 with the same index I (y) =

I (y0). Indeed, all males with the same index are perfect substitutes, so

the solution to the stable matching problem on the full space Rm × Rn

will not generally be unique (nor pure).

As mentioned above, nestedness is a complex property that involves

both the surplus function and the measures. There is, however, an ex-

ception: models which are index or pseudo-index in the x variable (while

still unidimensional in the y variable) are generally nested irrespective of

dex I is not known ex ante and has to be empirically estimated. See
[Chiappori, Oreffice & Quintana-Domeque (2012)] for a precise discussion.
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the measures on the sets X and Y . To see why, assume that the surplus

has the form:

s (x, y) = φ (x) + σ (I (x) , y) . (28)

Then the potential indifference sets of y and y′ both coincide with level

sets of I(x). Therefore they cannot cross, since two different sets corre-

spond to two different values of the index.

This intuition yields the following result:

Proposition 14 (Non-degenerate pseudo-index models are nested)

Fix connected X ⊂ Rm and Y ⊂ R. If the surplus is pseudo-index and

non-degenerate, then the model is nested for all measures on X and Y .

Proof. Assuming σ ∈ C2 and I ∈ C1, non-degeneracy asserts Dxsy =

σIyDI 6= 0 throughout the connected set X×Y . Thus σ is either super-

or sub-modular; we’ll assume supermodularity

∂2σ

∂I∂y
> 0,

without loss of generality; the submodular case can be handled similarly.

Corollary 2 shows φ(x) to be irrelevant to the stability or instability

of γ, so we may as well take φ = 0. In this case s(x, y) depends on x

only through I(x), so the problem of finding an s-stable matching of µ

to ν on Rm×R reduces to the problem of finding a σ-stable matching of

I#µ to ν on R2. Supermodularity of σ guarantees positive assortativity

of σ-stable matchings, so the husband’s type y = H(I(x)) will be a non-

decreasing function H of his wife’s index I(x). Here we have used the

fact that I#µ has no atoms, which follows from non-degeneracy DI 6= 0

of s and the requirement that µ vanish on all C1 hypersurfaces in the

definition of nestedness. Thus H pushes I#µ forward to ν, and y ∈ Y
implies ∫ y

dν =

∫ H−1(y)

d(I#µ) =

∫
{x∈X|I(x)≤H−1(y)}

dµ (29)

where the first equality follows from monotonicity of H, and H−1(y) is

almost surely unambiguous because ν has no atoms either.
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On the other hand

∂σ

∂y
(I (x) , y) =

∂s

∂y
(x, y) (30)

shows y’s marginal surplus depends on x only through her one-dimensional

index I(x) (again, independently of φ). His potential indifference sets

are level sets I = const, hence cannot cross those of ȳ 6= y. More

pedantically, comparing

X≤(y, k) = {x ∈ X | I(x) ≤ σy(·, y)−1(k)}

to (29) shows we can take k±(y) = σy(H
−1(y), y) in the definition of

nestedness. Hence X≤(y, k±(y)) = {x | I(x) ≤ H−1(y)} depends mono-

tonically on y, as desired.

Finally, it should be noted that the converse is also true: if a non-

degenerate surplus s is such that (s, µ, ν) is nested for all choices of abso-

lutely continuous population densities µ and ν, then s has a pseudo-index

structure (see [Chiappori, McCann & Pass (2017)]). This is a strong

reason for the popularity of pseudo-index models: the construction de-

scribed in subsection 2.2.2 can be applied irrespective of the measures

under consideration. This convenience comes however at a price: pseudo-

index models are much more restrictive than nested ones, in the sense

that they generate stronger restrictions on observed matching patterns.

These restriction are described in the next section.

3 Testability and identification: a ‘pure theory’ per-

spective

3.1 Testability: main issues

We now analyze the empirical content of multidimensional matching

theory. Specifically, we consider two issues. One is testability: what

restriction does theory impose on observable behavior? Equivalently,

can the theory be falsified on existing data? The other issue relates

to identifiability: to what extent is it possible, from the observation of

actual behavior, to recover the underlying structure, namely the surplus
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function and possibly the distribution of unobservable characteristics?14

3.1.1 Data

It is useful, at that point, to clarify the exact meaning of ‘existing data’

(or ‘actual behavior’). In what follows, we consider the simplest case, in

which the econometrician only observes matching patterns (‘who marries

whom’); technically, therefore, we shall assume that the joint measure

corresponding to the stable matching is (perfectly) known, while neither

the surplus nor payoff functions are. We are thus considering an inverse

problem: knowing the spaces X and Y and the measure γ, can we find

a surplus s for which γ is stable?

Note, however, that the question should actually be rephrased to rule

out degenerate solutions. Indeed, we have seen above that any measure

is stable for an additively separable surplus. We should therefore con-

sider the following problem: Given two spaces X, Y and some measure

γ on X × Y , is it always possible to find a surplus s such that γ is the

unique stable matching of the matching problem (X, Y, s)?

This problem, however, raises a second issue, namely our ability to

observe all relevant aspects of the matching game. From a theoretical

perspective, the spaces X and Y describe all individual characteristics

that enter the surplus function. In practice, however, available data

sets contain (at best) a fraction of the relevant characteristics; many

aspects, including tastes, talents, social skills and many dimensions of

physical attractiveness, are simply not observed by the econometrician,

although even casual empiricism strongly suggests they are likely to play

an important role in the determination of actual matching patterns.

As often in applied microeconomics, empirical analysis typically cap-

tures these unobserved heterogeneity aspects through the introduction

of an adequate stochastic structure. It follows that the properties of the

model, in terms of testability as well as identifiability, depend on both

the basic, mathematical framework and the specific stochastic compo-

nents. In the present section, we consider the ‘pure theory’ case (where

all relevant characteristics are observed); the ‘applied’ case, in which an

14For a recent investigation, see [Dupuy, Galichon & Sun (2016)].
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explicit, stochastic structure is introduced, will be analyzed next.

A third question is whether available data relate to one or to several

‘markets’. That is, are we able to observe different matchings, corre-

sponding to the same surplus function but to different marginal distribu-

tions on theX and Y spaces? As argued by [Chiappori, Salanié & Weiss (2017)],

the ‘multimarket’ approach is certainly more promising, particularly in

terms of testability.15

Finally, in multi-to-one cases, the crucial notion, from an empirical

perspective, is that of iso-husband surfaces. These surfaces can (in prin-

ciple) be empirically identified; and their theoretical properties could in

principle provide the most powerful empirical tests of matching theory.

In what follows, we precisely investigate that claim.

3.1.2 Purity

In a ‘pure theory’ approach, the sets X and Y , together with the corre-

sponding measures, summarize all relevant information of the game. We

therefore consider the following problem: Given two spaces X, Y and

some measure γ on X × Y , is it always possible to find a surplus s such

that γ is the unique stable matching of the matching problem (X, Y, s)?

A first point is that if we are willing to insist on pure matchings,

then sufficient regularity makes the answer positive. Specifically, let us

consider the case in which the support of the measure is born by the

graph of some function F , and that F is non-degenerate (in the sense

that the derivative of F has full rank over the entire space). Then one can

always find a surplus for which γ is the unique stable matching: we just

need to take s(x, y) = −|F (x) − y|2/2. Indeed, γ obviously maximizes

the primal, optimal transportation problem, which guarantees stability;

moreover, the surplus satisfies the twist condition, which guarantees

uniqueness. The corresponding payoffs are u(x) = 0 = v(y). It follows

that, in the pure (non-degenerate) case, matching theory is not testable

from single market data.

15In addition, some empirical work rely on independent information on the
surplus itself (for instance by analyzing demand or labor supply of mar-
ried couples). We do not investigate this situation here; the interested
reader may refer to [Chiappori, Costa Dias & Meghir (2017)] or the survey by
[Chiappori & Salanié (2016)].
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It should be noted that non-degeneracy is crucial for this result to

hold. For one thing, if F is degenerate, the twist condition does not

hold, and while γ is always stable for s (x, y) = −|F (x)− y|2/2, it may

not be the unique stable matching. Moreover, while any stable match-

ing for a non-degenerate surplus concentrates on a set of dimension at

most max(m,n), it is possible to find measures supported on sets of this

dimension which are not stable for any C2, non-degenerate surplus.16

However, looking for necessary conditions that would be valid only for

degenerate cases does not appear to be a particularly fruitful approach.

Much more promising is the multimarket case, which we consider next.

3.1.3 The multi-market approach

We thus assume that we can observe various ‘markets’, indexed by t =

1, ..., T . In each market, the surplus function is the same function s;

however, the marginal distributions are different in each case. Then

stability generates testable conditions on the shape of the iso-husband

surfaces in different markets. Specifically: if two iso-husband surfaces,

corresponding to two different markets, intersect (in the sense that man

y is matched to woman x in both markets), then they coincide locally.

Furthermore, in the nested case, they must coincide globally.

Formally, let Xt (y) denote the iso-husband surface of husband y in

market t. Suppose that some couple (x, y) is matched with positive

probability in two stable matchings t and t′; that is, x ∈ Xt (y)∩Xt′ (y).

Now, we know that Xt (y) is included in some submanifold St (y) defined

by an equation of the type:

Dys(x, y) = kt (y) (31)

If x ∈ Xt (y)∩Xt′ (y), then kt (y) = kt′ (y), implying that St (y) = St′ (y).

16To see this, consider the m = n = 1 case; let X = Y = (0, 1) ⊆ R. Nonde-

generacy here simply means ∂2s
∂x∂y 6= 0, which implies either ∂2s

∂x∂y > 0 everywhere

(so s is super-modular) or ∂2s
∂x∂y < 0 everywhere (so s is submodular). In these two

cases, it is well known that stable matches concentrate on monotone increasing or
decreasing sets, respectively. Therefore, any γ concentrating on a set of dimension
max(m,n) = 1 (for instance, a smooth curve), which is neither globally increasing
nor decreasing (for example, the curve (y = 4(x − 1/2)2), cannot be stable for any
non-degenerate surplus.
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Intuitively, if x is matched to y in markets t and t′, then any nearby x′

that is matched to y with positive probability in market t is also matched

to y with positive probability in market t′. More precisely:

Proposition 15 (Corresponding iso-husband sets do not cross)

Assume m > n and s ∈ C2
(
X × Y

)
non-degenerate. Fix t, t′. For hus-

band types y ∈ Y 0 outside a Lebesgue negligible17 set Σt ⊂ Y 0 the wive

types Xt(y) ⊂ X matched with y are contained in a C1 submanifold

St(y) ⊂ Rm of dimension m − n; St(y) is defined by (31) with kt de-

pending continuously on y ∈ Y 0 \ Σt. If x ∈ Xt(y) ∩ Xt′(y) for some

y ∈ Y 0 \ (Σt ∪ Σt′), then St(y) = St′(y).

Proof. For market t, and let ut ∈ L1(µ) and vt ∈ L1(ν) denote the

wives’ and husbands’ shares of the surplus from (8). These are well-

known to exist and may be taken to inherit semiconvexity from ‖s‖C2 <

∞; see e.g. [Chiappori, McCann & Nesheim (2010)]. Let Σt denote the

set where differentiability of v fails; it is contained in a countable union

of DC (a fortiori Lipschitz) hypersurfaces according to [Zaj́ıček (1979)];

outside this set Dvt is a continuous map. From (5) we see y ∈ Y 0 \ Σt

implies

Dys(x, y) = Dvt(y) (32)

for all x ∈ Xt(y); the equation (31) defining St(y) holds; moreover

kt(y) = Dvt(y) depends continuously on y ∈ Y 0 \ Σt. Proposition 6 as-

serts Xt(y) ⊂ Lx(y) = X(y,Dvt(y)), the intersection of X with the C1

smooth submanifold St(y) of dimension m−n in Rm. If x ∈ Xt′(y) also

and y ∈ Y 0 \ (Σt∪Σt′), we conclude kt′(y) = kt(y), hence St(y) = St′(y).

Remark 16 Except on a Lebesgue negligible set Σ′0t , the semiconvexity

asserted in the previous proof also implies that vt has a second-order

Taylor expansion (by Alexandrov’s theorem).

Proposition 15 describes a local property: assuming the distribu-

tions of men and women in both markets are absolutely continuous with

17In fact, Σt is a countable union of DC hypersurfaces, where DC means each
hypersurface is locally the graph of a difference of convex functions.
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respect to Lebesgue, it follows almost surely that if the iso-husband sur-

faces of y in the two markets intersect at x, then they coincide nearby.

This can be seen as a non-crossing condition: if two iso-husband sur-

faces, corresponding to two different markets, do not coincide (at least

locally), then their intersection is almost surely void. It should be noted

that the scope of this result is actually completely general; it applies in

the full range m ≥ n ≥ 1, including when n > 1.

The local nature of the result is due to the possibility that the mar-

kets are not nested: while the set of women married to y with positive

probability must belong to the manifold S (y), in non nested markets

it may be a strict subset of S (y). On the other hand, when market t

is nested the following corollary improves this to a global conclusion:

either all of the wives or none of the wives Xt′(y) paired with y in the

(not necessary nested) market t′ are also paired with y in the nested

market t.

Corollary 17 (Iso-husband sets are disjoint in nested markets)

If market t is nested in Proposition 15 (so n = 1), then y ∈ Y 0 \Σt im-

plies Xt(y) = X ∩ St(y). If, in addition, sptµ ⊃ X hence is connected,

then Σt is empty.

Proof. The equality Xt(y) = X ∩ St(y) follows directly from Theorem

12. The additional claim follows from the first paragraph of the proof

of Theorem 5.2(a) of [Chiappori, McCann & Pass (2017)], which shows

the equation

µt[X≤(y, k(y))] = νt[(−∞, y)]

admits a continuous solution k : Y 0 −→ R when sptµ contains the

domain X, which is connected from Definition 11. When the model is

nested, Theorem 4.2 of the same paper identifies k(y) = kt(y) = v′t(y)

on Y 0, which shows we may take v ∈ C1(Y 0) and Σt = ∅.
Lastly, the condition expressed in Proposition 15 is necessary but

not sufficient in general; under mild regularity conditions, additional

restrictions can be derived. Specifically, consider t, t′ and y ∈ Y 0 \ (Σ′t ∪
Σ′t′) such that x ∈ Xt (y) ∩ Xt′ (y) 6= ∅; in other words, the optimal

maps Ft and Ft′ are such that Ft (x) = Ft′ (x) = y. Assuming that
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DFi (x), i = t, t′, exist, the next proposition shows DFi (x) has full

rank, and a (not necessarily unique) one-sided inverse DFi (x)−1; since

DFi (x) is n × m, DFi (x)−1 is m × n, and DFi (x) ◦ DFi (x)−1 is the

n × n identity. Moreover, it yields a testable positivity restriction on

the product DFt′ (x) ◦DFt (x)−1, which represents the derivative of the

correspondence between husbands in different markets.

Proposition 18 (Infinitesimal monotonicity of Ft′ ◦ F−1
t ) Assume

s ∈ C2
(
X × Y

)
is twisted and non-degenerate. If Ft and Ft′ are both

differentiable at x ∈ X and Ft(x) = Ft′(x) ∈ Y 0 \(Σ′t∪Σ′t′), then DFi(x)

have full-rank for i = t, t′, hence admit one-sided inverses. Moreover, all

eigenvalues of the n× n matrix DFt′ (x) ◦DFt (x)−1 are positive. (Here

the Σ′i refer to the Lebesgue negligible subsets from Remark 16.)

Proof. Set y = Ft(x), A = D2
xys (x, y) and Mi = DFi (x), noting the

the derivatives in question have been assumed to exist. First observe

y ∈ Y 0 \ (Σ′t ∪ Σ′t′) implies

Dvi(Fi(x))−Dys(x, Fi(x)) = 0

from (5), and the same identity extends to nearby points in X (by the

differentiability assumed of Fi). Differentiation then yields

[D2vi(Fi(x))−D2
yys(x, Fi(x))]Mi = A. (33)

Non-degeneracy of s implies A has rank n, so the same must be true

for both factors on the left-hand side. Thus Mi has a (non-unique) one-

sided inverse. The preceding proposition shows both Fi (and (Dys(, y))

are locally constant on St(y) = St′(y), hence we may choose the ranges of

M−1
t and M−1

t′ to coincide with any n-dimensional subspace intersecting

the tangent space to St(y) at x transversally; the compositions Mt′M
−1
t

(and AM−1
i ) of interest are independent of this choice, and M−1

t′ Mt′ acts

as the identity on the chosen subspace (which could, for example, be the

subspace of directions normal to TxSi(y)).

The second-order conditions coming from duality (6) combine with

(33) to show the quadratic form AM−1
i is symmetric and non-negative
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definite on TyY . Being full rank, it is positive definite. If λ is an eigen-

value, Mt′M
−1
t v = λv ∈ TyY \ {0}, then

v′AM−1
t v = v′AM−1

t′ Mt′M
−1
t v = λv′AM−1

t′ v

But since v′AMtv and v′AMt′v are both positive, their ratio is too, show-

ing λ > 0 as desired.

In summary, Proposition 15 states that the stable maps Ft′ and Ft

corresponding to two markets t′ and t must be compatible in levels, in

the sense that if two level sets intersect then they coincide (locally, or in

the nested case, globally). Proposition 18 adds that the maps must also

have some compatibility in directions transversal to the level sets.

3.2 Testing the pseudo-index property

The previous test becomes much stronger in the case when the surplus

depends on the female (multivariable) traits only through a pseudo-index

(single-variable) structure (28). In that case, the equation defining the

set Xt (y) is of the form I(x) = H−1
t (y) for some monotone function Ht,

as was shown in the proof of Proposition 14. Thus we obtain:

Corollary 19 Let s be non-degenerate and pseudo-index on connected

open sets X ⊂ Rm and Y ⊂ R, with σ ∈ C2 and I ∈ C1 in (28). Fix t

and t′. Assume µ′t concentrates no mass on C1 hypersurfaces. Outside

the countable set Σt ⊂ Y of Proposition 15, if y ∈ Y \ Σt then

x, x′ ∈ Xt (y)⇒ there exists y′ such that x, x′ ∈ Xt′ (y
′) .

Proof. For y ∈ Y \ Σt, Proposition 15 yields kt(y) for which each

x ∈ Xt(y) satisfies

σy(I(x), y) = kt(y). (34)

As in the proof of Proposition 14, the non-degeneracy of s yields DI 6= 0

and σ(i, y) either strictly super- or strictly sub-modular. Thus σy(i, y) 6=
σy(i

′, y) unless i = i′, so we conclude x, x′ ∈ Xt(y) forces I(x) = I(x′).

On the other hand, s-stable matchings are sensitive only to the in-

dex I(x) and not the type of each woman. So the above x and x′ are
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interchangeable from this point of view; they receive the same type of

husband as long as the matching is pure. The stable match between

I#µt′ and νt′ is positive or negative assortative, according to super- or

sub-modularity of σ. As long as I#µt′ has no atoms, it is pure (and

given by some monotone function Ht′). But the possibility of atoms is

ruled out by the implicit function theorem, using the facts that DI 6= 0,

and µt′ concentrates no mass on hypersurfaces. Purity of the s-stable

match between µt′ and νt′ follows: it is given by the matching function

x ∈ X −→ Ht′(I(x)).

To summarize: in nested models, the main testable prediction was

that if two women are matched to the same man in two different markets

t and t′, then any woman matched with that man in t is also matched

with him in t′. In the pseudo-index case, we get a much stronger re-

sult, namely that the iso-husband surfaces are the same in all markets -

although they may not be associated to the same husband. That is, if

two women x and x′ are matched with positive probability to the same

husband y in one market (meaning that they are viewed as perfect sub-

stitutes for that particular market), then they are matched with positive

probability to the same husband y′ in any market, although y′ is typically

market-specific (in particular, y′ typically differs from y). This property,

which is readily testable, reflects the essence of the pseudo-index prop-

erty; namely, the way any woman is perceived on the marriage market

does not depend on the husband’s identity or characteristics, so that if

two women are viewed as perfect substitutes in one market, then this

remains true for any market.

3.3 Surplus identification in the nested case

We finally consider the identification problem. Assume that we can ob-

serve iso-husband sets in a multiple market setting; what does it tell

us about the surplus? We now give a precise answer to that ques-

tion. As already noted, if we only observe matching patterns, then

the surplus s can be identified at best up to an additive function of x

and an additive function of y. That is, we can, at best, identify what

[Chiappori, Salanié & Weiss (2017)] call the ‘supermodular core’ of the
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surplus function. Still, insofar as one is interested in matching patterns,

the supermodular core contains all necessary information.

It is clear, however, that identifying s (up to a pair of additive func-

tions) from the sole observation of matching patterns is not feasible

without additional assumptions. To see why, remember that an arbi-

trary iso-husband set, with an equation of the form y = F (x), lies in a

level set
∂s (x, F (x))

∂y
= k (35)

for some constant k = v′(y). A first conclusion, therefore, is that know-

ing the map F for a single pair (µ, ν) tells the direction (but not the

magnitude) of Dxsy along the graph of F .

Not surprisingly, a multi-market perspective gives additional identifi-

cation power. Namely, the supermodular core will be (locally) identified

up to a mapping from R2 to R. To see why, let us choose a fixed ȳ, and

assume that we observe all the iso-husband curves corresponding to ȳ

for various distributions — in practice, thus, for different levels k. By

(35), if s and s̄ are two surplus functions generating the same family of

iso-husband curves, then the functions ∂s/∂y (·, ȳ) and ∂s̄/∂y (·, ȳ) have

(locally) the same level sets. Now, the set of continuous functions with

the same level sets as a given function is exactly the set of monotonic

transforms of that function. In other words, a function ∂s/∂y (·, y) has

the same level sets as ∂s̄/∂y (·, y) if and only if:

∂s (x, y)

∂y
= H

(
∂s̄ (x, y)

∂y
, y

)
(36)

for some H that is monotonic in its first argument. We conclude that

if s̄ is the surplus generating the given iso-husband sets, then another

non-degenerate surplus s generates the same iso-husband sets if and only

if there exists a function H(z, y) with Hz > 0 such that:

s (x, y) = s (x, ȳ) +

∫ y

ȳ

H

(
∂s̄ (x, t)

∂y
, t

)
dt.

implying that s is determined up to the function H (plus two additive
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functions of x and y respectively, as argued before).

4 Unobserved valuations and the normal-quadratic

approach

4.1 Unobserved valuations

We now adopt a more directly applied perspective, by considering a

multidimensional matching model in which some traits are unobservable

(and therefore summarized by a stochastic vector). As a preliminary re-

mark, note that there is virtually no hope to identify a model of this type

from the sole observation of matching patterns from a non parametric

perspective. The models we consider, therefore, are heavily parametric,

although some of the main assumptions may be relaxed in a multi-market

context.

4.1.1 An introductory example

As an introductory example, assume that while male characteristics y ∈
Y ⊂ Rn are observable, each woman is characterized by a pair (x, ε)

where x ∈ Rm is a vector of observable traits and ε ∈ Rn a random

vector independent of x, reflecting the person’s unobservable preferences

for a mate. Total surplus takes the separable form:

S (x, ε; y) = s(x, y) + y′ε

Intuitively, each component εi of ε can be interpreted as the woman’s

idiosyncratic valuation of the ith characteristic of a potential husband.

Then first order conditions give:

Dv (y) = Dys (x, y) + ε (37)

Assume, now, that s (x, y) is linear in y:

s (x, y) = y′Ψ (x)
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for some mapping Ψ from Rm to Rn. Then (37) becomes:

Dyv (y) = Ψ (x) + ε

If the mapping Φ : y → Dyv(y), from Rn to Rn, is invertible, one gets:

y = Φ−1 (Ψ (y) + ε) (38)

which is a multidimensional transformation model, and it is possible, un-

der specific assumptions, to non parametrically identify the mappings Φ

and Ψ (see [Chiappori, Komunjer & Kristensen (2015)]). For instance,

if Ψ is linear and x, y and ε are normally distributed, then Φ is also lin-

ear, and (38) becomes a standard system of linear regressions that can

be estimated using a Seemingly Unrelated Regressions (SUR) approach,

as in [Chiappori, Oreffice & Quintana-Domeque (2012)].

Lastly, in the index case:

Ψ (x) = ψ (I (x))

then (38) implies that the conditional distribution of y given x only

depends on I (x), which can be directly tested either structurally or in

reduced form. In the linear version, in particular, the regression matrix

is of rank 1.

4.1.2 The general case: basic assumptions

The previous example can actually be generalized. In what follows, we

consider a specific but extremely convenient stochastic structure, that

directly extends the standard model of Choo and Siow (2006, from now

on CS). The basic idea is reminiscent of the applied IO literature; it

posits that individuals on both sides of the market differ by both their

observable characteristics and their subjective valuation of the observ-

able characteristics of the potential partners. Assume, for instance, that

men and women differ by human capital and physical attractiveness,

both of which are observable;18 in addition, a particular person may

18Or can be proxied by observable traits, for instance income (or education) and
BMI.
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have his/her own valuation of each of the partner’s traits, and these id-

iosyncratic preferences are not observed by the econometrician (although

they are assumed observable by the agents).

This leads to the following set of assumptions:

(a) Each agent is characterized by a vector of traits, some of which are

unobservable by the econometrician (and will therefore be consid-

ered as stochastic shocks). The observable traits of women and

men are x ∈ X ⊂ RnX and y ∈ Y ⊂ RnY , respectively, where the

sets X and Y are open and bounded. The unobservable traits are

ε ∈ Rnε and η ∈ Rnη , respectively. Note that observable traits are

assumed continuous.

(b) The surplus takes the separable form

S (x, ε; y, η) = s(x, y) + f(y, ε) + g(x, η)

where f and g are known (and s is to be identified). An important

particular case, directly borrowed from the IO literature, obtains

when both f and g are scalar products:

f(y, ε) =
∑
k

ykεk and g(x, η) =
∑
l

xlηl

(c) The marginals distributions µx,ε and νy,η are known. Note, in par-

ticular, that the unobservable characteristics may be correlated to

the observable one. In that case, however, the correlation structure

must (for the moment) be known a priori.19

Lastly, we need some technical assumptions; specifically, we assume

that the model is regular, in the following sense:

(d) For each fixed x and y, the conditional probability µε|x and νη|y

are absolutely continuous with respect to Lebesgue measure. (Note

that µε|x is a probability measure on Rnε , representing the distri-

bution of unobservable types for the fixed observable type x).

19As in CS, an assumption of this type is necessary for the model to be identified
in the single market case.
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(e) The conditional probabilities γx|y and γy|x (which, by definition, are

directly observable from available data) are absolutely continuous

with respect to Lebesgue measure.

(f) For any fixed x, the function f(y, ε) is bi-twisted; that is,

y 7→ Dεf(y, ε) and ε 7→ Dyf(y, ε)

are injective. Similarly, g(x, η) is bi-twisted.

Although obviously specific, this form encompasses most approaches

that have been considered so far in the literature. In particular, it di-

rectly generalizes CS, who consider the specific case where yk (resp. xl)

is a category indicator and εk (ηl) is type 1 extreme value. Galichon and

Salanié (2017) generalize CS by replacing the type 1 extreme value by

any (known) distribution; still, they exclusively assume that yk and xl

are category indicators, whereas in our context they can be any observ-

able (discrete or continuous) variable.20 We believe that the extension

to continuous variables is particularly important. Note also that similar

forms are classically used in empirical IO models, with a scalar product

for f and g and specific distributional assumptions (typically normality)

for the ε and η.21

We now show the following result:

Proposition 20 (Identification of deterministic contribution to surplus)

Under assumptions (a)-(f), in the single-market case, the surplus func-

tion s (x, y) is identified up to an additive function of x and an additive

function of y

20Dupuy and Galichon (2014) and Bojilov and Galichon (2016) use a related but
different approach, based on a continuous extension of logit models initially proposed
by McFadden (1976); in their framework, each man of a given type only knows a
random subset of the total population of women, and exclusively considers potential
partners within this subset.

21An obvious difference with IO models is that in general, some parameters of the
distributions (such as the covariance matrix) can be estimated from the data, which
is not possible in our context, at least in the single market case. The difference is
due to the fact that IO models typically observe prices, whereas we assume here
that transfers are not observed. However, stronger identification results obtain in
the multi-market case, as we shall see later on.
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Proof. Let u(x, ε) and v(y, η) be the (unobserved) payoff functions. For

almost every fixed x, if (x, ε, y, η) belong to the support of the stable

matching, we have:

Dxu(x, ε) = Dxs(x, y) +Dxg(η, x). (39)

and:

Dεu(x, ε) = Dεf(ε, y) (40)

Now, let γy|x and γε|x be the conditional probabilities of y and ε, for

fixed x. Both are known (γy|x is directly observable, while γε|x = µε|x is

known from the marginal µx,ε). For almost every fixed x, the conditional

probability γy,ε|x must be an optimal coupling between γy|x and γε|x, for

the surplus function f(ε, y) (note that for fixed x, η shows up in the

surplus only in a separable way). As f is bi-twisted, γy,ε|x is determined

uniquely and is pure; let ε := ε(x, y) be the optimal map from γy|x to γε|x.

The bi-twist in fact tells us this map is invertible; we write the inverse

as y = θ(x, ε).

Note then that by (39) we get

Dεu(x, ε) = Dεf(ε, θ(x, ε)). (41)

Integrating over ε then determines (for a fixed x) u(x, ·) up to a function

of x. By a symmetric argument, we can determine η = η(x, y), and so

(39) gives us, for any (x, y) ∈ spt(γx,y)

Dxs(x, y) = Dxu(x, ε(x, y))−Dxg(η(x, y), x) (42)

So Dxs(x, y) is determined on the support of γx,y, up to a function of x

only. If the support is all of X ×Y , then s(x, y) is identified everywhere

up to a function of the form φ(x) + ψ(y).

It is useful, at that point, to remember that the surplus cannot pos-

sibly be identified better then up to an additive function of x and an

additive function of y; the identification result proved in Proposition 20

is thus the best one can hope for. In fact, the choice of φ (x) and ψ (y)
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is essentially a normalization; a standard procedure is to normalize to

zero the surplus of singles.

The idea of using optimal transportation methods in econometrics

in not new; the interested reader is referred to a recent survey by Gali-

chon (2016a). However, to the best of our knowledge, the approach just

described is new for matching models, and provides a natural general-

ization of existing methods.

A related approach can be found in the line of research on identifica-

tion of hedonic models, where agents match based on their preferences for

a good they exchange rather than each other. In that context, the closest

analogue of the present model is found in [Chernozhukov, Galichon, Henry & Pass (2015)].

A similar functional form is considered, in which the preference of an

agent of observable type x and unobservable type ε for a good z has a

known functional dependence on ε and an additively separable depen-

dence on x and z to be identified. The econometrician observes the

matching between x and z as well as the price p(z) (which is a dual

potential in the optimal transport problem between (x, ε) and z). Using

the fact that for fixed x, the conditional marginals of good z (by ob-

servation) and unobserved type ε (by assumption) are known, one can

recover the matching between them by stability. The marginal prefer-

ences for this problem, together with the known price then determine

the unknown term in the original preference function.

On the other hand, in the present matching problem, we observe only

matching patterns and not dual potentials (which now both correspond

to utilities). This means that one must also use information involving the

coupling between x and unobservable types on the other side of the mar-

ket to determine marginal preferences Dxs(x, y). This can be thought of

as a continuous analogue of the argument of [Galichon & Salanié (2012)]

in the discrete case.

A last remark will be useful for what follows. Start from equation:

y = θ(x, ε). (43)

Since the joint distribution of (x, ε) is known, the function θ (or equiv-
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alently the function ε) can in principle be estimated from the joint dis-

tribution of (x, y), which is empirically observable, using standard sta-

tistical tools (such as quantile regressions);22 and the same is true of

function η. This indicates that, using (41) and (42), the surplus func-

tion can be constructively recovered (up to an additive function of x and

an additive function of y) from the joint distribution of observables. In

the normal case considered below, (43) is actually linear, so the model

can even be estimated by (a set of) ordinary least squares regressions -

which basically recaptures the approach adopted by Chiappori, Oreffice

and Quintana-Domeque (2012) in the index case.

4.1.3 The multi-market case

The identification result provided by Proposition 20 is much stronger

that what we obtained from a ‘pure theory’ perspective in Subsection

3. There, by (36), the partial derivative of the surplus, ∂s/∂y, was only

identified (up to a function from R2 to R) in the multimarket case. Here,

the same derivative is identified up to a function from R to R (ψ′ (y) in

the previous notations), which is moreover additive, even in the single

market context. This additional identifying power is obviously due to

the highly specific functional form we are using - a conclusion in line

with previous findings in the empirical literature on matching,23 and a

direct generalization of CS.

In a multimarket context, not only do these results apply, but they

typically generate additional, testable restrictions. For instance, consid-

ering several markets with different marginal distributions of observ-

ables, we may, following [Chiappori, Salanié & Weiss (2017)], assume

that while the surplus function may differ across markets, its supermodu-

lar core (that these authors interpret as ‘preferences for assortativeness’)

remains constant. In practice, this means that if st and st′ are the sur-

22In the case m = n = 1, for instance, one can readily check that

ε (x, y) = F−1ε|x
(
Fy|x (x, y)

)
where Fy|x denote the conditional CDF of y given x, and Fε|x denote the conditional
CDF of ε given x. The statistical problem then boils down to (non parametrically)
estimating the conditional distribution Fy|x.

23See for instance the survey by [Chiappori & Salanié (2016)].
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pluses corresponding to markets t and t′ respectively, we must have:

D2
xyst (x, y) = D2

xyst′ (x, y)

which implies that

st (x, y) = st′ (x, y) + φtt′ (x) + ψtt′ (y)

Since, by Proposition 20, each market allows us to identify the sur-

plus up to two additive functions of x and y respectively (i.e., to exactly

identify the matrix D2
xys of second cross partials), this compatibility con-

dition introduces a very strong testable condition that directly general-

izes the properties of iso-husband surfaces derived earlier. Alternatively,

one may, as in [Chiappori, Salanié & Weiss (2017)], exploit this increase

in identification power and consider a more general model, including for

instance a parametrization of the various random processes. While it

is obviously difficult to provide general results, the analysis of specific

examples should remain high on the agenda for future research. The

next subsection provides a first step in this direction by considering the

case where all distributions are normal and f and g are scalar products.

4.2 The Normal Quadratic model

4.2.1 The setting

We now analyze a particular case of the previous construct, which we

believe could be very important from an empirical perspective. Specifi-

cally, we make the following assumptions:

• Women are characterized by a vector (x, ε) ∈ Rm ×Rn, where x

is observable and ε is not; similarly, men are characterized by a

vector (y, η) ∈ Rn ×Rm, where y is observable and η is not.

• The vector x is normally distributed, with mean Mx and covariance

matrix Σxx; similarly, the vector y is normally distributed, with

mean My and covariance matrix Σyy.

• The components of the random variables are normal, independent
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of each other and of observables, and normally distributed with

mean 0 and variance 1.

• The surplus generated by the matching of Mrs. (x, ε) and Mr.

(y, η) takes the form:

S (x, ε; y, η) = s (x, y) + x′η + y′ε (44)

Some comments can be made on this framework. First, the assump-

tions made on the random shocks are highly parametric; indeed, we

assume normality, independence and homoskedasticity. Neither inde-

pendence nor homoskedasticity are necessary for our analysis; what is

crucial, however, is that the distribution of unobservables be known a

priori. In that sense, our assumption are exactly reminiscent of CS. As

we shall see later on, the requirement that distributions are known a pri-

ori can be relaxed in a multi-market context; then it may be possible to

estimate a general covariance matrix for unobservable shocks. Secondly,

we do not assume anything on the structure of the surplus function; our

goal, indeed, is to derive the properties of s from the specific features of

the joint distribution of x and y, which is observable.

4.2.2 Main result

Our main result is the following:

Theorem 21 Assume that the optimal matching is such that (x, y) are

joint normally distributed with mean and covariance matrix

M =

(
Mx

My

)
,Σ =

(
Σxx Σxy

Σyx Σyy

)

Then the surplus is quadratic:

D2
xys (x, y) = ∆

where ∆ is a m × n constant matrix. Moreover, ∆ is fully determined
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by M and Σ. Specifically:

∆ = Σ−1′

yy ΣyxΣ
−1/2
x|y + Σ

−1/2
y|x ΣyxΣ

−1
xx (45)

where Σx|y (resp. Σy|x) is the covariance matrix of the (normal) condi-

tional distribution of x given y (resp. y given x); that is:

Σx|y = Σxx − ΣxyΣ
−1
yy Σ′xy

and

Σy|x = Σyy − ΣyxΣ
−1
xxΣ′yx

Proof. Recall that the conditional distribution γx|y of x for a fixed y is

also normal with mean Mx|y = Mx + ΣxyΣ
−1
yy (y −My) and covariance

Σx|y = Σxx − ΣxyΣ
−1
yy Σ′xy, while when x is fixed the distribution γy|x of

y is normal with My|x = My + ΣyxΣ
−1
xx (x −Mx) and covariance Σy|x =

Σyy − ΣyxΣ
−1
xxΣ′yx. Now, as before, for a fixed y, the matching γx|η,y

between γx|y and γη|y (normal with mean zero and covariance Ση = I),

is stable. As γx|y is normal, we get the optimal map taking the form:

η(x) = Σ
−1/2
x|y (x−Mx|y) (46)

Similarly, the matching between y and ε for a fixed x takes the form:

ε(y) = Σ
−1/2
y|x (y −My|x) (47)

Now, we have

Dηv(y, η) = x = Σ
1/2
x|y η +Mx|y (48)

so that (neglecting an additive function of y)

v(y, η) =
1

2
η′Σ

1/2
x|y η + η′Mx|y

Note that the only y dependence here is through the Mx|y term, and so

Dyv(y, η) = Σ−1′

yy Σ′xyη = Σ−1
yy Σyxη.

46



Therefore,

Dys(x, y) =Dyv(y, η)− ε

= Σ−1′

yy Σyxη − Σ
−1/2
y|x (y −My|x)

= Σ−1
yy ΣyxΣ

−1/2
x|y (x−Mx|y)− Σ

−1/2
y|x

(
y −My − ΣyxΣ

−1
xx (x−Mx)

)
= Σ−1

yy ΣyxΣ
−1/2
x|y (x−Mx − ΣxyΣ

−1
yy (y −My))

−Σ
−1/2
y|x

(
y −My − ΣyxΣ

−1
xx (x−Mx)

)
Differentiating yields

D2
xys(x, y) = ∆ = Σ−1

yy ΣyxΣ
−1/2
x|y + Σ

−1/2
y|x ΣyxΣ

−1
xx

It is well known that if we assume normality of observable and un-

observable characteristics and a quadratic surplus, then the distribution

of observable characteristics over married couples is normal. Our re-

sult shows that the converse is also true; i.e., assuming normality of

observable and unobservable characteristics, joint normality of couples’

observable characteristics requires a quadratic surplus. Moreover, the

surplus is then exactly identified from matching patterns, and one can

recover a closed-form solution for the surplus. The proof exactly fol-

lows the path described in the previous subsection. A crucial remark is

that, as in CS, the observation of a single joint distribution of observed

characteristics (the ‘single market’ case) exactly identifies the surplus

without generating any overidentifying restriction.

4.2.3 Estimation through OLS regressions

In most existing contributions, the empirical analysis of matching models

typically relies on a direct estimation of the matching model (using for

instance maximum likelihood or simulated moments estimators). While

such an approach is still available in our context, one can equivalently

adopt an alternative approach, initially introduced by

[Chiappori, Oreffice & Quintana-Domeque (2012)] for the case of index

models. The idea is to directly regress, over the population of couples,
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male observable characteristics over the characteristics of the spouse,

and conversely. This method is easy to implement, and has been used

in a variety of cases (see for instance Ong and Zhang 2016). As we shall

see, our framework provides a direct and general justification for this

approach, even when the index assumption is not satisfied. To see why,

start with equation (48) above:

x= Σ
1/2
x|y η +Mx|y

= ΣxyΣ
−1
yy y +Mx − ΣxyΣ

−1
yyMy + Σ

1/2
x|y η (49)

where the second equation obtains by replacing Mx|y with its value.

Since, according to our assumptions, η is independent of y, this equation

can be estimated by Ordinary Least Square (OLS):

x = Ay +B + η̃ (50)

with

A = ΣxyΣ
−1
yy and cov (η̃) = Ση̃ = Σx|y

We conclude that, in equation (45), the first component of the matrix

∆ can be recovered from the outcome of the OLS regression (50):

Σ−1
yy ΣyxΣ

−1/2
x|y = A′cov (η̃)−1/2

The same result applies, mutatis mutandis, for the OLS regression

of y on x; this identifies the second component of ∆. We can therefore

conclude:

Proposition 22 Under the joint normality assumption, the surplus is

uniquely determined from the two OLS regressions of x over y and of y

over x respectively.

It is important to note that in our framework, the ‘characteristic

regressions’ approach is justified in general; in particular, it does not

require an index assumption (as considered by COQ). Yet, index models

can readily be tested in this framework, as described next.
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4.2.4 The index case

In the normal setting, the index assumption has a simple translation, as

expressed by the following result:

Proposition 23 Assume the surplus function has an index form in x:

s (x, y) = s̃ (I (x) , y)

where I maps Rm to R. If the optimal matching is such that (x, y) are

joint normally distributed, then the surplus function is quadratic, and

the corresponding ∆ matrix is of rank 1. Equivalently, there exists two

vectors

α =


α1

...

αm

 and β =


β1

...

βn


such that

∆ = αβ′

so that:

s (x, y) = (x′α) (β′y)

Proof. Consider the characterization provided by equation (25); with a

quadratic surplus, it becomes

∂

∂yk

(
∂s/∂xt
∂s/∂yl

)
=

∂

∂yk

(∑
r δrtyt∑
r δrlyl

)
= 0 ∀y

which requires that there exists a scalar αr and a vector β such that

δrt = αrβt

for all (r, t).

This result, in turn, has an immediate corollary:

Corollary 24 In the normal framework, if the surplus function has an

index form in one of the vectors of characteristics, it also has an index
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form in the other; namely:

s (x, y) = I (x) J (y) where I (x) = x′α and J (y) = β′y

With a quadratic surplus, the index assumption is highly restrictive;

indeed, it imposes that the matrix ∆ be of rank 1. If this is the case, then

both x and y enter the surplus through a one-dimensional, linear index.

Note also that this property can be readily tested from the characteristic

regressions described in the previous subsection; this is exactly the test

introduced by [Chiappori, Oreffice & Quintana-Domeque (2012)].

4.2.5 The multi-market context

The framework We now consider a direct extension of the model to a

multi-market context. We therefore assume that the econometrician can

observe matching data from several ‘markets’, indexed by t ∈ {1, ..., T}.
In practice, markets may differ by period (as in [Chiappori, Salanié & Weiss (2017)])

or by geographic location. We make the following assumptions:

• Women in market t are characterized by a vector (xt, εt) ∈ Rm ×
Rn, where xt is observable and εt is not; similarly, men in market

t are characterized by a vector (yt, ηt) ∈ Rn × Rm, where yt is

observable and ηt is not.

• The vector xt is normally distributed, with mean Mxt and covari-

ance matrix Σxxt; similarly, the vector yt is normally distributed,

with mean Myt and covariance matrix Σyyt.

• The random variables εt, t = 1, ..., T are drawn from the same nor-

mal distribution, with mean 0 and unknown covariance matrices

Σε. Similarly, the random variables ηt are drawn from the same

normal distribution, with mean 0 and unknown covariance matri-

ces Ση. The vectors εt and ηs are independent from xt and yt,

respectively.

• The surplus generated by the matching of Mrs. (x, ε) and Mr.
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(y, η) takes the form:

St (xt, εt; yt, ηt) = s (xt, yt) + φt (xt) + ψt (yt) + x′tηt + y′tεt

Some remarks can be made about these assumptions. Essentially,

we relax the iid assumption regarding the unobservable shocks; we now

consider general (and unknown) covariance matrices. Time indepen-

dence is a strong assumption, that we believe could be somewhat re-

laxed by the introduction of a specific dynamic structure, although we

do not investigate this aspect here. On the other hand, independence

between observables and unobservables is crucial for our results; relax-

ing it would require a set of instruments, an issue that we briefly discuss

later on. Lastly, the surplus may entail arbitrary functions of either male

or female observables; the main identifying assumption, here, is that the

supermodular core DxySt does not depend on t. Again, this assump-

tion could be relaxed, for instance by introducing a linear trend a la

[Chiappori, Salanié & Weiss (2017)]. We also mention that the underly-

ing goal here, using matching patterns in multiple markets to determine

information about the distributions of unobserved characteristics, is the

same as the goal in [Fox, Yang & Hsu (2018)], though in a different set-

ting and under different assumptions.

The main result The previous result can be generalized as follows:

Theorem 25 Assume that the optimal matching is such that (xt, yt) are

joint normally distributed with mean and covariance matrix

Mt =

(
Mxt

Myt

)
,Σt =

(
Σxxt Σxyt

Σyxt Σyyt

)

Then the surplus is quadratic:

D2
xySt (xt, yt) = D2

xys (xt, yt) = ∆

where ∆ is a m × n constant matrix. Moreover, ∆ is fully determined
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by Mt,Σε,Ση and Σt. Specifically:

D2
yxs(xt, yt) = Σ−1′

yytΣxytΣ
−1/2
x|yt

(
Σ

1/2
x|ytΣηΣ

1/2
x|yt

)1/2

Σ
−1/2
x|yt +Σ

−1/2
y|xt

(
Σ

1/2
y|xtΣεΣ

1/2
y|xt

)1/2

Σ
−1/2
y|xt ΣyxtΣ

−1
xxt

Proof. The proof is a direct generalization of the previous one. The

optimal matching γx|η,y between γx|y and γη|y now takes the form:

η(x) = Σ
−1/2
x|y

(
Σ

1/2
x|yΣηΣ

1/2
x|y

)1/2

Σ
−1/2
x|y (x−Mx|y) (51)

while the matching between y and ε for a fixed x becomes:

ε(y) = Σ
−1/2
y|x

(
Σ

1/2
y|xΣεΣ

1/2
y|x

)1/2

Σ
−1/2
y|x (y −My|x) (52)

Again:

Dηv(y, η) = x = Σ
1/2
x|y

(
Σ

1/2
x|yΣηΣ

1/2
x|y

)−1/2

Σ
1/2
x|y η +Mx|y

so that (neglecting an additive function of y)

v(y, η) =
1

2
η′Σ

1/2
x|y

(
Σ

1/2
x|yΣηΣ

1/2
x|y

)−1/2

Σ
1/2
x|y η + η′Mx|y

Since the only y dependence is through the Mx|y term, we have:

Dyv(y, η) = Σ−1′

yy Σ′xyη = Σ−1
yy Σyxη.

Therefore,

Dys(x, y) =Dyv(y, η)− ε

= Σ−1′

yy Σxyη − Σ
−1/2
y|x

(
Σ

1/2
y|xΣεΣ

1/2
y|x

)1/2

Σ
−1/2
y|x (y −My|x)

= Σ−1
yy ΣxyΣ

−1/2
x|y

(
Σ

1/2
x|yΣηΣ

1/2
x|y

)1/2

Σ
−1/2
x|y (x−Mx|y)

−Σ
−1/2
y|x

(
Σ

1/2
y|xΣεΣ

1/2
y|x

)1/2

Σ
−1/2
y|x

(
y −My − ΣyxΣ

−1
xx (x−Mx)

)
= Σ−1

yy ΣxyΣ
−1/2
x|y

(
Σ

1/2
x|yΣηΣ

1/2
x|y

)1/2

Σ
−1/2
x|y (x−Mx − ΣxyΣ

−1
yy (y −My))

−Σ
−1/2
y|x

(
Σ

1/2
y|xΣεΣ

1/2
y|x

)1/2

Σ
−1/2
y|x

(
y −My − ΣyxΣ

−1
xx (x−Mx)

)
52



and differentiating yields the announced result.

Identifying the covariance matrices In a single-market context,

this general model is obviously under-identified: for any choice of Σε

and Ση, there exists a surplus whose supermodular core generates ex-

actly the correlations observed in the data. Things are however different

in a multi-market framework, since by assumption the various markets

correspond to the same covariance matrices Σε and Ση and the same

supermodular core D2
yxs. This property generates a set of additional re-

strictions, that may in general allow for full identification of the unknown

covariance matrices.

Two remarks must however be made at that point. First, and quite

obviously, identification obtains at best up to a multiplicative constant.

Indeed, in equation (44), replacing S with λS, which is equivalent to

multiplying s by λ and the covariance matrices of ε and η by λ2, would

generate the same stable matching. We therefore need a normalization

(for instance, the variance of the first component of ε is set to 1).

Secondly, a general proof of identification is bound to be intricate.

Indeed, equating the estimated supermodular cores over the various mar-

kets generates a system of equations of the general form:

AB−1(BΣηB)1/2B−1 + C−1(CΣεC)1/2C−1D (53)

=A′B′−1(B′ΣηB
′)1/2B′−1 + C ′−1(C ′ΣεC

′)1/2C ′−1D′ (54)

where A,B,C,D and A′, B′, C ′, D′ are recovered from the observed data

on two different markets. Any matrix equation of this form generates

m× n equations, in the
(
n(n+1)

2
+ m(m+1)

2
− 1
)

unknown components of

the covariance matrices Σε and Ση. When

T >
1

mn

(
n (n+ 1)

2
+
m (m+ 1)

2
− 1

)
+ 1

then we have more equations than unknowns; under a non degeneracy

condition, the matrices are actually overidentified.24 In particular, with

24For instance, we only need T > 1 when m = n, and T > (n+ 1)/2 when m = 1.
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‘enough’ markets, different extensions (such as a linear trend in the

supermodular core, as in Chiappori, Salanié and Weiss 2017) can then

be considered.

In various special cases, however, we are able to obtain exact identi-

fication results.

The one dimensional case The first of these is the one dimensional

setting, m = n = 1. Here we adopt the lower case notation: in market

t, the covariance matrix for the observed matching between x and y is

σt =

[
σxxt σxyt

σyxt σyyt

]
.

Proposition 26 Assume m = n = 1, and we have data from T = 2

markets. Then the model is uniquely identified up to a normalization if

and only if
σxy1√

σyy1det(σ1)
− σxy2√

σyy2det(σ2)

and
σxy1√

σxx1det(σ1)
− σxy2√

σxx2det(σ2)

are not both zero and, if both are non-zero, have different signs.

Proof. In the one dimensional case, the matrix equations in each market

become scalar equations and simplify to

sxy =
at
bt

√
ση +

dt
ct

√
σε (55)

where

at
bt

=
σxyt
σyyt

1
√
σx|yt

=
σxyt
σyyt

1√
σxxt −

σ2
xyt

σyyt

=
σxyt√

σyytdet(σt)

and similarly,
dt
ct

=
σxyt√

σxxtdet(σt)
.
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Now, assuming without loss of generality that

σxy1√
σxx1det(σ1)

− σxy2√
σxx2det(σ2)

6= 0

we choose the normalization ση = 1, and equate the expressions for sxy

in the two markets to obtain

σxy2√
σyy2det(σ1)

− σxy1√
σyy1det(σ2)

= [
σxy1√

σxx1det(σ1)
− σxy2√

σxx2det(σ2)
]
√
σε,

or

√
σε =

σxy2√
σyy2det(σ1)

− σxy1√
σyy1det(σ2)

σxy1√
σxx1det(σ1)

− σxy2√
σxx2det(σ2)

.

Clearly
√
σε must be non-negative, which holds only under the conditions

stated in the theorem. The supermodular core is then determined by (55).

This immediately implies the following, intuitive, easily testable pre-

diction of the model.

Corollary 27 Under the previous assumptions, if x and y are positively

correlated in one market, they cannot be negatively correlated in another.

Proof. The conditions σxy1 > 0 and σxy2 < 0 mean that both

σxy1√
σyy1det(δ1)

− σxy2√
σyy2det(δ2)

and
σxy1√

σxx1det(δ1)
− σxy2√

σxx2det(δ2)

are positive.

One could also infer this more directly; the equation is of the form

sxy = σxytCt, where the constant Ct differs across markets but is always

positive. Therefore, sxy shares a sign with σxyt, and so the sign of the

later must agree across all markets.

In fact, a generalization of this result holds without the normality

assumption on the data; see Proposition 30 below.
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The multi- to one-dimensional case The last result above has an

analogue in the m > n = 1 case; note that in this setting the observed

covariance matrices Σxyt are vectors in Rm. Although the result below

generically will not rule out the model unless T > m (in which case

we expect the model to be over identified) it can provide useful negative

information in specific cases (for example, when the observed correlations

Σxyt = −Σxyt′ point in opposite directions in two markets, or when the

variables are uncorrelated in one, but not all, markets).

Proposition 28 Assume m > n = 1. If we have data from T markets,

such that at least one Σxyt 6= 0 and
∑T

t=1 αtΣxyt = 0, for some non-

negative constants αi, at least one of which is non-zero, then the model

is over identified.

Proof. In each market, the equation can be written as

D2
xys = PtΣxyt + ptΣxyt

where Pt is a (unknown) symmetric, positive definite m×m matrix and

pt > 0 a positive constant (both Pt and pt differ across markets). We

therefore have, for each t,

Σxyt ·D2
xys ≥ pt|Σxyt|2

Therefore, D2
xys 6= 0, as at least one Σxyt 6= 0. It follows immediately

that Σxyt 6= 0 for all t (as this would make D2
xys = 0); we then have

0 = D2
xys ·

T∑
t=1

αtΣxyt ≥
T∑
t=1

αtpt|Σxyt|2 > 0.

This contradiction means that we cannot have simultaneous solutions to

the equations for each market.

We next consider the special case where m > n = 1 and the observed

conditional variance matrix Σx|yt is the same across all observed markets.

Although this is a very restrictive assumption, we believe the analysis

of the special case is still compelling and may provide a hint at the be-

haviour of more general solutions. In particular, as we show below, there
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are very strong testable restrictions, and somewhat counter-intuitively,

identification is never possible with less than T = m markets.

Under this assumption, with the normalization σε = 1, the equation

in each market reduces to

1

σyyt
MΣxyt +

1
√
σy|xt

Σ−1
xxtΣxyt = Dxsy

where M = Σ
−1/2
x|yt

(
Σ

1/2
x|ytΣηΣ

1/2
x|yt

)1/2

Σ
−1/2
x|yt is a symmetric and positive

definite matrix to be identified, which is the same across markets by

assumption. Equating the left hand sides of these equations yields a

system of m− 1 equations of the form

MVt = Wt, for 2 ≤ t ≤ T (56)

where Vt = 1
σyyt

Σxyt− 1
σyy1

Σxy1, andWt = 1√
σy|x1

Σ−1
xx1Σxy1− 1√

σy|xt
Σ−1
xxtΣxyt,

for 2 ≤ t ≤ T , are known from the observed data.

Proposition 29 System (56) has a unique, non-negative definite solu-

tion M if and only if the following hold:

1. The Vt span Rm.

2. Whenever
∑T

t=1 αtVt = 0, for scalars αt,
∑T

t=1 αtWt = 0,

3. The T × T matrix whose (t, t′) entry is Vt ·Wt′ is symmetric and

positive semi-definite.

Proof. The proof is standard linear algebra; conditions 1) and 2) ensure

that there is a unique, m×m matrix M solving the system of equations.

Conditions 3) then implies that that solution will be symmetric and non-

negative definite, respectively.

Finally, in the case when condition 1) fails but the others hold, there

will be multiple solutions M to (56); we must rule out the possibility

that there is a unique symmetric one. In this case, there is a non trivial

vector U in the orthogonal complement of span{V2, V3, ..., VT}. After

a rotation, we may assume that U = (0, 0, ...., 0, 1); therefore, the last
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component of each Vt must be 0. The equations and symmetry of M

then tell us nothing about the last diagonal entry Mmm of M , and so the

model is under identified.

The first two conditions typically hold when T = m+1, in which case

the Vt will generically form a basis for Rm. The third condition, on the

other hand, is much more restrictive; for generic data, it fails as soon

as T ≥ 3, in which case we have a system of two equations, and will

typically not have V2 ·W3 = V3 ·W2. Therefore, for T ≥ 3, the system is

generically over identified.

A second remark is that identification is only possible when the num-

ber of markets at least m + 1, even though in this case the number of

variables Tm is strictly larger than the number of unknowns m(m+1)
2

.

This is because, as is evident from the proof above, knowing MVt on a

non-spanning set of vectors {Vt} is not sufficient to uniquely determine

M , even with the extra constraint that M must be symmetric.

A testable prediction without the normality assumption We

now show that a generalization of Corollary 27 holds beyond the normal

assumption on the data. In this setting, we assume again that m = n = 1

and the surplus function takes the form

S(x, y, ε, η) = s(x, y) + yε+ xη

with s to be indentified. We assume again that we have data from at

least two markets, that observable and unobservable characteristics are

independent in each market, and the unobservable distributions are the

same across markets, but remove the normality assumption on the data.

We assume instead only that the observed coupling γ(x, y) is absolutely

continuous.

Recall that Fx|y(x, y) and Fy|x(x, y) denote the conditional CDFs.

Under our assumption Fε|x = Fε and Fη|y = Fη are independent of x and

y, respectively, and constant throughout markets.

Proposition 30 Fix a point (x, y) and two markets t and t′. Assume

that γt and γt
′

are absolutely continuous with positive densities at (x, y).
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It is not possible to have:

∂F t
y|x(x, y)

∂x
> 0,

∂F t
x|y(x, y)

∂y
> 0,

∂F t′

y|x(x, y)

∂x
< 0, and

∂F t′

x|y(x, y)

∂y
< 0,

These conditions are local measures of correlation between x and y. For

instance, Fy|x(x, y) tell us the proportion of wives who marry husband

y whose type is less than x; we can interpret a decrease in this quantity

as y increases as a local in y positive correlation between the variables.

Proof. In each market, equation (42) becomes

Dxs(x, y) = Dxu(x, ε(x, y))− η(x, y)

so that differentiating and using (41) gives

D2
xys(x, y) = D2

xεu(x, ε(x, y))Dyε(x, y)−Dyη(x, y) = Dxθ(x, ε(x, y))Dyε(x, y)−Dyη(x, y).

Therefore, with data from markets t and t′, we must have, at each

(x, y),

Dxθ
t(x, εt(x, y))Dyε

t(x, y)−Dyη
t(x, y) = Dxθ

t′(x, εt
′
(x, y))Dyε

t′(x, y)−Dyη
t′(x, y).

(57)

Now, each εt(x, y) = F−1
ε (F t

y|x(x, y)) is an optimal map from y to ε for a

fixed x, with surplus f(y, ε) = yε; it is therefore clearly increasing in y.

Differentiating the relationship F−1
y|x(x, Fy|x(x, y)) = y with respect

to x, we have

∂F−1
y|x

∂x
(x, Fy|x(x, y)) +

∂F−1
y|x

∂q
(x, Fy|x(x, y))

∂Fy|x(x, y)

∂x
(x, y) = 0

where we use q as a name for the second argument of F−1
y|x . Since

∂F−1
y|x
∂q

(x, q) > 0 everywhere, the sign of
∂F−1

y|x
∂x

(x, Fy|x(x, y)) is opposite that

of
∂Fy|x(x,y)

∂x
(x, y). On the other hand, since η(x, y) = F−1

η (Fx|y(x, y)) and

F−1
η (η) is clearly increasing, the sign of ∂η

∂y
is the same as that of

∂Fx|y
∂y

.

This means that, under our assumptions, θt(x, ε) = (F t
y|x)
−1(x, Fε(ε))

has a negative derivative with respect to x while ηt(x, y) = F−1
η (F t

x|y(x, y))
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has a positive derivative with respect to y.

The left hand side of (57) is therefore negative. By a similar argu-

ment, the right hand side is positive, which is impossible.

5 Conclusion

This paper provides a general characterization of multidimensional match-

ing models, in terms of existence, uniqueness and qualitative properties

of stable matches, as well as testability and identifiability of a stochastic

version involving unobserved preferences. Of specific interest are situa-

tions in which the dimensions of heterogeneity on the two sides of the

market are unequal. We explore the topology of the ‘indifference sets’

that arise in this setting, and provide conditions under which they can be

expected to be smooth manifolds of dimension m− n. In particular, we

investigate the set of ‘multi-to-one dimensional matching problems’, and

we introduce a nestedness criterion under which the equilibrium match

can be found more or less explicitly.

Lastly, we introduce an empirical specification aimed at capturing

unobserved dimensions in the matching process. This formulation gen-

eralizes existing approaches, and particularly the seminal contribution

of [Choo & Siow (2006)], to the case of continuous variables; it also rec-

onciles the Choo and Siow methodology with an alternative approach,

initially proposed by COQ for the specific case of index models. In the

single market case, our empirical model is exactly identified under strong

parametric assumptions. In a multi-market context, on the contrary, a

more general version of the model, involving a general stochastic struc-

ture for unobservable preferences, is typically over-identified. One can

only hope that these new insights will soon be taken to data.
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