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Abstract. Densities of particles on Rn which interact pairwise through an
attractive-repulsive power-law potential Wα,β(x) = |x|α/α−|x|β/β have often
been used to explain patterns produced by biological and physical systems.
In the mildly repulsive regime α > β ≥ 2 with n ≥ 2, we show there exists
a decreasing homeomorphism α∆n from [2, 4] to itself such that: distributing
the particles uniformly over the vertices of a regular unit diameter n-simplex
minimizes the potential energy if and only if α ≥ α∆n(β). Moreover this mini-
mum is uniquely attained up to rigid motions when α > α∆n(β). We estimate
α∆n(β) above and below, and identify its limit as the dimension grows large.
These results are derived from a new northeast comparison principle in the
space of exponents. At the endpoint (α, β) = (4, 2) of this transition curve,
we characterize all minimizers by showing they lie on a sphere and share all
first and second moments with the spherical shell. Suitably modified versions
of these statements are also established (i) for Wα,β and corresponding ener-
gies in the case where n = 1, and (ii) for the attractive-repulsive potentials
Dα(x) = |x|α(α log |x| − 1) that arise in the limit β ↗ α.
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1. Introduction

Particles interacting through long-range attraction and short-range repulsion
given by differences of power-laws have been used to model a range of physical
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[27] [22] and biological [33] [5] [25] systems, to predict or explain many of the
patterns they display [1] [4] [26] [37], and to select mesh points for numerical
integration [13–16]. For very few values of the attractive and repulsive exponents
(α, β) are the energy minimizing configurations of particles explicitly known;
see however [6] [9] [11] [12] [17] [18] [19] [21] [30]. Here we complement these
results which — apart from [30] — concern β < 2, by showing that for a region
containing the intersection of the quadrant (α, β) ∈ [4,∞)× [2,∞)\{(4, 2)} with
the halfspace α > β, the minimizer consists precisely of those configurations which
equidistribute their particles over the vertices of an appropriately sized simplex,
i.e. an equilateral triangle in two dimensions and a regular tetrahedron in three.
We are able to give a detailed description the region in question, and explain
precisely how uniqueness of these minimizers fails at its corner (α, β) = (4, 2).

Let us recall the setting and notation from our companion work [17]: The self-
interaction energy of a collection of particles with mass distribution dµ(x) ≥ 0
on Rn is given by

EW (µ) =
1

2

∫∫
Rn×Rn

W (x− y)dµ(x)dµ(y),(1.1)

assuming the particles interact with each other through a pair potential W (x).
Normalizing the distribution to have unit mass ensures that µ belongs to the
space P(Rn) of Borel probability measures on Rn.

Our goal is to identify global energy minimizers of EW (µ) on P(Rn), for power-
law potentials W = Wα,β where

Wα(x) := |x|α/α and(1.2)

Wα,β(x) := Wα(x)−Wβ(x) α > β > −n,(1.3)

with the appropriate convention if α = 0 or β = 0 [3]. In this paper we focus
exclusively on the mildly repulsive regime β ≥ 2 of [8], and its frontier β = 2.
The latter is called the centrifugal line in [30], since, at least on R2, the potential
−W2 induces the outward force which particles rotating uniformly around their
common center of mass seem to experience in a corotating reference frame; see
e.g. [32]. On this frontier the energy also acts as a Lyapunov function of the
rescaled dynamics of the purely attractive Patlak-Keller-Segel [33] [25] model in
self-similar variables around the time of blow-up [35]. On the segment (α, β) ∈
(2, 4)× {2}, our companion paper shows the minimizer is uniquely given (up to
translations) by a spherical shell — i.e. the uniform probability measure on a
spherical hypersurface — at least if n ≥ 2.

For α ≥ 4 and α > β ≥ 2 but (α, β) 6= (4, 2), the present work shows that
the minimizer is uniquely given (apart from rotations and translations) by the
measure ν = ν1 which equidistributes its mass over the vertices of a regular,
unit diameter, n-simplex, defined below, i.e. an equilateral triangle if n = 2
and a regular tetrahedron if n = 3. These results answer a question of Sun,
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Uminsky and Bertozzi, by showing that the linear stability of selfsimilar blow-
up which they found for the aggregation dynamics on the boundary of these
two complementary regimes can be improved to a nonlinear stability result. This
improvement is explained in [17]; for spherically symmetric perturbations of the
spherical shell, such an improvement was already found by Balagué et al [2],
while asymptotic stability of measures on the simplex vertices was addressed
by Simione [34]. On the other hand, at the threshold exponent separating these
two regimes, we will show that although all centered convex combinations of the
configurations mentioned above remain mimimizers, there are many additional
minimizers as well: indeed for (α, β) = (4, 2) the centered minimizers consist
precisely of all measures supported on the minimizing spherical shell which share
its moments up to order 2. When n ≥ 2, this case is distinguished from α 6= 4 by
the fact that the attractor formed by global energy minimizers becomes infinite-
dimensional.

In the mildly repulsive region α > β ≥ 2, two of us recently showed the
existence of a finite threshold α∆n(β) < ∞ above which the energy is uniquely
minimized by ν1 and its rotates and translates [30]. In the current manuscript, we
estimate α∆n(β) ≤ max{β, 4} concretely, showing equality holds when β = 2 ≤ n
and finding the high dimensional limiting threshold explicitly in the broader range
β > 2. We also show it is impossible for ν1 to minimize EWα,β

for any α < α∆n(β).
Further results concerning α∆n are established in §4 below and summarized in
Theorem 1.5 and Remark 1.6.

To describe our conclusions, it will be convenient to recall the following class of
sets and measures which were the main object of study in [29] [30]. We say that
a set K ⊆ Rn is called a regular k-simplex if it is the convex hull of k + 1 points
{x0, x1, ..., xk} in Rn satisfying |xi−xj| = d for some d > 0 and all 0 ≤ i < j ≤ k.
The points {x0, x1, ..., xk} are called vertices of the simplex. In particular, it is
called a unit k-simplex if d = 1. We also define the following set of measures:

P∆n := {ν ∈ P(Rn) | ν is uniformly distributed over(1.4)

the vertices of a unit n-simplex.}

In particular P∆1 = {1
2
(δa + δa+1) | a ∈ R}. Let P0

∆n = P∆n ∩ P0(Rn) where
P0(Rn) denotes the centered probability measures on Rn — meaning those having
finite first moments and satisfying

(1.5)

∫
Rn

x dµ(x) = 0.

We can now present our results. Let Id denote the n× n identity matrix.

Theorem 1.1 (Characterizing energy minimizers at (α, β) = (4, 2)). A measure
µ ∈ P0(Rn) minimizes EW4,2 in (1.1) if and only if µ is concentrated on the
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centered sphere of radius
√

n
2n+2

and has

(1.6)

∫
x⊗ x dµ(x) =

(∫
xixjdµ(x)

)
1≤i,j≤n

=
1

2n+ 2
Id.

Notice, if n = 1,
δ−1/2+δ1/2

2
∈ P∆1 is the only minimizer in P0(R). For n = 3,

several inequivalent minimizers are illustrated in Figure 1.

Figure 1. Convex hulls of supports of sample minimizers of EW4,2

in P0(R3). Each of these four minimizers is inscribed in the sphere

of radius
√

3/8 and has mass uniformly distributed over the set of
extreme points of the convex hull of its support. Moreover, rotates
and convex combinations of any of these minimizers are also mini-
mizers. This implies that general minimizers of EW4,2 need not have
any rotational symmetries.

Now for each α > β, let

Aα,β = {(α′, β′) ∈ R2 | α′ > β′, α′ ≥ α, β′ ≥ β, (α′, β′) 6= (α, β)}

denote the region of parameters lying north, east, or northeast of (α, β). The
following theorem allows us to extend an energy comparison involving a unit
simplex from a single point (α, β) in parameter space to the entire northeast re-
gion Aα,β which lies above and to its right. As we learned from the referees, when
n = 2 and the interaction energy (1.1) is equipped with the one-parameter family

of anisotropic potentials W̃α(x) := − log(|x|) + α
x21
|x|2 , an analogous comparison

principle was formulated independently by Carrillo et al. [10], who used it to
show that the known unique minimizer of EW̃1

also uniquely minimizes EW̃α
for

each α ≥ 1. In effect, the theorem which follows provides two-parameter mono-
tonicity results for power-law potentials analogous to their one-parameter result
for anisotropic potentials.

Theorem 1.2 (Northeast comparison of simplex energies and potentials). Let
α > β > 0. If ν ∈ P∆n minimizes EWα,β

on P(Rn), then for (α′, β′) ∈ Aα,β,

(1.7) P∆n = argmin
P(Rn)

EWα′,β′
and spt ν = argmin

Rn

(ν ∗Wα′,β′).
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Remark 1.3 (One dimension). If n = 1, our companion paper [17] shows P∆1

uniquely minimizes EWα,2 for all α ≥ 3. Kang, Kim, Lim and Seo [23, Theorem
2] on the other hand showed P∆1 is not a d∞-local minimizer, hence not a global
minimizer, in the range β = 2 < α < 3.

Set

(1.8) 4∗ :=

{
3 if n = 1
4 otherwise.

Notice Theorems 1.1, 1.2 and Remark 1.3 imply the following corollary; see also
Figure 2.

Corollary 1.4 (Simplices minimize for α ≥ max{4∗, β}). For each (α, β) ∈ A4∗,2,
P∆n uniquely minimizes EWα,β

on P(Rn).

Figure 2. Partial phase diagram of the mildly repulsive region
α > β ≥ 2 for n ≥ 2: on the red segment linking (2, 2) to
(4, 2), energy is uniquely minimized by a spherical shell [17]. At
(α, β) = (4, 2), the energy is minimized by any convex combina-
tion of the configurations described in Figure 1, but also admits
other minimizers characterized by Theorem 1.1. In the blue region,
A4,2, Theorem 1.2 and the fact that the balanced unit simplices
P∆n minimize EW4,2 combine to imply that the interaction energy
is minimized precisely by the elements of P∆n .

α

β

Centrifugal

Line (α, β) = (4, 2)

A4,2

2

2 4

α
=
β

Our theorems, and in particular Theorem 1.2, allow us to infer quantitative
results about the structure of threshold function α∆n(β) which two of us defined
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implicitly in [30, Corollary 1.4]. For any given β ≥ 2, this threshold function
describes the critical value α∆n(β) such that, for all α > α∆n(β), EWα,β

is uniquely
minimized by the unit simplices P∆n . Prior to the present work and its companion
paper [17], nothing was known of the behaviour of α∆n , save for its abstract
existence as a function from [2,∞) to [2,∞) and the lower bound α∆n(2) ≥ 4
provided by [30, Remark 1.5]. Our techniques now yield following much more
precise statement, which implies continuity and monotonicity properties of the
threshold function, and shows that if α ∈ (β, α∆n(β)), then EWα,β

is not minimized
by any unit simplex:

Theorem 1.5 (Transition threshold). For each β ≥ 2 there exists α∆n(β) ∈
[β,∞) such that

P∆n = argmin
P(Rn)

EWα,β
if α > α∆n(β),(1.9)

∅ = P∆n ∩ argmin
P(Rn)

EWα,β
if β < α < α∆n(β).(1.10)

If α = α∆n(β) and ν ∈ P∆n, then at least one of the following two containments
is strict:

(1.11) P∆n ( argmin
P(Rn)

EWα,β
or spt ν ( argmin

Rn

(Wα,β ∗ ν).

Moreover, α∆n(2) = 4∗ from (1.8), and we have βn ∈ (2, 4∗) such that α∆n(β) = β
for β ≥ βn, and α∆n : [2, βn] −→ [βn, 4

∗] is continuous and strictly decreasing.

The quantity βn defined in Theorem 1.5 represents the smallest value of β such
that the graph of the threshold function α∆n(β) intersects the diagonal boundary
α = β of the mildly repulsive regime in parameter space. Later, in Corollary 1.9,
we will see that, while Eα,β is trivial on this boundary, we can define a non-trivial
family of interaction kernels Dα which continuously extend the symmetrically
rescaled family of energies αβ

α−βEWα,β
to the line α = β. In the meantime, let

us describe upper and lower bounds on α∆n(β), which will be made rigorous in
subsections 4.1 and 4.2, respectively:

Remark 1.6 (Bounds on the Transition Threshold). By using the same family of
rescaled kernels αβ

α−βWα,β, Definition 4.1 specifies a function α∗∞ = α∗∞(β) which

for n ≥ 2 becomes independent of dimension. Corollary 4.5 shows that α∗∞ bounds
the threshold function α∆n from above in the sense that α∗∞(β) ≥ α∆n(β) for all
β ∈ [2,∞). Conversely, in subsection 4.2, we use violations of an Euler-Lagrange
equation (3.3) for the interaction energy (1.1) to define a pair of dimensionally-
dependent lower bounds for α∆n. The first, α+

∆n, defined in (4.5), arises from
checking whether the Euler-Lagrange equation for the unit simplex is violated
anywhere in Rn. The second family of bounds, α∆n defined in (4.8), instead arise
from looking for violations of the Euler-Lagrange equation at a specific point in
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Rn which is chosen based on the dimension. As we show in Proposition 4.12,
α+

∆n is a sharper lower bound than α∆n , and the fact that it is sensitive to Euler-
Lagrange violations at each point in Rn means that, unlike α∆n , its strength does
not depend on the choice of reference point. However, the theoretical appeal of
a sharper bound is muted by the apparent intractability of computing a bound
which requires us to check an inequality at each point of Rn. On the other hand,
Definition 4.9 allows us to implicitly define α∆n(β) by using a single equation (or
equivalently inequality) involving α and β, and with an apt choice of reference
point, this bound need not be much weaker than the theoretically superior bound
α+

∆n . Moreover, Proposition 4.13 guarantees that even the weaker bound α∆n is
asymptotically sharp for large dimensions, in the sense that for each β ≥ 2, we
have limn→∞ α∆n(β) = α∗∞(β). Even so, it would be interesting to know the value
of βn and of α∆n(β) in the range β ∈ (2, βn) more precisely. For example, might
α∆n ≡ α+

∆n?

Remark 1.7 (Open global minimization problems). An interesting open problem
is to determine the structure of minimizers of EWα,β

for 2 < β < α < α∆n(β).
Carrillo, Figalli, and Patacchini showed the supports of such minimizers must
have finite cardinality, and placed a bound on this cardinality [8], but little else
is known about this subregime. If n = 1 and β = 2, identifying the global mini-
mizers of EWα,2 along the segment (α, β) ∈ (2, 3)×{2} of the centrifugal line was
highlighted by us as another open problem in the original release of this preprint.
Shortly thereafter, the latter problem was elegantly solved by R. Frank [20], who
used Fourier analysis, convexity and the Euler-Lagrange equation (3.3) to show

the (unique centered) solution takes the form dµα(x) = C(R2 − x2)
(1−α)/2
+ dx for

certain explicit constants C,R > 0 depending on α ∈ (2, 3).

Remark 1.8 (Physically realistic potentials). The mildly repulsive regime α >
β ≥ 2 which we address may be unphysical in several respects: the potentials
Wα,β(x) grow rapidly as r = |x| → ∞ (meaning long range forces increase without
bound), yet remain bounded at r = 0, which permits a positive fraction of the
particles to condense on the same point. These may or may not be desirable
features, depending on what one is trying to model. It is perhaps worth pointing
out the global energy minimizers ν we identify for these potentials will remain
d∞-local minimizers (see [17] and (4.1)) for any other potential W which agrees
with Wα,β in a neighourhood of |x| = 0 and of |x| = 1 when α > α∆n(β) (or
of x ∈ spt ν − spt ν more generally). This includes potentials which need not be
spherically symmetric, nor grow at infinity. On the other hand, our techniques
say nothing obvious about potentials with singularities at the origin that prevent
condensation onto points, such as Wα,β with β < 2 or bond order potentials more
generally.
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Finally, taking the limit β → α for the rescaled potential Wα,β = αβ
α−βWα,β

(which has minimum value −1), leads us to introduce the following new class of
interaction kernels,

(1.12) Dα(x) := α2 ∂

∂α
Wα,β(x) = |x|α(α log |x| − 1), α ∈ R \ {0}

which form another intriguing one-parameter family of attractive-repulsive po-
tentials uniquely minimized at |x| = 1. This family continuously extends of the
two-parameter family of rescaled potentials Wα,β to the portion of the boundary
of the mildly repulsive regime which lies on the diagonal line α = β. This inter-
pretation is supported by the following corollary, which follows from the proof of
Theorem 1.2 and relates the minimizers of EWα,β

to those of EDα :

Corollary 1.9 (Relation to minimizers of limiting potential on the diagonal). If
P∆n minimizes EWα,β

for some α > β > 0, then P∆n uniquely minimizes EDγ on
P(Rn) for all γ ≥ α. Conversely, if P∆n minimizes EDβ for some β > 0, then
P∆n uniquely minimizes EWα,β

on P(Rn) for all α > β. Thus from Remark 1.6,
P∆n minimizes EDα uniquely if α > βn, and fails to minimize EDα if 0 < α < βn.

In effect, the preceding corollary states that, if unit simplices minimize EWα,β

for some point (α, β) in the mildly repulsive regime, they also minimize EDγ
for all γ ≥ α. By the formal relation EDγ = d

dα
EWα,β

∣∣
α=γ

, this means that, as

γ increases from α, the interaction energy of the unit simplex decreases more
quickly (or increases more slowly) than that of any non-simplicial measure. A
rigorous version of this heuristic comparison argument is crucial to the proof of
Theorem 1.2. On the other hand, this corollary states that, when we consider
the closure α ≥ β ≥ 2 of the mildly repulsive regime in parameter space and
interpret Wα,α := Dα, then the region on which P∆n minimizes Eα,β is a closed
subregion. In other words, this provides us with a reasonable way of extending
the threshold function to the boundary α = β.

2. Classifying minimizers at (α, β) = (4, 2)

Our first task is to adapt Lopes’ proof [28] of energetic convexity from densi-
ties to measures in Lemma 2.2, extracting conditions for strict convexity; see [7]
and [17] for the analogous extension in the interval (α, β) ∈ (2, 4) × {2}, whose
endpoint we now analyze.

Definition 2.1 (Second moment tensor). The second moment tensor for µ ∈
P(Rn) is the n× n matrix given by

(2.1) I(µ) =

∫
x⊗ x dµ(x) =

(∫
xixjdµ(x)

)
i,j∈{1,...,n}

.
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Lemma 2.2 (Moment criteria for strict convexity). For any µ0, µ1 ∈ P0(Rn)
having finite fourth moments, set a(t) := EW4(µt) where µt := (1 − t)µ0 + tµ1.
Then a(t) is convex, and depends affinely on t ∈ [0, 1] if and only if I(µ0) = I(µ1).

Proof. Fix µ0, µ1 ∈ P0(Rn) with fourth moments. Since EW4(µ) is a quadratic
function of µ, we see a′′(t) = 2EW4(µ0 − µ1). Thus convexity and affinity of a(t)
on t ∈ [0, 1] depend on the sign of

8EW4(µ0 − µ1) =

∫∫
Rn×Rn

|x− y|4d(µ0 − µ1)(x)d(µ0 − µ1)(y).

Vanishing of the zeroth and first moments of η := µ0 − µ1 allows us to express
EW4(η) as the following sum of squares involving the second moment tensors
I(η) := I(µ0)− I(µ1) from (2.1)

8EW4(η) =

∫∫
Rn×Rn

[4(x · y)2 + 2|x|2|y|2]dη(x)dη(y)

= 4 Tr(I(η)2) + 2(Tr I(η))2.

Thus EW4(η) ≥ 0 with equality if and only if I(µ0) = I(µ1), as desired. �

Lemma 2.3 (Second moments for measures on centered spheres). Let Sr be the
centered sphere of radius r in Rn, and let µ ∈ P(Sr). If I(µ) = λId for some
λ > 0, then I(µ) = I(σr) where σr is the uniform probability on Sr.

Proof. If I(µ) = λId, any rotation Rµ of µ has the same second moment tensor
I(Rµ) = I(µ). Now if we uniformize µ by averaging over its rotations, the result-
ing measure σr will have the same second moment tensor as µ due to the linearity
of I. �

It is plausible that the following lemma is known, but lacking a reference we
provide a proof for the sake of clarity and completeness.

Lemma 2.4 (Minimizing moments under moment constraints). Let 0 < p < q <
∞, C > 0 and µ0 ∈ P(Rn). Then

µ0 ∈ argmin

{∫
|x|qdµ(x)

∣∣∣∣ µ ∈ P(Rn),

∫
|x|pdµ(x) = C

}
if and only if µ0 is concentrated on the centered sphere of radius C1/p.

Proof. Let m(x) = |x| be the modulus map for x ∈ Rn, and let η := m#(µ) ∈
P([0,∞)) be the push-forward of µ ∈ P(Rn) by the mapm. Then

∫
Rn |x|pdµ(x) =∫∞

0
rpdη(r) for any p > 0. Hence from now on we assume η ∈ P([0,∞)) and∫

rpdη(r) = C. Recall Jensen’s inequality, which states that if f : R → R is
convex and X is a real-valued random variable with average value E[X], then
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E[f(X)] ≥ f(E[X]), and equality holds if and only if f is linear on the in-
terval [inf X, supX]. With f(r) = rq/p, Jensen’s inequality yields

∫
rqdη(x) ≥(∫

rpdη(x)

)q/p
= Cq/p, and moreover equality holds if and only if η is sup-

ported at a point in [0,∞), since f is strictly convex on [0,∞). This proves the
lemma. �

Proof of Theorem 1.1. Define

F (µ) =
1

4

∫∫
|x− y|4dµ(x)dµ(y), G(µ) =

1

2

∫∫
|x− y|2dµ(x)dµ(y)

so that 2E = F −G. Then for µ ∈ P0(Rn),

G(µ) =

∫
|x|2dµ(x) = Tr I(µ)

is no longer quadratic, but depends linearly on µ instead. Applying the calculation
from the proof of Lemma 2.2, modified slightly to account for the fact that

∫
dµ =

1 whereas
∫
dη = 0, we get:

F (µ) =
1

2

∫
|x|4dµ(x) +

1

2
(Tr I(µ))2 + Tr(I(µ)2).

Thus the energy EW4,2 is convex, and by Lemma 2.2 its minimizers must all share
the same second moment tensor. Convexity also implies EW4,2 admits a spherically
symmetric minimizer. This yields that this common second moment tensor must
be λId for some λ > 0 to be determined. This leads us to define

Aλ = {µ ∈ P0(Rn) | I(µ) = λId}.
For the correct choice of λ, Aλ contains all minimizers of (1.1), and moreover by
the above formulas for F and G, for every µ ∈ Aλ we have

2E(µ) =
1

2

∫
|x|4dµ(x) +

1

2
n2λ2 + nλ2 − nλ.(2.2)

This leads us to consider minimizing the fourth moment over Aλ. Set

Bλ = {µ ∈ P0(Rn) | Tr I(µ) = nλ}.
Notice Aλ ⊆ Bλ. Now Lemma 2.4 asserts that µ minimizes

∫
|x|4dµ(x) over Bλ

if and only if µ is concentrated on the centered sphere of radius r :=
√
nλ. But

observe that σr, the uniform probability on the sphere of radius r, also belongs
to Aλ. This yields that the set of minimizers X ⊆ P0(Rn) for (1.1) is precisely
the following:

X := {µ ∈ P0(Rn) ∩ P(S√nλ) | I(µ) = λId}
= {µ ∈ P0(Rn) ∩ P(S√nλ) | I(µ) = cId for some c > 0}(2.3)
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where Sr is the centered sphere of radius r in Rn, and the second equality is due
to Lemma 2.3. Notice X is convex since I is linear in µ.

Finally let us determine the optimal λ. By (2.2), 2E(µ) = n2λ2 + nλ2− nλ for

any µ ∈ X, and dE
dλ

= 0 gives λ = 1
2n+2

, hence r =
√
nλ =

√
n

2n+2
as claimed. �

Example 2.5 (Infinite-dimensional attractor at transition threshold). If (α, β) =
(4, 2), then the spherical shell σr of radius r :=

√
n

2n+2
is a minimizer. For others,

let {ei} be the standard basis of Rn. Then the probability 1
2n

∑n
i=1(δrei + δ−rei)

clearly belongs to the set X ⊆ P0(Rn) of minimizers from (2.3), which can be
also seen by Lemma 2.3. And any rotation and convex combination of these is a
minimizer due to the convexity of X, which shows the set of minimizers is infinite
dimensional. In particular, the minimizers do not need to coincide with each other
even up to rotation and translation. The uniform measure on the vertices of the
regular simplex inscribed in Sr is also a minimizer, by the following standard
observation.

Remark 2.6 (Second moments for the uniform measure on the vertices of a
regular simplex). Let νd ∈ P0(Rn) denote the uniform measure on the n + 1
vertices of a regular simplex with center of mass at the origin and diameter d.
Then I(νd) = d2

2n+2
Id.

Proof. Let 1 = (1, 1, . . . , 1) ∈ Rn+1. The standard simplex is ∆n := {x ∈
[0,∞)n+1 | 1 · x = 1}. Its vertices coincide with the standard basis vectors
e0, . . . , en for Rn+1. Note that its diameter is

√
2. We compute the second mo-

ments I(ν) of the uniform measure ν = 1
n+1

∑n
i=0 δei over these vertices, and its

translation Tλν = 1
n+1

∑n
i=0 δei−λ1 along the principal diagonal 1 for each λ ∈ R:

Ijk(Tλν) =
1

n+ 1

n∑
i=0

(ei − λ1)j(ei − λ1)k

=
1

n+ 1
(Idjk − 2λ+ (n+ 1)λ2),

i.e. I(Tλν) = 1
n+1

Id +λ(λ− 2
n+1

)1⊗1. Note that the choice λ = 1
n+1

makes ν√2 =

Tλν centered at the origin and lie in the subspace 1⊥, and since I(Tλν) v = 1
n+1

v

for any v ∈ 1⊥, we have vi · I(Tλν) vj = 1
n+1

Idij for any orthonormal basis {vi}
of 1⊥, as desired. For general diameter d we multiply (d/

√
2)2. �

Remark 2.7 (Concerning d∞-local energy minimizers). For 2 < β < α or 2β =
4 < α, two of us showed the measure ν1 of unit diameter in Remark 2.6 minimizes
the energy uniquely (up to rotations and translations) d∞-locally [30]; see also
Simione [34]. Example 2.5 shows that for n ≥ 2 the uniqueness part of this
statement no longer holds true at the endpoint (β, α) = (2, 4) of the latter regime,
since 1

2
(ν1 +Rθν1) is also minimizing, and lies as d∞-close to ν1 as we like when

θ is sufficiently small.
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3. Identifying mildly repulsive minimizers for α ≥ 4∗

For αβ > 0, let wα and wα,β be defined on (0,∞) by

wα(r) =
rα

α
, wα,β(r) =

rα

α
− rβ

β
,

so that Wα,β(x) = wα,β(|x|). If α 6= β, the rescaled potential

(3.1) wα,β(r) =
wα,β(r)

−wα,β(1)
=
βrα − αrβ

α− β
= wβ,α(r)

then satisfies wα,β(r) ≥ −1 on r ≥ 0 with equality if and only if r = 1. We note
that, while the present work is concerned only with the case where α > β > 0,
the rescaled potential wαβ continues to satisfy wα,β ≥ 1 with equality if and only
if r = 1 on the broader regime αβ > 0. If instead αβ < 0, then wα,β is uniquely
maximized at r = 1. Define Wα,β(x) = wα,β(|x|). Obviously EWα,β

and EWα,β

share the same minimizers on P(Rn) as long as α > β. The crux of the proof of
Theorem 1.2 is the following monotonicity:

Lemma 3.1 (Rescaled potential increases with either exponent). For each α 6= 0,
β 6= α, r > 0, we have α ∂

∂β
wα,β(r) ≥ 0 with equality holding if and only if r = 1.

Proof. Direct computation yields

α
∂

∂β
wα,β(r) =

α2rβ

(α− β)2
(rα−β − 1− log rα−β).

From this, the lemma follows from the fact that the function t 7→ t−1− log t ≥ 0
for t > 0 with equality holding only if t = 1. �
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Figure 3. Graphs of wα,β(r) for β = 2.5 and α = 3, 5, 7 illus-
trating the results of Lemma 3.1. In particular, although all three
graphs agree for r ∈ {0, 1}, we see that wα,β(r) is a strictly in-
creasing function of α for each r ∈ (0, 1) ∪ (1,∞). Note that the
symmetry wα,β = wβ,α from (3.1) ensures that the monotonicity in
β proven in Lemma 3.1 and the monotonicity in α shown in this
figure are equivalent.

Proof of Theorem 1.2. Assume α > β > 0 and P∆n minimizes EWα,β
. It is enough

to prove P∆n uniquely minimizes both EWα+ε,β
and EWα,β+ε

on P(Rn) for all ε ∈
(0, α− β), and that the support of ν ∈ P∆n uniquely minimizes both ν ∗Wα+ε,β

and ν ∗Wα,β+ε on Rn. Let ρ(x, y) = |x − y|. For µ ∈ P(Rn), observe the push-
forward µ̃ := ρ#(µ⊗µ) ∈ P([0,∞)) via the map ρ satisfies, since W (x) = w(|x|),

(3.2) EWα,β
(µ) =

1

2

∫ ∞
0

wα,β(r)dµ̃(r).

Let ν ∈ P∆n . By assumption
∫
wα,β(r)dµ̃(r) ≥

∫
wα,β(r)dν̃(r). Since spt(ν̃) =

{0, 1} and wα,β(r) is constant in α > β > 0 at r = 0 and 1,∫
wα,β(r)dν̃(r) =

∫
wα+ε,β(r)dν̃(r) =

∫
wα,β+ε(r)dν̃(r)

for all 0 < ε < α − β. On the other hand, by Lemma 3.1 (and the symmetry of
w in α, β), ε > 0 implies∫

wα,β(r)dµ̃(r) ≤
∫
wα+ε,β(r)dµ̃(r),

∫
wα,β(r)dµ̃(r) ≤

∫
wα,β+ε(r)dµ̃(r)
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with equality holding only if spt(µ̃) ⊆ {0, 1}, i.e. only if µ is concentrated on
the set of vertices of a unit simplex. Hence, if µ minimizes EWα+ε,β

or EWα,β+ε

then it must be concentrated on the vertices of a unit simplex. Thus, we use the
isometry described in [30, Remark 1.2] to write µ =

∑n+1
i=1 miδ2−1/2ei ∈ P(Rn). In

particular, if we let m = (m1, ...,mn+1) be the vector of masses and if we, without
loss of generality, define an (n+ 1)× (n+ 1) matrix A by

Aij = nwα+ε,β

(
1√
2

)[
1− Idij

n

]
,

then we may write

EWα+ε,β
(µ) = mTAm = nwα+ε,β

(
1√
2

)
mTAm,

where we define Aij := 1
n
(1−Idij). Thus, noting that each of the rows and columns

of A sums to 1, and noting that A
2

is a positive matrix, the Perron-Frobenius
theorem implies that A has 1 as an eigenvalue with multiplicity 1, and that all
other eigenvalues of A have absolute value less than 1. Since m := 1

n+1
(1, ..., 1)

is an eigenvector of A with eigenvalue 1, the spectral theorem implies that m
maximizes the quantity mTAm among all vectors in Rn+1 with entries summing
to 1. In turn, since the constant wα+ε,β( 1√

2
) is negative, we conclude that, in order

to minimize EWα+ε,β
, µ must uniformly distribute its mass over the vertices of a

unit simplex, i.e. µ ∈ P∆n . This proves the first identity (1.7).
Observe that the Euler-Lagrange equation from e.g. [17] asserts

(3.3) spt ν ⊆ argmin(ν ∗Wα,β).

Since the vertices of a unit simplex, spt ν, is characterized as the maximal set of
points at distance one from each other, Lemma 3.1 shows

ν ∗Wα,β ≤ ν ∗Wα+ε,β and ν ∗Wα,β ≤ ν ∗Wα,β+ε

with equalities holding precisely on spt ν. This implies the second identity (1.7)
to establish Theorem 1.2. �

Proof of Corollary 1.9. Lemma 3.1 shows wα,β(r) is a nondecreasing function
of β ∈ (0, α), and strictly increasing unless r ∈ {0, 1}. Also limβ→αwα,β(r) =
rα(α log r − 1), so limβ→αWα,β(x) = Dα(x). As in the preceding proof, if P∆n

minimizes EWα,β
, comparison shows it then minimizes EDα uniquely. Conversely

if P∆n minimizes EDβ , then minimizes EWα,β
uniquely for all α > β. �

Proof of Corollary 1.4. Theorems 1.1–1.2 and Remarks 1.3 and 2.6 yield Corol-
lary 1.4. �
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4. The transition threshold

In this section, we establish the existence of a transition threshold α∆n(β) which
separates the part of the mildly repulsive region β ≥ 2 on which equidistribution
P∆n over the vertices of the unit simplex minimizes the energy EWα,β

from the part
on which it does not. Above the threshold, these minimizers are unique up to rigid
motions. We also establish that this threshold lies in the range [α+

∆n(β), α∗∞(β)] ⊆
[α∆n(β), α∗∞(β)] given by Definitions 4.1, 4.6 and 4.9, which collapses to the point
{α∗∞(β)} in the high dimensional limit (Proposition 4.13).

Proof of Theorem 1.5. For β ≥ 2, the existence of α∆n(β) ∈ [β,∞] satisfying
(1.9) and (1.10) follow from Theorem 1.2; also α∆n(β) <∞ is asserted in [30]. The
fact that α∆n(2) ≤ 4∗, existence of a minimal βn ∈ [2, 4∗] such that α∆n(β) = β for
β > βn, and (nonstrict) monotonicity of α∆n : [2, βn] −→ [βn, 4

∗] are consequences
of Corollary 1.4. The centrifugal value α∆n(2) = 4∗ follows from Theorem 1.1 and
Remark 1.3. We next establish that at least one of the containments (1.11) is strict
by combining results from [30] with the strategy used to provide an analogous
statement for a related problem in [31].

For p ∈ [1,∞], recall that the Kantorovich-Rubinstein-Wasserstein distance
between µ, µ′ ∈ P(Rn) is defined by

(4.1) dp(µ, µ
′) := inf

X∼µ,Y∼µ′
‖X − Y ‖Lp ,

where the infimum is taken over arbitrary couplings of random vectors X and Y
in Rn whose laws are given by µ and µ′ respectively. The metrics dp are well-
known to metrize weak convergence of measures on compact subsets K ⊆ Rn

unless p = ∞ [36]. Given such a compact set K ⊆ Rn and α > β ≥ 2, we first
claim that if (α, β) = limk→∞(α(k), β(k)) for a sequence α(k) > β(k) ≥ 2, then
the functionals EWα(k),β(k)

Γ-converge to Eα,β on (P(K), d2). Since the potentials

{Wα(k),β(k)}k are uniformly equicontinuous on K ×K, this is easy to prove using
the argument, e.g., from Lemma 3.2 of [31], so we do not give more details here.
Now Proposition 1.1 of [17] ensures the minimizers of EWα,β

on P(Rn) exist and

can all be translated to lie in a centered ball of radius e1/β; as k →∞ it follows
from this Γ-convergence that d2-accumulation points of minimizers of Eα(k),β(k)

therefore minimize Eα,β on P(Rn). Taking β(k) = β and α(k) ↘ α∆n(β) then
shows that the (nonstrict) first containment of (1.11) is a consequence of (1.9).
When α∆n(β) = β, strict containment becomes trivial. We may therefore assume
α∆n(β) =: α > β, and let β(k) = β and α(k) ↗ α. We also assume β > 2
because for β = 2 ≤ n strict containment follows from Theorem 1.1, while for
(β, n) = (2, 1) it is easy to check sptψ = {−1

2
, 1

2
} ( [−1

2
, 1

2
] = argmin(W3,2 ∗ ψ).

Since there exist minimizers µk of Eα(k),β on P(Rn) whose support lies in the

centered ball of radius e1/β, weak compactness of the probability measures on this
ball yields a subsequential limit d2(µk, µ∞) → 0 (the subsequence having been
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relabelled µk); Γ-convergence then ensures µ∞ minimizes EWα,β
on P

(
Be1/β(0)

)
,

hence on P(Rn) by [17, Proposition 2.1].
The second containment in (1.11) follows from the first and the Euler-Lagrange

equation described e.g. in Proposition 1.1 of [17]. To derive a contradiction, as-
sume neither containment in (1.11) is strict, so that µ∞ ∈ P∆n and

(4.2) sptµ∞ = argmin
Rn

Wα,β ∗ µ∞.

Set sptµ∞ = {x0, . . . , xn} and 0 < R < 1/2. Since d2(µk, µ∞)→ 0 and the Euler-
Lagrange equation applied to µk, and the uniform convergence on every ball of
Wα(k),β ∗ µk to Wα,β ∗ µ∞ together with (4.2) yields

1 = µk[∪ni=0BR(xi)], while µk[BR(xi)] ∈ (
1

n+ 2
,

1

n
)

for k sufficiently large; c.f. Lemma 4.3 of [31] or Corollary 3.6 of [30]. Setting

(4.3) µ′k :=
n∑
i=0

µk[BR(xi)]δxi

ensures d∞(µk, µ
′
k) < R. On the other hand, if α(k) > β∗ := 1

3
(α+ 2β), Corollary

4.3 of [30] provides r = r(β, β∗, n) such that µ′k (and its rotates and translates)
uniquely minimize EWα(k),β

on a d∞-ball of radius r around µ′k. But µk was chosen

to minimize EWα(k),β
globally on P(Rn). Taking R < r and k correspondingly

large therefore forces µk to be a rotate or translate of µ′k. From e.g. the Perron-
Frobenius theorem, µk then assigns equal mass to each point in sptµk, hence
µk ∈ P∆n . Since α(k) < α∆n(β) by construction, (1.10) produces the desired
contradiction µk 6∈ P∆n , to establish that at least one of the containments in
(1.11) is strict. From this, notice the monotonicity of α∆n : [2, βn] −→ [βn, 4

∗]
must be strict in view of (1.7), and implies βn ∈ (2, 4∗).

It remains to deduce continuity of α∆n at each β ∈ [2, βn]. Set

α∆n(β±) := lim
ε↓0

α∆n(β ± ε).

If α ∈ (α∆n(β), α∆n(β−)) for some β ∈ (2, βn], then choosing µk to minimize
EWα,β−1/k

on P(Rn), after translation into a centered ball of radius e1/(β−1) we can
extract a subsequential d2-limit µ∞ of µk. Notice µk 6∈ P∆n , while Γ-convergence
implies µ∞ minimizes Eα,β hence µ∞ ∈ P∆n by Theorem 1.2. But then as above,
this contradicts the d∞-unique local minimality of µ′k from (4.3) for R sufficiently
small and k correspondingly large. On the other hand, if α ∈ (α∆n(β+), α∆n(β))
for some β ∈ [2, βn], then choosing µk to minimize EWα,β+1/k

on P(Rn), we
can extract a subsequential d2-limit µ∞ of µk. This time µk ∈ P∆n , while Γ-
convergence and α < α∆n(β) imply µ∞ 6∈ P∆n , contradicting the fact that P∆n

is d2-closed. We conclude the desired continuity α∆n(β) = α∆n(β±), which also
implies α∆n(βn) = βn. �
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4.1. Threshold upper bound independent of dimension n ≥ 2. We now
establish an upper bound α∗∞(β) for the threshold α∆n(β). Note that this upper
bound and the quantities β∗∞ and f ∗∞(β) defining it become independent of di-
mension as soon as n ≥ 2. The asterisk on these quantities reminds us of their
implicit dependence on min{n, 2}, however.

Definition 4.1 (Threshold upper bound). Set

β∗∞ :=
4∗ − 2

log(4∗/2)
=

{
1

log(3/2)
if n = 1,

2
log 2

if n ≥ 2.

For β ≥ 2, define α∗∞ = α∗∞(β) as the largest solution of

(4.4)
eα/β

∗
∞

α
=
eβ/β

∗
∞

β
.

Remark 4.2 (Number of solutions). For any given β ≥ 2 and n ∈ {1, 2}, there
are at most two solutions to equation (4.4), which follows from the fact that

f ∗∞(t) := 1− et/β
∗
∞
t

is unimodal on (0,∞), i.e. has a unique global maximum and

no local minima. In particular, we see t2β∗∞e
−t/β∗∞ df∗∞

dt
= t − β∗∞ is positive on

(0, β∗∞), zero at β∗∞, and negative on (β∗∞,∞). Thus α∗∞(β) = β if and only if
β ≥ β∗∞.

Remark 4.3 (Alternative interpretation). Set

w̄β,β(r) := lim
α→β

w̄α,β(r) = rβ(β log r − 1),

and let zα,β denote the positive zero of w̄α,β, where zα,β = (α
β
)

1
α−β for α 6= β and

zβ,β := e1/β. Notice that z4∗,2 = 3
2
, if n = 1, and z4∗,2 =

√
2, if n ≥ 2. Hence,

after some rearranging, we obtain β∗∞ from the equation zβ∗∞,β∗∞ = z4∗,2 and α∗∞
as the largest solution of zα,β = z4∗,2, or rather wα,β(z4∗,2) = 0.

The following lemma and corollary demonstrate that α∗∞ is indeed an upper
bound for the threshold function:

Lemma 4.4 (Comparing pair potentials). Let 2 < β < α < 4∗. Then w̄4∗,2(r) ≤
w̄α,β(r) for all r ∈ [0, zα,β] if and only if zα,β ≤ z4∗,2.

Proof. One direction is trivial, as if w̄4∗,2(r) ≤ w̄α,β(r) for all r ∈ [0, zα,β], then
in particular w̄4∗,2(zα,β) ≤ w̄α,β(zα,β) = 0, hence zα,β ≤ z4∗,2. For the proof of the
other direction, we begin by defining

g(r) := w̄4∗,2(r)− w̄α,β(r) =
2r4∗ − 4∗r2

4∗ − 2
− βrα − αrβ

α− β
.
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We may divine the behaviour of g from its fifth derivative

g(5)(r) =
αβrβ−5

α− β

[
−rα−β

4∏
i=1

(α− i) +
4∏
i=1

(β − i)

]

for r ∈ (0,∞). Written in this form, we see that g(5)(r) is the product of a
positive function of r and a monotone function of r, and hence has at most one
sign change. More precisely, g(3)(r) is either convex-concave (if α < 3), concave-
convex (if β > 3), or strictly convex (if β ≤ 3 ≤ α 6= β) on (0,∞). Moreover, we
may write

g(3)(r) = 2 ·4∗(4∗−1)r4∗−3 +
αβ

α− β
[
−(α− 1)(α− 2)rα−3 + (β − 1)(β − 2)rβ−3

]
.

Here, both the highest order term r4∗−3 and the lowest order term rβ−3 have pos-
itive coefficients, which implies that g(3) is positive outside a compact subinterval
of (0,∞). This, combined with the convex/concave structure of g(3), implies that
g(3) can have at most two zeros on (0,∞) and, in particular, may change signs at
most twice — from positive to negative to positive.

This implies either g′ is convex-concave-convex on (0,∞) or just convex. We
may assume g′ is convex-concave-convex as, if it is simply convex, an easier ar-
gument than what follows will yield the desired conclusion. Notice that

g′(r) =
4∗ · 2
4∗ − 2

(r4∗−1 − r)− αβ

α− β
(rα−1 − rβ−1)

is negative near zero and hence, the convex-concave-convexity implies g′ changes
sign at most thrice on (0,∞). Note g′(0) = g′(1) = 0 = g(0) = g(1). Since
g′ is negative near zero, we see that g′ must change from negative to positive
somewhere in (0, 1), implying the existence of a zero of g′ on this interval. Hence
g′ has at most one zero on (1,∞). But if there is no zero on (1,∞), then the
shape of g′ and g(1) = g′(1) = 0 implies g′ > 0 hence g > 0 on (1,∞), yielding
zα,β > z4∗,2, a contradiction. Hence we deduce that, on (1,∞), g′ changes sign
from negative to positive. With g(1) = 0, this implies g also changes sign from
negative to positive on (1,∞). Now since the condition zα,β ≤ z4∗,2 clearly implies
g(zα,β) ≤ 0, this allows us to conclude that g ≤ 0 on [1, zα,β].

It remains to show g ≤ 0 on [0, 1]. Assume g is positive somewhere in (0, 1).
Then g′ would have to change signs (at least) twice on the interval (0, 1), from
negative to positive to negative. With g′(1) = 0 all three zeros of g′ are in (0, 1],
thus no zero on (1,∞), contradiction as before. This concludes the proof. �
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Figure 4. Comparison of w4,2 to w3.1,2.5 and w3.5,2.5 illustrates
Lemma 4.4. Note that the unique positive root zα,β of wα,β
is ordered so that z3.5,2.5 = 1.4 < z4,2 =

√
2 < z3.1,2.5 =(

3.1
2.5

) 1
3.1−2.5 ≈ 1.431. On one hand, the proof of the lemma im-

plies that w3.1,2.5(z3.1,2.5) = 0 < w4,2(z3.1,2.5). Thus, by continu-
ity, there exists some ε > 0 such that w3.1,2.5(r) < w4,2(r) for all
r ∈ (z3.1,2.5 − ε, z3.1,2.5] ≈ (0.7332, 1.415]. On the other hand, the
lemma implies that, since the graph of w3.5,2.5 intersects the x-axis

at z3.5,2.5 <
√

2, the inequality w3.5,2.5(z3.5,2.5) ≥ w4,2(z3.5,2.5) ex-
tends to all r ∈ (0, z3.5,2.5].

(a) Comparing w4,2 and w3.1,2.5 (b) Comparing w4,2 and w3.5,2.5

Corollary 4.5 (Threshold upper bound). If β ≥ 2 then α∆n(β) ≤ α∗∞(β).

Proof. Recall P∆n minimizes EW4∗,2 from Corollary 1.4. The fact from Lemma
4.4, namely w̄4∗,2(r) ≤ w̄α∗∞,β(r) on r ∈ [0, zα∗∞,β] with equality at r = 1, shows
P∆n minimizes EWα∗∞,β

, since any minimizer of EWα∗∞,β
has its diameter no greater

than zα∗∞,β, by [23, Lemma 1]. �

4.2. Threshold lower bound for each dimension. We now derive a dimen-
sion dependent lower bound α+

∆n for α∆n from the Euler-Lagrange equation (3.3)
for minimizers.

Definition 4.6 (Threshold lower bound). Let ν ∈ P∆n. For each β ≥ 2, define
α+

∆n(β) ∈ [β,∞) to be

α+
∆n(β) := inf{α > β | spt ν ⊆ argmin

Rn

(Wα,β ∗ ν)}(4.5)

= sup{α ∈ R | spt ν 6⊆ argmin
Rn

(Wα,β ∗ ν)}.
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Proposition 4.7 (Threshold lower bound). Let ν ∈ P∆n. If α > α+
∆n(β) for

some β ≥ 2, then spt ν = argminRn(Wα,β ∗ ν). In particular,

(4.6) α+
∆n(β) = inf{α > β | spt ν = argmin

Rn

(Wα,β ∗ ν)},

and α+
∆n ≤ α∆n.

Proof. For any α > α+
∆n(β), notice Lemma 3.1 yields spt ν = argminRn(Wα,β ∗ν),

which gives (4.6). The fact that α+
∆n ≤ α∆n is a direct consequence of the Euler-

Lagrange equation satisfied by a minimizer: i.e. if α ≥ α∆n , so that ν ∈ P∆n

minimizes EWα,β
, then ν satisfies (3.3) hence α ≥ α+

∆n . �

Although the value of α+
∆n(β) is not very explicit, it is possible to estimate

it explicitly from below by evaluating the potential Wα,β ∗ ν at points chosen
judiciously to expose potential violations of the Euler-Lagrange equation. The
resulting estimates α∆n ≤ α+

∆n provide weaker but explicit lower bounds for the
threshold. This requires the following family of functions and their unimodality:

Definition 4.8 (A family of unimodal functions). Define fn : (0,∞)→ R by

(4.7) fn(t) :=

{
2−1−2−t

t
if n = 1

n−( 2n
n+1

)t/2−n(n−1
n+1

)t/2

t
if n ≥ 2.

Using this family of functions, we define a new family of lower bounds:

Definition 4.9 (A weaker threshold lower bound). For β ≥ 2, define α∆n(β) by

(4.8) α∆n(β) = max{α ≥ 2 | fn(α) = fn(β)}.

In particular, the set over which we take the maximum in the previous definition
has at most two elements, as the following lemma shows:

Lemma 4.10 (Unimodality of fn). For any n ≥ 1, the function fn(t) is unimodal
on t ∈ (0,∞). Indeed, fn admits a unique global maximum β

n
:= argmaxt>0 fn(t)

and no other critical points.

Proof. We first treat the case n = 1 separately. Here, notice that f ′1(t) has the
same sign as g1(t) := t2f ′1(t) = (t log 2 + 1)2−t − 2−1. Since g′1(t) = −t2−t log2 2
is always negative, and since g1(0) = 1

2
and limt→∞ g1(t) = −1

2
, we conclude that

f ′1 switches sign from positive to negative at its unique zero in (0,∞), and has
no other sign changes. We denote the unique zero of f ′1 by β

1
.
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The n ≥ 2 case proceeds in a similar manner. Here, we notice that

gn(t) := t2f ′n(t) = − t
2

[(
2n

n+ 1

)t/2
log

2n

n+ 1
+ n

(
n− 1

n+ 1

)t/2
log

n− 1

n+ 1

]

− n+

(
2n

n+ 1

)t/2
+ n

(
n− 1

n+ 1

)t/2
,

and compute

g′n(t) = − t
4

[(
2n

n+ 1

)t/2
log2 2n

n+ 1
+ n

(
n− 1

n+ 1

)t/2
log2 n− 1

n+ 1

]
.

Since g′n(t) is negative everywhere, gn(0) = 1, and limt→∞ gn(t) = −∞, we may
apply an identical argument to the one employed in the n = 1 case to show the
existence of β

n
with all desired properties. �

Remark 4.11 (Diagonal intersects bound). Notice α∆n(β) > β if and only if
β < β

n
. That is, the graph of α∆n intersects the line α = β at the point (β

n
, β

n
).

Proposition 4.12 (Estimating threshold lower bound). For β ≥ 2, the thresholds
of Definitions 4.9, 4.6 and Theorem 1.5 satisfy α∆n(β) ≤ α+

∆n(β) ≤ α∆n(β).

Proof. In view of Proposition 4.7 we need only show α∆n(β) ≤ α+
∆n(β). We

proceed by relating the defining equations for α∆n to the Euler-Lagrange equation
for a unit simplex ν ∈ P∆n . As in the introduction, we denote the vertices of the
unit n-simplex by {x0, ...., xn}. We divide the proof into two cases, n = 1 and
n ≥ 2. Notice that, in either case, the inequality is trivial for any β for which
α∆n(β) = β, so we are free to assume that α∆n(β) > β.

If n = 1, notice that the Euler-Lagrange equation requires that

(Wα,β ∗ ν)(x0) ≤ (Wα,β ∗ ν)(0).

More explicitly, as ν =
δx0+δx1

2
, this inequality reads 1

2

[
1
α
− 1

β

]
≤ 1

α2α
− 1

β2β
, or,

(4.9) f1(α) =
2−1 − 2−α

α
≤ 2−1 − 2−β

β
= f1(β).

By definition, α = α∆1(β) saturates this inequality. Our assumption α∆1(β) > β
with the unimodality of f1 from Lemma 4.10 ensure that for any γ ∈ (β, α∆1(β)),

f1(γ) > f1(β) = f1(α∆1(β)).

This implies that the simplex ν violates the Euler-Lagrange equation for EWγ,β
,

and hence that γ ≤ α+
∆1(β). Of course, since this inequality holds for all γ ∈

(β, α∆1(β)), this proves that α∆1(β) ≤ α+
∆1(β) for any β ≥ 2.
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Our proof proceeds analogously for n ≥ 2, with the key difference being that
the definition (4.7) of fn is derived from the inequality

(Wα,β ∗ ψ)(x0) ≤ (Wα,β ∗ ψ)(−x0),

which again is a necessary condition for the Euler-Lagrange equation to hold for ν.
Since the simplex geometry yields |x0|2 = n

2n+2
and |x0 +x1|2 = n−1

n+1
(c.f. Theorem

1.1 and Remark 2.6), this inequality can be re-expressed as:

n

n+ 1

(
1

α
− 1

β

)
≤ 1

n+ 1

((
2n
n+1

)α/2
α

−
(

2n
n+1

)β/2
β

)
+

n

n+ 1

((
n−1
n+1

)α/2
α

−
(
n−1
n+1

)β/2
β

)
,

or equivalently,

fn(α) =
n−

(
2n
n+1

)α/2 − n (n−1
n+1

)α/2
α

≤
n−

(
2n
n+1

)β/2 − n (n−1
n+1

)β/2
β

= fn(β).

Since fn is still unimodal for n ≥ 2, the remainder of the proof proceeds in an
identical manner to the proof for n = 1 following (4.9), hence is omitted. �

We summarize our findings for n = 2 and n = 1 in Figures 6 and 7 respectively.

Figure 6. The mildly repulsive regime for, e.g., n = 2. In the red
region to the left of the blue curve α = α∆2(β), the simplex does
not minimize EWα,β

. Conversely, in the rightmost blue region, the
simplex uniquely minimizes EWα,β

. In the intermediate region, it
is not entirely known where the simplex minimizes EWα,β

, but the
graph of the threshold function α∆2 must lie entirely in this region.
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Figure 7. The analogous graph for the n = 1 case. All coloured
regions and graphs have the same meaning as their counterparts
in Figure 6, although the scale of this graph differs from its higher
dimensional counterparts, due the fact that 4∗ = 3 when n = 1.

Notably, even this weaker lower bound tends to the upper bound α∗∞ as n→∞.

Proposition 4.13 (Bounds converge in the high dimensional limit). For all
β ≥ 2, we have limn→∞ α∆n(β) = α∗∞(β) (n 6= 1).

Proof. For β ≥ 2, observe that the unimodal functions fn(β) of Lemma 4.10
converge to the unimodal limit f ∗∞(β) of Remark 4.2:

lim
n→∞

fn(β) = lim
n→∞

n−
(

2n
n+1

)β/2 − n (n−1
n+1

)β/2
β

= 1− 2β/2

β
= f ∗∞(β) (n 6= 1).

Since α∆n(β) and α∗∞(β) are defined as the largest α satisfying fn(α) = fn(β)
and f ∗∞(α) = f ∗∞(β) respectively, it follows that α∆n(β)→ α∗∞(β) as n→∞. �

Remark 4.14 (Monotonicity). Numerical experiments displayed in Figure 8 sug-
gest (4− t)(t− 2)α∆n(t) is a non-decreasing function of n ≥ 2 on t > 0; for t ≥ 2
its large n limit is established in the previous proposition. To confirm the observed
monotonicity rigorously, it would suffice to show that unimodality of fn+1 − fn
on (0,∞) for all n ≥ 2. This is because, for n ≥ 2, fn(t) has zeroes only at
t = 2 and t = 4, and hence, assuming unimodality, these are the only two ze-
roes of fn+1− fn. Since limt→∞ (fn+1(t)− fn(t)) = −∞, this implies positivity of
(4− t)(t− 2)(fn+1(t)− fn(t)) away from t ∈ {2, 4}.
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Figure 8. Graphs of fn(t) for selected values of n. Our numerical
experiments indicate that, for all t ∈ [2, 4], fn(t) increases mono-

tonically to f ∗∞(t) := 1− 2t/2

t
.
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