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Abstract. Gangbo and McCann showed that optimal transportation between hypersurfaces
generally leads to multivalued optimal maps – bivalent when the target surface is strictly convex. In
this paper we quantify Hölder continuity of the bivalent map optimizing average distance squared
between arbitrary measures supported on Euclidean spheres.

1. Introduction. Let X, Y be two measure spaces, µ, ν two probability mea-
sures defined on X and Y , respectively, and c a measurable map from X × Y to
[0,+∞]. Let us denote with Γ = Γ(µ, ν) the set of all the probability measures on
X × Y that have marginals µ and ν. More explicitly, γ ∈ Γ(µ, ν) if and only if γ
is a nonnegative measure satisfying γ(A × Y ) = µ(A), γ(X × B) = ν(B), for all
measurable subsets A of X and B of Y . The minimization problem

inf
γ∈Γ(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) (1.1)

is known as Kantorovich’s optimal transportation problem; c is called the cost function,
and every probability measures in Γ(µ, ν) is called a transference plan. Kantorovich’s
problem is meant to investigate how a certain mass µ distributed on a domain X is
transported to another location (described by ν and Y ) at a minimal cost (see [32]
for an exhaustive description).

When X = Y = Rn, and the cost function is the Euclidean squared distance,
the minimizers of (1.1) are characterized by the existence of a convex function ψ :
Rn → R ∪ {+∞}, whose subdifferential ∂ψ ⊂ Rn × Rn contains the support of
every optimal transference plan γ ∈ Γ(µ, ν)(see Brenier [3] for references). This
convex function is called Brenier’s potential. When µ is absolutely continuous with
respect to the Hausdorff measure of dimension n, then ψ is differentiable on a set
of full µ–measure, and the optimizer γ is unique, and it full mass lies on the graph
{(x,∇ψ(x)) | x ∈ dom∇ψ} of the gradient of ψ. Then µ–a.e. point x must be mapped
to the unique destination y = ∇ψ for transportation to be efficient. Therefore the
optimal transference plan is the push-forward of µ by Id×∇ψ, denoted

γ = (Id×∇ψ)]µ.

The measurable map T = ∇ψ is called an optimal map.
Several authors treated the regularity of optimal maps when the cost function

is the Euclidean squared distance; among them Caffarelli [5] [6] [7] [8] [9] [10], De-
lanoë [11], and Urbas [31]. In particular, Caffarelli showed that if the domain Y is
convex, dµ = fdVol , dν = gdVol , where dVol denotes the Lebesgue measure, and the
densities f, 1/g are bounded, then the optimal map is Hölder continuous.
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In some applications of Optimal Transportation to Physics or Economics, other
cost functions are of interest. For example, the problem of the reflector antenna
(see Wang [33] and Oliker and Waltman [26]) has been shown to be equivalent to
optimal transportation of measures on the Euclidean unit sphere with respect to the
cost function − log |x− y| [34] [16]. Inspired by these works on the reflector antenna,
Ma, Trudinger, and Wang found a condition on the cost function, which implies
the regularity of the optimal map [25]. It is a structural condition depending upon
derivatives up to the order four of the cost function. Following their notation, we
name it (A3). It will be stated in Section 5.

Loeper [24], Kim, and McCann [19] [20] clarified the role of (A3) when an optimal
map exists and is unique. More precisely, when the cost function is sufficiently smooth
and (A3) holds, under suitable convexity hypotheses on the domains, and the absolute
continuity of the Lebesgue measure with respect to ν, Loeper was able to prove the
Hölder continuity of the optimal map (see Section 5 for a precise statement of the
hypothesis). On the other hand, Kim and McCann [20] found a covariant expression
of (A3), named (A3s) in their paper, and extended Loeper’s results to transportation
problems set on a pair of smooth manifolds.

Our paper makes use of Loeper, Kim, and McCann’s argument to improve the
regularity results obtained by Gangbo and McCann [14] for a transportation problem
between boundaries of convex sets, with the Euclidean squared distance cost. Op-
timal transportation between boundaries of convex sets does not generally lead to a
single-valued optimal map, but rather to multivalued mappings. This means that an
optimizer γ ∈ Γ(µ, ν) takes the form

γ =

m∑
i=1

γi, γi = (Id× ti)]µi,

where ti are measurable maps from X to Y , and µ =
∑m
i=1 µi. This is the case of

the Kantorovich problem analysed by Gangbo and McCann, who found a bivalent
mapping. The novelty of our paper is the quantification of the continuity in this
setting of multi-valued mappings.

Let Ω and Λ be two bounded, strongly convex (in the sense of Section 2), open
sets in Rn+1, with Borel probability measures µ on ∂Ω and ν on ∂Λ. We consider
the Monge-Kantorovich problem

inf
γ∈Γ(µ,ν)

∫
Rn+1×Rn+1

|x− y|2dγ(x, y). (1.2)

When µ is absolutely continuous with respect to the Hausdorff measure of dimension
n, (Hn), and Ω is strictly convex, the optimal transference plan is unique, but its
support fail to concentrate on the graph of a single map (see Theorem 2.6 of [14]).
Gangbo and McCann [14] showed that the unique optimizer γ ∈ Γ(µ, ν) is supported
by two maps, named t+ and t−, i.e.

γ = γ1 + γ2, γ1 = (id× t+)]µ1, γ2 = (id× t−)]µ2,

where µ = µ1 +µ2. This means that the mass at a point x ∈ ∂Ω does not always have
a unique destination on ∂Λ, but can be split into two different destinations, t+(x)
and t−(x), which correspond to the two limits ∇ψ(xk) obtained as xk → x from
outside or inside Ω, respectively. Indeed, while Brenier’s potential ψ is tangentially
differentiable at Hn–a.e. boundary point x ∈ ∂Ω, the normal differentiability might
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fail. This implies that the subdifferential ∂ψ consists of a segments with endpoints
t+(x) and t−(x) on ∂Λ (see Lemma 1.6 of [14]).

Gangbo and McCann proved that t+ is a homeomorphism between ∂Ω and ∂Λ.
Moreover, they conjectured Hölder regularity for t+ on ∂Ω \ S0, where

S0 := {x ∈ ∂Ω | nΩ(x) · nΛ(t+(x)) = 0}

represents a part of the “boundary” between the region where the mass splits and
the region where it does not. More precisely, if S2 denotes the region where the
mass splits (bivalent region), then S0 contains those limit points of S2 at which the
split images degenerate to a single image. In the present work, we will prove a slight
modification of their conjecture, i.e. that t+ is locally Hölder continuous on S2 and
on S1 = ∂Ω \ (S0 ∪ S2).

The peculiarity of (1.2) is the “hybrid” setting given by combining the choice
of the Euclidean squared distance cost with a transportation problem set on embed-
ded hypersurfaces. One of the difficulties we encountered has been to combine the
convexity notion deriving from the Euclidean cost with the dimension and the pseudo-
Riemannian structure of the manifolds where the measures are supported. Since the
Hausdorff dimension of sptµ and sptν is n rather than n+ 1, we are not able to adapt
Caffarelli’s regularity theory to our problem; (see however [13]). Nevertheless Gangbo
and McCann’s conjecture about Hölder continuity is reinforced by examples of Ma-
Trudinger-Wang [25] and Example 2.4 of Kim-McCann [19]: the authors showed that
the Euclidean squared distance cost, in the settings of (1.2), satisfies (A3) on

N := {(x, y) ∈ ∂Ω× ∂Λ | nΩ(x) · nΛ(y) > 0}.

Despite this comforting result, the regularity of t+ is not immediate. Loeper’s results
needs to be adapted to our hybrid setting. Moreover, the target measure with respect
to t+, ν1, which is the portion of mass “transferred” by t+, does not inherit the
hypothesis on ν of having a positive lower bound on its density with respect to the
Lebesgue surface measure. This means there are regions in ∂Ω where the Lebesgue
surface measure is not absolutely continuous with respect to ν1, so one of the required
hypotheses of Loeper’s argument is not satisfied. We will treat these regions separately
with a different argument.

Our paper is organized as follows. In Section 2 we report the main result of
Gangbo and McCann’s paper [14]; we also discuss the most important statement of
this paper and the strategy we are going to adopt to prove it. We will restrict our
argument to the case of spherical domains, ∂Ω = ∂Λ = Sn, though we expect that
our regularity result could be extended to more general uniformly convex domains
with more work. In Section 3 we introduce and clarify some notation. In Section 4 we
comment on some questions related to our problem. In Section 5 we adapt Loeper’s
theory to our transportation problem, restricting his argument to the subset of ∂Ω
where the necessary hypothesis on the measures holds. The regularity result on the
remaining subset of ∂Ω is then derived in Section 6 .

The authors wish to thank Aldo Pratelli and Giuseppe Savaré for a careful reading
of the manuscript and helpful suggestions.

2. Preliminaries, strategy, and results. We recall the following definitions
from [14]. For a smooth convex domain Ω, strong convexity asserts the existence of a
positive lower bound for all principal curvatures of ∂Ω.

Definition 2.1. A pair of Borel measures µ on ∂Ω, ν on ∂Λ is said to be suitable
if
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(i) there exists ε > 0 such that µ < 1
εH

nb∂Ω and ν > εHnb∂Λ, and
(ii) Ω is strongly convex.

If the above hypotheses are satisfied also when the roles of µ ↔ ν and Ω ↔ Λ are
interchanged, we say that the pair (µ, ν) is symmetrically suitable. Under these
assumptions on the measures, Gangbo and McCann were able to prove the following
optimality results.

Theorem 2.2. Fix bounded, strictly convex domains Ω,Λ ∈ Rn+1 with suitable
measures µ on ∂Ω and ν on ∂Λ. Then the infimum of (1.2) is uniquely attained. Let
NΩ(x) denote the set of all outward unit normals to ∂Ω at x. When NΩ(x) contains
only one element, we denote that unit vector by nΩ(x).

Proposition 2.3. Fix bounded, strictly convex domains Ω,Λ ∈ Rn+1 with suit-
able measures µ on ∂Ω and ν on ∂Λ. Let ψ be the Brenier convex potential. For each
x ∈ ∂Ω exactly one of the following statements holds:

(o) ∂ψ(x) = {y1} with n · q1 = 0 for some pair n ∈ NΩ(x), q1 ∈ NΛ(y1);
(i) ∂ψ(x) = {y1} with n · q1 > 0 for all pairs n ∈ NΩ(x), q1 ∈ NΛ(y1);

(ii) ∂ψ(x) = [y1, y2], in which case ∂Ω is differentiable at x and nΩ(x) · q1 >
0, nΩ(x) · q2 < 0 for all qi ∈ NΛ(yi), i = 1, 2.

Definition 2.4. Given Ω,Λ, (µ, ν), and ψ as in Proposition 2.3, we decompose
∂Ω = S0 ∪S1 ∪S2 into three disjoint sets such that (o) holds for x ∈ S0, (i) holds for
x ∈ S1, (ii) holds for x ∈ S2. Moreover we use the extreme images y1, y2 ∈ ∂ψ of the
proposition to define an outer map t+ : ∂Ω → ∂Λ, and an inner map t− : S2 → ∂Λ
by t+(x) = y1, and t−(x) = y2. It is convenient to extend the definition of t− to ∂Ω
by setting t−(x) = t+(x) for x ∈ S0 ∪ S1, so that ∂ψ(x) = [t+(x), t−(x)].

Theorem 2.5. Fix bounded, strictly convex domains Ω,Λ ∈ Rn+1 with sym-
metrically suitable measures µ on ∂Ω and ν on ∂Λ. Then the minimizer γ can be
expressed by

γ = γ1 + γ2, γ1 = (id× t+)]µ1, γ2 = (id× t−)]µ2,

where µ1 := (t+)−1
] ν1, µ2 := µ − µ1, and ν1 := νbT c2 , with T c2 := ∂Λ \ t−(S2).

Whenever x ∈ S2, t+(x) − t−(x) 6= 0 is an outward normal for ∂Ω at x. Moreover
t+ : ∂Ω→ ∂Λ and t−bS̄2

: S̄2 → T̄2 are homeomorphisms.
The partition ∂Ω = S0 ∪ S1 ∪ S2 will play an important role in our paper, so it

is essential to understand the meaning of these sets. The mass lying on S0 ∪ S1 is
transferred without splitting to a target set on ∂Λ by t+, while the mass lying on S2

splits into two destinations, which are described by t+ and t−. For this reason we will
call S0 the degenerate set, S1 the non-degenerate univalent set, and S2 the bivalent set.
When the measures (µ, ν) are symmetrically suitable, an analogous decomposition of
∂Λ = T0 ∪ T1 ∪ T2 can be introduced (see Definition 3.6 of [14]). In particular T2 is
the bivalent set for the Kantorovich transportation problem (1.2), where (Ω, ν) and
(Λ, ν) are exchanged, with (Λ, ν) playing the role of the source.

Our aim is to prove that the map t+ : ∂Ω −→ ∂Λ is Hölder continuous on S1 and
S2. The second author has been able to show that t+ satisfies bi-Lipschitz estimates
when n = 1 [29], via an argument relying on the results of Ahmad [1], which cannot
be extended to higher dimensions. Here we are developing a different strategy which
works for all n > 1, when ∂Ω, ∂Λ = Sn. We will proceed in two steps. First we will
show that t+ is Hölder continuous on the preimage (t+)−1(T1) ⊂ Sn of the set T1

where

ν1 > εHnb∂Λ,
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where ε is a constant satisfying Definition 2.1. This lower bound on ν1 allows us to
adapt the argument used by Kim and McCann in [20]. On (t+)−1(T2), where the
lower bound fails, the regularity of t+ will be derived from the Hölder continuity of
t+ on S2. In the end we will be able to obtain the following result.

Theorem 2.6 (Hölder continuity of multivalued maps outside the degenerate
set). If (µ, ν) are symmetrically suitable measures on (Sn,Sn), n > 1, then

t+ ∈ C
1

4n−1

loc (S1) and t+ ∈ C
1

4n−1

loc (S2).

3. Notation. The notation we are going to use is similar to that of [14] and [19],
in particular we refer to Example 2.4 of [19], with ∂Ω = ∂Λ = Sn, c : Sn × Sn → R,
c(x, y) = |x − y|2, N := {(x, y) ∈ Sn × Sn | nSn(x) · nSn(y) > 0}, and N̂(x) := {y ∈
Sn | (x, y) ∈ N}. We will always use the variable x for points on the source domain
∂Ω = Sn, and the variable y for points on the target domain ∂Λ = Sn.

Let us recall the usual system of local coordinates for the points of Sn

ϕi : Sn ∩ {x ∈ Sn|xi > 0} → Rn, ϕi(x) = (x1, . . . , xi−1, xi+1, . . . , xn).

Analogously, given x ∈ Sn and y ∈ N̂(x) we can consider a system πx of local
coordinates projecting on the hyperplane perpendicular to x. In this way both x and
y can be represented in local coordinates by means of the same map πx

x
πx−→ X, y

πx−→ Y,

where the capital letters stand for the image of the projection. To simplify the no-
tation, given a function F : Rn+1 → R and a projection πx0 , whenever x ∈ N̂(x0)
we will write F (X) to denote F (π−1

x0
(X)) = F (x). We will therefore write ψ(X),

c(X,Y ) instead of ψ(π−1
x0

(X)), c((π−1
x0

(X), (π−1
x0

(Y )). For example, given x ∈ Sn and
y ∈ N(x), by mean of πx we can write

c(X,Y ) = |X − Y |2 + (
√

1− |X|2 −
√

1− |Y |2)2.

In local coordinates, we use the notationDc = ( ∂c
∂X1

, . . . , ∂c
∂Xn

and D̄c = ( ∂c
∂Y1

, . . . , ∂c
∂Yn

)

to denote the partial derivatives. The cross partial derivatives D̄Dc at (x, y) ∈ N de-
fine an unambiguous linear map from vectors at y to covectors at x.

Hereafter dHn denotes the Hausdorff measure of dimension n, Nρ(B) represents
the ρ-neighbourhood of a set B, and [Y0, Y1] indicate the Euclidean segment whose
extreme points are Y0 and Y1.

In Section 6 we will use the expression “angle between two vectors z1 and z2 ∈
Rn+1” to refer to arccos z1·z2

|z1||z2| .

4. Some related questions.

4.1. Relation between the convex potential ψ and the mappings t+, t−.
Let ψ be the Brenier potential associated to (1.2). It is well known that the subdif-
ferential ∂ψ includes the support sptγ ⊂ Rn+1 ×Rn+1 of all minimizers γ ∈ Γ(µ, ν)
for (1.2)(see [3][4] for references). Under the hypothesis of Theorem 2.5, there ex-
ists a unique optimizer γ ∈ Γ(µ, ν) for (1.2), and there exist two continuous maps
t± : ∂Ω→ ∂Λ, such that

{(x, t+(x))}x∈sptµ ⊂ sptγ ⊂ {(x, t+(x))}x∈∂Ω ∪ {(x, t−(x)))}x∈S2

(= ∂ψ ∩ (∂Ω× ∂Λ)).
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So, what is the relation between the optimal mappings t+, t−, and the convex potential
ψ? Can we derive any regularity for ψ from Theorem 2.6? Gangbo and McCann
answered to the first question in Lemma 1.6 of [14]. Indeed the maps t+ and t−

correspond to the outer and inner trace of ∇ψ, respectively. So we can write the
subdifferential of ψ in terms of the optimal mappings: ∂ψ(x) = [t+(x), t−(x)] at
any boundary point x ∈ ∂Ω. Moreover, in Corollary 4.4 of [14], Gangbo and McCann
proved that, when Ω is bounded andstrongly convex, Λ is bounded and strictly convex,
and (µ, ν) are suitable measures on ∂Ω, ∂Λ, then ψ is tangentially differentiable along
∂Ω. This answers the second question. From Theorem 2.6 it follows immediately that

ψ ∈ C1, 1
4n−1

loc on S1 ⊂ Sn,

i.e. on the non-degenerate univalent set, where ∂ψ(x) = {∇ψ(x)} = {t+(x)}. Notice

that the conclusion of Theorem 2.6 does not imply ψ ∈ C1, 1
4n−1

loc on S2, since ψ is not
differentiable in the normal direction to the sphere on S2. Nevertheless, choosing the
coordinates of Lemma A.1 of [14], ∂ψ

∂x1
exists for i = 2, 3, . . . , n+ 1, and

∂ψ

∂xi
(x) = t+(x)i = t−(x)i, for i = 2, 3, . . . , n+ 1, and x ∈ Sn.

We conclude that the restriction of ψ to Sn has a derivative which is Hölder continuous
locally on S1 and S2.

4.2. The regularity of t+ on S0. We do not presently have any regularity
result for t+ on the degenerate set S0, except continuity from [14], On the contrary,
we will see in the statements of Theorem 5.1 and Theorem 6.1 that, on Sn\S0, close to
S0 the Hölder constant of t+ provided by our proof may become very big. Moreover,
as noticed in Example 2.4 of [19], the nondegeneracy hypothesis (A2) fails on S0.
Therefore, we cannot apply Loeper’s argument on S0. On the other hand we believe
the set S0 to be small. In dimension n = 1, with Ω and Λ bounded strictly convex
planar domains, Ahmad [1] proved that S0 consists of at most two points.

4.3. Extending the results to more general domains. Theorem 2.6 can be
extended to the problem of transporting a measure on a given Euclidean sphere to a
measure on any other Euclidean sphere, possibly with a different centre and radius.
Indeed, identities (9) and (10) of [14] indicate how to reduce this more general problem
to the case treated in this paper.

Thanks to the results in Example 2.4 of [19], Theorem 5.1 can be extended to
the transportation problem where the measures (µ, ν) are supported on (∂Ω, ∂Λ),
with Ω,Λ ⊂ Rn+1 bounded convex domains with C2-smooth boundaries. We expect
that the same extension is possible for Theorem 6.1, but cannot presently provide a
proof. Our argument relies crucially on Lemma 6.9, whose proof exploits the peculiar
geometric properties of Sn, and cannot be easily extended to more general convex
domains.

4.4. Nearly constant measures on Sn. J. Kitagawa and M. Warren [21]
proved that when the measures µ, ν are nearly constant on Sn (in C1 topology),
then the optimizer γ ∈ Γ(µ, ν) is supported on the graph of a single map.

4.5. Sharp Hölder exponent. The Hölder exponent in Theorem 2.6 is not
sharp. It is the same exponent provided by Loeper’s argument [24], i.e. 1/(4n − 1),
where n is the dimension of the sphere where µ and ν are supported. Recently, Liu
[23] improved Loeper’s Hölder exponent to the sharp exponent 1/(2n− 1).

6



5. t+ is Hölder continuous on (t+)−1(T1) ⊂ Sn. In this section we are going
to adapt Kim-McCann’s version of Loeper’s argument (Appendices B,C and D of [20])
to our mapping t+, which satisfies (t+)]µ1 = ν1. Thus, let us recall the regularity
conditions (A0),(A1), (A2), and (A3s) from [19] [25] on a cost function c : Sn×Sn → R

(A0)(Smoothness) c ∈ C4(N), where N has been define in Section 3.
(A1)(Twist condition) c ∈ C1(N) and for all x ∈ Sn the map y → −Dc(x, y) from
N̂(x) ⊂ ∂Λ to T ∗x (Sn) is injective.
(A2)(Non-degeneracy) c ∈ C2(N) and for all (x, y) ∈ N the linear map D̄Dc :
TyS

n → T ∗xSn is bijective.
(A3s)(Strictly regular costs) c ∈ C4(N) satisfies (A2) and for every (x, y) ∈ N

sec(x,y)(p⊕ 0) ∧ (0⊕ p̄) ≥ 0 for all null vectors p⊕ p̄ ∈ T(x,y)N, (5.1)

and equality in (5.1) implies p = 0 or p̄ = 0.

The notation “sec” refers to the sectional curvature of a two–plane. We define it by
means of the Riemann curvature tensor Ri′j′k′l′ induced by the symmetric bilinear
form

h =
1

2

(
0 −D̄Dc

−DD̄c 0

)
(5.2)

on N . If c ∈ C4(N), the sectional curvature of a two–plane P ∧ Q at (x, y) ∈ N is
given by

sec(x,y)P ∧Q =

2n∑
i′=1

2n∑
j′=1

2n∑
k′=1

2n∑
l′=1

Ri′j′k′l′P
i′Qj

′
P k
′
Ql
′
.

We recall also some notions of convexity from Definition 2.5 of [19]. Though we are
assuming ∂Ω = ∂Λ = Sn, the following definition holds for more general convex
domains.

Definition 5.1. A subset W ⊆ N ⊆ ∂Ω×∂Λ is geodesically convex if each pair
of points in W is linked by a curve satisfying the geodesic equation on (N,h). We say
that B ⊂ ∂Λ appears convex from x ∈ ∂Ω if {x} ×B is geodesically convex and B ⊂
N̂(x). We say W ⊆ ∂Ω × ∂Λ is vertically convex if Ŵ (x) := {y ∈ ∂Λ | (x, y) ∈ W}
appears convex from x for each x ∈ ∂Ω. We say that A ⊂ ∂Ω appears convex from
y ∈ ∂Λ if A × {y} is geodesically convex and A ⊂ N(y). We say W ⊆ ∂Ω × ∂Λ is
horizontally convex if W (y) := {x ∈ ∂Ω | (x, y) ∈W} appears convex from y for each
y ∈ ∂Λ. If W is both vertically and horizontally convex, we say it is bi–convex. The
regularity result that we are going to exploit is Theorem D.1 of [20]. We now state
in a reductive form, referring to our particular settings, to avoid the introduction of
new unnecessary notations.

Theorem 5.2 (Simplified version of Theorem D.1 of [20]). Assume c ∈
C4(M) satisfies (A1),(A2), and (A3s) on the closure of M , where M ⊂ Sn × Sn

is a bounded domain bi–convex with respect to (5.2). Fix m > 0, and let ρ, ρ̄ be
probability measures on Sn with Lebesgue densities dρ̄/dvol ≥ m throughout Sn and

dρ/dvol ∈ L∞(Sn). Then there exists a map F ∈ C1/max{5,4n−1}
loc (Sn,Sn) between ρ

and ρ̄ which is optimal with respect to the transportation cost c.
Assuming (µ, ν) to be suitable measures on (Sn,Sn), in order to apply Kim–

McCann’s argument we need ν1 to satisfy

there exists ε1 such that ν1 > ε1Hnb∂Λ. (5.3)
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From the definition of ν1 in Theorem 2.2 we see that ν1 satisfies (5.3) only outside
the bivalent set T2 ∈ ∂Λ = Sn, i.e. outside the set where the image of t+ is bivalent.
This is the reason why we can state a regularity result only on a portion of the source
domain, (t+)−1(T1) ⊂ Sn. Hereafter we will assume n > 1.

Theorem 5.1. Suppose (µ, ν) are symmetrically suitable measures on (Sn,Sn)
(in particular, from Definition 2.1, there exists ε > 0 such that ν > εHnbSn). Then
t+ is locally Hölder continuous on (t+)−1(T1), with Hölder exponent at least 1

4n−1 .
The local Hölder constant depends on ε, n, and tends to infinity when one approaches
the boundary of N .

Remark 5.2. Computations that show the explicit dependence of the Hölder
constant on the distance of the boundary of N can be found in [29].

Lemma 5.3. The set

N = {(x, y) ∈ Sn × Sn | nSn(x) · nSn(y) > 0}

is bi–convex in the sense of Definition 2.5 of [19]. Proof: Fix x0 ∈ Sn. N̂(x0)
appears convex from x0 if and only if Dc(x0, N̂(x0)) is convex in T ∗x0

(Sn) (see Lemma
4.4 of [19]). Suppose

Dc(x0, y0), Dc(x0, y1) ∈ Dc(x, N̂(x)),

where y0, y1 ∈ N̂(x). We are going to show that for every θ ∈ (0, 1)

θDc(x0, y1) + (1− θ)Dc(x0, y0) ∈ Dc(x0, N̂(x)). (5.4)

Let us consider a system of local coordinates. Given x0 ∈ Sn we project x0 and
y ∈ N̂(x0) to the hyperplane perpendicular to n̂Ω(x0) and containing the origin
(notice that this choice of local coordinates is well defined since n̂Ω(x0) · n̂Λ(yk) > 0,
when yk ∈ N̂(x0), k = 0, 1)

x0

πx0−−→ 0, y
πx0−−→ Y (5.5)

so that, in local coordinates,

x0 = (0, 1), y = (Y,
√

1− |Y |2)

c(X,Y ) = |X − Y |2 + (
√

1− |X|2 −
√

1− |Y |2)2.

We easily get

∂c

∂Xi
(0, Y ) = −2Yi.

If v ∈ Tx(∂Ω) and vi are its coordinate with respect to the basis ∂
∂Xi

, we can write

Dc(v)(x0, y) = v(c)(x0, y) =

n∑
i=1

vi
∂c

∂Xi
(0, Y ).
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Hence we can compute

θDc(v)(x0, y1) + (1− θ)Dc(v)(x0, y0) = θv(c)(x0, y1) + (1− θ)v(c)(x0, y0)

=

n∑
i=1

[
θvi

∂c

∂Xi
(0, Y1) + (1− θ)vi

∂c

∂Xi
(0, Y0)

]

=

n∑
i=1

2vi [θ (−Y1,i) + (1− θ) (−Y0,i)]

=

n∑
i=1

−2vi(θY1,i + (1− θ)Y0,i). (5.6)

Therefore, for all θ ∈ (0, 1)

θDc(x0, y1) + (1− θ)Dc(x0, y0) = Dc(x0, π
−1
x0

(θY1 + (1− θ)Y0) ∈ Dc(x0, N̂(x0)).

Since x0 is an arbitrary point of Sn, we conclude that N is vertically convex. By a
similar argument, it is easy to show that N is also horizontally convex. We conclude
that N is bi-convex.

Proof of Theorem 5.1: Fix (x, y) = (x, t+(x)) ∈ N , with t+(x) ∈ T1. Since T1 is
open, and t+ is continuous, we can choose R and then r small enough that Br(y) ⊂
t+(BR(x)) ⊂ T1; as asserted by Trudinger and Wang in [30], since N is bi-convex,
taking R and r even smaller, P = BR(x)×Br(y) ⊂ N is bi-convex (alternatively, we
could show directly that P is bi-convex, by means of the same argument used for N in
Lemma 5.3). We replace ν1 with its restriction ν′1 to Br(y) and we denote µ′1 = s+

#(ν′1).
Up to further decreasing R and r, we get us local coordinates over both domains
simultaneously (for example through the chart πx). Let X = πx(x), Y = πx(y), and
P ′ = πx(BR(x)) × πx(Br(y)). Since P is bi-convex and the notion of bi-convexity
is coordinate invariant (as manifest from Definition 2.5 of [19]), P ′ is bi-convex with
respect to the cost

c(X,Y ) = |X − Y |2 + (
√

1− |X|2 −
√

1− |Y |2)2, (5.7)

which satisfies (A0). Kim and McCann showed that the cost in the original coordi-
nates satisfies also condition (A2) and (A3s) (see Example 2.4 of [19]), and that the
quantities in these conditions have an intrinsic meaning independent of coordinates,
since they are geometric quantities (i.e. pseudo-Riemannian curvatures in the case of
(A3s) and non-degeneracy of the metric in the case (A2)). This implies that also the
cost (5.7) satisfies (A2) and (A3s). Only the constant C ′0 of (A3s) will depend on the
coordinates. Since we know that the equation DXc(X,Y ) = Dψ(X) has at most two
solutions, Y + = t+(X) and Y − = t−(X) and only Y + lies in P ′, the cost satisfies
(A1) on P ′.

At this point we can apply Theorem D.1. of [20] to the cost (5.7) on P ′, with
probability measures µx1 and νxI , on πx(BR(x)) and πx(Br(y)) respectively, defined by

µx1 := (πx)]µ
′
1, νx1 := (πx)]ν

′
1.

The source µx1 is supported (and bounded above) in πx(BR(x)) and target νx1 sup-
ported (and bounded below) in πx(Br(y)), We deduce the existence of a locally Hölder
continuous optimal map pushing µ′1 forward to ν′1. By the uniqueness of optimal trans-
port, this map must coincide µ′1-a.e. with t+. Since both maps are continuous they
agree on the (closed) support of µ′1. Since sptµ′1 contains a small ball around x, this
shows t+ is locally Hölder at x.

9



6. t+ is locally Hölder continuous where its image is bivalent. In the
previous section we established local Hölder continuity for the outer map t+ = (s+)−1

on the source domain s+(T1) ⊂ Sn, but not on s+(T0 ∪ T2) = S0 ∪ s+(T2). Our
strategy for extending this estimate to s+(T2) is described at the end of this paragraph.
First note, however, that Gangbo and McCann’s Sole Supplier Lemma, 2.5 of [14],
implies the outer image of the bivalent source is contained in the univalent target
t+(S2) ⊂ T1, and similarly s+(T2) ⊂ S1. Since s+ : Sn −→ Sn is a homeomorphism,
from S1∪S2 = s+(T1)∪s+(T2), it follows that the bivalent source S2 ⊂ s+(T1) belongs
to the domain where Hölder continuity of t+ has already been shown. On this bivalent
set S2, the inner map t− is related to the outer map t+(x) = t−(x) + λ(x)x by the
geometry of the target. In Proposition 6.2, this relation will be used to deduce (i)
Hölder continuity of t− from that of t+. This quantifies injectivity (ii) of the inverse
map s− = (t−)−1 (through a bi-Hölder estimate in Proposition 6.6), whose relation
to the outer map s+(y) = s−(y) + ω(y)y is then used in Proposition 6.10 to quantify
injectivity (iii) of s+ = (t+)−1 on the bivalent target T2 = t−(S2). This yields the
desired local Hölder continuity of t+ on the source set s+(T2) mentioned at the outset.

Let us recall the geometric characterization of t+ and t− from Proposition 2.3
and Definition 2.4. Remembering that, on Sn, nSn(x) = x, we have

• If x ∈ S0 then x · t+(x) = 0.
• If x ∈ S1 then x · t+(x) > 0.
• If x ∈ S2 then x · t+(x) > 0 and x · t−(x) < 0.

We are going to introduce a geometric approach, based on the previous character-
ization, which allows us to prove the following theorem. Hereafter we will assume
n > 1.

Theorem 6.1. If (µ, ν) are symmetrically suitable measures on (Sn,Sn), then
t+ is locally Hölder continuous on (t+)−1(T2).

From Lemma 1.6 of [14] we know that t+ and t− are related by

∀x ∈ S2 ⊂ Sn t+(x)− t−(x) = λ(x)x,

where λ is a continuous positive function on S2. Given x0, x1 in S2 we then have

|t−(x1)− t−(x0)| ≤ |t+(x1)− t+(x0)− λ(x1)x1 + λ(x0)x0|. (6.1)

We would like to exploit the regularity of t+ on S2 ⊂ (t+)−1(T1), proved in the
previous section, to prove that also t− is Hölder continuous on S2. For this purpose
we also need to estimate the term λ(x1)x1 + λ(x0)x0. This will be done applying the
Mean Value Theorem to a suitable function and utilizing the geometric properties of
the target.

Proposition 6.2 (Hölder continuity of t−).
If t+ ∈ Cαloc(S2) then t− ∈ Cαloc(S2). Let U ⊂ S2 and 0 < kU := min{−x · t+(x) |

x ∈ U}. If C+
U bounds the Hölder constant for t+ on U , then

C−U :=

(
1 +

1

kU

)
(C+

U + 2)

is the Hölder constant for t− on U .
Proof: The function h(y) := d(y,Sn) = 1 − |y| is differentiable on Λ = B1(0)

except at y = 0. Notice that h(t−(x)) = h(t+(x) − λ(x)x) = h(t+(x)) = 0 whenever
x ∈ S2. Consider a neighbourhood U ⊂ S2 and the corresponding kU , C

+
U from the

statement of Proposition 6.2. Let x0, x1 ∈ U , |x1 − x0| < 2 (we need ∇h to be well
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defined on the line segment between t−(x0) and t−(x1), i.e. 0 /∈ [t−(x0, t
−(x1)]).

Applying the Mean Value Theorem, we get

0 = h(t+(x1)− λ(x1)x1)− h(t+(x0)− λ(x0)x0)

= ∇h(u) · (t+(x1)− t+(x0)− λ(x1)x1 + λ(x0)x0),

for some u on the line segment between t−(x0) and t−(x1). It follows

(λ(x1)x1 − λ(x0)x0) · ∇h(u) = (t+(x1)− t+(x0)) · ∇h(u). (6.2)

We can rewrite (6.2) as

(t+(x1)− t+(x0)) · ∇h(u) + λ(x0)(x0 − x1) · ∇h(u)

= (λ(x1)− λ(x0))x1 · ∇h(u);

then, using |∇h(u)| = 1,

|λ(x1)− λ(x0)||x1 · ∇h(u)|
≤ |(t+(x1)− t+(x0))|+ λ(x0)|x0 − x1|. (6.3)

We now state a claim, whose demonstration is postponed to the end of this proof.
Lemma 6.3. Under the hypotheses of Proposition 6.2, fix ε ∈ (0, 1), such that

ε2 < kU
2 . Since t− is uniformly continuous on S̄2, there exists δε, depending on the

data through ψ, such that

|x1 − x0| < δε ⇒ |t−(x1)− t−(x0)| < ε.

Then, taking x0, x1 such that |x1 − x0| < δε, we have

xi · ∇h(u) >
kU
2
> 0 for i = 1, 2.

Recalling that λ(x) ≤ 2, since ∂Ω = Sn, by means of Lemma 6.3 we simplify (6.3)
to

|λ(x1)− λ(x0)|

≤ 2

kU

[
|t+(x1)− t+(x0)|+ λ(x0)|x0 − x1|

]
≤ 2

kU
[|t+(x1)− t+(x0)|+ 2|x1 − x0|]. (6.4)

Therefore, by (6.1) and (6.4),

|t−(x1)− t−(x0)|
≤ |t+(x1)− t+(x0)|+ λ(x1)|x1 − x0|+ |λ(x1)− λ(x0)|
≤ |t+(x1)− t+(x0)|+ 2|x1 − x0|+ |λ(x1)− λ(x0)|

≤
(

1 +
2

kU

)
|t+(x1)− t+(x0)|+ 2

(
1 +

2

kU

)
|x1 − x0|. (6.5)

Combining (6.5) and t+ ∈ Cα(U), we conclude

|t−(x1)− t−(x0)| (6.6)

≤ C+
U

(
1 +

2

kU

)
|x1 − x0|α + 2

(
1 +

2

kU

)
|x1 − x0|,
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i.e. t− is Hölder continuous on S2 whenever |x1 − x0| < δε, with ε2 < kU
2 . We can

take δε < 1, so that (6.6) implies

|t−(x1)− t−(x0)| ≤
(

1 +
2

kU

)[
C+
U + 2

]
|x1 − x0|α

= C−U |x1 − x0|α.

Proof of Lemma 6.3: Let zi = t−(xi), i = 1, 2. Notice that ∇h(u) = − u
|u| . We

have u = sz1 + (1− s)z0 for some s ∈ (0, 1). Hence, there exists ξ ∈ (0, ε) such that

x1 · u < −kUs+ (1− s)x1 · z0

= −kUs+ (1− s)x1 · (z1 + ξ(z0 − z1))

< −kU + (1− s)ξε < −kU + ε2.

Using a similar argument for x0 · u, we conclude that if ε2 < kU
2 then xi · ∇h(u) >

kU
2|u| >

kU
2 > 0, for i = 1, 2.

Remark 6.4. Proposition 6.2 admits a converse, i.e. if t− ∈ Cαloc(S2) then
t+ ∈ Cαloc(S2). This can be proved with minor changes in the preceding argument.

Remark 6.5. By means of Theorem 5.1 and Proposition 6.2, t− is indeed locally
Hölder continuous on S2 with exponent 1

4n−1 .

The injectivity (ii) of the inverse map s− = (t−)−1 on T2, is an immediate con-
sequence of the local Hölder continuity of t− on S2, and it has been included in the
following proposition.

Proposition 6.6 (Quantifying injectivity of s−). Let V ⊂ T2. Under the hy-
potheses of Theorem 6.1 s− := (t−)−1 satisfies

∀y0, y1 ∈ V sufficiently close, |s−(y1)− s−(y0)| ≥ Ĉ−V |y1 − y0|4n−1,

where

Ĉ−V = (C−U )−1,

with U = s−(V ) and 0 < kV := min{−y · s−(y) | y ∈ V }. Proof: Since s− :=
(t−)−1 is uniformly continuous on T̄2, given δε > 0 there exists γδε > 0 such that, if
|y1 − y0| < γδε , then |s−(y1)− s−(y0)| < δε. Supposing |y1 − y0| < γδε , we can apply
Proposition 6.2 to x1 = s−(y1), x0 = s−(x0) to get

|s−(y1)− s−(y0)| ≥ 1

C−U
|y1 − y0|4n−1.

We now state an elementary Lemma about vectors in Rn.
Lemma 6.7. Let u, v ∈ Rn. Suppose the angle between u and v is less than π

2 +α,
with α ∈

[
0, π2

)
. Then |u+v| ≥ |u| cosα. Proof: Let θu,v denote the angle between

u and v. Keeping |u| and |v| fixed, |u+ v| can be seen as a function of θu,v by mean
of

|u+ v|2 (θu,v) = |u|2 + |v|2 + 2|u||v| cos θu,v,

When θu,v ∈
[
0, π2 + α

]
, the function |u+v| (θu,v) reaches its minimum at θu,v = π

2 +α.
To our purpose we can take θu,v = π

2 + α. For simplicity we assume v parallel to
e1 ∈ Rn. Let us consider the projection p on the hyperplane perpendicular to e1 and
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containing the origin. Then p(u+ v) = p(u) = |u| cosα. Since |p(u+ v)| ≤ |u+ v|, we
have the thesis.

This Lemma turns out to be the key to the proof of step (iii). Under the hypoth-
esis of symmetrically suitable measures, the optimal transportation problem we are
studying is symmetric, hence every result that holds for t+ on Sn implies an analogous
result for s+ on Sn. In particular, from Lemma 1.6 of [14], for every y ∈ T2 we can
write

s+(y)− s−(y) = ω(y)y, (6.7)

where ω is a nonnegative function on T2. Hence

|s+(y1)− s+(y0)| = |s−(y1)− s−(y0) + ω(y1)y1 − ω(y0)y0|.

If we were allowed to apply Lemma 6.7 to the right hand side of the previous equality,
with u = s−(y1) − s−(y0) and v = ω(y1)y1 − ω(y0)y0, we would then be able to
exploit the regularity of s− to prove step (iii). Therefore, we need to understand the
behaviour of the angle between s−(y1)− s−(y0) and ω(y1)y1 − ω(y0)y0, when y0 gets
close to y1. From the monotonicity of ∂ψ we have

(s−(y1)− s−(y0)) · (y1 − y0) ≥ 0 ∀y1, y0 ∈ T2,

which says that the angle between s−(y1) − s−(y0) and y1 − y0 is in
[
0, π2

]
. If we

can show that the angle between y1 − y0 and ω(y1)y1 − ω(y0)y0 is in [0, α], for a
certain α ∈

[
0, π2

)
, then we can apply Lemma 6.7 to get the desired estimate on

|s+(y1)− s+(y0)|.
Lemma 6.8. Given y0, y1 ∈ T2 we denote with β(y0, y1) the angle between y1−y0

and ω(y1)y1 − ω(y0)y0. If the angle between y0 and y1 is equal to γ then

β(y0, y1) ∈
[
0,
π − γ

2

)
. (6.8)

Proof: The angle between y1 and −y0 is equal to π− γ, while the angle between
y1 (or −y0) and y1 − y0 is π−γ

2 . Since ω(y0), ω(y1) > 0, β(y0, y1) ∈
[
0, π−γ2

)
.

Lemma 6.9 (Dichotomy). Fix y1 ∈ T2. For every integer m > 1 define

Θm(y1) :=

{
y ∈ T2 | β(y, y1) ∈

[
π

2
− 1

m
,
π

2

]}
.

Unless Θm(y1) is empty for m sufficiently large, there exist M > 0 and K > 0 such
that

|s+(y1)− s+(y)| ≥ K|y1 − y|, ∀y ∈ Θm(y1), with m > M. (6.9)

Proof: We are interested in the sets Θm(y1) for m large, so hereafter we assume
m > 50. Define

0 < $m := inf {ω(y) > 0 | y ∈ Θm(y1)}
13



and note $m ≤ $m+1 since Θm(y1) ⊃ Θm+1(y1). By elementary computations, we
have

|ω(y1)y1 − ω(y)y| cosβ(y, y1) =
(ω(y1)y1 − ω(y)y) · (y1 − y)

|y1 − y|

=
ω(y1)y1 · (y1 − y)− ω(y)y · (y1 − y)

|y1 − y|

≥ $my1 · (y1 − y)− ω(y)y · (y1 − y)

|y1 − y|

=
$m|y1 − y|2 + ($m − ω(y))y · (y1 − y)

|y1 − y|
≥ $m|y1 − y| ∀y ∈ Θm(y1), (6.10)

where we used the definition of $m and the trivial inequality y · y1 ≤ 1 to show
that the term ($m − ω(y))y · (y1 − y) is non-negative. Consider now the two vectors
ω(y1)y1 − ω(y)y and (ω(y1) − ω(y))y1, with y ∈ T2. Their difference is parallel to
y1 − y, so they have the same projection on any hyperplane perpendicular to y1 − y.
This projection has length |ω(y1)y1 − ω(y)y| sinβ(y, y1). Therefore

|ω(y1)y1 − ω(y)y| sinβ(y, y1) ≤ |ω(y1)− ω(y)| ∀y ∈ T2. (6.11)

Putting together (6.10) and (6.11), we obtain an estimate for tan
(
π
2 −

1
m

)
tan

(
π

2
− 1

m

)
≤ tanβ(y, y1) ≤ |ω(y1)− ω(y)|

$m|y1 − y|
∀y ∈ Θm(y1).

As m → +∞, tan
(
π
2 −

1
m

)
→ +∞; then for every N > 0 there exists mN > 50

such that

|ω(y1)− ω(y)| > N$m|y1 − y|, ∀y ∈ Θm(y1),m > mN . (6.12)

From (6.7) we have, for every y ∈ T2,

s+(y1)− s+(y)− ω(y)(y1 − y) = s−(y1)− s−(y) + (ω(y1)− ω(y))y1.

We define

A := |s+(y1)− s+(y)|+ |ω(y)(y1 − y)|
≥ |s−(y1)− s−(y) + (ω(y1)− ω(y))y1|, y ∈ T2. (6.13)

Using |v − u| ≥ |v| − |u| ∀u, v ∈ Rn+1, we get two different estimates for A

A ≥ |s−(y1)− s−(y)| − |ω(y1)− ω(y)|, (6.14)

A ≥ |ω(y1)− ω(y)| − |s−(y1)− s−(y)|. (6.15)

By the symmetry of the problem, using (6.4), we have

|ω(y1)− ω(y)| ≤ 2

k′m

[
|s+(y1)− s+(y)|+ 2|y1 − y|

]
∀y ∈ Θm(y1),
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where 0 < k′m := inf {−y · s−(y) | y ∈ Θm(y1)} ≤ k′m+1. From (6.14) it follows

A ≥ |s−(y1)− s−(y)| − 2

k′m

[
|s+(y1)− s+(y)|+ 2|y1 − y|

]
. (6.16)

On the other hand, combining (6.12) and (6.15)

A ≥ N$m|y1 − y| − |s−(y1)− s−(y)|, ∀y ∈ Θm(y1),m > mN . (6.17)

We can sum (6.16) and (6.17) to get

2A ≥ N$m|y1 − y| −
2

k′m

[
|s+(y1)− s+(y)|+ 2|y1 − y|

]
.

From the definition (6.13) of A, this becomes

2

(
1 +

1

k′m

)
|s+(y1)− s+(y)| ≥

(
N$m −

4

k′m
− 2ω(y)

)
|y1 − y|,

for every y ∈ Θm(y1),m > mN . Since neither $m nor k′m is decreasing as a function

of m, taking N large enough ensures N >
(

4
k′mN

+ 4
)

1
$mN

to yield a positive constant

K =
N$mN − 4( 1

k′mN
+ 1)

2
(

1 + 1
k′mN

) ,

such that

|s+(y1)− s+(y)| ≥ K|y1 − y|, ∀y ∈ Θm(y1),m > mN .

To conclude we take M = mN .
The injectivity (iii) of s+ = (t+)−1 on the bivalent target T2 = t−(S2). follows

from Lemma 6.7 and Lemma 6.9.
Proposition 6.10 (Quantifying injectivity of s+ on the bivalent target). Let

y1 ∈ V ⊂ T2. Under the hypotheses of Theorem 6.1, there exists Ĉ+
V > 0, depending

on Ĉ−V , kV (from Proposition 6.6), and θ̄(y1) (from Lemma 6.9), such that, when y0

is sufficiently close to y1,

|s+(y1)− s+(y0)| ≥ Ĉ+
V |y1 − y0|4n−1.

Proof: When y0 ∈ Θ(y1, θ), with θ > θ̄(y1) we apply Lemma 6.9 and we are
done. Otherwise the angle between s−(y1)− s−(y0) and ω(y1)y1 − ω(y0)y0 is smaller
than π

2 + θ̄(y1). Applying Lemma 6.7, we obtain

|s+(y1)− s+(y0)|
= |s−(y1)− s−(y0) + ω(y1)y1 − ω(y0)y0|
≥ |s−(y1)− s−(y0)| cos θ̄(y1).

Taking y0, y1 sufficiently close (|y1 − y0| < γδε , from the proof of Proposition 6.6),
Proposition 6.6 implies

|s+(y1)− s+(y0)| ≥ cos θ̄(y1)Ĉ−V |y1 − y0|4n−1.
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Proof of Theorem 6.1: Define yi := t+(xi) ∈ V ⊂ T2. If y0 ∈ Θ(y1, θ), with
θ > θ̄(y1), we have

|y1 − y0| < K|x1 − x0|.

Otherwise, by the uniform continuity of t+, taking x0 sufficiently close to x1, we have
|t+(x1)− t+(x0)| < γδε and we can apply Proposition 6.10 to yi = t+(xi), i = 1, 0 to
conclude

|y1 − y0| <
1

Ĉ+
V

|x1 − x0|
1

4n−1 .
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