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Introduction

This doctoral thesis contains the research activity I carried out during my PhD program in ‘Matem-
atica e Statistica’ at the University of Pavia. I touched two fields of Mathematical Analysis, which
are Optimal Transportation and Partial Differential Equations.

Thanks to the opportunity to spend part of the PhD program abroad, I visited the University
of Toronto, where Prof. Robert McCann introduced me to Optimal Transportation.

Generally speaking, Optimal Transportation is the study of how to minimize the cost of moving
a certain mass from a location to another one. This kind of problems is of interest in a number
of applications that span from Physics to Economics. For example, in Physics, our problem can
be to move an object from a position to another one. In this case the cost can be identified with
the energy spent to move the object of mass m in a gravitational potential in the usual 3d-space
(4d-space if we consider time as an additional variable). In Economics, mass and space may not
have their physical meanings, and we are not limited to work in a 3d-space. On the contrary, the
cost may indeed refer to the ‘price’ of an option in the stock market.

Mathematically speaking, Optimal Transportation consists in solving the so called Monge-
Kantorovich problem: given two probability measures p and v supported on RY, minimize the

following integral
/ c(z,y)dy(z,y)
RN xRN

when ~ varies between the probability measures on RY x RY with y and v as marginals, and
where ¢ : RY x R — R is a measurable function called cost function. In the Monge-Kantorovich
problem the mass has been normalized to 1, and the probability measures p and v represent how
the mass is distributed at the initial and final location, respectively. The value c(z,y) is the cost of
transporting the mass from z € RY to y € RV.

In my studies I concentrated on Gangbo and McCann’s work of 1999, [27]. This work finds
applications in shape recognition algorithms. The authors took inspiration from Fry’s thesis [25],
where he elaborated an algorithm to identify unknown leaves from New England, comparing them
to a catalog of standard leaves. Fry’s innovative idea was to distribute unit mass uniformly along
each leaf boundary, and then calculate the total cost of transporting the mass from the boundary
of the sample leaf to the specified distribution on the catalog leaf. Thus, once the appropriate
cost had been chosen, each comparison involved computing the solution to a Monge-Kantorovich
transportation problem. In [27], Gangbo and McCann examined this kind of problems computing
the distance between leaf boundaries by mean of the Wasserstein distance. Hence, they analyzed
the following problem

Euy)= it 2 — yPdv(z ), (1)
~vyel(p,v) JRN+1x RN+1

where p, v are two Borel probability measures on hypersurfaces of RV¥*!, and T'(u,v) denotes the
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set of all Borel measures on R¥*! x RN*! having p and v as marginals.

It is well known that a minimizer v for (1) exists. It is also known that, when p is absolutely
continuous with respect to the Lebesgue measure, the optimizer - is unique and it lies on the graph
of the gradient of a convex function v, also called Kantorovich’s potential (see [55] for a complete
collection of these results with proper references). But, as Fry’s numerical evidence suggested ([25],
Fig. 3.5), since both the measures concentrate on hypersurfaces, the optimal measure v might fail
to be unique or to concentrate on the graph of any map.

In trying to understand the theory that lies beyond Fry’s numerical results, Gangbo and McCann
presented some natural examples; in some of them the optimal measure ~ fails to be unique (see
Example 2.1 of [27]), in others it is unique but its support fails to concentrate on the graph of a
single map (see Examples 3.12 and 3.13 of [27]). Nevertheless they proved that, as long as one
of the two hypersurfaces is a boundary of a strictly convex set -say 02, where Q@ ¢ RNt and
the measure supported on it -say u- is absolutely continuous with respect to its surface measure
H?| 5, then the optimal measure v € I'(u, v) is the unique. Moreover they proved that the images
of u—a.e. = are collinear: they lie on a line parallel to the first hypersurface’s normal at . This
follows from the tangential differentiability of the Kantorovich potential v: in those points which
disintegrate into multiple images it is the normal differentiability which fails.

Now, when we consider two measures u,r supported on the boundaries of two convex sets,
respectively © and A, each point x € 02 can have at most two images, since each line intersects a
strictly convex boundary twice at most. Gangbo and McCann [27] denoted these two images t(z)
and ¢t~ (z) € spty, and pointed out that they correspond to the two limits of Vi(xy) obtained as
x) —  from outside or inside 2. Moreover they showed the outer trace t* : spt i — sptv gives a
global homeomorphism between the hypersurfaces, while the inner trace ¢~ to be continuous and
continuously invertible on the closure of the set Sy := {z € sptu | tT(z) # ¢t~ (z)}. Together, the
graphs of these two maps cover the support of the optimal measure .

Besides its application, the theory of transportation between hypersurfaces revealed itself to be
very interesting even from a purely mathematical point of view. Recently, some authors achieved
innovative regularity results related to this kind of problems ([42],[41],[34],[35],[40]).

The second part of my thesis deals with regularity results for weak solutions to some Partial
Differential Equations. This part has been carried out at the University of Pavia under the super-
vision of Prof. Ugo Gianazza. It is based on recent works of DiBenedetto, Gianazza, and Vespri
([18],[17],[19],[21],][20]), which deal with some classes of parabolic differential equations. Two well
known parabolic equations are the p-Laplace equation

uy — div(|DulP~?Du) = 0, p>1, (2)
and the Porous Medium equation
uy — mdiv(|u|™ ' Du) = 0, m > 0.

Their modulus of ellipticity is
[DufP=2, ™,

respectively.

DiBenedetto, Gianazza, and Vespri introduced a novel set of analytical tools and techniques that
allow to deduce, by means of purely measure theoretical arguments, regularity properties, such as
Harnack inequalities and Holder continuity, for weak solutions to p-Laplacian and Porous Medium
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type equations. The main achievement of DiBenedetto, Gianazza, and Vespri is the proof that
degeneracy and/or singularity of an equation limits the degree of regularity of its solutions.

A differential equation is degenerate or singular if the modulus of ellipticity of its principal part
tends to zero or to infinity at points of its domain of definition. Such a behavior may be intrinsic
when the vanishing or blowing up of the modulus of ellipticity occurs through the solution or its
gradient. For example, for p > 2, the p-Laplace equation is degenerate on the set [|Du| = 0], while,
for p € (1,2), the p-Laplace equation is singular on the set [Du = 0].

In this thesis I will extend some of the results of [17]-[21] to a class of parabolic, doubly nonlinear,
partial differential equations whose prototype is

ug — div(u™ | DulP~2 Du) = 0. (3)

In particular, in a 4d-space, with variables (1,22, 23,t), when m > 1 and p > 2, such equation
describes the dynamics of a non-Newtonian polytropic fluid in a porous medium. It can be seen as
a combination of the p-Laplacian equation and the Porous Medium equation. When m + p > 3,
it is degenerate on the set [[u| = 0] N [|[Du| = 0]; when m + p < 3 it is singular on the set
[lul = 0] N [[Du| = 0].

I will show that, in the degenerate case (m + p > 3), an intrinsic Harnack inequality holds for
the weak solutions to (3), and that such inequality implies Holder continuity, while in the singular
case a critical threshold for regularity will emerge (m 4 p + £ = 3, where N is the dimension of
the space). In the singular supercritical range

3- P cpim<s,
N
a Harnack inequality holds in the same intrinsic form of the degenerate case; in addition, another
family of Harnack inequalities will be proved. These will be simultaneously forward in time, back-
ward in time, and elliptic. In the sub-critical range

p
2 < <3- =
p+tm N

no Harnack estimate in any of the forms mentioned above seems to hold. In [54], Vespri claims that
the solutions to (3), combined with proper initial data, become extinct after a finite time. Following
the insightful statements of [53], I will consider alternative forms of Harnack-type inequalities. All
the previous results for (3), will actually be proved for the entire class of parabolic, doubly nonlinear,
partial differential equations it represents.

Chapter 1 is devoted to the extension of Gangbo and McCann’s results [27] on the regularity
of the optimal multi-valued mappings ¢t and ¢~. In particular I will show that T and ¢t~ are
locally Holder continuous on those subsets of their domains where ng(z) - na(t*(z)) # 0 and
na(z) - na(t~(z)) # 0. Chapter 2 contains some preliminary results to the following Chapters.
More specifically, I will deal with integral estimates and some DeGiorgi-type lemmas. In Chapter 3
and 4 I will prove intrinsic Harnack inequalities and Holder continuity for weak solutions to a class
of doubly nonlinear parabolic equations in the degenerate and singular case, respectively. To make
the thesis more readable, I postponed some technical results and some theorems already known in
the literature to the appendices A and B.






Chapter 1

Holder continuity for optimal
multivalued mappings

1.1 Introduction

Let X, Y be two measure spaces, (i, ¥ two probability measures defined on X and Y, respectively,
and ¢ a measurable map from X x Y to [0, 40c]. Let us denote with I' the set of all the probability
measures on X X Y that have marginals p and v. More explicitly, v € T'(u, v) if and only if v is a
nonnegative measure satisfying (A x Y) = u(A4), v(X x B) = v(B), for all measurable subsets A
of X and B of Y. The minimization problem

inf / c(z,y)dy(x,y) (1.1)
Yel(wov) J x xy

is known as Kantorovich’s optimal transportation problem; c is called the cost function, and every
probability measures in I'(u,v) is called a transference plan. Kantorovich’s problem is meant to
investigate how a certain mass p distributed on a domain X is transported to another location
(described by v and Y') at a minimal cost (see [55] for an exhaustive description).

When X =Y = R”, and the cost function is the Euclidean squared distance, the minimizers
of (1.1) are characterized by the existence of a convex function 1 : RN — R U {+oc0}, whose subd-
ifferential 01y C R x RY contains the support of every optimal transference plan v € I'(u, v)(see
Brenier [4] for references). This convex function is called Brenier’s potential. When p is absolutely
continuous with respect to the Hausdorff measure of dimension N, 1 is differentiable on a set of full
p—measure, the optimizer v is unique, and it full mass lies on the graph {(z, Vi (x)) | € domV}
of the gradient of ¢). This means p—a.e. point £ must be mapped to the unique destination y = Vi
for transportation to be efficient. Therefore the optimal transference plan is the pushed—forward of
1 by Id x V),

v = (Id x Vh)gp.
The measurable map T' = V1) is called optimal map.
Several authors treated the regularity of optimal maps when the cost function is the Euclidean

squared distance; among them Caffarelli [6] [7] [8] [9] [10] [11], Delanoé [13], and Urbas [52]. In
particular, Caffarelli showed that if the domain Y is convex, du = fdVol,dv = gdVol, where dVol

1



1. Holder continuity for optimal multivalued mappings

denotes the Lebesgue measure, and the densities f,1/g are bounded, then the optimal map is Holder
continuous.

In some applications of Optimal Transportation to Physics or Economics, also other cost func-
tions are of interest. For example, the problem of the reflector antenna (see [56] by Wang, and [44]
by Oliker and Waltman) has been shown to be equivalent to optimal transportation of measures on
the Euclidean unit sphere with respect to the cost function —log |z —y| (see [57] and [28]). Inspired
by these works on the reflector antenna, Ma, Trudinger, and Wang found a condition on the cost
function, which implies the regularity of the optimal map (see [42]). It is a structural condition
depending upon derivatives up to the order four of the cost function. Following their notation, we
name it (A3). It will be stated in Section 1.5.

Loeper [41], Kim, and McCann [34] [35] clarified the role of (A3) when an optimal map exists
and is unique. More precisely, when the cost function is sufficiently smooth and (A3) holds, under
suitable convexity hypotheses on the domains, and the absolute continuity of the Lebesgue measure
with respect to v, Loeper was able to prove the Hélder continuity of the optimal map (see Section
1.5 for a precise statement of the hypothesis). On the other hand, Kim and McCann [35] found
a covariant expression of (A3), named (A3s) in their paper, and extended Loeper’s results to
transportation problems set on a pair of smooth manifolds.

Our work makes use of Loeper, Kim, and McCann’s argument to improve the regularity results
obtained by Gangbo and McCann [27] for a transportation problem between boundaries of convex
sets. Optimal transportation between boundaries of convex sets does not generally lead to a single-
valued optimal map, but rather to multi-valued mappings. This means that an optimizer v € I'(u, v)
takes the form

m
7= Z’-Yia Yi = (Id x i),
i=1

where ¢; are measurable maps from X to Y, and g = Y.~ p;. This is the case of the Kantorovich
problem analyzed by Gangbo and McCann, who found a bivalent mapping. The novelty of our
result is the quantification of the continuity in this setting of multi-valued mappings.

Let  and A be two bounded, strongly convex (in the sense of Section 1.2), open sets in RV*1,
with Borel probability measures p on 992 and v on dA. We consider the Monge-Kantorovich problem

we | 2 — yPdy(z, ). (1.2)
vel(pu,v) JRN+1x RN+1

When 1 is absolutely continuous with respect to the Hausdorff measure of dimension N, (%), and
Q) is strictly convex, the optimal transference plan is unique, but its support fail to concentrate on
the graph of a single map (see Theorem 2.6 of [27]). Gangbo and McCann [27] showed that the
unique optimizer v € I'(u1, ) is supported by two maps, named ¢ and ¢~ i.e.

y=mn+r2, n=0dx ), e = (dx ),

where 4 = g1 + po. This means that the mass at a point x € 9 does not always have a unique
destination on dA, but can be split into two different destinations, t*(z) and ¢~ (), which corre-
spond to the two limits Vi () obtained as x; — x from outside or inside 2, respectively. Indeed,
while Brenier’s potential ¢ is tangentially differentiable at H™V-a.e. boundary point x € 9, the
normal differentiability might fail. This implies that the subdifferential 01 consists of a segments
with endpoints ¢t (x),t () on A (see Lemma 1.6 of [27]).



1.2. Preliminaries, strategy, and results

Gangbo and McCann proved that ¢* is a homeomorphism between 9Q and OA. Moreover, they
conjectured Holder regularity for t* on 92\ Sp, where

So :={x € 00 | ng(z) -na(t'(z)) = 0}

represents a part of the “boundary” between the region where the mass splits and the region where
it does not. More precisely, if So denotes the region where the mass splits (bivalent region), then
So contains those limit points of Sy at which the split images degenerate to a single image. In the
present work, we will prove a slight modification of their conjecture, i.e. that ¢+ is locally Holder
continuous on Sz and on S; = 9N\ (So U Sa).

The peculiarity of (1.2) is the “hybrid” setting given by the choice of the Euclidean squared
distance cost for a transportation problem set on embedded hypersurfaces. One of the difficulties
we encountered has been to combine the convexity notion deriving from the Euclidean cost with the
dimension and the pseudo-Riemannian structure of the manifolds where the measures are supported.
Since the Hausdorff dimension of sptp and spty is IV rather than N + 1, we are not able to adapt
Caffarelli’s regularity theory to our problem; (see however [23]). Nevertheless Gangbo and McCann’s
conjecture about Hoélder continuity is reinforced by Example 2.4 of Kim-McCann [34]: the authors
showed that the Euclidean squared distance cost, in the settings of (1.2), satisfies (A3) on

N = {(z,y) € 9Q x O\ | na(z) - na(y) > 0}.

Despite this comforting result, the regularity of ¢ is not immediate. Loeper’s results needs to be
adapted to our “hybrid” setting. Moreover, the target measure with respect to ¢, vy, which is the
portion of mass “transferred” by ¢, does not inherit the hypothesis on v of having a positive lower
bound on its density with respect to the Lebesgue surface measure. This means there are regions
in 0N) where the Lebesgue surface measure is not absolutely continuous with respect to vy, so one
necessary hypothesis of Loeper’s argument is not satisfied. We will treat these regions separately
with a different argument.

This chapter is organized as follows. In Section 1.2 we report the main results of Gangbo and
McCann’s paper [27]; we also discuss the most important statement of our work and the strategy
we are going to adopt to prove it. We will restrict our argument to the case of spherical domains,
0Q = OA = SY, though we believe that our regularity result can be extended to more general
uniformly convex domains. In Section 1.3 we introduce and clarify some notation. In Section 1.4
we comment on some questions related to our problem. In Section 1.5 we adapt Loeper’s theory
to our transportation problem, restricting his argument to the regions of 9€2 where the necessary
hypothesis on the measures holds. The regularity result on the remaining regions is derived in
Section 1.6 . Section 1.7 gives an explicit dependence of the Holder constant appearing in Section
1.5 on the distance from A. Finally, in Section 1.8, we prove the bi-Lipschitz estimates that ¢+
satisfies when N = 1.

The results of the present chapter will appear on [46].

1.2 Preliminaries, strategy, and results

We recall the following definitions from [27]. For a smooth convex domain , strong convexity
asserts the existence of a positive lower bound for all principal curvatures of 9.

Definition 1.2.1 A pair of Borel measures y on 0S5, v on OA is said to be suitable if
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(i) there exists € > 0 such that p < 1HN [oq and v > eHN g, and
(i) Q is strongly convez.

If the above hypotheses are satisfied also when the roles of p <> v and Q <> A are interchanged, we
say that the pair (u,v) is symmetrically suitable.

Under these assumptions on the measures, Gangbo and McCann were able to prove the following
optimality results.

Theorem 1.2.2 Fiz bounded, strictly convex domains Q, A € RN with suitable measures ju on
0Q and v on OA. Then the infimum of (1.2) is uniquely attained.

Let Nq(x) denote the set of all outward unit normals to 02 at . When Nq(x) contains only one
element, we denote that unit vector by ng(x).

Proposition 1.2.3 Fiz bounded, strictly convex domains Q, A € RN*! with suitable measures
on 02 and v on OA. Let v be the Brenier convex potential. For each x € 00 exactly one of the
following statements holds:

(0) OY(x) = {y1} withn-q =0 for some pair n € No(x),q1 € Na(y1);
(i) OY(x) = {y1} withn-q > 0 for all pairs n € No(z),q1 € Na(y1);

(ii) OY(x) = [y1,y2]), in which case OQ is differentiable at x and no(z) - q1 > 0,nq(x) - q2 < 0 for
all g € Na(y;), i =1,2.

Definition 1.2.4 Given Q, A, (u,v), and ¢ as in Proposition 1.2.3, we decompose 92 = SpUS;USs
into three disjoint sets such that (o) holds for x € Sy, (i) holds for x € Sy, (i) holds for x € Ss.
Moreover we use the extreme images y1,y2 € O of the proposition to define an outer map t* :
90 — A, and an inner map t~ : So — A by t1(x) = y1, and t~(x) = y2. It is convenient to
extend the definition of t~ to O by setting t~(x) = t*(z) for x € Sy U S;.

Theorem 1.2.5 Fiz bounded, strictly convex domains Q,A € RN with symmetrically suitable
measures (1 on 0 and v on OA. Then the minimizer v can be expressed by

Y=m 472, m=dxtF)u, o= (id xt7)spus,

where py = (t“')ﬁ_lvl, po = pr— pa, and vy = v|1e, with T := OA\t~(S2). Whenever x € S,

tT(xz) =t~ (x) # 0 is an outward normal for OQ at x. Moreover t+ : 9Q — OA and t~ | 5,: So — Tb
are homeomorphisms.

The partition 02 = Sy U S; U Sy will play an important role in our work, so it is essential to
understand the meaning of these sets. The mass lying on Sy U .S; is transferred without splitting
to a target set on OA by tt, while the mass lying on S, splits into two destinations, which are
described by tT and ¢~. For this reason we will call Sy the degenerate set, S; the non-degenerate
univalent set, and Ss the bivalent set. When the measures (u,r) are symmetrically suitable, an
analogous decomposition of A = Ty U Ty UT5 can be introduced (see Definition 3.6 of [27]). In
particular 75 is the bivalent set for the Kantorovich transportation problem (1.2), where (2, ) and
(A, v) are exchanged, with (A, v) playing the role of the source.



1.3. Notation

Our aim is to prove that the map ¢+ : 9Q — 9A is Holder continuous on S; and S. We will
show that tT satisfies bi-Lipschitz estimates when N = 1, via an argument relying on the results
of Ahmad [1], which cannot be extended to higher dimensions. Here we are developing a different
strategy which works for all N > 1, when 09, 0A = SY. We will proceed in two steps. First we
will show that ¢t is Holder continuous on the preimage (¢+)~1(T}) C S¥ of the set T where

vy > eHN Loa,

where € is the constant from Definition 1.2.1. This lower bound on v; allows us to adapt the
argument used by Kim and McCann in [35]. On (¢*)71(Ty), where the lower bound fails, the
regularity of ¢+ will be derived from the Hélder continuity of t+ on Ss. In the end we will be able
to obtain the following result.

Theorem 1.2.6 (H6lder continuity of multi-valued maps outside the degenerate set) If
(u,v) are symmetrically suitable measures on (S™,SN), N > 1, then

tt e CIN1(8)) and  tT € O T(S,).

loc loc

1.3 Notation

The notation we are going to use is similar to that of [27] and [34], in particular we refer to Example

2.4 of [34], with 92 = OA = SV, ¢ : SV x SV = R, c(x,y) = |z — y|?, N := {(z,y) € SNV x SV |

ng~ (z) - ngn (y) > 0}, and N(z) == {y € SV | (z,y) € N'}. We will always use the variable z for

points on the source domain 9Q = S, and the variable y for points on the target domain A = S,
Let us recall the usual system of local coordinates for the points of SV

0i SN N {x e SN|z; >0} = RN, 0i(x) = (X1, .., Ti1,Tit1,. -, Tn)-

Following this example, given z € SY and y € N () we can consider a system 7, of local coordinates
projecting on the hyperplane perpendicular to . In this way both x and y can be represented in
local coordinates by means of the same map m,

z == X, y—>ﬂm Y,

where the capital letters stand for the image of the projection. To simplify the notation, given
a function F : RN*! — R and a projection 7,,, whenever 2 € N (zo) we will write F(X)
to denote F(m,; (X)) = F(z). We will therefore write ¢(X), ¢(X,Y) instead of ¢(r ' (X)),
c((rH(X), (m;1(Y)). For example, given x € S and y € N(z), by mean of 7, we can write

Zo Zo

o(X,Y) = [X — Y]+ (VI= X — 1— [Y]2)2

In local coordinates, we use the notation Dc = (8(3(01 e aaTCn and Dc = (88}% ey £fn) to denote
the partial derivatives. The cross partial derivatives DDc at (z,y) € N define an unambiguous
linear map from vectors at y to covectors at x.

Hereafter dH” denotes the Hausdorff measure of dimension N, U, (B) represents the p-neighbourhood
of a set B, and [Yp, Y1] indicate the Euclidean segment whose extreme points are Yy and Y;.

In Section 1.6 we will use the expression ‘angle between two vectors z; and zp € RV’ The

term angle refers to the arccos |2211|"’222‘ .
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1.4 Some related questions

1.4.1 Relation between the convex potential ¢) and the mappings ¢+, ¢~

Let ¢ be the Brenier potential associated to (1.2). It is well known that the subdifferential Oy
includes the support spty C RN*! x RN¥*! of all minimizers v € T'(u,v) for (1.2)(see [4][5] for
references). Under the hypothesis of Theorem 1.2.5, there exists a unique optimizer v € I'(u, v) for
(1.2), and there exist two continuous maps ¢+ : 9 — A, such that

{(2,t7(2)}oesptn C Pty C {(2,17(2))}uecon U{(2,t™(2)))}oes,
(= O N (9 x DA)).

So, what is the relation between the optimal mappings ¢T, ¢~, and the convex potential 1? Can
we derive any regularity for ¥ from Theorem 1.2.67 Gangbo and McCann answered to the first
question in Lemma 1.6 of [27]. Indeed the maps ¢+ and ¢~ correspond to the outer and inner trace
of V), respectively. So we can write the subdifferential of % in terms of the optimal mappings:
OY(x) = [t1(z),t™ (z)] at any boundary point z € 9. Moreover, in Corollary 4.4 of [27], Gangbo
and McCann proved that, when €2 is bounded and strongly convex, A is bounded and strictly
convex, and (u,v) are suitable measures on 92, OA, then 1) is tangentially differentiable along 0€2.
This answers the second question. From Theorem 1.2.6 it follows immediately that

1T
el N on Sy C sV,

i.e. on the non-degenerate univalent set, where 9 (z) = {Vi(x)} = {t*(x)}. Notice that the

1

177, . . . . .
conclusion of Theorem 1.2.6 does not imply ¢ € C,, /" ~" on Sy, since 1 is not differentiable in the

normal direction to the sphere on Sy. Nevertheless, choosing the coordinates of Lemma A.1 of [27],

g—f’lexistsfori:2,3,...,n+1,and
N iy — - _ N
3 (x) =t"(x); =t (z);, fori=2,3,...,n+1, and x € S™.
T

We conclude that the restriction of 1) to SV has a derivative which is Holder continuous locally on
Sl and Sg.

1.4.2 The regularity of t* on S

We do not presently have any regularity result for t+ on the degenerate set Sy, except continuity
from [27], On the contrary, we will see in the statements of Theorem 1.5.3 and Theorem 1.6.1
that, on SV \ Sp, close to Sy the Holder constant of ¢+ provided by our proof may become very
big. Moreover, as noticed in Example 2.4 of [34], the nondegeneracy hypothesis (A2) fails on Sy.
Therefore, we cannot apply Loeper’s argument on Sy. On the other hand we believe the set Sy to
be small. In dimension N = 1, with Q and A bounded strictly convex planar domains, Ahmad [1]
proved that Sy consists of at most two points.

1.4.3 Extending the results to more general domains

Theorem 1.2.6 can be extended to the problem of transporting a measure on a given Euclidean
sphere to a measure on any other Euclidean sphere, possibly with a different centre and radius.



1.5. t* is Hélder continuous on (t)~1(T}) c SV

Indeed, identities (9) and (10) of [27] indicate how to reduce this more general problem to the case
treated in this work.

Thanks to the results in Example 2.4 of [34], Theorem 1.5.3 can be extended to the transportation
problem where the measures (u, ) are supported on (92, 9A), with Q, A C RN+ bounded convex
domains with C%2-smooth boundaries. We believe that the same extension is possible for Theorem
1.6.1, but we cannot presently provide any proof. Our argument has a critical point in Lemma
1.6.9, which exploit the peculiar geometric properties of SV, and cannot be easily extended to more
general convex domains.

1.4.4 Nearly constant measures on SV

J. Kitagawa and M. Warren [36] proved that when the measures y, v are nearly constant on S (in
C! topology), then the optimizer v € T'(u,v) is supported on the graph of a single map.

1.4.5 Sharp Holder exponent

The Holder exponent in Theorem 1.2.6 is not sharp. It is the same exponent provided by Loeper’s
argument [41],i.e. 1/(4N —1), where N is the dimension of the sphere where p and v are supported.
Recently, Liu [40] improved Loeper’s Holder exponent to the sharp exponent 1/(2N — 1).

1.5 t* is Holder continuous on (t*)71(Ty) c SV

In this section we are going to adapt Kim-McCann’s version of Loeper’s argument (Appendices B,C
and D of [35]) to our mapping ¢+, which satisfies (¢7);1 = v1. Thus, let us recall the regularity
conditions (A0),(A1), (A2), and (A3s) from [34] [42] on a cost function ¢: SV x SV — R

(A0)(Smoothness) ¢ € C*(N), where N has been define in Section 1.3.

(A1)(Twist condition) ¢ € CY(N) and for all z € SN the map y — —De(x,y) from N(z) C A
to Tx(SYN) is injective.

(A2)(Non-degeneracy) c¢ € C*(N) and for all (z,y) € N the linear map DDc : T,S™ — TSN
1s bijective.

(A3s)(Strictly regular costs) c € C4(N) satisfies (A2) and for every (z,y) € N

5€C(z,y) (P D 0) A (0@ p) > 0 for all null vectors p ® p € T(y N, (1.3)
and equality in (1.3) implies p =0 or p = 0.

The notation “sec” refers to the sectional curvature of a two—plane. We define it by means of the
Riemann curvature tensor Ry /- induced by the symmetric bilinear form

1 0 —DDe
h=3 ( ~DDe 0 ) (L4)

on N. If ¢ € C*(N), the sectional curvature of a two-plane P A Q at (x,y) € N is given by

2N 2N 2N 2N

seciz PN Q = Z Z Z Z Ri/j'k’l'PiIQj/Pk/Qll-

i'=1j'=1k'=11'=1
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We recall also some notions of convexity from Definition 2.5 of [34]. Though we are assuming
0Q = OA = SV, the following definition holds for more general convex domains.

Definition 1.5.1 A subset W C N C 992 x OA is geodesically convex if each pair of points in W
is linked by a curve satisfying the geodesic equation on (N, h). We say that B C A appears convex
from x € O if {x} x B is geodesically convex and B C N'(x). We say W C 9Q x O\ is vertically
convex if W(z) := {y € OA | (x,y) € W} appears convex from x for each x € dQ. We say that
A C 09 appears convex from y € OA if A x {y} is geodesically convexr and A C N(y). We say
W C 09 x OA is horizontally convex if W (y) := {x € 9Q | (x,y) € W} appears convex from y for
each y € ON. If W is both vertically and horizontally convex, we say it is bi-convex.

The regularity result that we are going to exploit is Theorem D.1 of [35]. We now state in a reductive
form, referring to our particular settings, to avoid the introduction of new unnecessary notations.

Theorem 1.5.2 (Simplified version of Theorem D.1 of [35]) Assume ¢ € C*(M) satisfies
(A1),(A2), and (A3s) on the closure of M, where M C SN x SV is a bounded domain bi-
conver with respect to (1.4). Fiz m > 0, and let p, p be probability measures on SN with Lebesgue

densities dp/dvol > m throughout SV and dp/dvol € L*>(SN). Then there exists a map F €

Cl/ max{5,4N—1}
loc

c.

(SN, SN) between p and p which is optimal with respect to the transportation cost

Assuming (u, ) to be suitable measures on (SV,S¥), in order to apply Kim-McCann’s argument
we need v to satisfy
there exists €; such that vy > e;HY [g4. (1.5)

From the definition of 14 in Theorem 1.2.2 we see that vy satisfies (1.5) only outside the bivalent
set T, € OA = SV, i.e. outside the set where the image of t* is bivalent. This is the reason why we
can state a regularity result only on a portion of the source domain, (+¥)~(7y) C SV. Hereafter
we will assume N > 1.

Theorem 1.5.3 Suppose (u,v) are symmetrically suitable measures on (SY,SN) (in particular,
from Definition 1.2.1, there exists € > 0 such that v > e¢H™|gn). Then t* is locally Hélder
continuous on (tY)~1(Ty), with Hélder exponent at least ﬁ. Our control on the local Hélder
constant depends on €, n, and tends to infinity when one approaches the boundary of N .

Remark 1.5.4 Computations that show the explicit dependence of the Holder constant on the dis-
tance of the boundary of N can be found in Section 1.7.

Lemma 1.5.5 The set
N = {(z,y) € S¥ x S¥ | ngx () - nsw (y) > 0}
is bi-convez in the sense of Definition 2.5 of [34].
Proof: Fix zo € SN. N(zo) appears convex from z if and only if Dc(:{o,/\A/'(xO)) is convex in

T;O(SN). Suppose Dc(zg,yo0), Dc(zo,y1) € Dc(am/\A/(x)), where yo,y1 € N(x). We are going to
show that for every 6 € (0,1)

0Dc(zo,y1) + (1 — 0)De(xo,yo) € De(zo, N (z)). (1.6)
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Let’s consider a system of local coordinates. Given zo € SY we project o and y € N(zo) to
the hyperplane perpendicular to 7ig(xg) and containing the origin (notice that this choice of local
coordinates is well defined since 7 (o) - fip(yx) > 0, when y, € N (zg), k= 0,1)

z0 250, y_Y (1.7)
so that, in local coordinates,

Zo = (07 1), Y= (K 1-— |Y|2>
o(X,Y) =X =Y+ (V1I-[X]P -1~ [Y]P)

We easily get
oc

Y) = —2Y;.
e v (0,Y) =

If v € T, (00) and v; are its coordinate with respect to the basis %, I can write

DC(U)(any) 1’0, sz

Hence we can compute

6Dc(v)(wo, y1) + (1 — ) De(v) (o, yo) = Ov(c ><xo,y1>
=31 002 (0, Y1) + (1 — )i 2 (0,

=2 =120 [0 (=Y1:) + (1 -0)
=N —20(0Y1, + (16

Yi )}
YO z)
0,i)-

(1 = 0)v(c)(zo,90)
0 1.8
| (1.8)

Therefore, for all § € (0,1)
0Dc(xo,y1) + (1 — 0)De(xo, yo) = De(wo, ' (0Y1 + (1 — 0)Yp) € De(xo, N (z0)).

Since z( is an arbitrary point of S, we conclude that A is vertically convex. By a similar argu-
ment, it is easy to show that A is also horizontally convex. We conclude that A/ is bi-convex. O

Proof of Theorem 1.5.3: Fix (z,y) = (z,tT(z)) € N, with ¢t"(x) € Ty. Since T} is open,
and ¢ is continuous, we can choose R and then 7 small enough that B,.(y) C ¢t"(Bgr(z)) C Ti;
as asserted by Trudinger and Wang in [51], since A is bi-convex, taking R and r even smaller,
P = Bgr(z) x B.(y) C N is bi-convex (alternatively, we could show directly that P is bi-convex,
by means of the same argument used for A/ in Lemma 1.5.5. We replace v; with its restriction
Vi to B,(y) and we denote uj = s;(u{) Taking R and then r even smaller than before gives
us local coordinates over both domains simultaneously (for example through the chart m,). Let
X =m(x),Y = m,(y), and P’ = 7, (Bgr(x)) X (B, (y)). Since P is bi-convex and the notion of
bi-convexity is coordinate invariant (as manifest from Definition 2.5 of [34]), P’ is bi-convex with
respect to the cost

o(X,Y) =X — Y+ (V1 |X]P =~ 1~ [V]) (1.9)

Kim and McCann showed that the cost in the original coordinates satisfies condition (A2) and (A3s)
(see Example 2.4 of [34]), and that the quantities in these conditions have an intrinsic meaning



10

1. Holder continuity for optimal multivalued mappings

independent of coordinates, since they are geometric quantities (i.e. pseudo-Riemannian curvatures
in the case of (A3s) and non-degeneracy of the metric in the case (A2)). This implies that also the
cost (1.9) satisfies (A2) and (A3s). Only the constant C{ of (A3s) will depend on the coordinates.
Since we know that the equation Dxc(X,Y) = Dv(X) has at most two solutions, Y+ = ¢7(X)
and Y~ =t (X) and only Y lies in P’, the cost satisfies (A1) on P’.

At this point we can apply Theorem 1.5.2 to the cost (1.9) on P/, with probability measures u
and v¥, on 7 (Br(x)) and 7,(B,(y)) respectively, defined by

pi = (ma )y, vi= (g

The source pf is supported (and bounded above) in 7,(Bgr(z)) and target v{ supported (and
bounded below) in 7, (B, (y)), We deduce the existence of a locally Holder continuous optimal map
pushing p} forward to v{. By the uniqueness of optimal transport, this map must coincide p}-a.e.
with ¢tT. Since both maps are continuous they agree on the (closed) support of u}. Since sptu}
contains a small ball around x, this shows tT is locally Holder at . (]

1.6 ¢ is locally Holder continuous where its image is biva-
lent

The previous section established local Holder continuity for the outer map t* = (s7)~! on the
source domain s*(77) € S¥, but not on sT(Tp UTy) = Sp U st (Ty). Our strategy for extending
this estimate to sT(T3) is described at the end of this paragraph. First note, however, that Gangbo
and McCann’s Sole Supplier Lemma, 2.5 of [27], implies the outer image of the bivalent source is
contained in the univalent target ¢t (S;) C Ty, and similarly s (73) C S;. Since st : SV — SV is
a homeomorphism, from S; U Sy = s1(T1) Us™(T2), it follows that the bivalent source Se C s™(T7)
belongs to the domain where Holder continuity of ¢ has already been shown. On this bivalent set
Sy, the inner map ¢~ is related to the outer map t*(z) = ¢t~ (z) + A(z)z by the geometry of the
target. In Proposition 1.6.2, this relation will be used to deduce (i) Holder continuity of ¢t~ from
that of t7. This quantifies injectivity (ii) of the inverse map s~ = (t7)~! (through a bi-Hélder
estimate in Proposition 1.6.6), whose relation to the outer map s™(y) = s~ (y) + w(y)y is then used
in Proposition 1.6.10 to quantify injectivity (iii) of s = (t7)~! on the bivalent target T» =t~ (Ss).
This yields the desired local Holder continuity of t* on the source set s*(75) mentioned at the
outset.

Let us recall the geometric characterization of + and ¢t~ from Proposition 1.2.3 and Definition
1.2.4. Remembering that, on SV, ngv (z) = x, we have

o If z € Sy then z -t (x) = 0.
e If z €5 then -t (x) > 0.
e Ifz e S thenz-tt(x) >0and -t (z) <O0.

We are going to introduce a geometric approach, based on the previous characterization, which
allows us to prove the following theorem. Hereafter we will assume n > 1.

Theorem 1.6.1 If (u,v) are symmetrically suitable measures on (S™,SN), then t* is locally
Holder continuous on (t7)~(Ty).
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From Lemma 1.6 of [27] we know that ¢* and ¢~ are related by
Vo € Sy c SN tH(z) =t~ (z) = Mz)z,
where A is a continuous positive function on Ss. Given g, z; in So we then have
[t~ (z1) —t (w0)| < |tT(z1) — tT(w0) — AM@1)21 + A(z0) 0] (1.10)

We would like to exploit the regularity of t+ on Sy C (t7)~1(T}), proved in the previous section, to
prove that also ¢t~ is Holder continuous on S,. For this purpose we also need to estimate the term
Ax1)x1 + A(zo)zo. This will be done applying the Mean Value Theorem to a suitable function and
utilizing the geometric properties of the target.

Proposition 1.6.2 (Holder continuity of ¢t~) If t* € C{.(S2) thent™ € C:.(S2). Let U C Ss

and 0 < ky == min{—x - t*(z) | z € U}. If Cf} bounds the Holder constant for t+ on U, then

1
Cp = <1 + ) (CF+2)
ky
is the Holder constant fort= on U.

Proof: The function h(y) := d(y,S") = 1—|y| is differentiable on A = B;(0) except at y = 0. Notice
that h(t~(z)) = h(tT(x) — Mx)z) = h(t*(z)) = 0 whenever z € S;. Consider a neighbourhood
U C S5 and the corresponding k‘U,C'IJJr from the statement of Proposition 1.6.2. Let xg,z1 € U,
|z1 — x| < 2 (we need Vh to be well defined on the line segment between ¢t~ (xg) and ¢~ (z1), i.e.
0¢ [t~ (x0,t (x1)]). Applying the Mean Value Theorem, we get

0= h(t+($1) - )\(xl)xl) - h(t+((£0) — )\(l‘o)xo)
= Vh(u)- (tT(x1) —tT(20) — Mx1)21 + M20)T0),
for some u on the line segment between ¢~ (z¢) and ¢~ (z1). It follows
(Mz1)z1 — Mz0)20) - VA(U) = (tH(21) — tT(20)) - VA(0). (1.11)
We can rewrite (1.11) as
(t*(z1) = t*(z0)) - VA(u) + Mwo)(z0 — z1) - VI(u)
= (A1) — M(z0))z1 - Vh(u);
then, using |Vh(u)| = 1,
[A(@1) = Alzo)||z1 - VA(u)|
< |(t+($1) —t+(x0))|—|—/\(x0)|x0—x1|. (1.12)
We now state a claim, whose demonstration is postponed to the end of this proof.

Lemma 1.6.3 Under the hypotheses of Proposition 1.6.2, fix € € (0,1), such that €2 < %’ Since
t~ is uniformly continuous on Ss, there exists d., depending on the data through 1, such that

|1’1 — ZL’0| < 0 = ‘ti(fﬁl) — t7($0)| < €.
Then, taking xo,x1 such that |x1 — xo| < dc, we have

k
xi'Vh(u)>?U>0 fori=1,2.



1. Holder continuity for optimal multivalued mappings

Recalling that A(x) < 2, since 9Q = SV, by means of Lemma 1.6.3 we simplify (1.12) to

[A(z1) = Ao)]

S 2 [ )~ £ o)l + Moo —
< I @) — 1 (o)l + 2l — ). (1.13)
U
Therefore, by (1.10) and (1.13),
[t™(z1) =t~ (20)|

< |t (zy) =t (m0)| + My |y — mo| + [A(z1) — A(wo)]

< |t (@) — T (@0)| + 2|21 — wo| + [ A1) — A(o)|

< <1+]3U) |t+(x1)t+(x0)|+2(l+ljj> |z1 — xo. (1.14)

Combining (1.14) and t* € C*(U), we conclude

[t™(z1) =t (2o0)] (1.15)

2 2
< CE}_ (1+/€U> ‘xl—l‘o‘a-‘rQ <1+ICU) |l‘1 —l‘0|,

i.e. t~ is Holder continuous on Sy whenever |z — xo| < d,, with €2 < ’%U We can take . < 1, so
that (1.15) implies

[t7 (x1) —t" (w0)] < (H;U) [CF +2] a1 — x0]®

= CE|$1—JZO|Q. O

Proof of Lemma 1.6.3: Let z; = t (x;),i = 1,2. Notice that Vh(u) = —
u=sz1 + (1 — 8)z¢ for some s € (0,1). Hence, there exists £ € (0, ¢) such that

We have

Jul*

x1-u < —kys+ (1 —s8)r1- 20
= —kys+(1—38)x1-(21+&(z0 — 21))
< —ku+(1—-9)e< —ky+ €.

Using a similar argument for zg - u, we conclude that if €2 < I%U then x; - Vh(u) > le—g‘ > ’%U > 0,
fori=1,2. O

Remark 1.6.4 Proposition 1.6.2 admits a converse, i.e. if t~ € Cf.(S2) thent™ € C:.(S2). This
can be proved with minor changes in the preceding argument.

Remark 1.6.5 By means of Theorem 1.5.8 and Proposition 1.6.2, t~ is indeed locally Hélder
continuous on Sy with exponent Wl—l’

The injectivity (ii) of the inverse map s~ = (t7)~! on Tb, is an immediate consequence of the
local Holder continuity of ¢~ on S5, and it has been included in the following proposition.
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Proposition 1.6.6 (Quantifying injectivity of s7) Let V C Ts. Under the hypotheses of The-
orem 1.6.1 s~ := (t7)7! satisfies

Yyo,y1 € V sufficiently close, |s™(y1) — s~ (yo)| > C';|y1 — yo|4N_17

where R
Cy = (Cy)™,
withU =8 (V) and 0 < ky :=min{—y-s (y) |y € V}.

Proof: Since s~ := (¢7)7! is uniformly continuous on T, given J. > 0 there exists 75, > 0 such

that, if |y1 — yo| < vs., then |s™(y1) — s~ (yo)| < d.. Supposing |y1 — yo| < 7s., we can apply
Proposition 1.6.2 to 1 = s~ (y1), 2o = s~ (o) to get

_ _ 1 _
157 (y1) — s~ (yo)| > —==|y1 — wo* 1. U
Cu

We now state an elementary Lemma about vectors in RV.

Lemma 1.6.7 Letu,v € RN. Suppose the angle between u and v is less than 5+a, witha € [O, g)
Then |u+ v| > |u| cos a.

Proof: Let 6, denote the angle between u and v. Keeping |u| and |v| fixed, |u + v| can be seen
as a function of 0, ,, by mean of

[+ 0 () = [uf® + 0]* + 2lul|v] cos .0,

When 6, , € [0, 5+ a]7 the function |u + v| (0,,,) reaches its minimum at 6, , = 5 +a. To our

purpose we can take 0,, = 5 + «. For simplicity we assume v parallel to e; € RY. Let us
consider the projection p on the hyperplane perpendicular to e; and containing the origin. Then
p(u+v) = p(u) = |u| cosa. Since |p(u + v)| < |u + v|, we have the thesis. O

This Lemma turns out to be the key to the proof of step (iii). Under the hypothesis of symmet-
rically suitable measures, the optimal transportation problem we are studying is symmetric, hence
every result that holds for tT on SV implies an analogous result for st on SV. In particular, from
Lemma 1.6 of [27], for every y € Ty we can write

Hy) — s (y) = w(y)y, (1.16)

where w is a nonnegative function on 7. Hence

S

IsT(y1) = 57 (o)l = s~ (11) — s~ (v0) + w(y1)y1 — w(wo)vol-

If we were allowed to apply Lemma 1.6.7 to the right-hand side of the previous equality, with
u=3s(y1) — s (yo) and v = w(y1)y1 — w(Yo)yo, we would then be able to exploit the regularity
of s~ to prove step (iii). Therefore, we need to understand the behaviour of the angle between
s (y1) — s (yo) and w(y1)y1 — w(yo)yo, when yo gets close to y;. From the monotonicity of 9y we
have
(s7(y1) = s (¥0)) - (1 —90) 20 Vyi,y0 € Tt,

which says that the angle between s~ (y1) — s~ (yo) and y1 — yo is in [0, g} If we can show that
the angle between y; — yo and w(y1)y1 — w(yo)yo is in [0, @], for a certain o € [07 g), then we can
apply Lemma 1.6.7 to get the desired estimate on |s(y1) — s™ (yo)|.



14

1. Holder continuity for optimal multivalued mappings

Lemma 1.6.8 Given yo,y1 € To we denote with B(yo,y1) the angle between y1 —yo and w(y1)ys —
w(yo)yo- If the angle between yo and y; is equal to 7y then

B(yo,y1) € {O,W;O : (1.17)

Proof: The angle between y; and —yp is equal to m — v, while the angle between y; (or —yg)
and y1 — yo is 5%, Since w(yo),w(y1) > 0, B(yo, 1) € [0, 57). O

Lemma 1.6.9 (Dichotomy) Fiz y; € Ty. For every integer m > 1 define

Om(y1) = {y €Ty | By, ) € [g - % g} } :
Unless ©,,(y1) is empty for m sufficiently large, there exist myr > 0 and K > 0 such that
[s7(y1) = st W =2 Klyr —yl, Yy € Om(yr), withm > may. (1.18)
Proof: We are interested in the sets ©,,(y1) for m large, so hereafter we assume m > 50. Define
0 < @ = inf{w(y) > 0]y € Om(y1)}

and note wy, < @y,41 since O,,(y1) D Opy1(y1). By elementary computations, we have

(w(y)yr —w(y)y) - (y1 — y)

lw(y1)yr — w(y)ylcos By, y1) =

ly1 — ¥

_ wy)y - —y) —w@y - (3 —y)

ly1 — vl
o @myr- (1 —y) w0y - (1 —y)
o ly1 — yl
_ @aly —yPP + (@ —w@)y - (1 —y)

ly1 — |

> @mlyr — Yy Yy € Om(y1), (1.19)

where we used the definition of w,, and the trivial inequality 3 - y1 < 1 to show that the term
(@m —w(y))y - (y1 —y) is non-negative. Consider now the two vectors w(y1)y1 —w(y)y and (w(y1) —
w(y))y1, with y € Tp. Their difference is parallel to y; — y, so they have the same projection on
any hyperplane perpendicular to y; —y. This projection has length |w(y1)y1 — w(y)y|sin By, y1)-
Therefore

wyn)y —w(y)ylsin By, y1) < lw(yr) —w(y)] Yy € Ta. (1.20)
Putting together (1.19) and (1.20), we obtain an estimate for tan (3 — =)

1 _
tan (W — ) < tan f(y,y1) < M VY € Om(y1)-
2 m Tm|y1 — Y|

As m — +oo, tan (g — %) — +00; then for every M > 0 there exists mj; > 50 such that

lw(yr) — w(y)| > Mwm|yr — yl, Yy € Om(y1), m > myy. (1.21)



1.6. t* is locally Holder continuous where its image is bivalent

From (1.16) we have, for every y € T5,

sT(y1) — s (y) —w@) (1 —y) =5~ (1) — 5~ (y) + (W) — w(®)y1-

We define
A = 15T () = sT @+ w1 - y)l
> s7(y) =57 () + (wly) —w@)ul,  yeT. (1.22)
Using [v —u| > |v| — |u| Vu,v € RVT1 we get two different estimates for A
AZ1s (1) = s~ (W) = |wly) —w(y)l, (1.23)
A= wy) —w@l=Is~ (1) —s~ (). (1.24)

By the symmetry of the problem, using (1.13), we have

lwy) —wW) < = [IsT () —sT W)+ 2 —yl] Yy eOmly),

2
kp,
where 0 < &, :=inf {—y-s7(y) | y € O (y1)} <k, 1. From (1.23) it follows

2

Az s () =5 W) - 1

[ (1) — st ()| + 20y — yl] - (1.25)

On the other hand, combining (1.21) and (1.24)
A2 Mwplyi —yl = s~ () =5~ @), ¥y € Om(yr),m > mar. (1.26)

We can sum (1.25) and (1.26) to get

2
24> Memlyr =yl = - [Is™ (1) = s (W) + 2y — ] -

m

From the definition (1.22) of A, this becomes

2 <1 + k;) st (y1) — st (y)| > <Mwm - % - 2w(y)) ly1 =yl

for every y € ©,,,(y1), m > my. Since neither w,, nor k!, is decreasing as a function of m, taking

M large enough ensures M > ( k,,4 + 4) - L to yield a positive constant
mpnr mpNr
Mw'm.M 74(]?/1 +1)
K= M ,
2(1+ )
k’VTLA[
such that
s () —=sT W) 2 Klys —yl, Yy € Omlyr).m > mu.
O

The injectivity (iii) of s* = (#¥)~! on the bivalent target Th = ¢t=(S3). follows from Lemma
1.6.7 and Lemma 1.6.9.
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Proposition 1.6.10 (Quantifying injectivity of s* on the bivalent target) Let y1 € V C
T>. Under the hypotheses of Theorem 1.6.1, there exists C‘J,r > 0, depending on CY,, ky (from
Proposition 1.6.6), and 6(yy) (from Lemma 1.6.9), such that, when yo is sufficiently close to yi,

5% (y1) = 57 (y0)| = Cflya — ol

Proof: When yy € O(y1,6), with § > 0(y;) we apply Lemma 1.6.9 and we are done. Otherwise
the angle between s~ (y1) — s (yo) and w(y1)y1 — w(yo)yo is smaller than T + 6(y1). Applying
Lemma 1.6.7, we obtain

|s+(y1) - 5+(yo)|
= [s7(y1) =57 (¥0) + w(y1)y1 — w(¥o)yol
> |s™(y1) — s~ (yo)| cos B(y1).

Taking o, y1 sufficiently close (Jy1 — yo| < 7s,, from the proof of Proposition 1.6.6), Proposition
1.6.6 implies - R
|57 (51) =57 (o) = cosB(y1)Cyrlyr —wol M1 O
Proof of Theorem 1.6.1: Define y; := t+(x;) € V C Ty. If yo € O(y1,0), with 6 > 0(y1), we
have

ly1 — yo| < Kl|z1 — 0.

Otherwise, by the uniform continuity of ¢+, taking zg sufficiently close to z1, we have |[t*(z1) —
t*(z0)| < 75, and we can apply Proposition 1.6.10 to y; = t*(z;), i = 1,0 to conclude

1 1
1 —wol < mxler —@o|™T. O
C
v

1.7 On the dependence of the Hoélder constant on the dis-
tance from N

Theorem 1.7.1 Suppose (u,v) are symmetrically suitable measures on (SN, SN) (in particular,
from Definition 1.2.1, there exists € > 0 such that v > edVol”™ ). Consider zo,z, € (tT)~1(T}) c SN
sufficiently close, so that xo, 1, t1(z0), t1(x1) can be represented in local coordinates by means of
the same map (my, or my, ). Denote yo = tT(xo),y1 = tT(x1) and let M := max{|Yo|, |Y1|}. Then
there exists C > 0, depending only on € and n, such that

1
M 2
[tT(xy) —tT(x)| < C (1 + 1—M?) |21 — 20| T T.

Remark 1.7.1 We immediately notice that the Holder constant in the previous statement tends to
infinity, when one approaches the boundary of N.

The following proposition is the geometrical translation of assumption (As), i.e. of the condition,
firstly introduced by Ma, Trudinger and Wang, which implies regularity. It is a sort of maximum
principle and constitutes the main step of Loeper’s proof of regularity. It corresponds to Proposition
5.1 in [41] and to Proposition B.1 in [35]. We are going to reproduce Loeper’s proof (Proposition
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5.1, [41]) using local coordinates. We are working locally on the set N := {(z,y) € S¥ x SV |
ngn (z) - ngn(y) > 0}. Unlike in Loeper’s result, we will find a constant which explodes, when we
approach the boundary of N'. As a matter of fact, Kim and McCann noticed that the nondegeneracy
condition (A2) on the cost, required both in [41] and [34], fails on the boundary of A/ (see Example
2.4 of [34]). For this same reason we cannot apply Proposition B.1 of [35] directly to derive the
maximum principle.

Proposition 1.7.2 For zy € SV and yo,y1 € N(xo), let Yy € [Yo,Y1], where the capital letters
refer to the projections by m.,. Let M = max{|Yp|,|Y1|} and

P(X) = max{—c(X, Yp) + c(Xo, Yo), —c(X, Y1) + ¢(Xo, Y1)}
There exists v > 0, depending on M, such that

0(1 - 0)
2

P(X) > —c(X,Yy) + ¢(Xo, Yy) + V1 — Yo 21X — Xof* — v|X — X2

The dependence of v on M implies that v — 400 when M — 1.

Proof Shifting and rotating coordinates, we can assume that Xy = 0 and that Y — Y7 is parallel
to e; € RN. We apply the first part of Proposition A.1.0.2 of the Appendix to the function

f = _Dg(XC(O7}/t) ' (X/aX/)
where X’ = (0, X2,..., XN), Y; = tYy + (1 — t)Y;. Since f”(t) > 2|Y; — Yu|?| X'|?, we get

_Dg(XC(O’Yb) : (X/’X/)
< —9D§(XC(X0,Y1) (XX = (1= G)Dg(XC(XO,Yb) (X', X)
—0(1— )| X'2Y; — Yol2.

Notice that, though the condition f”(t) > 2|Y; — Yp|?|X’|? is written in local coordinates, it does
not depend on the choice of the chart. Indeed it derives from condition (A3s) (see [34], in particular
Example 2.4). On the other hand, we need to work in local coordinates, in order to maintain the
Euclidean form of Loeper’s argument. We then apply the second part of Proposition A.1.0.2 to the
function

g:t— D?(XC(OaY;f) ' (X7X) _Dch(OaYt) ' (XI7X/)7

which satisfies

" 1,2 M2 2
. =2/ X |*—— Y1 — Y.
9" IlLec o,y = 2|1 X7 (1—M2)%| 1 — Yol
We get,
D3 e(0,Y5) - (X, X) (1.27)
< —[0D% x (0, Y1) + (1 = ) DX x (0, Y0)] - (X, X) + ALXy|* — 3| X2, '
where
A=0(1 H)L\Y Yo §=0(1-0)|Y; —Y|?
(1—M2)% 1 0l 1 ol”-
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Then, for all § € [0, 1]

_C(X7 }/9) + C(Oa }/9)

— —X - Dxe(0,Yy) — 1D% (0, V) - (X, X) + o(|X]?). (1.28)

Hence, using the general fact that for fo, f1 € R and 0 < 0 < 1, max{fo, f1} > 0f1 + (1 — 0) fo, we
obtain

BIX) 2 0[—c(X, Y1) + e(0,Y3)] + (1 — )[~c(X, Yo) + (0, Yo)]
= 012X ¥i — D el0, V) - (X, X)]

FU= 02X ¥ — L Die(0,¥0) - (X, X)] + o | XP)
= 9X Yy — J[0D%xe(0,Y2) + (1 — 6) D (0, Y0)] - (X, X) + ol X ).
By means of (1.27) we conclude
(X)) > 2X - Yy — §D%xc(0,Ys) - (X, X) — 21X + G X[ + o(| X[?). (1.29)

In order to eliminate the term —A|X*!|? in the right-hand side, we write (1.29) for some ¢’ € [0, 1]
and we then proceed as follows

1 A’ o
V(X)) 2 2X - Yo = 5 D3 xe(0,Yer) - (X, X) = | XH* + S1X [ + o(|XT)
1 g
= X Y — 5 D% xe(0,Yo) + 51 XI? + 0| X]?) (1.30)

1
+5[D%xc(0,Yy) — D xc(0,Yy)] - (X, X)

2
A/ YA
+2(0 - )X - (Y1 - Yy) — %|X1|2 + (ATA) (-9

XU+ S X,

where A" = A(¢),8 = §(0"). We now have to control the following three terms

A
T, = 2(0—0’)2X~(Y1—Y0)—5|X1|2,
1
T = §[D§(XC(O’}/9)_Dg(XC(()vYQ’)]'(XaX%
§—¢ A—A
T3 = X4+ —— X
s = X AR
Fix € € (0,1); taking 6 € [¢,1 — €] and restricting to |X1|§%,We can choose
A|X1‘2
0 =0+—"7—
+4|Y1—Y0|X1’

so that T7 = 0. After few computations we can write

Ty = (V1= Y]> = v1- Yo P)IX]".
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Recalling that M = max{|Yp|, |Y1|}, we have

M
1—1|Y5]2 — V1= Yy |?| < ———|Y7 — Y{||0 — ¢,
|\/ |9| \/ |9||—m|1 OH |
which leads to M
Ty < ——— |V — Yol|0 — 0'|| X 2.
2_m|1 0|| H |

Notice that the constant \/% is very big when Y or Y is close to the boundary of N'(Xp). To
control T3, we observe that

M2
A = A= mm — Yol X'[*|0(1 - 6) — 6'(1 — &)
M2
< ——— V1 - Y|l -0,
(1-M2)38
and
|6 — 0| < Y1 — Yol?|0 — 0]
Using 9’29—&—%,\% obtain
M
‘T2+T3|SWDG—YOHH_GIHXP
1 M? 1
|V, =Yoo= X)? + =Yy — Yo|?l6 — ¢ X|?
3 aE 0~ Dl - IXP 5 - Yol — ¢ X]
M 1 M?
<|l———=t 1+ ——= AV, - Y| ) |X?
_< /71—M2 2( (1—M2)2> |1 0|)| |
< CIXP?,

where C' depends only on M and C' — 400 when M — 1. We can now improve the inequality
(1.30) as follow

1 § ~

B(X) 2 XYy - L D%xe(0.¥9) + X2~ COIXP + o[ XP)

Since ¢ € C3(N) we can replace —C|X > +0(|X|?) by —v|X |3, with v > 0; using (1.28), we conclude
- §
V(X) = —e(X,Yp) +¢(0,Yp) + S| X[ = 0| X [P +o(IX[?). D

The Holder continuity of a function f guarantees that the distance between the images f(a), f(b)
can be estimated through a certain power of |b — a|. In other words, if a,b are close, their images
cannot spread too much. The following proposition provides a preliminary relation between areas in
SN = QA and images (through ) of areas in SV = 9Q. This result, combined with the hypothesis
vy > eHN |gn, will give the desired Hélder continuity of ¢+ on (¢+)~1(T7) c SV.

Let 1 denote Brenier’s potential for (1.2), whose subdifferential 9 contains the support of the
optimal measure v € I'(u, v) which solves (1.2) (see [45] for this characterization). In particular we



20

1. Holder continuity for optimal multivalued mappings

have that t(z) € 9¢(z) for every x € SV. The proof of Proposition 1.7.3 below is based on the
construction of supporting functions for ¥. Once again we reproduce an argument due to Loeper
(Proposition 5.6 of [41]), turned into a local coordinates setting. Many computations are identical
to Loeper’s ones, so we will skip some of the details. In particular, we will postpone the proofs of
Lemma 1.7.5 and Lemma 1.7.6 to the Appendix.

In the following, by ‘zq,z; € SV sufficiently close’ we mean that we can project zo, 21, Yo, Y1
into local coordinates using the same map; we will choose 7y, or 7, .

Proposition 1.7.3 Let zo, 71 € SV be sufficiently close, and yo = t+(x¢),y1 = tT(z1). Let M :=
max{|Ypl|,|Y1|}. Then there exist constants C',C" > 0 (depending only on ||c||cz2), K (depending
on ||c]lc2 and M), and x,, € 7' [Xo, X1] such that, if Uy,([Xo,X1]) C {X : |X — Xo| <1} and

Y7 — Yo| > max{|X; — Xo|, K| X1 — Xo|5} >0,

wt (w ({roe [13]}) crmimx,

1
X1 —Xol)\?
— Cl (| ,
! Y1 — Yo

p = C'nvi =Yol*.

then

where

Remark 1.7.4 Should the hypothesis
Y1 — Yo > max{| X, — Xo|, K| X1 — Xo|5}

fail, we would easily get
Mo \® ,
[tT(z1) — tT(20)| < (1 + m) max{|z1 — zo|, |z1 — 0|5 }.

Proof of Proposition 1.7.83 According to Proposition A.1.0.1 of the Appendix, by subtracting

the affine function
o) = wz(ﬁi)l i) <§ 7 - xi)

i i
i=1 Lo = L1 \ =1

from the cost function ¢, we will not modify the solution to the optimal transportation problem,
and the potential ¢ will be changed into ¥ 4+ ¢. Notice that (¢ + ¢)(xg) = (¢ + ¢)(x1), hence we
can assume, without loss of generality, that ¥(z¢) = ¥ (z1). Suppose we choose to project by means
of m,,. In local coordinates we write Yy = t7(Xy) and Y7 = t1(X;). Hereafter we will continue to
write Xg even though Xy = 0. From this assumption we have

—c(X,Yp) + ¢(Xo, Yo) + ¥ (Xo) < 9(X),
_C(vai) + C(XO’Yl) + '(/}(Xl) < ’(/}(X>7
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for all X in a neighbourhood of Xjy. Since ¥(Xy) = ¥(X1), the difference between the supporting
functions

X = —c(X,Yy) + ¢(Xo, Yo) + 1(Xo),
X = —c(X, Y1) + (X0, Y1) + ¥(X7),

will vanish at some point X,,, in the segment [Xg, X;]. Without loss of generality, we can add a
constant to ¥ so that at this point both supporting functions are equal to 0, i.e.

—c(Xm, Yo) + c(Xo, Yo) + ¥ (Xo) =0, (1.31)

—C(Xm,yl) +C(X07Y1)+’(/)(X1) =0. (132)

This implies
¢(X) > max{—c(X, YO) + C(va YO)7 _C(X7 }/1) =+ C(Xma }/1)}
We apply Proposition 1.7.2 centered at X, and we get

d}(X) > _C(X7 Ye) +C(Xm7YI9)
+ 01— 0|V — Yo 21X — Xnl? — 0| X — Xon|?
= U(X). (1.33)

To proceed we also need an estimate on ¢ from above. We modify Lemma 5.7 of [41] as follows
Lemma 1.7.5 Under the assumptions made above, and assuming moreover
Y1 = Yo| > [ X1 — Xol,
we have, for all X in the segment [Xo, X1],
P(X) < G| Xy = Xo|[Y1 — Yol,
where C3 depends only on ||c(.,.)||c2(sv xsn)-
Lemma 1.7.6 Let X,,, Yy, Y] be defined as above. For Y € RN, consider the function
Fr(X) = —e(X,Y) + o(Xpn, V) + 9(Xon).

Under the assumptions made above, if

o=

Vi - Yol > K[X1 — Xol5, K = (16°C30?) (1.34)

there exist n and p such that for allY € U, ({Yg, 0 e [i, %} })
Y—fy >0 on 0B, (Xn,).

At this point we can prove Proposition 1.7.3. By construction we have fy(X,,) = ¥(Xn).
Applying Lemma 1.7.6 we have ¢» > fy on 0B, (X,,), then ¢ — fy will have a local minimum
inside B,)(X,,) at some point X € B, (X,,). Going back to SV with the ordinary coordinates of
RY, ¢ — f, will have a local minimum at some point z € 7, ' (B, (X)), where fy(z) = —c(xz,y) +
(Tm,y) + ¥(xy,). This will imply —V.c(z,y) € ¢ (x) which is equivalent to y € d¢(x). From
Lemma 1.7.6 we deduce that y - 2 > 0, then y = t7(2) C t* (7, (By(Xn)). O

We now state a general result.
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Lemma 1.7.7 Let ¥ C RY be a convex set and Yy,Y, € X. There exist 0 > 0, pg > 0, depending
only on ¥ and n, such that, for all p € (0, po),

Vol (U, ([Yo, Y1]) N E) > o Vol (U, ([Yo, Y1])).

Let us define ¥ := 7y, (./\A/(Io) Applying Proposition A.1.0.3 of the Appendix and Lemma 1.7.7,
we can write

Y (0 € | 1.5 D)

13

> HNU,({Ys,0 € {474} HNE)

9N N 13
> g 4 i
> o2 Vot w0 e 1.3 )

o 2N
= S M-Vt

WN
= GVl Y - YN, (1.35)

N—-1
where C5 = %% (ﬁ) and wy = Vol (B1(0)). On the other hand, as a consequence of

Proposition 1.7.3,

¥ (0 € | 1.5 D)

< HY (t (5, (By(Xim)))- (1.36)
Lemma 1.7.8 Since (t7)yp1 = v1 and v1 > eHN on SN\ Ty then, for all A C SN\ (t7)"1(T2)

i (A) > eH™ (t4(4)),
and hence

(t+)ﬂd7-LN < %#1-
Using the definition of push-forward measure we have
pa(A) = ()71 (A) = (17 (4)) 2 VoIV (t7(4)). O

Since we are proving a local of Holder regularity result, we can suppose By (X,,) C iX X < %} =:

B. On B the function 71;01 is Lipschitz, and the Lipschitz constant is L = (%) ?. Using Lemma
1.7.8 and Proposition A.1.0.3 of the Appendix, we get

MY (1 (75 (B (X)) < S (72 (B, (X))
< LB, (X)) < CoVol™ (B, (X,0)) = o™ (137

where Cg, C7 depend only on €, L, and N. Combining (1.35), (1.36), and (1.37) we obtain

ﬁn _ o <X1 —X0|)é

Vi = YoVl <
Y1 - Yol - Cs Cs Y1 — Yo




1.8. Bi-Lipschitz estimates for t© when N =1 23

which becomes, after few computations,

2
C’C’/ IN—1
Vi — Yol < CIX, — Xo| 7, C:(é ) '
5

Since M = max{|Yo|, |Y1|}, and

1
2

M
— < (14— Y: — Yy,
ly1 y0|_< 1—M2> Y1 ol
we conclude

1
M 2
|t+(1’1) — t+(x0)| S C (1 + 1_]\42> |.T1 — x0|44N171 . |:|

1.8 Bi-Lipschitz estimates for {* when N =1

Theorem 1.8.1 Consider two bounded, strictly convez, planar domains Q, A C R? with symmetri-
cally suitable measures 1 on O, v on OA. Suppose that the boundaries OQ, OA are C?. Then there
exists two positive constants Ly, Ly such that for all xg € OQ\ Sy there exist x1,xo € O sufficiently
close to xg such that [x1,x2]90 D z¢ and

LiH|sa([z1, 72)00) < v([tT(21),tT (22)]oa) < LaH|sa([21, 22)oq),

where [x1,x2)a0 ([y1,y2)on ) represents the shortest portion of the boundary curve OQ (OA) joining
x1 and x2 (y1 and ys ).

We can analyze this problem in three distinct cases
(1) zg € Sy, tT(mg) € Th;
(2) 29 € So, tT(mg) € T1;
(3) zg € Sy, tT(xg) € Ta.

We recall that if 29 € Sy then t1(zg) € T1, as observed in Remark 3.10 of [27].
In case (1), since both S; and T} are open, there exist x1, o € 91, sufficiently close to xg, such
that zg € [x1,22]o0 C S1 and 1 (x) € [t1(21),tT (22)]on C T1. We have

vt (z1) tT(@2)loa = Azt (@)} [£7(2) € [t (21), 7 (22)]oa]

= p,[l‘l,.%‘g].

Since u, v are symmetrically suitable, there exist €, ¢’ > 0 such that

€ Hloa([r1,22]00) < u([z1,x2]on) < %HLBQ([Z‘th]aQ)-

Taking L1 = € and Lo = % proves Theorem 1.8.1 in case (1).
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In case (2), since T} is open, there exist 1, zo € 0Q, sufficiently close to zo, such that t+(z) €
[tT(z1),tT (x2)]oa C T1. We have

V[t (1), t " (w2)loa = Al{z,t7(2)} [ 17 (2) € [t (1), ¢ (22)]aa]
< plze, z2)an;
on the other hand
v[tT(x), t (22)]loa = wiltt(21), 17 (22)]oa
= ifr1, v2]e0, (1.38)

where pq = (s1)41, with 11 = v|p,ur,. Hence we only need to prove the left-hand inequality of
Theorem 1.8.1.

In case (3), since Sp is open, there exist x1,zo € 0N, sufficiently close to g, such that xy €
[581,1‘2]39 C S1. We have

[t (1)t (@2)loa > @, t7 (@)} [ €7 (2) € [t7(21), 17 (22)]oa]
= plr1, z2]oq-
Hence we only need to prove the right-hand inequality of Theorem 1.8.1.

Remark 1.8.2 Since there exist €,¢ > 0 s.t. eH|oa< v < %’H[a/\ and V1 = V] domve, V2 =V — 11
(which implies spt vy Nsptvy = (), we have

eH L@Aﬂspt V1 < Lspt V1 < :1/7'[ I_aAﬂspt 121
eH |_8Aﬂspt Vo < vy Lspt Vo < :1/7'[ I_aAﬂspt Vo
Remark 1.8.3 For what concerns p1 and pa, we cannot state spt py Nspt e = 0, but it holds true
that spt p1 N spt pe C So. Notice that
p1([z1, x2on) = wi([z1, z2]aa N (So U ST)) + pa([x1, z2]an N S2)
p(z1, z2lan N (So U ST)) + pi([z1, 22]an N S2)
€H|oa([z1, z2]aa N (So U S1)) + 1 ([z1, 22]a0 N S2).

V

Therefore, in case (2), we can suppose [x1,x2|oq C Sao; indeed, from the previous computation, if
[1, 22]oaN(SoUS1) # 0, the only term that we actually need to estimate from below is p1 ([x1, T2]oaN
Sa).

Remark 1.8.4 In order to obtain the bi-Lipschitz estimates for case (2) it is sufficient to prove
that there exists € > 0 such that, for every Sy D [x1,x2]o0 D o,

eH Lagz([:[’l,l’g]ag) < ’H|_3A[t+(l'1)7t+(x2)]a/\). (1.39)
Indeed (1.39) would imply

pi([zr, oloe) = ([t (z1),th (z2)]on)

> Hloa([tT(z1),t" (22)]on)
(1§9) e€M|oa([r1, x2]00),

which, combined with (1.38), gives the desired estimate.
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Since we are dealing with strictly convex, planar domains €2, A C R?, following Definition 3.2.3 of
[1], we can introduce an angular parametrization of the boundaries 92, OA. The angular parameter
¢ (or 0) denotes points on [0,27] = R/27Z = T!, parametrizing the Gauss circle S! so that
f(¢) := (cos¢,sin¢) € S!. Under this parametrization, the points on the domain boundaries, 99
and JA, can be represented by

x(¢) € arg max - n(P) and y(0) € arg max y - n(6).
€00 yEOA

This implies
no(z(¢)) =n(¢)  and  na(y(d)) =n(0).
Let us write the cost function in terms of the angular parametrization
c(¢,0) = |x(6) — y(0)*.
Let us assume that 02 and OA are differentiable with respect to ¢ and 6. Then

Jc ;
99 (@ 0) = 2(2(9) —y(9)) - £(0);

0%c

m(qﬁ,@) = =2lg(0)[|(#)Ina(y(0)) - na(z(e))

= —2[y(0)l|2(#)[2(0) - n(¢)
= —2[y(0)[|2(4)] cos(6) — ¢).
From Lemma 5.2.1 of [1] we know that
t(4)
/ " [9(0)]|Z(p)| cos(d — @)df =0 V¢ € Sa. (1.40)
tt+
Equality (1.40) of [1] holds true if and only if

((0) —y(t7(9))) - #(9) = (x(¢) —y(t™(9))) - #(¢) Vo€ S,
ie. if
[yt (#) —y(t~ ()] - 2(¢)

= [yt (¢)) — y(t™ () |na(9) - i(¢)
=0  VoeS,. (1.41)

Let us define
F(¢) = [yt (¢)) — y(t™ ()] - &(e)-
Thanks to (1.41) we have F(¢) = 0 for all ¢ € T!. In particular, for every ¢, ¢ + h € T!

ApF(9) =
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Fix n € N, and let ¢}, ¢5 := ¢} + h,, € So, for a certain h,, > 0; introduce

AF(g) = [yt (¢3)) — y(t~(65))] - £(45)

o5 — o1
(1) —y(t(47)] - 2(47)
¢5 — o '

Summing and subtracting the following term

[y(*(¢3)) —y(t~(65))] - 2(47)

o3 — oF ’
we get
arra) = D)= ue o) o
2 1
B 3) — v (@) (o)
7 — o
£ ) ot o) (T =20), (1.42)

Now, let n vary in N and construct two sequences {7}, {¢5} C S such that

¢ = lim ¢7 = lim ¢35 € S, (i.e. hy, —0).
n—oo n—oo

Then
A"F(¢1) =0 Vn and lim A"F(¢}) = 0.
n—oo
Since x = x(¢) is differentiable on Sy, we can define
dr -
M
vy = max |—(¢)| > 0.
= e |50

Let us estimate the first term on the right-hand side of (1.42). Since |¢% — ¢7|vd] > H[PT, #5]oq

[y(tt(e5)) =yt (o7))] - 2(o7) < ly(tt(e5)) — y(tT (o7)l|2(o7)]
oy — F B |p5 — &7
H [yt (68)), y(tT (7))]oa (60|
H[¢3, o]0 !
S H [yt (08)), y(t (¢1))]oa
HeE, o1 oq '

By contradiction, let us assume that (1.39) is false. Then, the previous estimate implies

[y (¢3)) — y(t" (¢7)] - (1)
o1 — o7

< gy

< (vd)

(1.43)

—0 as n — oo.
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Claim 1.8.5 Let [¢T, d5]oq be in Sy for every n € N. There exists C > 0 such that for every
n €N
Cloy — ot < [t (o5) =t (o7)]-

Proof of the Claim By contradiction, assume

[t~ (¢5) =t~ (¢7)]

—0 as n — oo

93 — ¢
then ) "
t= (o7 t— (7 t= (") — t— (7
LA ) R U 00 TN Y e ) RSV
H oy, 1o e |95 — o7

where

v = maxgegany “;9( ‘ >0, V neighbourhood of t~(¢*),

vy = minge poqy d—;(qb )‘ U neighbourhood of ¢>.

Since (1.39) is false, this implies
H [yt (65)), y(t (67))]oa + H [y(t* (5)), y(t* (¢1))]oa

—0 as n— oo

H 5, ¢ o
but
H [yt (65)), y(t~ (87)]on + H [y(tF(45)), y(tT (81))]oa
HH [y, oo
- () [yt~ (65)), y(t (67))]oa + vyt (83)), y(t" (47))loa
[ 37¢1]
n2 K95, Pilon _ e

> () plos, oloa (€)">0,

and we get a contradiction. O

Thanks to the Claim we can estimate the second term on the right-hand side of (1.42) as follows

[yt (95)) — y(t~(67))] - 2(47)

% o1
@) @) e
- DO i o,
ol 68) =y @ -y cosa
= T e TODleman

where «,, is defined to be the angle between the vectors
t=(¢5)) —y(t— (o7
YD)y @)
¢3 — of
Since ¢4 > @7 and t~ is locally non-increasing on Ss, as proved by Ahmad in Proposition 3.2.5 of
[1], v, is also the angle between the vectors

y(=(63)) ~ y(t (1) "
ron ey e

(7).
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As n — o0, ay, — a, where « is the angle between the vectors
—y(t~(¢>))  and  &(¢™).
Since ¢>° € Ss, we know that
=Gt (¢™)) - &(¢™) = —na(t™ (¢™)) - na(6™) >0,
which means that cosa > 0. Hence, taking n sufficiently large, cos o, > 0, and
[yt~ (¢3)) — y(t¢(¢3))] - &(07)
—of

(@) <@
T en -ty Oleosan <0 .

We conclude that, as n — oo the second term on the right-hand side of (1.42) tends to a negative
real number equal to Cn (t~(¢%)) - ng(¢>).
Finally, we estimate the third term on the right-hand side of (1.42). We have that

[y(t"(3)) =yt~ (65))] = [y(t" (6)) —y(t~ (¢))]-

Let us assume that x = 2(¢) is C? in ¢, then
£(¢5) — #(¢7)

b5 — P
Denoting with Kq(¢) the curvature of 9Q at ¢, we can write

B(9%) = —[2(¢%) [ Ka(o™)na(6™).

— Z(¢™).

Hence, as n — oo,

e (03) — o () - (R =20
[<t+<¢°0>>— y(t (@) (6%)
= (™) Ka(6™)ly(t* (6=)) - vt~ (6=))] - na(¢™) < 0.

._.I\D*

(1.45)

Recall that A" F(¢7) = 0 for every n. On the other hand, combining the estimates (1.43)-(1.44)-
(1.45), for n sufficiently large, we have that the right-hand side of (1.42) must be negative. This
contradicts the assumption that (1.39) is false, and Theorem 1.8.1 has been proved for case (2).

Remark 1.8.6 In order to obtain the bi-Lipschitz estimates for case (83) it is sufficient to prove
that there exists € > 0 such that for every [y1,y2]on C T, with y1 # ya2, [y1,y2]oa 2 t1(x0),

M [oa([y1,v2]0n) < Hloals" (11), 57 (12)]on)-

Thanks to the symmetry of the problem, one can prove this result following the argument used to
prove (1.39).



Chapter 2

Preliminary results for the proof of
some Harnack estimates

2.1 Introduction

Consider an open set Ep C RY, T > 0, and quasi-linear parabolic differential equations
up — divA(z, t, u, Du) = B(x,t,u, Du) (2.1)

in Er = E x (0,T]. The function A : Ep x RN*! - RN B : Ep x RM*! — R are assumed to be
measurable and subject to the structure conditions

A(x,t,u, 77) N > CO|U|m_1|77\p - CP
m>1: A, tum)| < Cylul™ P~ + P Hul 7 (2.2)

m—1

[B(z,t,u,n)| < Clul™Hn[P~ + CPlul "

Az, t,u,m) - > Colu|™ P — CPlul™ P!
m<1: |A(z,t,u,n)| < Crlu|™ tn|P~1 + CP~ L u|mtP=2 | (2.3)
|B(x,t,u,n)| < Clu|™ HnlP~t + CP|u™+P—2
for almost all (z,t) € Er, for all u € R and n € RY, with p 4+ m > 2, Cy, C; positive constants,
and C non-negative constant. The prototype of equations (2.1)—(2.2) is

ug — div(|u|/™ ! Du|P™2Du) =0, m>1,p>2, (2.4)

which models the filtration of a polytropic non-Newtonian fluid in a porous medium. Equations of
this type are classified as doubly nonlinear and include the standard porous media equation (p = 2),
and the parabolic p—Laplacian (m = 1). From a theoretical point of view, it is interesting to see
how much of the regularity properties of solutions to the two model equations is preserved in this
more general case.

29
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2. Preliminary results for the proof of some Harnack estimates

The aim of the following chapters consists in proving some Harnack estimates for non-negative
local weak solutions to (2.1) both in the degenerate (m +p > 3) and the singular case (m +p < 3).
As for the case m+ p = 3, we limited ourselves to study the stability of the constants as m+p — 3.
This chapter is devoted to the introduction of some preliminary results. In Section 2.2 we prove
proper energy estimates, which are a direct consequence of the structure conditions (2.2)-(2.3).
Sections 2.3-2.4 contain some DeGiorgi-type lemmas. In the last three sections we prove some
estimates on certain Sobolev norms of weak solutions to (2.1).

In the following we denote by = positive constants which depend only on the data, namely
N,p,m,Cy, C;. We will not distinguish these constants by subscripts, but provide that they can be
enlarged without invalidating the inequalities considered. We say that the constant -, depending
only on the data {N,p,m,Cy, C1}, is “stable” as m +p — 3 if

lim ’Y(mﬂpv N7 COa Ol)

m—+p—3

is finite.
Finally, throughout the following chapters, u denotes a non-negative local weak solution to (2.1)
and, if £ € Ry, We set

(u— k)1 = max{u — k,0}, (v —k)_ = max{—(u —k),0}.

2.2 Weak solutions and energy estimates
A function u : Er — R is said to be a local weak solution of (2.1) if

m4p—2

uwe C(0,T; L (),  |ul"7=T €L (0,T;WEP(E)), (2.5)

loc loc
/ updx
K

and

t2 t2
+ / / [—upy + Az, t,u, Du) - Dy)dxdt
t1 t1 K

ta
= / / B(z,t,u, Du)y dxdt, (2.6)
t1 K

for every compact set K C FE, for every sub-interval [t1,t2] C (0,7] and for every test function

v e Wh2(0,T; L2(K)) N LY

loc loc

(0,T; W,y P (K)).

In (2.5) we require integrability hypothesis on u so that the integrals in (2.6) are well defined. We
could distinguish the cases m > 1 and m < 1 to have the sharp integrability hypothesis on u. For
simplicity, we prefer to maintain a univalent definition.

We denote by K,(y) the cube of RY centered at y with edge 2p. If y = 0, we simply write K,
instead of K,(0). For § > 0, We set

Q; (9) = Kp X (—9,0?’,0],
Q(0) = K, % (0,0,7].
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Definition 2.2.1 The partial differential equation (2.1) is parabolic if it satisfies the structure
conditions (2.2)-(2.3) and, in addition, for every weak, local sub(super)-solution u, the truncations
+u—k)t, (u—k)_, for all k € R, are weak, local sub(super)-solutions of (2.1), with A(z,t,u, Du)
and B(z,t,u, Du) replaced respectively by

Az, t,k+ (u—k)x,£D(u—k)1),
B(z,t,k+ (u—k)x,£D(

Proposition 2.2.2 [fm > 1, there exist two positive constants w,y, depending only on N, p, Cy, C1,
such that for every cylinder (y,s)+Q, (0) C Er, k € Ry and every piecewise smooth cutoff function
¢ vanishing on the boundary of K,(y), with ¢; > 0, it holds

sup /Kp(y) (u — k)3CP(x, t)da — / (u—k)2¢P (2,5 — 0pP)dx

s—0pP<t<s K,(y)

+w// u™ D (u — k)+|P¢Pdxdt
(¥,9)+Q; (0)
< 7// (u — k)3CP pdadt

(v,9)+Q; (0)

+7 // ™ (u — k)| D¢ |Pddt
(¥,8)+Q, (0)

+ // (Cpum_l(u — k)5 + CpX{(u_k)i>0})defvdt.
(¥,9)+Q; ()

(2.7)

Analogous estimates hold in the cylinder (y,s) + Q[f (0) C Er. The constants w and 7 are stable
asm-+p— 3.

Proof We prove (2.7) for (u — k)_. We proceed formally, multiplying both sides of (2.1) by
—(u — k)_¢? and integrating on K,(y) x (s — 0p”, 7], where s — 6p? < 7 < s. As in general u;
does not make sense for a weak solution, to give a rigorous proof of (2.7) we need to introduce the
Steklov averages of u. We refer the reader to Proposition 3.1 of Chapter II in [16] for details. We
obtain

—// ug(u — k) _¢Pdxdt
Ky (y)x(s—0pP,7]

= — // Az, t,u, Du) - Dux{(u—k)_>01¢Pdxdl
Kp(y)x(s—0pP,7]

+p// A(x,t,u, Du) - D¢ (u — k) (P~ dadt
K, (y)x(s—0pP,7]

- // B(z,t,u, Du)C? (u — k) _dzdt.
Kp(y)x(s=0pP,7]
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Concerning the left-hand side, we have

—// ug(u — k)_¢Pdadt
Kp(y)x(s—0pP,7]

’ — k)2 ) CPdtd
. / [(u — k)2 )i CPdtda

K, (1 —0pP

—

\%

(u— k)%{p(x, T)dx

—

Ky(y)

NI"™ NI o= N -

(u — k)2 (P(x, s — 0pP)dx
)

// (u — k)2 ¢P~1¢, dadt.
(y:5)+Q, (9)

On the other hand, from the first condition in (2.2) it follows that

A

— // Az, t,u, Du) - DuX{(u—k)_>0}¢Pdxdt
Kp(y)x (s—0pP,7]

< —Cp // u™ | D(u — k) _|P¢Pdxdt
K, (y)x(s=0pP,7]

+ CP // ¢P X{(u,k)7>0}d1‘dt
K, (y)x(s—0pP,7]

and from the second condition in (2.2) and Young inequality it follows that

// |A(z,t,u, Du)| |D¢| (u — k)_ ¢P~*
K, (y)x(s—0pP,7]
<o // WY D(u — k) P17 DC (u — ) -
K, (y)x(s—0pP,7]
ro ff W5 D (u — )
K,(y)x(s—0pP,T]
< 5// u™ | D(u — k)_|P¢P
Kp(y)x(sfepp,‘r]
vere || W DEP (u — k)P
Ky (y) % (s—0p7 7]
4 // WD (u— k)P
Ko (y)x (s—0p,7]

+C? // CPX{(u=k)_>01}-
K, (y)x(s—0pP,7]
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Finally, the third condition of (2.2) implies

// |B(x,t,u, Du)| (u— k)_ (Pdxdt
Ky (5) % (s—0p7 7]
< CPC, // u™ 1 (u — k)P (Pdadt
(s—0pP,T]
te // W™D — k)_|PCPdadt
K, (y)x(s—0pP,T]
+CP // u™  (u — k)P CP dadt
K, (y)x(s—0pP,7]

e // C;DX{(u*k)_>0}d3;‘dt.
K, (y)x(s—0pP,7]

Combining all the estimates so far, choosing ¢ small enough, and then taking the supremum over 7
we obtain (2.7). By the same argument, we deduce estimate (2.7) with (u— k), instead of (u—k)_.
O

Remark 2.2.3 By a simple computation, it is possible to rewrite estimate (2.7) with a slight
change in the third integral on the left-hand side, namely

s [ PRCRUECOIS | kR -0

s—0pP<t<s K,(y)

+w // u™ Y D[(u — k)] |Pdxdt
(v.5)+Q; ()
< 7// (u — k)2CP Gdadt
(¥:9)+Q; (0)

+7 // u™ H(u — k)R |D¢|Pdadt
(4.9)+Q; (9)

o[ (€7 (= )% + CPx (a5 ) P,
¥,8)+Q, (0)

possibly for different values of the constants 7, w

Proposition 2.2.4 Ifm < 1, there exist two positive constants w,y, depending only on N, p,m,Cy, Cq,
such that for every cylinder (y,s)+Q, (0) C Er, k € Ry and every piecewise smooth cutoff function
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¢ vanishing on the boundary of K,(y), with (; > 0, it holds

sup /}((y)(u— VR tde =7 [ (K- as— 6)ds

s—0pP<t<s K, (y)

+wkm*1// |D[(u — k)_(][Pdxdt
(¥.9)+Q; (6)

< 7<k2 / / Xu<k)(Grdadt
(v,9)+Q; (0)

+Emtp—1 // Xiu<k] (CPCP + CP + |DCp)da;dt), (2.9)
¥,8)+Qp (9)

where
m4+p—2

l= ]

Analogous estimates hold in the cylinder (y,s) + Q;‘ (0) C Ep. The constants w and 7y are stable
asm+p— 3.

Proof Suppose (y,s) =0, and fix k > 0. In the weak formulation (2.6) take the test function
p=—(u —k)_¢
over the cylinder Q; = K, x (—6p?,t], for —0p” <t < 0. Since [ € (0,1), we have

[RE = sty pds > LR (w— k)2,

JE = 1) wds < Khu— k),

and we estimate

- // (u! — kY _¢Purdzdr
/ /k(kl o Sl)+d3Cp($,t)dx _/ /uk(kl _ Sl)+dscp(x7 —0pP)da
N // / — s')pds¢P e dadr

kl 1/ (u — k)% ¢P(x, t)dx—kl/ (u — k)_dsCP(z, —0pP)dz

K/’
— 2k‘l// u—k)_CP ¢, dxdr.

Applying the structure conditions (2.3) and Young’s inequality, we estimate the term containing

v
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the function A
// Az, 7,u, Du) - D(—(u! — k) _¢P)dxdr
> 1Cy // um+l_2X[u<k]C”|Du|pdxdT
t

—lcP / / WPy g (Pdadr

Q:
e // w (! — k)¢ D¢ Dufr ! dadr
_pcpfl // um+p72(ul _ kl)_cp71|DC|dIdT

3 p—1 D lip

> ZCOZ o X[u<k)C"|Du' [Pdzdr

gt // Xty (CPCP + | DCIP)devdir.
Q¢

Applying the structure conditions (2.3) and Young’s inequality, we estimate also the term containing
the function B

// |B(z, 7,u, Du)|(u! — k') _(Pdxdr
< C// u™ HDu|P~ (u! — kY _(Pdxdr
+CP // u™ P2 (ul — kY _¢Pdadr

_G
2%? 1 //Q X(u<k CP| DUl Pdzdr 4 ~CPEP //Q X(u<k CPdadr.

Notice that, since [ € (0,1),
// D(u! — kY _|¢Pdxdr > IPEY // D(u — k)_|P¢Pdxdr;
(0 ’ (0

[D(u— k) -CII” < pllD(u = k) -[P¢P + (u — k)2 |DCJP).

moreover

Combining all the previous estimates, and dividing everything by k'~!, we obtain the thesis of the
proposition. O

Proposition 2.2.5 Ifm < 1, there exist two positive constants w,y, depending only on N, p,m,Cy, Cq,
such that for every cylinder (y,s)+Q, (0) C Er, k € Ry and every piecewise smooth cutoff function
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¢ vanishing on the boundary of K,(y), with (; > 0, it holds

sup — k)2 ¢P (2, t)dx
s—0pP<t<s Kp

—;/ (1= K)o CP (a5 — 7)o

K, (y)

4w k™1 // VP D[(u — k) ][Pdxdt
5)+Q; (6)

< v/ T X s CP (@, —0pP ) da

P

+y // ul+1X[u>k]<p71@.dmd7‘
(y,5)+Q, (6)

4 / / WP(CPCP 4 |DCP) sy dadr
(y,5)+Q, (9)

+y / / (ul — KNP (CP¢P + |DCPP)dadr, (2.10)
(v,5)+@Q; (6)

where
m-4+p—2

p—1
Analogous estimates hold in the cylinder (y,s) + Q;‘ (0) C Ep. The constants w and 7y are stable
asm+p— 3.
Proof Suppose (y,s) =0, and fix k > 0. In the weak formulation (2.6) take the test function

o= (u' = k)CP
over the cylinder Q; = K, x (—0pP,t], for —0p? <t < 0. We proceed as in the Proof of Proposition
2.2.4. By means of

l:

L8t =k ds > a1 u— k)2,
[ (st = B pds < ul s,

the term containing u, can be estimated as

I = ) e
-/ p 6= Ky sdscr )
- / | = Ky sdscr o, o)
_p//t/ of — k) s dscP\Codadr

/ W — k)P (o, ) — / W sy P, —0pP)de

—p// / (s — kY ds¢P~ ¢ dadr.



2.3. A DeGiorgi-type lemma

37

We split the term containing the function A into
/Q A(z,7,u, Du) - D[(u! — k') ¢Pldxdr
= // A(z,7,u, Du) - D(u! — k') (Pdaxdr
= // | A(z,7,u, Du) - D(CP)(u! — kY4 dadr,

and we estimate the two terms on the right-hand side using the structure conditions (2.3) and the
Young inequality. We obtain

// A(z,7,u, Du) - D(u! — k) (Pdxdr
zzl—Pco// |D(ul—k:l)+|p§pdxd7—l0p// WX s (Pdadr,
t Q1
and

/ A(z,7,u, Du) - D(CP)(u! — kY4 dedr
Q

gzlfp%// |D(u! — kY4 [P¢Pdadr

+y (Cp // P X (s CPdzdr + // (u! — k:l)fﬂDdexdT) .
Qt t

Applying the structure conditions (2.3) and the Young inequality we estimate also the term con-
taining the function B

// B(z,7,u, Du)(u' — k'), (Pdxdr

gllfp%// |D(u' — k"4 |P¢Pdadr

+~yCP (// (ul — K (Pdzdr + // ule[u>k]dexdT> :
t Qt

Combining the previous estimates we obtain the thesis. O

2.3 A DeGiorgi-type lemma

Denote
py > esssup u, p— < essinf w, w=py—p_.

[(¥:8)+Q3,(6)] ([y,8)+Q2,(0)]

Since the singularity occurs at u = 0, we will assume at the outset that u_ = 0 so that w = p..
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Lemma 2.3.1 (DeGiorgi-type lemma) Let u be a non-negative, locally bounded, local, weak
solution to equation (2.1) in Ep. Let £,a € (0,1). Then the following two assertions hold.

(i) There exists a positive number v_, depending upon 0,w,&,a, and the data {m,p, N,Co, C1},
such that if

lu < &N [(y, s) + Q2,(0)]] < v-|Q3,(0)]
then either
(Cp)P > min{1, (§w)™ =1}

or
u > alw a.e. in (y,s) +@Q, ().

(ii) There exists a positive number vy, depending upon u™,w, 0,€, a, and the data {m, p, N, Co,C1},
such that if

[u > p" = &w] N [(y,5) + Qa, (O)]] < v41Q5,(0)]
then either
(Cp)? > min{1, '~ (€w)"}
or
u < py — aw a.e. in (y,s) +@Q, (0).

The numbers v_ and vy are stable as m +p — 3.

Proof of Lemma 2.3.1 for m > 1,p > 2. From now on we assume Cp < 1. We limit ourselves
to proving (i) in the case when (y,s) = (0,0). This is always possible by using a translation. To
keep u away from 0, we define

v = max{u, afw}.

We set
pn=p+£, Kn=K,, Qun=K,x(~002,0], (2.11)
- _ 1—a
k, = &,w, where &, =al+ on &, (2.12)

for n=0,1,2,... and we choose ((z,t) = (1(x)(2(t) as a cutoff function on Q,, such that

1 in Kn+1 1 2n+1
- i DG < = : 2.13
Cl { 0 in RN\KTL | Cll - Pn — Pn+1 p ( )
and
0 i t<—0p2 gp(n+1)
2= { 1 it > —0p8 0= (@)= =5 (2.14)
We also set
Ap
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We apply the energy estimates (2.8) on @, for (u — k,)— and ¢ defined as above, getting

sup /( )Cpxtderw// u™ Y D[(u — ky,)_¢]|Pdxdr

—0ph <t<0

< 7// u— ky)? P G dadr + 7// u™ VN (u — k)P |DC|Pdadr

n

+ 75 / Cpum_l(u - kn)’i + CPX{(u,kn)7>0})dexdT. (2.16)

At this point, we need to estimate the left-hand side from below and the right-hand side from above.
Aséw > (u—kp)- > (v —k,)— and p > 2, we easily have

/ (u — kp)2CP (2, t)d > / (v = kp)2 CP(z, t)da
K, K,
> (gw)rr /K (0 — k)P CP(2, t)d

n

Moreover,

e 1// |pd$dT<// "HDI(v = kn) (P dadr
//Qm{w} u™ ! D[(u = ky) (] [Pdwdr

* // (afw)mil(v - kn)g|D<|pdxdT
Qnn{u<v}

// ™1 Dl(u — ky)_(|Pdwdr

+ / / v (a€w)™ (u — kn)? | DCPdadr.

Using (2.13), (2.14) and noticing that v < &w, when (v — ky)— > 0, by (2.16) and the previous
estimates we get

sup  (€w)>? / (0 — kn)? CP (1) da

—0pE <t<0

+ w1 (alw)™™ 1// _(]|Pdxdr

9p(n+1)

<t >|A|(()p2 (&)™ 4 (Cp)P ()™

&)

Note that, by the definition of v, there holds A,, = {v < k,} N Q,, for every n. Assuming

(Cp)? < (gw)rt™~,
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and recalling that Cp < 1, we can estimate
s (60 [ (k)L e

—0ph <t<0
+ w1 (aw)™™ 1// _(]|Pdxdr

9p(n+1)

< >|A(()p2 T ()™ ) (2.17)

Applying Holder inequality and recalling that { =1 on @41, it turns out that

<12”_+?>p (Ew)P|Apq1] < //QHH(U — kp)? dadr
< (//n[(v — ky)_C]? o

From Proposition B.3.1, it follows that the right-hand side of (2.18) can be estimated by

(i)

><< sup /|(v—/<:n)_C”(x,t)da:> NPRE (2.19)
K,

—0ph <t<0

) - A, |75 (2.18)

where v depends only upon N, p. Now, combining estimates (2.18), (2.19) and (2.17) we find

92np —m+1N (1—m)N+(p—2)p 1
A, < Nip Nip S — m—1
| +1| 7(1 a)pppa’ (€W) <0(£w)p2 + (gw) >

Recalling that Y,, = %, the last inequality can be rewritten as
22np L4 0(Ew)Pt™=3) 1442
Yn+1 S Y (m—1)N ( ) Yn NP .

a Nt (1 —a)P (9(5w)p+m*3)NLﬂ

If [Ao| < v—[Qol, where

oy Y
(m—1)N 1 . a)N-H? (9(5w)?+m73) P

vo=vya » ( Nip (2:20)
(1 + 9(§w)1’+m*3) B
then Lemma B.4.1 implies that Y,, — 0. This means that

u>afw in Q;(G),

which is the thesis. O
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Proof of Lemma 2.3.1 for m > 1,p < 2. Maintaining the definitions (2.11)—(2.15), for p < 2
we have (? > (2. Applying the energy estimates (2.8) we get

sup /K (v — kp)2 P (x, t)dx

—0ph <t<0
4wy (abw)™ / / ID{(v — kn)_C)IPdedr

1

9p(n+1) , 1
ST (Ew)?[Anl (9(@’)”2 + (§w) ) :

Applying Holder inequality and recalling that { =1 on Q,,41, it turns out that

1— p
(271?) (Ew)P|Apia] < //Qn+1 (v — kn)lid;(;dT

N

< <// o kn)_g]PNN“dxdT> Ve~ (2.21)

From Proposition B.3.1, it follows that the right-hand side of (2.21) can be estimated by

1 JI vl b)) -

><< sup / |(v—kn)C|2(x,t)dx>
—0ph <t<0J K,

where v depends only upon N, p. Combining the estimates (2.21)—(2.22) we get

P

+2 P
|Aa| 75, (2.22)

N

onp(1+335) ,(1-m) <5 (1 +9(§w)p+m73)%ig e
|An+1| < Y N+p N(ptm—3) |A7L| N2
L=al (o) ()™ ¥
Recalling that Y,, = ‘lg”ll, the last inequality can be rewritten as
2“17(1+ %i’;) 140 p+m—3 %ig
Yo <~ (14 6(¢w) ) Y|+

(1 — a)Pa(m_l)NLﬁ (9(€w)ll+m—3) NJXQ

If [Ao| < v-[Qol, where

N
P

m—1)N 0 p+m=3
%(1 — )N t? () ) —

(1 +0(Ew)ptm=3) »

v_ =na (2.23)

then Lemma B.4.1 implies that Y,, — 0. This means that

u>atw inQ;(8),

which is the thesis. O
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Remark 2.3.2 Summarizing, when m > 1, the number v_ of Lemma 2.5.1 is given by

N
v_ = Vaw (1 — a)N+max{2.p} (O(gw)™ P72
(1 + 0(6w)m+p=3) 5"

Proof of Lemma 2.3.1 for m < 1. We limit ourselves to proving (i) in the case when (y, s) =
(0,0). This is always possible modulo a translation. We maintain the definitions (2.11)—(2.15).
We write the energy estimates (2.9) on @, for (u — k;,)—. The second term on the left-hand side
vanishes because of the choice of the cutoff function (. The first term on the right-hand side is

majorized by
opn

k2|A,|.
Yo ol An]

Either Cp > 1 or, taking into account that k, < £w, the energy estimates give

sup / (u — k)% CP(x,t)dz
Ky (y)

s—0pP<t<s
+w k™ 1// (u — k)_|P¢Pdxdt
(¥:9)+Q, <9
2P o (14 Qkmtp=3)
S T e Al (224)

Let us first suppose p > 2, then
(= kn)2CP 2 kP (u = kn)2.CP > (6w)* 7P (u — ki) 2.CP,

and the first term in the previous inequality can be estimated from below

sup / (u — k)% (P (x,t)dx
s—0pP<t<s JK,(y)

> (@ s [ PR
Y

s—0pP<t<s

Applying Holder inequality and Proposition B.3.1, we have

N

(1%?) (6w) |An+1<(// (1= k) R daar ) 14,155
)

D

N+p
X ( esssup (u— kn)fgpdx> |An | ¥55. (2.25)

—0p5 <=0 [y

Combining (2.24) and (2.25) we deduce

np

2 P 1 P
(m+ -3) %7 1++5.
|An+1| < ’ym(&*}) e e (1 + e(fw)m—&-p—3> |An| NEP
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recalling that Y, = ;g"l‘ , the previous inequality becomes

2mP _ p 1+ 9(§w)m+p_3 _p
< m+p—3\Np I+ 5 P,
Yy < 7(1 — (0(&w) )NF ( DGy |An| ¥

By Lemma B.4.1, Y, — 0 as n — oo, provided

A m+p—3 x
Yo =22 <H(1—a)Vt? (6(ew) ) pNﬂ, =1v_. (2.26)
0 (1+60(Ew)mtr=3)">
If p < 2, the energy estimates (2.9) give
sup / (u— k)23 (x, t)dx
s—0pP<t<sJK,(y)
o kL / / \D(u— k)_|PCPdudt
(:5)+Q, (0)
< vpﬁ(fw)“ 1Wv1n\- (2.27)
Applying Hélder inequality, Proposition B.3.1, and (2.27), We obtain
2n m—+p—3
Yol < 2 (14 0(¢w) pN) Y, [
(=) (§(ewym )75
Lemma B.4.1 leads to the thesis with
0 m+p—3 %
v_i=~(1— a)N+2 (0(Ew) ) - 0

(14 0(gw)mrr=3)"

Remark 2.3.3 Summarizing, when m < 1, the number v_ of Lemma 2.3.1 is given by

N+max{2,p} (9(§w)m+p—3);

(L B(gwymer—) =5

v-=7(1-a)

Remark 2.3.4 (Proof of (ii)) The second part of the statement can be proved more easily, since
we do not need to introduce any truncation of w. It suffices to replace k, with kn = by —Epw and
to apply the energy estimates (2.8) when m > 1 ((2.10) when m < 1) for (u—ky,),. For the sequel,
we just need to know the explicit expression of vy which is given by

(2.28)

N+p *

(1 + 9(5w)p+m*3) P

m+p+N—1 0 p+m—3 %
vy = (1 — a)NFTmax{Zp} (5w> (6(&w) )

H+
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2.4 A variant of DeGiorgi-type lemma

Assume now that some information is available on the “initial data” relative to the cylinder (y, s) +
Q;rp(ﬂ) C Erp. Say for example

u(x,s) > &M for a.e. x € Ka,(y), (2.29)
for some M > 0 and £ € (0, 1]. Then the following lemma applies.

Lemma 2.4.1 (Variant of DeGiorgi-type lemma) Let u be a non-negative, locally bounded,
local, weak solution to the equation (2.1) in Ep. Let a € (0,1) and suppose that (2.29) holds true.
Then there exists vy € (0,1), depending only upon a and the data {N, m,p,Co,C1}, such that, if

lu < €M) [(y,5) + QF,(0)]] < Wgﬁmipwn, (2.30)

then either
(Cp)? > max{1, (fM)p+m_1}

or
u>a€M in K,(y) x (s,s +0(2p)7]. (2.31)

The number vy is stable as m +p — 3.

Proof of Lemma 2.4.1 for m > 1 Let us consider

Pn = P+ 2%7 Kn = Kpn7 én = Kn X (079(2p>p]’
1—a

2n

&n=al+ £, (2.32)

and a cutoff function ((z,t) = ((z) independent of ¢ and satisfying (2.13). We define
© = max{afM,u}.

Let us first assume p > 2. From the energy estimates (2.8) for (u — &,M)_, @Q,, and ¢, arguing
as in Lemma 2.3.1, it follows that

sup (fM)Q‘%( (5 — E M) (2, )CP () da

0<t<6(2p)P n
o agM)™ [ |DI(@ - ¢ M) Pdadr
op(n+1)

<7

ey (et s orpeanm + SR,
p ni»
PP (EM)P
where gnd:ef{u < an}ﬂQvn ={o< §nM}ﬁén, n =0,1,2,.... Note that the integral on the lower
side of the cylinder @),, vanishes as a consequence of assumption (2.29) and the fact that &, < &.
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At this point, assuming (Cp)?P < (EM)PT™71 we get

sup <5M>H/ (6 — EaMY? (2, 1)CP ()
)P K

0<t<6(2p n
4 ww(aﬁM)m_l//N ID{(6 - &,M)_C|Pdedr
Qn
9p(n+1)
pp

After some computations, which are completely similar to those in the proof of Lemma 2.3.1, we
obtain

(M A, |

<7

~ 22np _ P ~ P
|Aps1] < V5w (M) Pt w5 | A, |1 v (2.33)
a N¥p (1 — a);ﬂpp

Setting Y, = l‘g:"l‘, (2.33) yields to

D ~1+NL
+
+pYn P

. 22np ( +m—3)
Yo < v (0(eM)? )~

a ~tp (1 —a)P

The thesis follows from Lemma B.4.1, provided }70 < v, with

GG

14

where
(m—1)N

vw=va » (1—a)N'P,

If p < 2, from the energy estimates (2.8) for (u — &, M)_, C~2n and (, arguing as in Lemma 2.3.1,
it follows that

sup / (5 — £ M2 (2, 1)C3 () da

0<t<6(2p)¥ K,,
5 ml Di(v §n 7< Pdxd
+ @y (a€M) //~n| [( M)_(]|Pdxdr

op(n+1)
<7

(EM)PT™ 1A,

pp
After some computations, which are completely similar to those in the proof of Lemma 2.3.1, we

obtain
onp Y p

(9(§M)p+m_3) oz };—nl+ N¥Z

YnJrl é Yy

am (I-a)

The thesis follows from Lemma 4.1, provided Yy < v, with

Vo

G

14

where
(m—1)N

vo=va » (1—a)Vt2 O
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Remark 2.4.2 Summarizing, when m > 1, the number vy of Lemma 2.4.1 is given by

(m—1)N

=~va 7 (l—a

)N+max{2,p}’

Proof of Lemma 2.4.1 for m <1 Once more we consider the sequences (2.32) and a cutoff
function ((x,t) = ((x) independent of ¢ and satisfying (2.13). Applying the energy estimates (2.9)
to (u — kp)—, with k, = &, M, over the cylinder @,, and the indicated choice of (, we get

ess sup / (u — kn)? (z,t)CP(x)dx

0<t<0(2pn)P

+wwCok 1 // —_(]|Pdzdr

< kPt // X[u<k] (¢ + ¢¥ + [DC|P)dxdt.
Q”L
Either Cp > 1 or

ess sup / (u— kp)? (z,t)¢Pdx

0<t<0(2pn)P

+wCokm ! // _C)|Pdxdr

2 m—
<A (EM)PFTH A,
pr
Starting from this inequality, we proceed as in the proof of Lemma 2.3.1 to obtain

=3\ s o L N E T
(G(EM)P ) N+tmax{2,p} Yn Pr

The thesis follows from Lemma B.4.1, provided Y < v, with

Vo
V= —————,
O(EM)p+m=3
where
vy =7 (1 _ a)N+max{2,p}. 0

2.5 A L! — form of the Harnack Inequality for 2 < m +p < 3

loc
Proposition 2.5.1 Let u be a non-negative, local, weak solution to the singular equations (2.1)-
(2.2)-(2.3) in Ex. There exists a positive constant v depending only upon the data {p,m, N, Cy, C1},
such that for all cylinders Ka,(y) % [s,t] C Ep, either

m— t—g\3m»
Cp > min{l,e e 1}, where €= ( - > ,
p
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or

sup / w(x, 7)dx
s<T<t JK,(y)

oo (597
<« in w(x, 7)dr + 7y
s<T<t J s, (y) P

where A = N(p+m — 3) + p. The constant v = v(p,m) — oo as either m +p — 3,2.

Lemma 2.5.2 Let u be a non-negative, local,weak solution to the singular equations (2.1)-(2.2)-
(2.3) in Ep. Assume m > 1. There exist positive constants 7,w, depending only upon the data
{p,m, N, Cqy, C1}, such that for all cylinders K,(y) x [s,t] C Ep and all o € (0,1), either

ptm—1 t_ 3—m—p
Cp > min{l,e +P }’ where € = ( S) ,
pp
or
t 1 m=3 -1
7P (u+e) » u™ | Dul|P(Pdadr
S Kap(y)
1.4 14 pEm=3
+w Tr (u+te) v (z,7)(Pdxdr
Q
; 1
P —S\7 N 2ptm=3
< vV S P
<ty (5) e
where

s<T<t

S = sup / u(zx, 7)dx, A=N(p+m-—3)+p.
K, (y)
The constant v = v(p,m) — 0o as either m+p — 3 orm+p — 2.

Proof Assume (y,s) = (0,0), fix o € (0,1), and let z — {(z) be a non-negative, piecewise smooth
cutoff function in K, that vanishes outside K, equals one on K,, and such that

D < —r.
= oy
In the weak formulation, over the cylinder @ = K, x [0, ], take a test function

+m—3
@:—T%(u+e)p P Cp, fOI‘SOHl6€>0,

modulo a Steklov averaging process. We obtain

// u,pdrdr + // A(z,7,u, Du) - Dpdxdr
Q Q

= // B(x, ,u, Du)pdzdr.
Q
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We estimate each term separately

//Q uTSOdl‘dT = _%:ﬁ / T% (U + 6)1+p+273 (l’, T)dexd”r

T // o () T (o, ) (2.34)
applying the structure conditions (2.2)
// Az, 7,u, Du) - Dpdxdr
3 Ul pC’o// o (u+€e) 7 um Y DulPCPdedr
_3om- TP // %u+e T dexdT
—pCh // rr(ut ) F um DulPY DE|CP  dadr
—p/ CPlri(u+ ) u e | DC|CP dadrs (2.35)
// SCTUDU)( %(que) 73Cp)dxd7'
SC//QTP(u—l—e) 73um_1|Du|”_1dexdT
(2.36)

+C // CPlri(ut ) u T (Pddr.
Q

Combining (2.34), (2.35), and (2.36) we obtain

3—
m= p// TP u—|—€ oy 1|Du|p<pdl‘d7

2p+m 3// 7 N+ ) T (2, 7)CPdudrdadr

= m E/K (u+ )T (2, t)(Pda
P

3 — — m—
J3-m p/ CPr3 (u+ €) "7 CPdadr
Q

* // (pCLCP Y DC| + CCP) 73 (u+€) =5 ™ | DulP~ dwdr
Q
pt+m—3

p—1(, p—1 P\rn o
+//Qc (hCP1DC| + OCP)rH (u + o)

m—1
u r dxdr.
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From this, applying Young’s inequality

// 7P (u+€) e Y Du|P¢Pdxdr

+

—i—w// 7'571(u—|—6)1+p P (@, 7)¢Pdadrdxdr
Q

< vt%/ (4 )5 (2, 1) CPda
+ // 75 (u+ )P um (| DCP + CCP)dadr

+'y/ CPTP u+e) deach

where v = y(data) tends to co as either m + p — 3 or as m + p — 2. By Holder’s inequality

i / (4 )5 (2, 1) CPda
K

P

< qytv /
K
2p+m—3

’ (3=m—p)
< ytv < sup / u(:v,7)dx+e(2p)N> o S
KP

2p+m—3

(u—i—e)(m,t)dx) K, 5

P

0<r<t

Next

¥ // 77 (u+ )P (| D + CCP)dwdr
Q

1 P
+Cpp//7_pu+6p+m3(u_’_6)

1—0' Ppp

1+CP 1 2ptm=3
L+ CPP ppmsyitd sup / (4t =2y
(1 —o)p? o<r<t /K

P

1
1_|_Cppp pim—3 t\?P N\ 2pEm=3
<oy () ()
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Finally

'y/ C’pT%(u—i—e)mT_stdxdT
Q
<7—// 75 (u+ Pt (Pdadr
p p+m 1+ p
ep+m 1//7’ dexdT

1
t eptm=3 t\» m—
< ypCPp” E(p) (5 +ep™) 7
p

pP eptm—1

Combining the previous estimates
// 75 (u+€) "7 u™ | DulPPdwdr
+w// 7571(u+6)1+p+?73 (x,7)(Pdxdr
Q
14 ¢ +m—3 Crp? t +m—3
< P ) ep 2 ep
<oty [1rar e () et 1 ()

g (t) (S +ep™) 5

pp

1

Choose € = (pip) """ Either Cp > min{1, epﬂsil} or we are done. O

Lemma 2.5.3 Let u be a non-negative, local,weak solution to the singular equations (2.1)-(2.2)-
(2.3) in Er. Assume m > 1. There exists a positive constant 7, depending only upon the data
{p,m,N,Cy,C1}, such that for all cylinders K,(y) x [s,t] C Er and all o € (0,1), either

+m—1

b t—s\7r
Cp>min{l,e » }, where 6:< 7 ) ) (2.37)

or

1
I t \3—m-»p
7/ / u™ Y DuP~ dedr < 6S + Py— 7 — <A>
PJs JK,, §3mp (1—0)3m—s \P

for all § € (0,1). The constant v = y(p,m) — oo as either m+p — 3 or m+p — 2.
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loc

Proof Continue to assume that (y,s) = (0,0) and that C violates (2.37). Applying Holder’s
inequality and Lemma 2.5.2

t
/ / u™ | DulP~ dadr
0
/ / e)mp 3) <pp1> (m—1){e=1) |\ Duf- 1}

@B—m) (p—1) 1) m—1

[T = (ut+e€) 7 7 B }dxdr

p—1

</ / (u+e) s u(m_l)DupdxdT>
, - N !
) / / 77 (u+ e)(g_m)( 7 dedr
0 JK,,
p—1

P
(/ / % (u+e) mP u(m=1) Dupd:cd7'>
1
(/ / o (u+e) Al dxdT)

IN

IN

t 2p+m—3
<A S P
VGUW(M)( +ee)
Finally, applying Young’s inequality to the right-hand side, we obtain the claim. ([

Proof of Proposition 2.5.1, case m > 1 Assume (y,s) = (0,0) and for n =0,1,2,... set

~ Pn t Pnt1 :
pn7 pn—% Kn:Kﬁnv

o2

I\D‘b

and let x — (,(x) be a non-negative, piecewise smooth, cutoff function in K, that equals one on
K, and such that |D(,| < 2t

cylinder K, x [11, 2], with 71,7 € [0,1]; after few computations we obtain

. In the weak formulation (2.6) take (, as a test function over the

/ u(x,Tl)CndJ;S/ u(z, 72)dx
K,

KQP

T2
/ / u™ | DulP~ dadr
T1 f(n
T2

m—1

2n+2

(C1+p0)

n—+2
+5—CP7H1 + pC)

(2.38)
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The integral of the second term in the right-hand side can be estimated by means of Holder’s

inequality as follows
T2 m—1
/ / u r dxdr
T1 kn

T2
/ / udxdr
T1 f(n
1 _

m— mA1

S tSn—‘fl (QP)NP P )

<

m—1 p—m+1

P 2 P
/ / dxdr
T1 Rn

<

where
Sp = Sup/ u(x, 7)dx.
Kn

0<r<t

Hence, applying Young’s inequality

T2 m—1
/ /~ u » dxdr
T1 Ky

(ptm—-1)(p—1)

2n+2 Cp p—1 t p(3—m—p) m—1 p—m+1
2o () (5) (14 pO)ST, (205
€ »p

2n+2 1
—-cr (14 pC)

pp pip
—m+41
Cp p-1 tp(%fmfp) m—1
+2+N
S 727,4_ * ( ptm—1 ) <1 + pC) gferl 7N(p7m+1) Sn-ﬁl
€ P p3-—m-p P
1
C p*l 1 t 3—m—p
<172n+2+N’< p+$71) (1+pC) [6Sn41 + ——— <A> .
€ » dp—m+1 14

Suppose C' violates (2.37); combining the previous estimates we get

/~ u(acn’l)(ndxg/ u(z, 72)dx
Ky

Kgp

2n+2 T2
+7 / / u™ Y DuP~ dxdr
P mn JKn
1
nt2+N 1 to\3 e
dp—mt1 \P

As time level 75 take one for which

/ u(z, mo)dr = inf u(x, 7)dx =: 1.
sz OSTSt KZ;)

Since 7 € [0,t] is arbitrary, inequality (2.39) yields

T2
/ / u™ | DulP~tdxdr
n JK,

1
1 t 3—m—p
Sunt— () |-
i 5p7mri1 p)\

Sn < T+

277,+2
P
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The term involving |Dul is estimated above by applying Lemma 2.5.3 over the pair of cubes K,, C
K1, for which (1 —0) =27+ and for § = 3ou7z, where €g € (0,1) is to be chosen. For these

choices
T2
/ / u™ | DulP~ dadr
1 Ky

€ L[t \ T
< Esn—‘rl + v(data, €o)b <p/\> )

2n+2
5
P

where b = 25-m=». Combining these remarks we obtain the recursive inequality

t 3—m—p b
()
p)\
p(p+1)

where b = max{23-=7, 271 }. From this, by iteration
n—1
] Z(Eob)z.

t 3—7}1—p
r+ (%)
P =0

Choose €y so that the last term is majorized by a convergent series, and let n — oo. O

Sy < €0Sn+1 + v(data, €)

So < €4 Sn + y(data, €)

The number 0 < m < 1 being fixed, choose

1

o —I(p+m—2) f0<m+p-—2<2,
"l —5B=-m-p) fi<m+p-2<1

Notice that 0 < p+m — 2 < 1, and that « — 0 as either m +p — 3 or m + p — 2. One verifies
that for such «, the numbers (p+m + o —2),(1 + «) and (p+m — a — 2) are all in (0,1).

Lemma 2.5.4 Let u be a non-negative, local, weak solution to the singular equations (2.1)-(2.2)-
(2.3) in Ep. Assume m < 1. There exists a positive constant vy, depending only upon the data
{p,m,N,Cy,C1}, such that for all cylinders K,(y) x [s,t] C Ep and all 0 € (0,1) such that
Kato)p(y) C E, either Cp > 1, or

t
/ / u7”_1ua_1|Du|p(pdxdT
s K,(y)

< ’Y(a) Sg+m+a—2(t _ S)pN(S—m—p—a) + ’y(a)S;+ap_aN,
Uppp

where
Se = sup / u(-, 7)dx.
sSTSt S K(140)p(Y)
The constant y(p,m) — oo as either m +p — 3,2.
Proof Assume (y,s) = (0,0), fix 0 € (0,1) and let x — {(z) be a non-negative, piecewise smooth,

cutoff function in K(14,), that vanishes outside K(1),, equals one on K, and such that

1
D¢ < —.
op
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2. Preliminary results for the proof of some Harnack estimates

In the weak formulation take the test function u*(? and integrate over Q@ = K(144)px (0,1, tO

formally obtain
=T7a // 37’ (u™t1¢r) dxdT—i—// Az, 7,u, Du) - D(u®¢P)dxdr

—/ B(x, 7,u, Du)u*(Pdedr = I + I + I. (2.40)
Q

Assume momentarily that «®(? is an admissible test function, and proceed to estimate the various
terms formally. Since 0 < 1+ o < 1, estimate

1
|| < —— (/ u* ™t (z, t)do| + / u*t(z,0)dx
l+ta Katayp Katoyp

1 a+1
< / u(z,t)dx | K140yl
lta ( Katoyp ) g

1 a+1
+— / u(az,O)dm) I K140yl @
l1+a ( K@to)p g

——[(1 +0)p] TN Sg

< —
T 1l4a
Applying the structure conditions (2.3) and Young’s inequality

|Io| > '/ loa|u®1¢P Az, t, u, Du) - Dudadr
Q

—// pCP | A(x, T, u, Du)||DC|dxdr

Q

> |a|Co // ua_lum_l\Du\pdexdT—|a|C”// uP T2y dr
Q Q

—p / (CLut™ = DufP~t 4 CP~ Pt re=2)| D¢|¢P  dadT

Q

> |a|%// u® ™ DulP¢PdadT — |a|C’p// uP 2P dpdr

Q Q

- // ((@, Co, C1)|DCIP + pCP= | D[y ™02y
Q

> |a|@// u® Y™ DulP¢Pdadr
|Ol| 4 A0 (Oé CU’Cl p+m+oz 2d£L’d’T
pp O'Ppp
CO a—1, m—1
> |a|—= u* \Du|pcpdxd7'
2 Ja

7(0[) p+m+a—2 N@B—-m—p—a)
—UT,OPSJ t[(1+o)p] ;
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where the conditions Cp < 1 and 0 < p+ m + a — 2 < 1 have been enforced. Applying again the
structure conditions (2.3) and Young’s inequality

Bl < [[ ©uetmDup i 4 o2 () dads
Q
< @|a\// u®t™ 2| Du|P¢Pdadr
4 Q
+’y(C’o,0¢)C’p// uP 2P dydr
Q

< @|a\// u®t™ 2| Du|P¢Pdxdr
4 Q

C , ma4o— —m—p—«
D) gpemsa2af(1 4 o)),

Since |Iz| < |I1| + |13, combining the previous estimates we get the claim. The use of u*(? as a
test function can be justified using (u + €)*¢P and then letting € — 0. O

Corollary 2.5.5 Let u be a non-negative, local, weak solution to the singular equations (2.1)-
(2.2)-(2.3) in Ex. Assume m < 1. There exists a positive constant -y, depending only upon the
data {p,m, N, Cy,C1}, such that for all cylinders K,(y) x [s,t] C Er and all 0 € (0,1) such that
Kato)p(y) C E, either Cp > 1, or

1 t
1 / / (|A(, 7w, Du)| + | B(z, ,u, Du)|p)dedr
P Js K,(y)

1
Y epim_2 [t—8 prme2 el (f— 5\ 7
< *Sg ( A )—"75‘7 A ’

o P P

Proof Assume (y,s) = (0,0), and let @ = K, x (0,t]. By the structure conditions (2.3), and
enforcing the requirement Cp <1

1 t
f/ / (|A(z, 7, u, Du)| + |B(z, T, u, Du)|p)dzdr
PJs JK,(y)

< 1// um_1|Du|p_1dxdT+l// uP ™2 dxdr.
pJlq PP J)q

Estimate

t p+m—2
l// uPt™2dxdr < l/ / udx | K, |2~
PP JJq PP Jo \Jk,

t
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Next, by the Lemma 2.5.4

1// u™ | DulP dadr
pJJQ

1
X (// um_luo‘_lDu|pdxdT> (// up+m_2+(1_p)o‘> ’
P Q Q

p—1

IN

< 2 <7£CYI)) Sg+m+a72tpN(37mfpfoz) + ,y(a)S;+apfaN
p \oPp

ptm—24+1—p)a

X t%S(7 P p

N37m7p7(17p)a
P

Combining the previous estimates we obtain the claim. O

Proof of Proposition 2.5.1, case m < 1 Assume (y,s) = (0,0) and for n =0,1,2,... set

n
- + 1 -
Pn = § %7 K, = Kpn> Pn = Pn Qanr ; K, = Kﬁm
Jj=1

and let * — (,(z) be a non-negative, piecewise smooth, cutoff function in K,, that equals one

on K,, and such that |D¢,| < 2:”

cylinder K, x [y, 2], with 71, 75 € [0,]; enforcing Cp < 1, since K,, C K,,41, by means of Corollary
2.5.5 we have

. In the weak formulation take (, as a test function over the

/~ uCn(x,Tl)dJ::/~ uCp (x, 70)dx
Kn K,
+/ /~ A(m,t,u,Du)-DCndxdT—/ /~ B(z,T,u, Du)(,dxdr
71 JKn 1 JKn

< /f( uCp (x, 72)dz

n

2n+2

+
p

< /~ uCp (x, 72)dx

n

1
n+2 [ 7V aptm—2 l—s p+7;772+p;1 L—s\"

1
n m— 3 n p++n_2+p7_l t\?
< /~ uCp (x, m0)dr + 4 'YSﬁil 2 <p) + 2"y, 1 (p)‘) ,

where S,, = supy<,<; [ u(-,7)dx. Since the time levels 71,7 are arbitrary in [0, ] choose 75 one

for which
/ u(z, mo)dr = inf / u(x, 7)dx =: 1.
% o<r<t Ji,,

2p

T2
/ / (1 A(z, 7, u, Du)| + |B(z, 7, u, Du)|p)dzdr
1 K,

n

With this notation, the previous inequality leads to

S < I angrm=2 (1) | ong® =it ()7 (2.41)
n = gl n+1 p)\ v n+1 p,\ . .
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By Young’s inequality, for all ¢ € (0,1)

t\Fr
Sn S €Osn+1 + 'y(data, 60) ()\> (4m + 2m) + I
1%

1
t \3—m—»p
I+ ()
PR

< €0Sn+1 + y(data, €)d™

)

max{2,p} . . .
where b = 273=m=r . From this, by iteration

So < €4 Sn + y(data, €)

t 377:1—1;
r+ (%)
o

Choose €y so that the last term is majorized by a convergent series, and let n — oo. O

] i(EUb)i.

i=1

r 00 : :
2.6 L; . — Ly Estimates in the range 2 <m+p <3
Proposition 2.6.1 Let u be a locally bounded, local, weak solution to the singular equations (2.1)-
(2.2)-(2.3) in Ep, and letr > 1 such that A, = N (p+m—3)+rp > 0. There exists a positive constant
7 depending only upon the data {p,m, N, Cy, C1}, such that for all cylinders K,(y) x [2s—t,t] C Er,
either

1
+m—1 t—g\ 3 m-»p
Cp>min{l,e » }, where €= < " >
p

or

>
%‘”

pr X 1 t
sup  ug <7 < ) —_ / / uly dxdr
Ky, () x[s1] t—s PNt —8) Jas—t S,
t— s\
(%)

We limit ourselves to giving the proof for positive solutions. Assume (y, s) = (0,0), and for fixed
o€ (0,1)and n=0,1,2... set

pn:ap"‘lQ_Tgpa K, =K,

n?

ty = —ot — 122, Qn = Ky X (t, t).

This is a family of nested and shrinking cylinders with common “vertex” at (0, t), and by construction
QO = Kp X (_tat)v Qoo = RKgp X (_Utvt)
Having assumed that wu is locally bounded in Er, set

M :=esssup max{u,0}, M, :=esssup max{u,0}.

0 oo
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We first find a relationship between M and M,. Denote by { a non-negative, piecewise smooth,
cutoff function in @, that equals one on @1, and has the form ((z,t) = (3 (x)(2(t), where

_ 1 in Kn+1 ont1
41_{ 0 m RV\E, @ Palsda=p

0 for 1<, gnt1
= - < < A
G2 { 1 for 7>ty 0= Gr=< gy

Introduce the increasing sequence of levels k,, = k — 2~ ("D k, where k > 0 is to be chosen.

Proof of Proposition 2.6.1, case m > 1 Notice that m > 1 and p+m < 3 imply p < 2. In the
weak formulation take the test function (u — kp41)+CP; the energy estimates (2.8) give

sup / (= kny1) 1 ¢ (2, t)dar
K.

tn <7<t

+w// W™ D{(u — ks )+ P ddr

2n+1

e // — ki) 2P dadr
—0)

1—oppp // — kpg1) dadr

+ /Q (Cpum_l(u - kThLl)i + CPX{(U*kn+1)+>O})<pdxdT'
(2.42)

First assume p > Nl(\?;;n), and set k = m it is easy to check that k,, < k< ky4+1. Estimate

// (u— k)" dadr
>l
> Y m—1 _ k P d d
= 9n(m—1) o u (u n+1)+ TaT)
(u— k)T dzdr > Lm_l dzd
u— k)Y rar = 72n(p+m—1) Q X[u>kp41]GTAT,

// (u— an dxdr < // dxdT
5 n(3—m—p)
// (u—k)ﬂ+m71dxd7-< 2k3 P // (u — ky)3 dadr,

n

~ m—1
B k
1 (1 _ z +1> (u — kn+1)iX[u>kn+1]d1’dT
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where we have taken into account that 2 < p 4+ m < 3. Applying the previous results to the energy

estimates above, since u > k,41 > ko = g, we obtain

sup / (u = kny1)2C (2, t)da

tn,<T<t

km 1
o // (= hny) - CIPdadr

2n+1
e // — kpy1)2. P Ldadr
_U

22n
+v

- ontl - t +(t)37377
- 7(1 —o)t pPk3—m=p pP

pt+m—1
3—m—p

where we enforced (Cp)? < (i . If we now assume

pP

we reduce to

sup / (u— kn+1)+§ (z,t)dx

t, <7<t
km 1
. // ~ i)+ lPdadr

// dde
1—0Pt "

A—oypr {( +CP pp)(ks_zn_p) + C]:fp] //Q (u — ky)3 dzdr

5 1
]€2> //Q (u — ky)% dzdr,
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By Holder’s inequality and the embedding Proposition B.3.1

// (u — kny1)ddodr
Qn
o N(3—m)
p(N+2)
< ([ 1= ks 5 ¥ daar
L=
X <// X[u>kn+1]dxd7->
Qn
Mml(// U — Knia +C]
1- 5675
X (// X[u>kn+1]d.’L‘dT>
Qn
N(3—m)
m—1 D pLNE2)
<M [(u = kng1)+C]|Pdedr

x ( sup /K - kn+1>+<}2<w>dx)

ty, <7<t

N(3—m)

) P(NF2)

N(3—m)

=S
X (// X[u>kn+1]d$d7>
Qn

N(3—m)

me1 (27 1 p(N+2)
s M fm—1 1—apt// = Fas )y dedr
N+2
(lapt// = k1) dxdT)

_ N(3-m)

(22" )

) 1
— 3—m N+p  N(3—m)(m—3)
(1 _ 0)(3 m) N+2t P N+2 [ P(N+2) +2

Now set
1
Y, = // (u— kp)tdxdr
Qnl J]q,
Then
1 2277,(1“1’?\;:121) 1 pp %?\afg 1+:ZSV_+T;
Yoi1 < yM v o (o) Ya (2.43)
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By Lemma B.4.1 | Y,, — 0 as n — oo, provided k is chosen from

2p(N+2)—N(3—m)?

k p(3—m)

(g < ff, () S
U — = dxdr S u“drdr = 'y(]. - U) TP o e—
o ( 2)+ o (pp) M(m 1) N+z

From this choice

3|z

p(m—1)(N+2) N
P I ey (3—m)
M 2p(N+2)—N(3—m)? AT T re—
M, < ~ (,0 ) 2p(N+2)—N(3—m)

— (N+p)p(8—m) t
(1 _ O-) 2p(N+2)—N(3—m)?2

___pB=m)
2 2p(N+2)—N(3—m)?2
X u“dxdr
0

N(3—m)
PN s e _ (3—m)Ap
< (I’VY+ — (&) 2p(N+2)—N(3—m) Ml N NG
> P)p(3—m
(1 _ O’) 2p(N+2)—N(3—m)2 3

p(3—

m)
2p(N+2)—N(3—m)2
X u"dxdr ,
Qo

where A\, = N(p +m — 3) 4+ rp. From this, by Lemma B.4.2 and taking into account the previous

assumption on k
Py A = t\ =
sup u< y(p—) A (ﬁ[ u’”dxdT) + 7(—) ° , (2.44)
K, x(0,8) t 0 PP

The assumption p > N](\‘?_T_;n ) is equivalent to N (p+m —3)+2p > 0, which amounts to saying that

Ar >0 with r € [1,2].
Now let us assume that A, > 0 with » > 2. This means that 1 < p < (3NT2)N < N—+2 Then we

need to go back to the inequality (2.42) and estimate all the terms in a different way, namely

2n(7 2)
// —kny1) dxdT <y—- = // " dxdr,
gyt ¢ 2D )

Therefore (2.42) becomes

sup /K (v — kny1) TP (z, ) dx+ 1 // [(u— kpgr)TC]|Pdadr

tn <7<t
2n(r 1)
1—atkT 2// " dxdr
2nr 1 Cp
—&-7(1 —oyrpp (kr—(erm N // u — ky)' dvdr

ﬂ%[ﬁ%%)(wiml // (1= k)
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Assuming as before
t 1
k> ( ) r——
3—m-—p
ptm—1

and recalling that (Cp)P < (p%,) TP estimate

(%) (k;"—(pim—l) * (C;;)p) < (%> e <

and reduce to

m 1
sup /K [(U_k"+1)+d (z,7) dx—i— om-1 // [(uw— n+1)+C]|pd"EdT

tn <7<t
(1 ~ oyl k2 // " dxdr. (2.45)

Now set
n dl’d’]’
“ //
and ¢ = p%. Notice that r > 2 > ¢. Estimate
// (v — kpy1) dadr = // — kny1)y Y(u — kpqr)d dedr
Qn+1 Qn+1
<M1 // (u — kpy1)Ldzdr
Qn+1
<M ( sup / [(u = Eng1) 4¢P (2, 7 dl’) // = kng1)+Cl|Pdadr
tn, <7<t
N
" dxd
_7<(1—0Ptkr2// xT)
om 1
X((l—J)ptkT2km 1// u—k dxdT)
Hence

r r—q 2nr (R
//QHH(U — Fns1)jdudr < yM (1- U)p(1+%)t(1+%)

= ff ]
X ———X~Nip - )
k

2nr(1+%) 1

which leads to

PP
r—q
Yoy <M ( )(170_)N(N+p) f(r—2) 22 +m—1

Once more Y,, — 0 provided

ﬁ[ ) (u — g):dde <]§[O u"dzdT

(r=2)(N+p)+N(m—=1)

=~k »  (1- U)N+p(i) ]\4(T-~-q)%7
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which yields

M, <7y

N
N ~
MO TN (P”)W

(N+p)p t
(1 — g’) r—2)(N+p) +N(m—1)

TN T TN
X u"dxdr .
0

By interpolation Lemma B.4.2

sup <7(p ) <ﬁ[ Urdl‘dT) +7(—) o O
Kp 0 pp

X (0,t)

Proof of Proposition 2.6.1, case m < 1 In the weak formulation take the testing function
o= (u' — k1) 4¢P over Q,,, where | = ”;’"Tﬂ € (0,1). By means of the structure conditions (2.3)
and the Young’s inequality, proceeding as for the energy estimates (2.10), we get

// wr (= K)o CPdadr + //Q DU P X dedr

<4 // (IDCP + CPCPY(ul — KL, )P dudr
-l-’pr// uP! X fuskp i dadT.
Q’VL

We estimate the first integral on the left-hand side as follows

//nuT(ul kL 1)+ CPdadr
- / / Ut = R e dsCP (e, )z — p // / Yot = K1) s dscP G dudr
ey A

41
— kL) () sz// — kL) sucP G dadr.

Since |DulPxpusi, ) = Pul"VP|D(u — kyy1)4|P and

|D(u' = kp 1)+ )P < 27[D (! — kg 1) [PCP + (u! = Ky 0) 5| DCPP)L

we estimate the second term on the left-hand side

J| 1Dt ynar
- 2P // u _ké+1)+<]|pdmd7—//Q ule[u>kn+1]\DC|pdxd7—,
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Hence we obtain

141
sup / (W — k) P, t)de + // ID[(ud — k)4 C)Pdadr
tn, <7<t JK n

< 7//@ (u' — Ky 1) ulrdadr + 7//@ (IDCIP + CPeP)(ud — KL)% dwdr

+ // CpCpuplX[u>kn+l]dxdT

2n+1
1 — U // u>k”+1]d.’bd7’

2P Hl) Lo
-W( ot // — K\ P dudr

+v // C’pg”upl)([u>kn+l]dxdr.
Qn

Estimate

.
L

// kL) dedr < ykPtmT 3// (u! — kL), dadr,
1+1

//Q UplX[u>kn+1]dxdT < 'Vkp+m_3 // (ul - kiz)# dxdr.

n

14+1
U X sy dadT < WQHTl // (u! — kL), dadr,

Enforcing Cp < 1 and stipulating

the previous estimates yield to
L
w10 = K)o e 4 [ 1D k) pdear
t, <7<t K

22( 41
p+m— 3 1l z
(e U)pt [ ) // b — kL), dadr

22““)” k)T ded 2.46
l—apt // rar. (2.46)
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Let us first assume 1> %, this amounts to taking A, > 0 for r < [ + 1. By the Holder

inequality and the embedding Proposition B.3.1

l % 25}
(u' — n+1 4 dadr < - n+1 )¢ T (z,t)dxdT
Qn+1

_NQ+1)
» 1 PUNFI+1)
< ([7’ (=K )s <}”NEH”<x wdxdr)
1 N(+1)
T p(IN+I+1)
X (// X[u>kn+1]d‘xd7—>
1 IN+I+1
<7 < sup ul — ki+1)+dl(w7t)dx)
tn <T<t

N(1+1)

PANTIFD)
x @ —»kn+1>+cnpdwdf)

Q’Vl

N(141)

L, N 1-saNT4D)

( pREw // —k, )‘dmdr) :
4+1

Y, = |Ql // (u! fkfl)ﬁdzdr.

With this notation, the previous inequality becomes

Now set

N(+1)
v < b" 1 oP p(lN+l+1)Y1+”Vlj:7ll+l
ntl =7 VD) (D 11y (1— _NIFD 7 n
(1 — ) NF1FD LD A= saxr)

)

where b = 22T+ i) Now, Y;,, = 0 as n — oo, provided k is chosen such that

N
Y, :ﬁ[ W+ dzdr = A(1 _J)Nﬂj(ip) P RONEED-NGED
p
0

With this choice

M, <

Dy — N

Y P\ —1)NI—N+pl+p
(N+p)p t

(1 — o’) (p—1)NI—N+pltp

P
(p—1)NI—N+pl+
X (ﬁ ul+1d:cdr> ’ o (2.47)
0

pn=0p+(1—0)pd) 27", tp=ot—(1-o)ty 27,

i=1 =1

Qn =K, X (tn,t], Qs = K, x (—t,t], Qo = K,p X (—ot,t].

Set
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Recall that we are restricting to r < [ 4 1; writing (2.47) over the pair of cubes @, and Q11 gives

Dy — N

Y P\ =) NI—N+pl+p
(N+p)p t

(1 — o‘) (p—1)NI—N+pl+p

(p_1)szN+pz+p T 11;%?&;]1) -
T pP— - P P
X # u' dxdr M5 ,
0

where M,, ;== esssup max{u,0}. Notice that (p — 1)NI— N+rp=N((p+m—3)+rp=\.. By

M, <

n

Lemma B.4.2, we conclude that

gl PP\ %
sup U< ———— | — uw"dzdTr .
(N+p)p t
Kepx(=ott] — (1—0) * Qo

Now, assume 1 < %, this amounts to taking A\, > 0 for r > [ + 1. It is easy to see that

r > [+ 1 implies r > pl. Hence estimate

nr= (z+1)

41
// n+1 )4 dadr < k’ ey // ldxdT

Enforcing Cp < 1, by means of the previous inequalities, estimate (2.46) becomes

sup / (! — K)o () (@, ) + // ID[(u! — KL yy) 4 ()P ddr
tn<T<tJK, n

2mr 1 l kl %d d
_’7(170')7% k'ri(ld%l) 0 (U - n)+ TaT.

o= g

and denote ¢ = %; then 7 —¢ > 0 and we can estimate

— k)T dadr < / / (ul — KT dadr
n+1 ~
|Qn+1| // n |Qn+1|
< ||u||00 11%][00,Qo // kl q d:Z?dT
|Qn+1|
Applying the embedding Proposition B.3.1, the previous inequality can be rewritten as

T e e (2.48)
OO’QOk(T—(H—l))(#) n . .

Set

N
P+)

2rn(
(1— ) X (N+p)

Yn+1 S Y

By means of Lemma B.4.1, Y,, — 0, provided k is chosen to satisfy

1-o0)N > r—
Yo:ﬁ[ o drdr — M(i) 2 ~( lq)l,k(r (1) e (2.49)
0 2"

(N+p)
P2
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which yields

M= GFNT /P N (G S IrEvy)

—(+1) (I N N - >

AT H

M, <y——m—— (&) g u"dxdr .
(1_0-)7‘—(l+1) t Qo

By Lemma B.4.2 we conclude that

N =
sup  u< %(ﬁ) . (ﬁ[ urdxd7> . O
Kopx(—ot,1] (1—o) A Mt 0

2.7 L; Estimates backward in time in the range 2 < m+p < 3

loc

Proposition 2.7.1 Let u be a locally bounded, local, weak solution to the singular equations (2.1)-
(2.2)-(2.3) in Er, and assume that u € L], (Er) for somer > 1, satisfying A, = N(p+m—3)+rp >

loc
0. There exists a positive constant vy, depending only upon the data {p,m,N,Cy,C1} and r, such
that either

ptm—2

Cp > min{l, M=, (M*) »1 },

where

r

ME = | sup ][ uly (z,m)dx |
s<7<t K,(y)

t—5)"\ 5=ms
sup / uly (z,7)de <~ / u'y (z,5)dx + (( /\s) )3
sST<t J K, (y) K2,(y) P

for all cylinders Ko, (y) x [s,t] C Ep The constant v = y(data,r) — +00 as r — 1.

or

Proof of Proposition 2.7.1, case m > 1 The proof will be given for non-negative solutions.
Assume (y, s) = (0,0), fix o € (0,1] and choose ¢ € C§°(K(14),) satisfying

Ogcglil’l K(1+a)p7 C:lin Kp,
o
‘Dq < ;p m K(1+U)p7

for a constant v depending only upon N. Let M be a positive constant to be chosen, and let g be
a parameter in the range max{r — 1,1} < g < r. In the weak formulation take f(u)¢?, with

- M q
f(u) .= ur—l((u )+) ,
u
as a testing function, modulo a standard Steklov averaging process. One verifies that
_ _ -1
(T*l)uT72<(u M)+)q§f’(u)§qur72((u M)+)q )
u u

Set
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and integrate over Q, = K(144), x (0, 7], with 7 € (0,%]. The weak formulation gives
0= // us f(u dexds—i—/ A(z, s,u, Du) - Du f'(u)(Pdzds
+p // A(z, s,u, Du) - DCf(u)Cp_ldde

—// B(z, s,u, Du) f(u)(Pdxdr
=Ty + T+ T3+ Ty

By means of the structure conditions (2.2) estimate

T = // 88/ flw depdxdsf// u)sCPdxds

- / F(w) (2, 7)CP (a)di — / F () (2, 0)¢P () dx
Katoyp

Kato)yp

Ty > Co(r—1) // urfz(%)q(uquDuwxpdxds
—qC’p// ur—2<%>q71¢pdl‘ds
ol

=Co(r—1) // f(w)u™ 2| Du|P¢Pdxds
Qr
—qC'p// uT*Q(%yilCPdmds;
Q-

T3] < p// Fu)(Cru™ Y| DulP~t + CP= 15 )| D[P dads;

T, | <c// = DulP f(u) (pdxds+0p//

Combining these remarks, since Ty < —T5 + |T5| + |T4|,

w)CPdxds.

/ F(u) (2, 7)CP (@)dz + Co(r — 1) / Fu)u™=2| DulPCPdads
K@toyp
<77 (14 Cp) // fw)u™ Y DuP~1¢P  dads
+7(ij1 +Cp // Flu)yu™ v P dads
Q-

_ +\q-1
+qC? // uTﬁQ(w)q dxdr
Q- U

—i—/K F(u)(z,0)(P(z)dzx

(1+o)p
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Applying Young’s inequality, estimate

/Q Fluu 5 P 1dxds<// u
o )

pC’l // F)u™  DuP~1¢P~ dads

_T_lco// flu
S 5 Co//@f(“)“ B

where v(r) depends only on r and the data. Also

//QT u"‘2((“_:w)+)“dmsg//@ w1

Enforcing Cp < min{1, M, (Mi) = } these remarks imply

p+m_2dmds

N

uPtm =3+ g ds,

dzxds;

/ F(w)(z, 7)(? (2)dx
Kta)p

< /K R0 - # 20 [ s

p 1
,DC // r 1 r+m 2 dxds+qC’p//
gppp .

S I e A

K@to)p -

p—1
+7(pi’;p 1—|—g // u " tdads
o
p 1
prp // r+m 2d$d8
§/ F(u)(z,7)(P(x // PEM=3HT dyds
K oPpP

(14+0)p

pt+m—2
+(M) 1+pc // W Vdzds

oP pP

// T2 dxds.
O'Ppp

(2.50)
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By means of the Holder inequality estimate

’}/(7") // up+m_3+rd$d8
aPpP JJq,
p+7n?3+r

; o
< () sup / u' (z,7)dx ( 5 )
P \osr<t JK(140), P

pt+m— 2
’Y(M”") pc // r— 1d$d$

oP pp

ptm—3+r
T

NG~
(pAr) ;

y(r) pC / .
< 1+ — su u"(z, 7)dx
- oP ( M) (091; K(ito)p (@.7)

// W2 dxds
o'ppp

g
< () sup / u' (z, 7)dz ( ) )
oP \o<r<t K(ito)p P

then inequality (2.50) becomes

[ Feneedes [ Fu)@oeed
Ka+oyp Kto)p

p+m—3+r
I3

tT 1
(pAr> '

¥(r) (, . pC / ’
+2(1+ =) | su u'(@,7)de
oP ( M> ((Jgrzt Kto)p o)

By elementary calculations and the Young inequality,

/ u"(z,7)dz < 2r sup / F(u)(z,7)de +yM"|K,|,
K,N[u>M)]

0<r<t K,

for a constant 5 = ¥(r, p, m, q, Co, C1). From this

sup ][ UT(I,T)d.ﬁSQ’/‘( sup ][ F(u)(x,T)dm—&—(l—ny)MT).
0<r<tJK, 0<r<tJ K

Choosing

3=

T (1 +9)]
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these inequalities yield

myﬂyuﬂmgm/ P(u)(z,0)¢P(2)dz

0<7<t Kato)p

v(r) (y, PC / -
+ 1 _|_ - su u \r, T d:r
oP ( M) <0<T§t Kayoyp ( )

+2r|K,|(1 +7)M"
< 2/ u"(x,0)dx
K

(1+o)p

+LT’ 7) sup / u"(x, 7)dx
ar 0<7<t JK(140),

1
+- sup][ u"(x,7)dx.
KP

p+m—3+4r
T

o\ F
()

p+m—34r

2 g<r<t

From this

wyﬂym@mgm/ F(u)(z,0)¢P(z)dz

Osr<t Kto)p
< fy/ u"(x,0)dx
K

(1+0o)p
ptm—3+r

_ - i
_’_'7(7“7 '7) sup / UT(.’E,T)dl' (T)
oP 0<7<t JK (140, P

Fix R > 0 and consider the sequence of radii

Pn = R i 2_i7
i=1

1
r

so that
_ Pn+1 — Pn > 9—n—2

Pn

Prnt1 = (1 +0n)pn for on

Setting
Y, = Sup/ u' (z, 7)dx
Kn

0<r<t

the previous inequality yields
O\ %  ptm-34r
Vo< [ wode otz (5r) VT
Kar per
The proposition now follows from the interpolation Lemma B.4.2. O

Proof of Proposition 2.7.1, case m < 1 Once more the proof will be given for non-negative
solutions. Assume (y, s) = (0,0), fix o € (0, 1] and choose ¢ € C§°(K (14),) satisfying

Ogcglin K(1+0)p7 C:lin Kp,
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v,
‘DC| S ?p m K(1+U)p7

for a constant v depending only upon N. In the weak formulation, take u"~'(? as a test function,
modulo a standard Steklov averaging process. Integrating over @, = K(144), % (0, 7], with 7 € (0, ¢],

gives
1
0 = ;// (u")sCPdxds
+ (r—1) // A(z, s,u, Du) - Duu™*¢Pdxds
+ p// A(zx, s,u, Du) - DCu" "1 ¢P~ dads
- // B(z,z,u, Du)u"~'¢Pdxds
1

= ;T1+(7’7 1)T2+T3+T4

Since ( is independent of time

n- [
K

Next, by means of the structure conditions (2.3),

u' (z,7)(P(x)dx — / u"(x,0)CP (z)dz.

(1+0)p Kato)p

T, > Cy // u™ 73| DulP(Pdads — CP // uP T3 P drds.
Q- Q-

T3] < p// u" O™ DuPH DE| 4 CP P T2 DE|¢P T  dads
Q-
= pC // u™ 2| DulP DE|¢CP T dads
Qr

+pCP—t // uP T3 Pl s,

Ty| < // Cu"Hu™ | DuP~t 4 CP~ P T™ 2] (Pdads
Qr

=C // u™ 2| DulP PdxdT + CP // uP T TITTCP dpdss.
Q- -
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Combining the previous estimates

/ u"(x, 7)(P(x)dz + (r — 1)Co // u™ 3| Du|P(Pdxds
Ka+orp

-

< /K 0 s

7 // (CPCP + CPICP D yuP = davds
QT

o [ e el pupdsds
Qr
By Young’s inequality, enforcing |D¢| < (op)~! and Cp < 1,

// (CCP + |DC|CP~Hu™ 2| DulP~ ' dxds.
Q-

IN

l(l +Cp) // u™ 3| DulP P dwds
ap Q-

IN

(r—1)Co // u™ " 73| DulPPdds

+7(T) // uPtm T3 dads,
(op)? Jg.

where y(r) is a constant depending on r and the data {p, m, N,Cy,C1}. Hence, enforcing again
Cp <1,

| wenee
Kito)p
< u"(2,0)¢P (z)dx
/K(1+U)p
cr—1 1 .
+'y(r)< -~ + (Up)P)//Q WP dds

S/ u"(z,0)¢"(z)dx + V(T)p // uP T3 ddss.
K@toyp (o) Q-

By means of Holder’s inequality estimate

ptm—3+7r
=

// uP T3 drds < At sup/ u"(x, 7)dx p%(‘n’_m_p).
07t JK(140)p

.
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Therefore

/ o (2, 7)CP (@) de
Kato)p

ptm—3+4r
v

V() (N .
—|——( 5 > sup u"(x, 7)dx
of \pir 0<7<t JK (110,

Fix R > 0 and consider the sequence of radii

Pn = R Xn: 2—1"
=1

so that
_ Pn+1 — Pn 2 2—71—2.

Pn4+1 = (1 + Un)pn for On p

Setting
Y, = Sup/ u' (z, 7)dx
K,

0<r<t

the previous estimate yields the recursive inequality

tr )% ptm—34r
-

Vo<q [ w0 ot () Vi
Kar RA-

The proposition now follows from the interpolation Lemma B.4.2. O



Chapter 3

Intrinsic Harnack estimates for
some doubly nonlinear degenerate
parabolic equations

3.1 Introduction

The aim of this chapter is to prove an intrinsic Harnack estimate for non-negative weak solutions
to the parabolic degenerate equations (2.1). To this purpose, the most crucial property of such
solutions is the “expansion of positivity”. It asserts that, if one of these solutions is positive over a
cube K,(y) at some time level, then the positivity expands in space at some further time, driven by
the intrinsic geometry of these equations. The first step to prove this consists in propagating the
positivity information to further times, within the same cube (“expansion of positivity in time”).
Finally one expands the positivity set in the space of variables from K,(y) to K2,(y). By means of
a proper changing of variables, this allows to prove an intrinsic Harnack estimate.

Moreover, in Section 4.2.5 we will show that the expansion of positivity is stable as m +p — 3,
hence all the results of this chapter continue to hold when m 4+ p = 3.

In Section 3.1 we introduce the “expansion of positivity in time”, whose proof is common to
both the degenerate and the singular case. Section 3.2 and Section 3.3 are devoted to the proof,
respectively, of the “expansion of positivity” and an intrinsic Harnack inequality for non-negative
solutions to the parabolic degenerate equations (2.1). Finally, in Section 3.4, we show how the
intrinsic Harnack inequality implies a Holder continuity condition.

3.2 Expansion of positivity in time

Lemma 3.2.1 (Expansion of positivity in time) Assume that for some (y,s) € Ep and some
p > 0 there holds

[u(-8) = M] N K, (y)| = o Kp(y)) (3.1)

75
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for some M > 0 and some a € (0,1). There exist 6 and € in (0,1), depending only upon the data
{p,m, N, Cy,C1}, and a, and independent of M, such that either

(Cp)? > min{1, MPT™"1}
or )
[u(,t) > eM]N Kp(y)] 2 SalK,|

for allt € <8,8+M,§%i_3 .

Remark 3.2.2 The proof is based on the energy estimates of Section 2.2, whose constants w and
are stable as m +p — 3. Hence the constants 6 = §(m,p) and e = e(m,p) are stable as m+p — 3.

Proof of Lemma 3.2.1 when m > 1 Assume (y, s) = (0,0), and for k,¢ > 0 set
Ap p(t) = [u(-,t) < kN K,.
Assumption (3.1) implies
[An,p(0)] < (1 = )| (3.2)
Write down the energy estimates (2.8) for the truncated functions (v — M)_ over the cylinder

K, x (0,6pP], where 8§ > 0 is to be chosen. The cutoff function { is taken independent of ¢,
non-negative, and such that

1

op
where o € (0,1) is to be chosen. Discarding the non-negative term containing D(u — M)_ on the
left-hand side, these estimates yield

w—M)? (z,t)dzx < w— M)? (z,0)dz
/KMP< 2 (e de < [ u= M2 (w0

K,

v
+ / / u™ Y u — M)P dedr
(op)? Jo K,

C =1on K(lfo')pv

6pP
—|—*pr/ /K u™ (u — M)P (Pdxdr
0 o

0"
tACP / / Xitumnty_soCPdadr.
0 K,

The first term on the right-hand side can be estimated by means of (3.2)

/K (u— M)? (x,0)dz < M?*(1 — a)| K|

P

Assuming (Cp)? < min{l, MPT™~1} we get

/ (u — M)% (x,t)dx
Ka-o)p

0
< M? [(1 —a)+7 ( + OP) OpP MPT™=3 4 WW(C;))P | K|

1

(op)P
9

< M? {(1 —a)+ yapMP*m?’] K|
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for all ¢ € (0,0pP]. The left-hand side is estimated below by

J.

where € € (0, 1) is to be chosen. Next we estimate

|A6M,p(t)| = |A€M,(170')p(t) U (AeM,p(t) \AEM,(lfa)p(t)H
< |A6M,(170)p(t)‘ + |Kp \ K(1*U)P|
<A, (1-0)p(t)| + No|K,|.

(= M2 (2, )dz > / (= MY2 (2, t)dx

(1—0)p K(l,(,)pﬁ[u<eM]
> M2(1 - 6)2|A61\/I,(170')p(t)‘7

Combining all the previous estimates we obtain
1
(1—¢)?

for every t € (0,0pP]. Choose § = §M>~™~P and then choose o, ¢, and § so close to zero, depending
on « and the data, as to insure the conclusion of the lemma. O

0 .
|Acar ()] < [(1—a)+ VEM’””” 3+ No||K,|

Proof of Lemma 3.2.1 when m < 1 Again assume (y, s) = (0,0) and for k,¢ > 0 set
App(t) = [u(-,t) < kJNK,.
In the weak formulation (2.6) take the test function

m+p—2

= —(ut = MY _¢P =
p=—(-M)_¢", I p—

€ (0,1),

where z — ((x) is a non-negative, piecewise smooth, cutoff function in K, which equals one on
K _o), and such that |D¢| < (op)P(o to be chosen). Proceeding as for the energy estimates on
the cylinder K, x (0,60p”](6 to be chosen), we estimate

M
/ / b shyds¢Pda < / / (M' — s, ds¢Pda
K, m u(,0)
+y M // ( CP¢P )X[u<M dxdr,
K, % (0,607 \ (0P )

for all times 0 < ¢t < @pP. Either (Cp)? > 1 or

M
/ / b sl yds¢Pda < / / (M' — s ds¢Pda
K, u(z,0)

lpi
+yM Up|Kp‘w

for all times 0 < ¢t < 6pP. Estimate

M
l
/ (Ml — sl ds < m(MH_l - Ul+1)X[u<M}§
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then o
/ (M — s') L ds¢Pdx < L(1 — )M K.

On the other hand

M
z/ / (M' — sYY dsdx
K—oypN[u(z,t)<eM] Ju(x,t)

M
/ (M" — s dsdx

eM

>

A(la)ﬂﬁ[u(x,t)<eM]

M+ ML

1+1 +1

= ((1 — E)M i m +e€ + l‘|'1> |A€]\/17(1—U)P(t)|
l [+1

> H_71Ml+1 <1 - €> | Acrr,(1—o)p(t)]-

Set § = 6M3~™7P_ where 6 is to be chosen. Recalling that
|[Acnr o ()| < |Aens,(1—0)p(t)] + No| K|,

and combining all the previous estimates we obtain

)
|[Aearp(t)] < 1—a)+’yﬁ+Na | K, |,

=l

for every t € (0,0p”]. Finally choose o, €, and ¢ so close to zero, depending on « and the data, as
to insure the conclusion of the lemma. (|

3.3 Expansion of positivity

Proposition 3.3.1 (Expansion of positivity, p+ m — 3 > 0) Assume that
u(z,s) > &M, x € Kop(y), (3.3)

for some (y,s) € Ep,M > 0, € (0,1]. Then there exist positive constants v,b and 1, with
n € (0,1), depending only on the data {m,p, N,Cy, C1}, such that either

(Cp)? > min{1,y(EM)PF™ 1}

or

u(z,t) > n(EM) (3.4)
for x € K4,(y) and every t such that

b p+m—3 b p+m—3
s+ (775]\4> (167 —4P)pP <t < s+ <77§Z\4> (16)"p". (3.5)



3.3. Expansion of positivity

79

From now on we assume that (Cp)? < min{1, ((M)PT™~ 1} and p+m—3 > 0. As a consequence
of Lemma 2.4.1, we observe that choosing 6 = v(¢M)3~P~™, hypothesis (2.30) is automatically
satisfied and therefore (2.31) gives, in particular,

vop? .
u <Jf, W) 2 an m Kp. (36)
For every 7 > 0 we set
S _
& = ——, where f(r) =epFm=3,
7o) 7
Since & < &, one still has u(z,0) > & M in Ky, by (3.3), and hence, replacing £ by &, in (3.6) we

obtain

(87 )2t

for all x € K, and every 7 > 0. Defining

w(z, ) = J;g\? (vopP) 77m—s u(x <M>p+m3 yopp) (3.7)

and fixing a = 1/2, we have
1 1 def
w(z,T) > i(uopp)zﬂrm—3 = ko (3.8)

for every 7 > 0 and all x € K,. Let us first suppose m > 1. Recalling that w > 0, by formal
computations it is easily seen that

w, > divA(z, 7,w, Dw) 4+ B(z, 7, w, Dw),
where
A, 7w, Dw) = (r)P 2 Az, (1)P 0w, 7 D),
B(z,7,w, Dw) = ()P B(x, ()" 4w, 7 Dw),
with
ulr) = 1)

and A, B satisfying (2.2). Such a formal differential inequality can be made rigorous starting from
the weak formulation (2.6), performing the corresponding change of variables from ¢ into 7 and
taking positive test functions. The new functions /1 B preserve the structure conditions (2.2).
Indeed, it is easily checked that

(VOPP) Wl'_g )

‘Z(xv’rvwa 77) i 2 Cowm71|77|p - 6’(7—)1)7
Az, 7, w,m)| < Cruwm=y[P=t + C(r)P~tw ™5

m—1

|B(x, 7,w,m)| < Cwm[pP=t + COP(r)P~tw™>

with
1

5(7’) = Cw(T)Hmz: )
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At this point, the energy estimates that we need for w are the following

sup /K (w— k)2 ¢P(z,7)dx

0<7<6(16p)P
+ w// @™ D[(w — k)_(][Pdxds
Q5,(0)
< »y// (w — k)2 ¢rdads 4y // o™ YN w — k)P |D¢|Pdxds
Qs (0) Q6 (0)
+ // (Cp@m_l(u} — k)P + 5P(S)X{(w_k)_>o}><pdl‘d8, (3.9)
Q5,(0)

where ( is a piecewise smooth cutoff function in the cylinder QTG p(0) vanishing on the parabolic
boundary of Q{%p(e) and such that 0 < (<1, > 0.

Now our aim consists in proving the “expansion of positivity” for w. Namely we are going to
extend (3.8) to K3, when 7 is sufficiently large.

Proposition 3.3.2 Set
Qs (8) = K x ((16p)70 — (8)76. (160)76].

Then, for every v > 0 there exist o € (0,1), depending upon the data and v, v > 1 depending on
the data and o, such that either (Cp)P > min{1,y(EM)PT™=1} or

{w < oko} N Qgp(6:)] < v Qs (6:)],
with 0, = (oko)P™™ 73, and ko given in (3.8).

Proof Introduce the levels

ko . .
kj:27 jzoal»"'aj*a

with j, € N, j, > 1 to be determined. Fix j € {0,...,j. — 2} and set
v, = max {kjyo, w}.

By writing the energy estimates (3.9) for (w — k;)_ and choosing a test function ¢ such that

. 1
C =1 m Qgp(6>7 |D<| < %, O < C-,— <
we obtain

// w™ | D(w — kj)_ |Pdzds
QBp(G)

kij2 k§?+mf1 T N ) ,
g”@@wﬁ@mp+cﬁj +K«wm9ﬂ)@&@y
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It is immediate to see that

// w™ N D(w — kj)_|Pdxds
QS;)(G)
> // (0.)™ D (vi — kj)_[Pdads
Qsp(0)N{v=w}

2 ’Ylkﬁ_;l // |D(vi — kj)—|Pdxds.
Qs,(0)

Setting 0 = 0, = k;’:p ™. by means of the last two inequalities, it turns out that

j+2

K (KPR KT CPETT(8p)P
I 1. = hy)-psas < v (2 LI )
Qs,(6.) (8p)? 0. ki'a k3o
[C((16p)0.)]" (8p)"
) 195, (0.)]
JVi+2
It is easily seen that
E2PElom Emt
LI < 4(data), 2 < vy(data).
. j+2

Moreover, recalling the definitions of C and ko, we obtain

[C((16p)76.)]" (8p)P 1 (8p)P 27PH(F2)(m—1)
k,pk_m—l = Cp,¢((16p)p9*)p kp+7n—1
Ji+2 0
F((16p)Po.) \ P Cp(8p)Pp 20p+(i+2)(m—1)
(") 3yt
CPpP

< (data; j*)Wy

as pP0, = y(data; j,). Thus, assuming that
(Cp)? <y~ H(data; j. ) (EM)PFm—

we have

kP
D(vy, — kj)_|Pdxds < v-—=2—|Q9s,(6:)], 3.10
I, o 1ot 5571050 (0.) (3.10)
with v depending only on the data. Now, set
Aj(T)Z{’U*(',T) </€j}ﬂK8p, Ajz{’l}* <k‘j}ﬂQ8p(0*),

and notice that A;(7) = {w(-,7) < k;} N Kg,, Aj = {w < k;} N Qs,(04), and the same holds true
with j + 1 replacing j, due to the choice of v,. Moreover

0. (160)"
Ay = / A () dr.
0.(16p)P—0.(8p)P
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From Lemma 2.2 of Chapter I in [16] it follows that

s~ k) Asa ()l < 2l [ (Do, (3.11)
|K8p \ 4;(7)] Aj(T)\Aj11(7)

for every 7 € (6.(16p)? — 6.(8p)?,6.(16p)?]. On the other hand, by (3.8), we have
[Ksp \ A3 (T)] > | K| = p™

and, consequently, (3.11) yields

1
kil A (Tl < 7/?/ | D, |da.
Aj(T\Aj+1(7)

Integrating both sides of the above inequality with respect to 7 in the interval (9* pP(16P—8P), 0, (16p)p} ,
applying Holder’s inequality and using (3.10), we get

1 » p—1
Skildjal < e (// DU*|pd1‘dT> [A\Aj 1] 7 <
Aj\Aj 41

kP P el
Yp <J|Q8p(9*)l> |[A\Aj 1| P

N

(8p)P
= k; [Qsp(0.)[F] A \A 1] T

Raising both sides to the power z%’ and summing over j from 0 to j. — 2 leads to

jo—2 jo—2
D Al < y1Qsp(B4)|7T Y A\ Al
=0 =0

Finally, since A;11 C A; C Ay C Qs,(6s) for every j, we easily deduce that

Jx—2
(e = DIAG, 2|77 <v[Qsp(02)|77 D (|A;] = [Aj11]) < 7[Qsp(0.)]77.
§=0

Thus, we have established that

p—1

4.1 < (j ”_1> 1Qs,(6.)].

*

At this point the statement follows immediately. Indeed, for any v > 0, we can choose j, large
p=1

enough to have [y/(j« —1)] # < v. Setting o = 1/27+~1 € (0,1) we conclude that

{w < oko} N Qsp(0i)| = [Aj. 1] < v[Qsp(6x)]. O
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Proposition 3.3.3 (Expansion of positivity for w) There exist o € (0,1) and v > 1, depend-
ing only upon the data, such that either (Cp)? > min{l,v(EM)PT™=1} or

(167 — 4P)pP  (16p)?
(O-ko)p+m73 ’ (O—ko)p+m73

1
w(z,7) = 501{0 in K4, X (

Proof We first observe that Qs,(0.) = (0,7) + Qg,(6x), where 7. = 0.(16p)P. Then, applying
Lemma 2.3.1 (i) to the function w over the cylinder (0, 7.) + Qg,(6x) with the choice a = 1 and {w
replaced by okg, we find that if

N
P

{w < oho} 0(0.7) + @5, (0] _ [0 (ohy)t ]
| Q5 (6:)] T+ 0u(akg)prm3)

=5, (3.12)

with v depending only on the data, then either CPp? > ~(¢M)PHm—1 or
1 . -
w(z, T) = §0k0 in (0,7.) + @y, (0x).
Note that §, depends only on the data since we have 0, (ko )?* 2 = 1, by definition of §,. Applying

Proposition 3.3.2 with v = d,, we ensure condition (3.12) and hence the assertion is proved. O

End of the proof of Proposition 3.3.1 when m > 1 To prove the claim, it now suffices to
translate Proposition 3.3.3 into the original variables. As 7 ranges over the interval

((16p — ) (16p) } |

(Uko)erm*S ’ (O’ko)p+m73

recalling the definition of kg, we find that

9P+m=3(16P — 4P
by d:ef exp{( (16 )

»+m— 3)0’P+TI’L—3VO } < f(T)

2p+m7316p def
< exp = b,
(p+ m — 3)gPtm=3y,

where o, 1y are given by Proposition 3.3.3 and Lemma 2.4.1, respectively. It is worth observing that
b1 and by depend only upon the data and are independent of p, M and u. Concerning u we obtain

oM def

>
U(Ji,t) = 4b2

nEM (3.13)

for all x € K4, and every t such that

by p+m—3 by p+m—3
(@) <) o

bio p+m—3 o p+m—3
- t < P
<4bzn£M) Yor” < <4n€M> vor

or, equivalently,
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Choosing b with the following property

1
bliff ) P+7n—3<b<g(ﬂ)m7
4by \ 167 — 4P 4 \16P

we infer that (3.13) holds true in K4, for every ¢ such that
b p+m—3 b p+m—3
L 16p—4pppgt<<) 16p)P. O
(néM ) ( ) neM (16¢)

Proof of Proposition 3.3.1 when m <1 We maintain the definitions (3.7) of w, and (3.8) of
ko. By formal computations we obtain

wy > divA(z, 7, w, Dw) + E(QJ,T,U), Dw),
where now
Az, 7, w, Dw) = ()P 2 Az, ¥ (1)PH" 3w, = Dw),
B(xz,7,w, Dw) = (7)P*™ 2 B(x, ()Pt 3, w, v~ Dw),

with ¢ as before, and A, B satisfying (2.3). The new functions g, B preserve the structure
conditions (2.3). Indeed, it is easily checked that

A(vavwa 77) n =z Cowm71|'r)‘p — CPwPerfl’
|g(a:,7',w,n)| < Clwm—lm‘p—l 1 OP—lyptm=2,
|§('T7 T, W, 77)| < me_1|'{]|p_1 + O;pr—i-m—Z’

where Cy, Cy, C are the same constants of (2.3); w then satisfies energy estimates like (2.9)

sup / (w — k)% CP(x,t)dx
0(16p)? J K16 (y)

+w km—l// |D[(w — k)_¢]|Pdadt
Q5,(0)

< 7(7’?2 // X[w<k]CGrdzdt
QY6,(0)

et / / e+ CP + |D<p>dxdt),
Q¥ (0)

16p

where
m4+p—2

p—1
( is a piecewise smooth cutoff function in the cylinder Q;% p(ﬁ), vanishing on the parabolic boundary
of QTGP(Q), and such that 0 < ¢ < 1,{; > 0. In particular we set

= ) ¢:¢(C7C5D<) :Cp<p+‘DC|P’

Qs,(0) = Ks, x ((16p)70 — (8p)"0, (16p)"0],
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and we require

. 1
(=1inQy(®). IDI<g, &<
P
With these choices, the previous energy estimates become
k2 karmfl

D(w —k)_|Pdx < ~k*™ +
//Qgp(e) 1D )-| 0(8p)» (8p)P

Starting from these estimates, we can prove the following two statements, whose proofs are analo-
gous to those of Proposition 3.3.2 and Proposition 3.3.3, respectively.

Proposition 3.3.4 For every v > 0 there exist o € (0,1), depending upon the data, and v, v > 1
depending on the data and o, such that either (Cp)? > 1 or

|{w < UkO} N QSp(a*” < V|Q8p(9*)|a
with 0, = (0ko)P*™=3 and ko given in (3.8).

Proposition 3.3.5 There exist o € (0,1) and v > 1, depending only upon the data, such that
either (Cp)? > 1 or

(16° = 47)p  (16p)?
(Uko)erm*S ’ (O'ko)p+m73

1
w(z,T) = iak@ in Ky, x (
Translating Proposition 3.3.5 into the original variables we get the claim of Proposition 3.3.1 also
in the case m < 1. O

The stability of the constants in the expansion of positivity will be discussed in the next chapter,
together with the analogous result for the singular case.

3.4 Intrinsic Harnack inequality

Theorem 3.4.1 Let u be a continuous, non-negative, local weak solution to (2.1) in Ep. Let
(zo,to) € Er be such that u(xo,tg) > 0. Then there exist constants ¢,y > 0 and k > 1, depending
only upon the data, such that for all cylinders

N ¢ p+m—3
(s} + @3 (0) © Gom)
ptm—1
either Cp > min{1,yu(xo,to) » } or
k™ sup u(z, to — 0pP) < ulzo,to) <k inf w(x,ty+ 0pF). (3.14)
Kp(zo0) Kp(zo0)

Let us fix a point (zg,tg) € Er with u(xg,to) > 0. Let us consider the intrinsic cylinders

(20, to) + Q5 (6), e=(w‘3))ﬁm3,

Zo, to
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where c is to be determined. By the following change of variables

— t—1t
a?/ = L 1‘0’ t/ = U(l‘o,to)p—‘rm_gio,
P pP
these cylinders become
QT = Ky x (0,4PcPTm=3), Q™ = Ky x (—4PcPT™=3.0).
Moreover, the rescaled function
1 t' pP
)= —— 't _— 3.15
v(a',t') u(xo,to)u Zo + px’,to + w(wo, fo) P+ (3.15)

satisfies v(0,0) = 1 and is a non-negative, local weak solution to
vy — dive A(2' v, Dpv) = B(2!, ', v, Dyv)

with

-1
- _ PP
Azt v,Dyv) = (. fo)r T2 X
t/ u xo,to
P u(zo, to)v, g

A([L’ z tg + —m———,
o+ pr,to+ u(xo’to)p+m—l p

DI/ 'U) s

oP
— X
u(xo, to)Ptm=2
' pP
u(wo, to)Ptm=3’ B

B(z',t',v,Dpv) =

u(xo, to)

B(l‘o + px’ to + (z0,t0)v, D$/’U> .

One can check the following structure conditions
Al v,m) -0 = Colo|™Hnl? — C,
m>1 < A@ v, )| < Cilo ppt + Cr ol
B!, ¢!, v,m)| < Clo|™ g~ + CCP— o] 7,
with

Cp
or
A’ ', v,m) -1 = Colo| ™ n[P — (pC)P|vPH™=t,
m<1 [A(z' ' v,n)| Cl|v|m—1|n‘p71 + (pc)pfl‘,v‘pﬁ»me’

|B(x' ', v,m)] ﬁc’|fu‘mfl|n|p*1+(p0)p|v|p+m72’

NN

where Cy, C1, and C are the same constants of (2.2)—(2.3).
In order to keep the notation simple, from now on we will write (z,t) instead of (2’,t’). Establishing
the right-hand inequality of (3.14) in Theorem 3.4.1 is equivalent to proving the following theorem.
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Theorem 3.4.2 There exist constants v,vo > 0 and y1 > 1 which depend only upon the data, such
m—1
that either Cp > min{l,’yu(xo,to)ﬁp } or

v(z,71) = Y a.e. in K.

We split the proof of Theorem 3.4.2 into three simpler steps.

First Step. Let us introduce the family of nested cylinders {Q}, 7 € [0,1), with the same vertex
(0,0) defined by
QT = Q;(l) = KT X (_Tp70]7

and the families of non-negative numbers {m.,} and {n.} given by

me =supv,  np=(1-1)",

r

where 8 > 0 is a parameter to be chosen. We point out that the choice of 5 will involve only the
data. Therefore, all the subsequent quantities depending on S will depend on the data, as soon as
[ is fixed.

Let 79 be the largest root of the equation m, = n.. It exists because mg = ng = 1 and n, — +00
as 7 — 17, while m, remains bounded. Since v is continuous, there exists (z,%) € @m such that

v(Z, 1) =ng = (1—1)". (3.16)

Moreover (Z,t) + Qi1-ro C Qi+ C Q1, so we have
2 2

sup v < sup v < 2P(1—7)7P. (3.17)
(Zt)+Q1-rg Q1+27—Q
2

Let us consider the cylinder (z,%) + Qg (6o), with

1-— o
Ry = 2T07 o= M™™P, My =2°(1 —10)7",

In order to employ the “expansion of positivity” (Proposition 3.3.1), we need to find a time level
at which the function v is strictly positive over a whole cube. This is done in the next step, by
using a measure-theoretical argument.

Second Step. We need the following technical lemma.

Lemma 3.4.3 Assume that

1
// |Dw|Pdzdt < a, Hw> 2}ﬂQ1
1

Then, there exists 5§ € (=1, —u/4] such that

> .

2 1
|Dw(-5)Pdz < =~ and w(-5) = s NEK| > (3.18)
K1 H 2

A S
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Proof See [18, Lemma 9.1]. O

pt+m—1

Proposition 3.4.4 One has either pC > min{1,u(xo,to) » } or

[{v > 270 Mo} 1 {(@.7) + Qg (90)}H] > VI Q7 (G0)), (3.19)

where v is defined by (2.28) with the choices € =1-27871 a = ¢71(1-3/2°%2), and py = w = My,
0 = 0y. Note that v depends on the data and 3.

p+m—1

Proof 1If |{v > 27(5+1)M0}ﬂ{(j,f) +Q;ﬁo(90)}\ < V\QTLO(GO)L and pC < min{l,u(zg,to) » }

2 2
then, by Lemma 2.3.1 (ii), with the indicated choice of the involved parameters, one gets

(@, t) < S(1-70)7",

> w

which would contradict (3.16). O

From now on we assume that pC' < min{1, u(xg, t) S }+. Tt follows that (3.19) is satisfied, hence

the set where v is bounded away from a given quantity occupies a sizable portion of the cylinder

(Z,t) 4+ Q7%, (fo). The next proposition asserts that there exists at least one subcylinder such that
=

v remains large in any arbitrarily prefixed large portion of the subcylinder.

Proposition 3.4.5 For every Ao € (0,1) and for every vy € (0,1), there exist (y,s) € (z,t) +
Qr, (00),and a constant nog € (0,1), depending only upon the data, vy, Ao, 3, such that
=

(4:5) + Qay, (00) € (@.1) + Qg (0),

and

{v < 227V Mo} 0 {(y, 5) + Qrpy 1, (00)}] < 10lQ5, g, (B0)]- (3.20)
Proof Let us first assume m > 1. Set
1 —8 _ 9= (8+1)
k:§(1_7—0) =2 M(),

and consider the cylinders (z,t) + Q7%, (o) C (Z,t) + Qg (00) C Q14r,. We write the energy
)

estimates (2.8) for (v — %), on (z,7) + Qg (6o), with the choice of a cutoff function ¢ such that

(=1 in (z,1) + Q%, (6o)
4p 4 R _
O\CtngDngO m (xvt)+QRo(00)

(=0 on the parabolic boundary of (Z,t) + QRg, (0o)



3.4. Intrinsic Harnack inequality

Since (v —k/2), < 2%k in (z,%) + QRg,(0o), due to (3.17), discarding the term containing
the essential supremum, and using the fact that Ry < 1, 2k > 1, C,C < 1, we get

k m—1
" (2) //_7 ) |D(v7k/2)+|pgpdxd7
(#,8)+QR, (60)

< 7// v (vm* (v — k/2) | DCP + (v — k/2)2 Q) dedr

#a( // CPum o k2, + CPX (o1, 20y )Py
(Z,0)+Qr, (90)

where + is a constant depending upon the data and §. It follows, in particular, that

kP
// ) |D (v —k/2). | dedr < 1551 Qr, (00)]- (3.21)
(@8)+Q 7, (60) 0

(0]
2

Now, with respect to the new coordinates

,_ 2z —1I) ,_2P(t—t)
T = , t = ,
Ry HORS

the cylinder )
2
becomes
Q1 = K1 X (—1,0].

Moreover, by (3.19) and (3.21), the function

Py = 2 27+
w(a’, 1) ’

1
Hw}Q}ﬂQl > v and // |Dw|? < ~,
1

respectively. Then, Lemma 3.4.3 applies and we get the existence of 5 € (—1,—v/4]) such that
(3.18) is satisfied. At this point, by the result of [17] we find that for every A, 7 € (0, 1) there exist
g € K, and € € (0,1), which can be determined a priori only in terms of N,p, 7, A, and v, such
that

satisfies

kmek wd ({ut9> 5}k > 0 -k

Returning to the original variables and the original function v, we find that there exist § € (t_ —
0o(Ro/2)P,t — 00(v/4)(Ro/2)P], § € Kry (Z) and € € (0,1) such that Kzr, (§) C K r, (Z) and
2 2 2

(3.22)
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In order to extend the previous inequality to a cylinder, we consider

- P
s:§—|—9(€§0> , with 6 = pP6,,

and we write the energy estimates (2.8) for (v — Ak)_, where A = #, over the cylinders

(3:5) + Qzny () € (3:5) + @z, 0.

The cutoff function ¢ is chosen independent of ¢ with ( = 1 on Ker, (§), ¢ = 0 on the boundary
4
of Kzr, (i), and such that 0 < ¢ < 1, |D¢| < 4(2Ry)”". Discarding the term containing |Dv|, we
2
obtain

,7]{;P+m—1
/ (v — k)2 (z,t)dz < / (v — Ak)% (2, 8)dx + ————5—
Kzrg (9) (€Ro)
4

K erq (9)
2

Q] (3:23)

for every t such that s — 0 (%)p <t < s. Since A < A, we can estimate the left-hand side from

below as follows

/ (v — Ak)2 (2, t)dx > 1(1 — N2k {o(,t) < Mk} N K =g (9)
K g (9) 4 i

for every ¢ such that s — 0 (%)p < t < s. Concerning the right-hand side of (3.23), by (3.22) we
have

/ (0= M2 (2, 8)dz < (M) {u(-3) < MK} N Kopy (i)
Kerg/2(9)
< YK D|Kepy al;

moreover, referring to the definitions of 6,6y, k, we get

fYkPerfl’ B _ ’ pykp+m71 B gRO p 2_‘
TP \P g _ YV —= 1 T £ g =5 .
R Qery () R 0( 5 ) Kery | <9k°7 | K ery (3.24)
Combining (3.23)—(3.24) we obtain
— ) R fyD )
‘{U('»t) <MK ()] < 732 ‘Kujo (3.25)

for every t such that s — 6g (%R“)p <t<s. ~
Finally, we are ready to prove the thesis. Let us fix Ag € (0,1) and vy € (0,1). Choose A = Ao

and 7 € (0,1) such that ﬁ < vy. Without loss of generality, we may suppose that 7~ ! is an
integer. Let §,& be determined as above. We consider a partition of the cube Ker, (§), up to a set
of measure zero, into 7~ pairwise disjoint cubes congruent to K ver, (). For j 4: 1,...,07N, let
y; be the centers of such cubes. Up to a set of measure zero, the Coﬁection of cylinders

_ . __ ve
(yj78)+Qq70R0(90)’ ]:17"'71/ Nv where 00:Z7
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is a partition of the cylinder (g, s) + Q= ey (0) into 7~ sub-cylinders, each congruent to Q.o Ro (6o).

Since we proved (3.25), (3.20) holds true for at least one of these cylinders, and we are finished.

If m < 1, the only change we need to apply in the previous proof is to write the energy
estimates (2.9) instead of (2.8). Such estimates lead to inequalities (3.21) and (3.23) as in the case
m > 1. U

Corollary 3.4.6 There exist (y,s) € (Z,1)+Q%, (00), and 1y € (0,1), such that either max{C,C'’}
=

or
1
v(x,s) = §(1 —10)7 " Vo € K- (y), (3.26)
with R .
= 7702 2 = 1770(1 = T0).

The constant 19 depends only upon B and the data.

Proof Let vy be determined by (2.20) for the choices p_ = 0, w = My, £ = 2= F+2) ¢ = % and
0 = 0y. Note that vy depends on the data and on . Let us fix \g = % By Proposition 3.4.5

we obtain that the cylinder (y,s) + @y, g, () satisfies (3.20). We conclude the proof by means of
Lemma 2.3.1 (i). O

Third Step. Now, combining all the results, we can conclude the proof of Theorem 3.4.2. Assuming
(3.26), we apply Proposition 3.3.1 to the weak solution v, defined by (3.15), for the choices (M =

$(1 —10)7? and 2p = r. We have either max{C”, Cirp > (1 =70)~ 5)p+m71 or
v(z,t) 2 nEM

for all x € K,-(y) and for every ¢ in the interval

def pm=3 b pm=3 def
s &P _ 9P Pgtg &PrP = t
e <77§M> ( r o (UEM> '

In the second case we infer, in particular, that v(x, s1) = néM and v(x,t1) = n&M for x € Ko (y).
By applying again the same Proposition, we get that either C?(2r)? > ’y(%n(l - To)_’g)p+m

v(w,t) = n*EM

for all x € K4,(y) and for every ¢ in the interval

b p+m—3 b ptm—3
p_21) 2 P< < P 2 ;0_
s1 + (U2§M> (8 )(2r) t<t1+ (TIZfM) 8P (2r)

By iteration, we get either CP(2F~1r)P > (g1 - TO)_B)pHn_l or
v(x,t) = nteEM
for all x € Kor,.(y) and for every t in the interval s, tx] with

ko op(i-1)

b p+m—3
S =S+ (W) (817 - 2;D)Tp Z 777@_’_7”_3)].

j=1

p \Ptm—3 ko op(i-1)
_ DD
=s+ (fM) 8'r Zn(p+m 3)5°



92 3. Intrinsic Harnack estimates for some doubly nonlinear degenerate parabolic equations

forall k=1,2,....

Now, fix n € N such that

1
27" < §770(1 —79) <27

It follows that
2<2"r < 4 (3.27)
and
2730730 (28" > reM > 273yl (20

We choose /3 such that 261 = 1. Once 3 is fixed (depending only on the data), also 79 turns out to
depend only on the data. Then, in particular,

neM > 2748738 o e (0,1), (3.28)

Now, we have to distinguish two cases.
First Case: there exists k < n such that C?(2F~1r)P > (g1 - To)_ﬁ)p+m_1. Then we have
also CP(2"r)P > ~(&n"(1 — To)fﬂ)ermil. From (3.27) and (3.28) it follows that

. . " 1 n 8 p+m—1
Crap > €1y > 5 (G (L= 70) ") > y(data).

Recalling the definition of C, this is equivalent to saying that

m—1

Py

Cp = yu(zo, to)'+

with v = 7y(data).
Second Case: We have C?(2"~1r)P < y(%n" (1 — 70)73)p+m71. Then

for all z € Kon,(y) and for every t in the interval [s,, t,]. Taking (3.28) and (3.27) into account we
infer that

U(I7t) = Y0,

for every x € K1 C Ka(y) C Kan,(y) and t € [sp,t,]. It remains to estimate the time interval.
Using (3.27) and (3.28) we have

( b >p+m—3 2p(n+2) 8B+1 b ptm—3
th, 28+ | — r”>—1+8p( > .
" EM n(ptm=3)n 77(/)3

If the right-hand side is larger than 1, we are done. Otherwise, we iterate the procedure %k times
more, until ¢,45 > 1. Note that

SEFLp\PH gpk
tn+k>_1+8p< ) —v,
o 'r]k(Perfg’)
so that the choice of k is independent of v and depends only on the data. It follows that there
exists t = 1 > 1 such that
v(x,v1) =Y for all z € K;.
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Thus, Theorem 3.4.2 is proved. Recalling (3.15), we can write the previous inequality in terms of u,
and we obtain

1
u(xg,tg) < — inf wu(x,tg+06
(w0, t0) < 20 JRL ulefo +607)

ﬁ 4 ; ¢ p+m—3
— m= a N [ —
‘e : (U(xm tO)) ’

with

which is the right-hand side of (3.14). We now proceed to prove the left-hand side.
Once more fix (xg,t9) € Er, assume u(xg,to) > 0, and let (xg,to) + pr(ﬂ), with 6 as above.
Seek those values of t < ¢y, if any, for which

u(xo, t) = 2ku(xo, to), (3.29)

where & is the constant in the right-hand side of (3.14), which holds for all such cylinders. If such
a t does not exist

u(zo,t) < 2ku(xo,to) (3.30)
for all t € (to — 6(4p)P, to). We establish by contradiction that this in turn implies

sup u(-,to — 0pP) < 2K%u(wo, to). (3.31)
Ky (20)

If not, by continuity there exists z. € K,(x¢) such that
u(zy, to — 0pP) = 2k2u(xg, to).
Apply the intrinsic, forward inequality in (3.14) with (zg, tp) replaced by (x.,to — 6pP), to get

w(za,to — 0pP) < /{Kir(lf )u(-,to —0pP 4+ 0..p") (3.32)
P\ T

where

= (comzam)

Now z¢ € K,(z.) and, since x > 1 and m +p > 3,

c m+p—3 c m+p—3
_ 9P — P
fo=0p" +0.p" = 1o (u(mo,t0)> Pt (u(m*7t0 - 9pp)> P

c m+p—3 1 c m+p—3
=to- (u(xo,to)) et (2K2)m+p—3 (u(xo,to)) "

=to— [1 — (26%)3~™7] (m)m“’ﬁpp < to.

Therefore from (3.30)-(3.32)

26%u(20, to) = u(ww, to — 0pP) < Ku(zo,to — 0p” + 0.p")
< 2K%u(z0, o). (3.33)
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The contradiction establishes (3.31). We now prove that there exists ¢ < ¢ satisfying (3.29). Let
T < to be the first time for which (3.29) holds. For such a time

to—7> (= )m+p_3 po 1 (- )m+p_3 p (3.34)
0= T u(xg, T) = (2k)m+P=3 \u(xg, to) £ '

Indeed if such inequality were violated, applying the intrinsic, forward Harnack inequality in (3.14)
with (z9,to) replaced by (xg,7) would give

2ku(xo, to) = u(xg, 7) < Ku(wo, to).

Set

1 c m+p—3 »
S
st (2k)m+P=3 \u(xq, to) P
From the definitions, the continuity of u and (3.34)
T <s <t and u(zo, 8) < 2ku(xo, to).

We claim that
u(y, s) < 2ku(xo, to) for all y € K,(x0). (3.35)

Proceeding by contradiction, let y € K,(x¢) be such that
u(y, 8) = 2ku(xo, to).
Apply the intrinsic, forward inequality in (3.14) with (z¢, to) replaced by (y, s) to obtain

c >m+p—3

u(y,s) < k inf wu(-, s+ 05p"), Where05:<7
(v, ) d ( P’) w5)

p\Y

Using the definition of s and 6 one computes
s+ 0sp° = tg.
Therefore, since y € K,(zo)

2ku(xo, to) = uly,s) < Kk inf wu(-, tg) < ku(zo, to).
Kp(y)
The contradiction implies that (3.35) holds true. Summarizing the results of these alternatives,
either (3.31) holds or (3.35) is in force. The proof is now concluded by using the arbitrariness of p
and by properly redefining x. ([
The stability of the constants in the intrinsic Harnack inequality will be discussed in the next
chapter, together with the analogous result for the singular (super-critical) case.

3.5 Holder continuity for non-negative solutions

The aim of the present section is to show that the intrinsic Harnack inequality implies a local Holder
continuity condition. Up to a translation, assume that the initial cylinder

QRO = KRO X (_Rg_€70]’
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with 0 < £ < min{p,p + m — 3}, is contained in the domain of u, which is a non-negative, local
weak solution to (2.1). Set
W = 0SC U = Sup U.
Ro QR

Let us define the intrinsic cylinder

p+m—3
QO = KRO X (_QORgaO]v 90 = <C>

Wo

¢
where ¢ > 0 is to be determined only in dependence of the data. If wy < cRJ™™~* for every cylinder
as Qr, (keeping the same constant c¢), then u turns out to be locally Holder continuous (see [39]).

&
Thus, assume that there exists Ry such that wy > ¢R;™™ . In this case, we have that Qo C Qg,
and, consequently,

oscUu < wy.
Qo

The aim of the next theorem is to show that we can construct a sequence of nested and shrinking
intrinsic cylinders {Q,} with the same vertex, such that the oscillation of u in @,, tends to zero,
as n — oo, in a way that can be quantitatively determined by means of the structure conditions
(2.2)-(2.3). We point out that the proof of such a result is a little bit more involved than the one
given in [18] since, in general, wy — u is not a solution to (2.1). This fact is clear in the case of the
model equation (2.4). The Holder continuity will then follow from [39].

Theorem 3.5.1 There exist positive constants ¢,y and 6, € (0,1), that can be quantitatively
determined only in terms of the data such that, setting

Ry =¢eRn_1, wp = max {5wn71>’7(0Rn71)$}7

¢ p+m—3
en = () ) Qn = Q}_{n (en)7

Wn

for n € N, there hold Qn4+1 C Q,, and
oscu < Wy.

n

Theorem 3.5.1 can be proved by using an iterative argument. For the sake of simplicity, we limit
ourselves to the first iteration.
Let Py = (0,—6oR}/2) be the mid point of Q. We distinguish two cases.

3.5.1 First case

Assume first that u(Py) > wo.
By Theorem 3.4.1 there exist ¢, k,y > 0, depending only upon the data, such that either

yu(Po)PT™! < CPRb (3.36)

or

1
—wp < inf  u(x,t). (3.37)
By, 60
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Note that we have used an equivalent formulation of (3.14). Setting

1 5§
§=1-— =2 Ry =¢R
8:‘4'/, € 4 ) 1 gL,

p c p+m—3
Wy = max {50007’71 (CRy)*Fm1 }, 01 = <w> ,
1
with v = SW_W%, it is easily seen that the cylinder Q1 = Kg, x (=601 R},0] is contained in
QZRD (6p). If (3.36) holds, then
4

oscu < wo < 8u(Py) < Y (CRo) 77T < wy.
1
If (3.37) is true then

oscu < dwy < wi-
Q1

In any case
%scu < wi. (3.38)

1

3.5.2 Second case

Assume now that u(FPp) < %wo. We are going to show that, also in this case, we can fix (possibly

different) values of the constants ¢, 4, ¢,y, dependent only on the data, such that (3.38) continues
to hold. X
Let us consider Qy = Po+Qp, (%) If CPR) > ($w0)”"™ " then we can restart as from (3.36).
w

-1
From now on assume that CpRg < (% 0)p+m . Then

1
{resafna

where v is determined by (2.20), for the choices a = £ = 1/2, w = py = wy, 6 = 6y/2. Indeed, if
(3.39) were not true, then Lemma 2.3.1 would imply that

2 v|Qq |, (3.39)

o

1
u(z,t) > = wo, in Py+ Q% (—)
4 2\2

In particular, u(Py) > iwo, which is impossible. Thus (3.39) is established. Note that v depends
only on the data (once ¢ will be fixed only in dependence of the data). As for Proposition 3.4.5,
one can see that the following lemma holds.

Lemma 3.5.2 For every A > 1 and n € (0,1), there exist (y,s) € Qp, and 6 € (0,1) such that
(v:5) + Qaom, (%) © Q5+ and

{532} 0+ () <ol ()]
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Now, fix A = 3/2 and n = v, where v is obtained by (2.28) when py = w =wp, a = 1/2, £ = 1/4 and
0 = 6p/2. Tt follows that there are (7,5) € Qp, and § € (0,1) such that (7, 3) + QQ_SRO (%‘)) C Qqp,

and
foodelofin-an () ()

Hence, Lemma 2.3.1 (ii) yields either (CRy)P > 4~Pwh™™ " (and in this case we finish the proof,
as before), or

7 L (0
u < gL in (g,5) +Q; <2O>, (3.40)

where we have set

__ 0Ry
p=—
At this point, we change the time variable by
t=wi M,
and set
w(z,t') = u(z,t), v(z,t') = wo — w(x, t).

It turns out that v is a local weak solution to
vy = divA’(z, ¥, w, Dv) + B(z,t',w, Dv)
with

Azt ,w,Dv) = —wi " A(x,wy” ™t w, —Dv)
B'(z,t',w,Dv) = —wé_mB(x,wé_mt',w, —Dv).
(3.41)

Let us momentarily assume m > 1. The structure conditions for the new coeflicients are the
following

Az, t' Jw,n) -0 = wéfmC’owm’1|n|p - wéfme,
4, 0, )] < ™ Crum 1 4 O

B! (2, ', w,m)| < wh ™" Cwm Pt 4 wh T CPw T

To simplify the notation, from now on we write ¢ instead of ¢’. The corresponding energy
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estimates are

sup /KR(y) (v — k)2 CP(x, t)dx — / (v — k)% ¢P(x,s — ORP)dx

s—ORP<t<s Kr(y)

+wwg™™ // w™ D (v — k)_[P¢Pdxdt
(y,8)+Qx ()

<~ / / (v — k)2 ¢P Gyt
(y,5)+Qx(0)

+wp™™ // w™ (v — k)P | D¢|Pdxdt
(¥,8)+QR(9)

+ // (pr[l)imwm_l(v — k)f + wéfmex{(v_k)_>0})C”d$dt.
(y,8)+QR(9)
(3.42)

If we choose levels 1

kg gbd(),

then w > I wo, whenever (v —k)_ > 0. On the other hand, w < wp in Kg, x (—fowg' 'R, 0], so
that (3.42) gives

sup /KR(y) (v — k)2 CP(x, t)dx — / (v — k)2 ¢P(x,s — ORP)dx

s—ORP<t<s Kr(y)

+w / D@ — k)_PCPdadt
(y,8)+Qx(0)

<~ / / (v — k)2 ¢P7 1 dadt
(4,5)+Q7 ()

—i—v// (v — k)? | D¢|Pdxdt
(¥,8)+QRr(9)

+ // (Cp(v — k)P + wéimcp)({(v,k)_>0})cpdxdt
(y,8)+QR (0)
(3.43)

for every cylinder (y, s) + Qz(0) C Kr, x (—0ow(" 'R, 0]. Moreover, condition (3.40) leads to

1
at 2 ' ’
v(z,t) g wo

m—1
wg 6o

for (,t) € (g, w '5) + Q5 (T) In particular, we have

1
v(os0) > gwo, i Kp(y), with so = wi' s,

Now, arguing as in [18], (note that the energy estimate (3.43) are the same as those considered
there), one can check the following proposition.
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Proposition 3.5.3 Let n € N be fixed. Then, there exist y,0,b1,bs, depending only on the data

and n, such that either CPRY > ~wh™™ ! or

awo
t) =2 ——,
v(@:t) 2 16,

in Kon-15(y) x (80 +t1, 80 + t2), where

N\ P2
ti:(gbl) S0P, i=1,2.

Going now back to the function u, we find

u(z,t) < (1= mn)wo, (3.44)
for every x € Kon-1;(y) and t € (§—|— wé_mtl, 5+ Wé_mtg), where

- g
© 16by

n

Recalling that 5 € (—6y R}, —0o R} /2] and choosing n large enough, one can see that it is possible
to find a positive constant ¢ satisfying 5+ wéfmtg >0 and 5+ wéfmtl < 0 and depending only on
the data. Now,

O RY
S+wi™ < — 02 L
_ g cptm=3 1 (8b)P72 507
= owg+m73 75 cp+tm—3  9p

ep B

_ —eRP(l—W)p+m_3 1 (8b1)P~2 506P
B 1 2 cptm=3 9p )’

where

c p+m—3
0=—— Ri=¢R
((1 - ﬂ)w()) 7 Lo

with € > 0 to be determined. We require that

_ p)ptm=3 P—2 § 5P
(1) (1 (81) %5)21

ep B

2 cptm—3  9p
in order to conclude, by the previous estimate, that 5+ wé_mtl < —0RY. This means that (3.44)
is true in Kon-1,;(7) x (—0RY,0] and, a fortiori, in Kon-1;(7) x (—601RY,0], being

c p+m—3 )
01 = (Wl) , w1 = max{(l — ’I])wo,fy(CRo)m}.

Finally, by choosing a possibly larger value of n (or a possibly smaller value of ¢), we can ensure
that Kyn-1;(y) D Kg,. We have then established that

oscu < wy,
Q1
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where Q1 = Q% (01), and the second case is concluded as before.
If m < 1, then the structure conditions for the new coefficients (3.41) are

A/(.’E,t/, w,n) “n = WéimCmefl‘mp — Wé*mC';Dw;Derfl7
|A/(:L',t/7w,77)| < wé*mclwmfl‘m;nfl +wéfmcp71wp+m,2
|B/(£C,t/’ w,n)‘ g w(l)_mcwmflhﬂp*l + wé—mcppr’,m,Q.

As before, to simplify the notation, from now on we write ¢ instead of t’. The corresponding energy
estimates are

k
2
sup /KR(y) (v—Fk)2CP(x, t)dx — 7 /KR(y) (v—k)_CP(x,s — ORP)dx

s—ORP<t<s

L // Dl(v — k)_]Pdadt
(y,8)+QR(0)

< ’Y<k2 // X[v<k)CCedzdt
(y,9)+QR(0)

Fwg MMl // Xjo<k] (CPCP + ¥ + DClp)dwdt)
(y,8)+Qx ()

(3.45)
where
I m+p—2
=1
If we choose levels 1
k < é wo,
then w > £ wo, whenever (v — k)_ > 0. On the other hand, w < wy in Kg, x (0w ' RY, 0], so
that
k
sup / (v — k)2 CP(x,t)dx — 7/ (v—k)_CP(x,s — ORP)dx
s—ORP<t<s JKr(y) ! Kr(y)
+w / |D[(v — k)_(]|Pdxdt
(y,8)+QR(0)
<5(# ff Xlorl CGudrds
(y,5)+QR(9)
+k? // X[w<k] (CPCP + (P + |DC|”)al9vdt>7 (3.46)
(y,8)+QR(0)

for every cylinder (y,s) + Qz(0) C Kpr, x (—fow(" ' RE,0]. Moreover, condition (3.40) leads to

1
t 2 o )
U(I7 ) 8w0

m—1
for (z,t) € (g, wq 15) + Q;(w" 5 00). In particular, we have

1
v(80) = gwo,  in Kp(g), with so =i,
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Now we can conclude the proof as before, applying Proposition 3.5.3. One can check that the
previous estimates work as well as (3.43).
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Chapter 4

Intrinsic Harnack estimates for
some doubly nonlinear singular
parabolic equations

4.1 Introduction

In this chapter we analyze the parabolic equations (2.1) to the purpose of extending, where possible,
the intrinsic Harnack estimate (3.14) to the singular case (m+p < 3). Indeed, the weak solutions to
(2.1) behave differently depending on m+p (< 3) being close to either 3 or 2. The critical threshold
is
p
+ = =3.

m+p N
In the super-critical range (3 — & < m +p < 3), a form of the Harnack inequality similar to (3.14)
holds. For the same range, a “time insensitive” Harnack estimate can be proved. An analysis of
the model equation (2.4) suggests that neither of the previous Harnack inequalities holds in the
sub-critical range (2 < m +p < 3 — £); as discussed by Vespri in [54], the solutions to the Cauchy
problem

up = div(ju|™ | DulP~2 Du) in RN x (0, 00)
u(2,0) = up(w) € LI(RN) N LO-m-DN/D(RN) ug(z) > 0

become extinct after a finite time, and this contradicts the estimate (3.14). Nevertheless, recent
results of DiBenedetto, Gianazza and Vespri [21], for the p-Laplacian and the porous medium
equations, suggest that a different form of a Harnack estimate might hold.

As for the degenerate case, the expansion of positivity is a crucial property in the proof of any
Harnack inequality; Section 4.2 is devoted to its proof. Section 4.3 treats the super-critical case,
yielding to the two Harnack estimates mentioned above. Finally, in Section 4.4, we prove a different
form of Harnack estimate, which holds in the sub-critical range, introducing as well its connection
with Holder continuity.

103
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4.2 Expansion of positivity

Proposition 4.2.1 (Expansion of positivity, p + m — 3 < 0) Assume that for some (y,s) €
Er and some p > 0 there holds

[u(-;8) = MIN K, (y)| = alKp(y)]

for some M > 0 and some a € (0,1). There ezist constants €,9,n € (0,1), depending only upon the
data {p,m,N,Co,C1} and «, and independent of (y,s),p, M, such that either

Cp > min{1, MPT™1}

or
u('>t) >nM m K2p(y)

for all times
s+ (1—e)SM3 ™ PpP <t <54+ SM3TMTPpP,
4.2.1 Transforming the variables and the equation

Assume (y, s) = (0,0), let § and € be as determined in Lemma 3.2.1, and let p be so that
Q16p(5M3_m_p) = Klgp X (0’5M3—m—p] C Er.
Introduce the change of variables and the new unknown function

-7

t— SM3=m=PpP 1 -
z = ;, —€ = W, U(Z,T) = MU(Z‘,IJ})€3””’T’. (41)
This maps the cylinder Q16,(6M3~ ™ P) into K16 x (0,00) and transforms the equation into

v

—div, A(z,7,v, D,v) = B(z,7,v, D,v) + (4.2)

3—m-—p
weakly in K16 x (0,00), where A and B are measurable functions of their arguments given by

Az, 7,v,1m) = SM"PpP e T Ta(T)

x A (pz,dM?’_m_ppp(l —e ), Y 'l ) ,
B(w,1,0,1m) = 6M>™ " PpPe™ (1)

b (ﬂzv(?M?’m”pp(l —e), wu f ) ’

where (1) 1= A, B satisfy the structure conditions

- > 6Co|v|™ "t nlP — 6CP,
|A(z,7,v,m)| < 8Cy[v|™Ln|P~t + 5CP~ L o| 7
|B(z,7,v,m)| < 6C|v[™n|p=t + 6CCP~ 1|7
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A(z,7,0,m) -1 = [Colo™HnlP — (Cp)Plom 71,
m<1: |A(z, 7, v,m)| < 8[C1|v|™ [P~ + (Cp)P~t|v|m*P—2],
‘B(Z7T7U7n)| < 6[C|,U|m—1‘77|p—1 + (Cp)p\v|m+p_2],
a.e. in Kig x (0,00), with C' = pC and C = C, where Cy,Cq, and C are the original

constants in the structure conditions (2.2)-(2.3). In this setting, the information of Lemma 3.2.1
reads

T 1
[[v(:,7) > eex=m—r| N Kq| > §Q‘K1| V1 € (0, +00).
Let 79 to be chosen and set

_0 ko . .
ko := ee3=m=p k; =57 for j =0,1,..., jx,

where j, is to be chosen. With this symbolism
1
l[v(-,7) > k;] N Kg| > 50[8_N|K3\ Y1 € (10, +00),

for all 7 € N. Introduce the cylinders

QTO = KS X (7'0 —+ k’gimip, T0 —+ 2kgim7p),
Q/ = K16 X (To, T0 + 2k_3—m—p)’

7o

and a non-negative, piecewise smooth, cutoff function in @/ of the form ((z,7) = (1(2){2(7), where

_ 1 in Kg
Cl o { 0 in RN \ K16 ’

B 1 form>m+ko ™P
G = 0 for 7 < 719

|D<1| < é?

1
) 0 S CQ,T S 3D
0

First assume m > 1. In the weak formulation take as test function —(v — k;)_(?, for the indicated
choice of (. Performing calculations analogous to those in Section 2.2, we get

// o™ D(v — kj)_ [Pdzdr
Q

70

<], @R G 4 8 o = k) 2 1DCPldedr
+75/// [(CP)Pvmfl(U—kj)’i +(CP)pX(v—kj),>o]dde.

Define ¢ = max{%, v}. Then, assuming (Cp) <1,

m 1
// k;)_|Pdzdr
Qry

kiﬂ+m 1 i
m[kg_ﬂn_p + 6L SR 1 (Cp)] |19,
0

&p
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Either (Cp)?P > (eM)PT™™~! for all T € (79, +00), or

// )-[Pdzdr < ~(6, data)k} Qx| (4.3)
Qry
Now assume m < 1. In the weak formulation take as test function
—(v" — k;)_¢P = —-—— 1
('~ K)-¢7, e,

for the indicated choice of (. Performing calculations analogous to those in Section 2.2, we get

// (v—Fk;) —|Pdzdr
Qry

k? m—
sw;-m[k3; (14 (o )R] 1S

(9, data)kﬂQTn ls (4.4)

where we enforced Cp < 1.

4.2.2 Estimating the measure of the set [v < k;] within Q.
Notice that [v(-,T) < k;j] = [0(-, 7) < k] for all j. Set
Aj(t) = [w(-,7) < kj] N Ky and Aj=[v <kj|NQr.

By Lemma B.2.3 and (4.3)

(V)
kj = ki) A (T < oy
( j ]+1)| J+1( )| — ‘Ks\Aj(T)l KgUlkjy1<v(-,7)<kj]
(V)

« /KBUU%H <v(-,7)<kj]

|Dv|dz

< | Dvldz

for all 7 > 7. Integrate this in d7 over (7o +kj ™7, 704+ 2ks ™ P), majorize the resulting integral
on the right-hand side by the Holder inequality, and use either (4.4) or (4.3) to get

ﬁ|A]-+1| < v(data, @) // | Dv|dz
2 Aj\Ajt1
1 —
< 7y(data, a)(// |Dv|pdz) YA, \Aj+1|pT
Aj\Ajp1

~(data, «, 5 // |pdz) |A; \Aj+1|pT?1
< 7(data, a, 5)’fj|Qro|5|Aj \Aja| 7

Hence
|Aj 1|7 < y(data, a, 8)|Qr| 77|47 \ Ajsal.
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Add these inequalities for j = 0,1,...,j« — 1, where j, is an integer to be chosen, and majorize the
sum on the right-hand side by the corresponding telescopic series. This gives

a1

Jel Ay |77 < y(data, o, 6)Qr [T Y (145] = [4j5a])
§=0

< y(data, , 8)|Qr, |77

Equivalently )
~(data, a, ) ) =

Ilv <k, ] N Q| < v|Qr], where v = ( ;

4.2.3 Segmenting (),
Assume momentarily that j,., and hence v, has been determined. By possibly increasing j, to be
not necessarily integer, without loss of generality we may assume that (27+)3~™~P is an integer.
Then subdivide @, into (27+)3~™~P cylinders, each of length k‘?:m_p , by setting

Qn=Ksx (ro+ky " P40k " mo+ kg P+ (n+ 1)k
forn=0,1,...,(2%)3~™~P — 1. For at least one of these, say Q,, there must hold

|[U < kj*} an‘ < V‘Qn‘

Apply Lemma 2.3.1 to v over @, with {w =k;, ,a =3, and 0 = kj-’:m_p. It gives

k‘j* a.e. in K4,

N | =

v(z, 70 + kS‘m‘p +(n+ l)k?:m_p) >

provided Cp < 1, and
[v < k] 0 Qnl
|Qn]
Choose now j,, and hence v, from this and the definition of v_. Summarizing, for such a choice of
J«, and hence v, there exists a time level 7 in the range

< v_ =~(data).

To + kg_m_p <7 <7+ 2k3_m_p

such that

70 (4
v(z,71) > oge3—m—p where o = 2~ U=+1),

Remark 4.2.2 Notice that j., and hence v, are determined only in terms of the data and are
independent of the parameter g, which is still to be chosen.

4.2.4 Returning to the original coordinates

In terms of the original coordinates and the original function u(z,t), this implies

u(-,t1) > coMesm-r =: M, in Ky,



108

4. Intrinsic Harnack estimates for some doubly nonlinear singular parabolic equations

where t; = §M3~™7P(1 — e~ ™). Apply now Lemma 2.4.1 with M replaced by My and £ = 1 over
the cylinder
(t1,0) + Q1,(6) x (t1,t1 + 0(4p)”].

By choosing 6 = VoMg_m_p, where vy = vy(data), the assumption of Lemma 2.4.1 is satisfied, and
it yields to

1 - 1 _33-m=p
MO e §UOM€39171—1p 2 §UOM€ ?ifmfp e’ (45)
in K, for all times ¢t; <t <t —&—VoMg’*m*p(élp)p. We require M3~ PpP = ¢; —|—VOM§’7m7p(4p)p,
which determines 7:

U(-,t) >

| —

5M37m7ppp6771 _ 6M37mfppp —t = VO(O,OM)L’»*m*pei(ﬁf‘FO)(4,0)p
)

= e’ =
e
4pV0(70 mTp

This determines quantitatively 7o = 7o(data); in particular, (4.5) holds for all times
ty = M3 TP P — g MB3TMTP(4p)P <t < SMBTTTP P,

From the previous definitions and transformations one estimates

1
ty = M3 PP (5 — 1pdP) = M?’_m_pppé(l - ST )
g ero
<(1—e)dM3~mPpP, where & = e~ 072",

O

4.2.5 Stability of the expansion of positivity

The proof of Proposition 3.3.1 for the degenerate case p +m > 3, shows that the constants b and
n in (3.4)-(3.5) depend on m and p as

hpt+m=3 ) 7

k.p+m—3
p+m—3 )

~ ex — _—
n p( e er—

b =~ exp (fyb
for constants 7y, vy, h, k all larger than 1, depending only upon the data {N, Cy, C1}, and indepen-
dent of p, m. Thus the ratio (b/n)?T™~3 that determines the “waiting time” needed to preserve and
expand the positivity, deteriorates as p +m — co. However it is stable as p + m — 3 and (3.5) re-
mains meaningful for p+m near 3. On the other hand n(p, m) — 0 as p+m — 3 and (3.4) becomes
vacuous. Likewise, in the proof of Proposition 4.2.1, for the singular case 2 < m+p < 3, the change
of variables (4.1) and the subsequent arguments yield constants that deteriorate as m+p — 3. Nev-
ertheless, the next proposition states that both Proposition 3.3.1, for m + p > 3, and Proposition
4.2.1, for 2 < m + p < 3, continue to hold with constants that are stable as m +p — 3.

Proposition 4.2.3 Let u be a non-negative, local, weak solution to the singular equations (2.1)-
(2.2)-(2.3) forp+m > 2 in Ep. Let

Ksp(y) X (873 +——rms| € BEr
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and assume that for some (y,s) € Er and some p > 0 there holds
[u(-,5) = M]N K, (y)| = alK,(y)]

for some M > 0 and some « € (0,1). There exist constants §, 04,1« € (0,1) and v, > 1, depending
only upon the data {N,Cy,C1} and «, independent of (y,s), M,p,m and p, such that, for all
|p+m — 3| < 0., either

vCp > min{1, M }

or
u(z,t) > nM for all x € Ks,(y)
for all
1
L5pp SpP
2
s+ Mp+m—3 Stss+ Mp+m—=3"

Assume that (y, s) = (0,0) and let e(p, m) and §(p, m) be the constants corresponding to «, claimed
by Lemma 3.2.1. The lemma does not distinguish between p+m > 3 and 2 < p+ m < 3 and it
implies
1 )
[u(-,t) > eM] N Ky,| > 5OZ4*N|K4,,|, for all t € (0,6 M3~ ™ P pP). (4.6)

By Remark 3.2.2 the constants €(p, m) and §(p, m) are stable as p+m — 3. The proof now proceeds
for p+m near 3 irrespective of the degeneracy (p+m > 3) or singularity (p+m < 3) of the partial
differential equation. For this reason we denote by |p + m — 3| the proximity of p + m to 3 from
either side.

Lemma 4.2.4 For every v, € (0,1), there exist constants o.,€,, € (0,1) and v, > 1, depending
only upon the data {N, Co,C1} and «, independent of u, M, p,m and p, such that, for all |p+m—3| <
o, either

~¥«Cp > min{1, M}

or
[l < e, M) N QL (M 7)| < 1] QL (817,

where ij((SM:g_m—p) = Ky, X (0, 5 M3=m=PpP],

Proof Consider the levels k; = 62—]\14 for j = 0,1,...,j. where j. € N is to be chosen, and ¢ is
from Lemma 3.2.1, and a non-negative, piecewise smooth, cutoff function ¢ that equals one on
Qj[p((SM?’_m_p)7 and such that

1 1
D¢l < Zp’ |G| < M.

First assume m > 1. Write down the energy estimates (2.7) for (u — kj)— over the cylinder
Qi (0MP=m=)

//Q+ P )um_1|D(u—k;j)_|pdde
1p P

<[ (u= k)2 G 0™ (w = )2 [ DG dad
Qf (5M3=m—r)

< 'Y// [Cp’um_l(u—k’j)zi +CpX[u<kj]]dl‘dT.
o, (sMs-m-)
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Define @ := max{%, u}, then

//Q+ gy [P Ri)Pdads
4p P

< v(;j)m_l [5M3_ki_ppp + ka;: +oPRrmt CP] 97|
< vgp w +1+(Cp)? + (C;C?p] o1,

< vfp’i % +1+(Cp)’ + ((’;g))p] 194,

< W;i mergimmerl 1y (Cp)? + (Ckf,)p} Q1.

Since €3~™~P is limited, being m + p close to 3, either Cp > min{1, 2%} or

kP
//Q+ (5M3—m—p) |D(t = kj) - |PdxdT < 7%2]*‘3_m_pl|gj{p|a
4p P

for a constant v depending only upon the data {N,Cy,C1} and independent of u, M, p,p and m.
Recall the definition
Ap p(t) = [u(-,t) < kN K,,.

Apply the discrete isoperimetric inequality of Lemma B.2.3 to the levels

eM eM .
l:k/’j:? and k/’:k‘]+1:ﬁ fOI'JZO,l...
and take into account (4.6) to obtain
~
sl A can(®) < 2o [ D, 1) da.
«a KapNlkjr1<u<k;]

Integrate this over (0,6M3~™"PpP) and set

SM3~™P,
A = [u < ;] N QF, (M P) = / Ay, (7)dr.
0

Then the previous inequality yields

kj1lAjl < %0// |Duldxdr
O (SM3=m=P)N[k; 41 <u<k]

p=1
<9 ( I - kj>|pdxdf> 45\ Aja |5
of (5M3-m—p)

p—1

< 9k (|QLEMP 1)) " (1 45] = 1454 ])

Sl
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kj
2

p

where we have used the energy estimates. Next divide by ;1 = and take the power 557 on

both sides to obtain the recursive inequalities

1

Ay |77 < 4]QF, (6MP ™™ P) |7 (4] = |41

Add these inequalities for j = 0,1,...,j. — 1. Minorize the terms on the left-hand side by their
D

smallest value |A;_|»-T and majorize the right-hand side with the corresponding telescopic series.

The indicated estimations yield

. »_ R~
el A |77 < y]QF, (BMET )T Y (14 — A
§=0
< 41Q5, (MR P
From this ~
|Aj.| < == Q5 (6MP~ ™). (4.7)
Jx "
Choosing
€ v
€, = — and Ve = —— (4.8)
2 =
Jx "

proves the lemma for m > 1. When m < 1 we repeat the same argument starting from the energy
estimates (2.9). O

To conclude the proof of Proposition 4.2.3, apply Lemma 2.3.1 with u— = 0,£ =¢,,,a = %,w =
M,0 = 6M>3>~™P and p replaced by 2p. The lemma yields

1 1
u>—€, M in Ky, x (56/)1’,6/)”),

2
provided
Yo = v <e.]n QIP(5M37m7P)| _ |A;. =v_
|Q4, (603 -m=7)] |Q1, (603 -m=7)] ’

where the number v, is taken from the proof of Lemma 2.3.1. For p +m > 3 compute

(etm=3)7

YO = V_ =7 3 N+px[m>1]+max{p,2}x[m<l]
(14 5eb] ) v
(§€p+m*32j*(3*mfp))%
=7 N+PX [ >1]T02x{2:2} X [m < 1] < Vs

(1+ 5€p+m—32j*(3—m—17)) P
Stipulate to choose |p + m — 3| < o, and then o, so small that 27+P*™=3l ¢ (1,2). Then, from
(4.7)-(4.8) choose j. so large as to satisfy the requirement. O

4.3 Intrinsic Harnack inequality for super-critical, singular
equations

In addition to the structure conditions (2.2)-(2.3) we now assume
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e C =0, namely the operator is homogeneous;
e the Comparison Principle holds (see [53]).

Let u be a continuous, non-negative, local, weak solution to the singular equations (2.1)-(2.2)-(2.3)
in Ep, for p, m in the super-critical range

3—%<m+p<3. (4.9)

Fix (xo,t0) € Ep such that u(zg,tp) > 0 and construct the cylinders
(xo,t0) + Q;t(ﬁ) where 0 = u(xo,to)> ™ P. (4.10)

These cylinders are “intrinsic” to the solution since their length is determined by the value of u at
(20,t0). The Harnack inequality holds in such an intrinsic geometry, as made precise in Theorems
4.3.1-4.3.2 below. The first is an intrinsic, mean vale Harnack inequality in a form similar to
Theorem 3.4.1 of Chapter 2, for degenerate equations. This Harnack estimate is stable as p+m — 3.
The second is a “time insensitive” mean value Harnack inequality, valid for all times ¢ ranging in
the intrinsic geometry of (4.10), including to. This inequality is unstable as p +m — 3.

Theorem 4.3.1 (The Intrinsic, Mean Value, Harnack Inequality) Let u be a continuous,
non-negative, local, weak solution to the singular equations (2.1)-(2.2)-(2.3) in Ep, for p,m in
the super-critical range (4.9). There exist constants ¢ € (0,1) and v > 1 depending only upon the
data {p,m, N, Co, C1}, such that for all (xo,to) € Er such that u(zg,to) > 0, and all the intrinsic
cylinders (xo,t0) + Qétp(ﬁ) as in (4.10), contained in Er,

1 3—m—p . p

~7% sup u(-, to — eu(xo, to) ) < u(xo,to)
Kp(mﬂ)

<5 inf wu(-,to + eu(zq, to)> " P pP). (4.11)
Kp(af())

The constant v — 00 as m +p + X — 3, but it is stable as m +p — 3.

Theorem 4.3.2 (Time insensitive, Intrinsic, Mean Value, Harnack Inequalities) Letu be
a continuous, non-negative, local, weak solution to the singular equations (2.1)-(2.2)-(2.3) in Ep,
for p,m in the super-critical range (4.9), and consider the intrinsic cylinders of the form (4.10),
where ¢ is the constant of Theorem 4.3.1. There exists constants € € (0,1) and 5 > 1, depending
only upon the data {p, m, N,Cy, C1}, such that for all (zq,to) € Er such that u(zg,to) > 0, and all
the intrinsic cylinders (xo,to) + Qgtp(e) as in (4.10), contained in Er,

771 sup u(-,0) <u(xo,to) <7 inf u(-,7) (4.12)

K, (zo0) K, (zo)
or any pair of time levels o, T in the range
Y g
to — eu(xo,t0)> ™ PpP < 0,7 < to + eu(xg, to)> T PP,

The constants € and 3~ tend to zero as either p +m + & —=3orasp+m—3.
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Remark 4.3.3 The Theorems have been stated for continuous solutions, to give meaning to u(xo, to).

It is known that locally bounded, local, weak solutions to (2.1), for all m +p > 2 are locally Hélder
continuous (see [53]). The intrinsic Harnack inequality (4.11), in turn, can be used to prove that
these local solutions, irrespective of their signum, are indeed locally Holder continuous within their
domain of definition.

The proofs of Theorem 4.3.1 and Theorem 4.3.2 are intertwined. In either case the key inequali-
ties to establish are the right-hand side estimates in (4.11) and (4.12). The left estimates will follow
from these by geometrical arguments. In all the cases the proofs involve in an essential way the
number

A=Np+m-—3)+p.

The requirement that p,m be in the super-critical range (4.9) is equivalent to requiring that A > 0.
The main components of the proof are the expansion of positivity for singular equations of section
4.2, a Llloc — L. Harnack-type estimate valid for A > 0, which we present next, and the Comparison
Principle.

Theorem 4.3.4 Let u be a non-negative, local, weak solution to the singular equations (2.1)-(2.2)-
(2.3) in Eg, for p,m in the super-critical range (4.9). There exists a positive constant -y, depending
only upon the data {p,m,N,Cy,C1}, such that for all cylinders

Kop(y) x [s — (t—s),s + (t — )] C Br,

o . X
sup u < 7< inf / u(x, T dx)
Kp(y)x[s.1] (t—s)% \2smt<r<t [, ) .

, (4.13)

where A= N(m+p—3) +p.

Proof Apply first Proposition 2.6.1, with = 1, and then Proposition 2.5.1. (]

4.3.1 An auxiliary proposition

We rephrase the right-hand side of (4.12) in this way

Proposition 4.3.5 Let u be a continuous, locally bounded, non-negative, local, weak solution to
the singular equation (2.1) in the super-critical range (4.9). There exist positive constants € and 7,
that can be determined quantitatively, a priori only in terms of the data {p,m, N, Cy, C1}, such that

u(wo, to) < ’_YKiY%f )U('at)
R(Zo

for all times
to — eu(wo, to)> ™ PRP <t < tg+ eu(xo,to)* ™ PRP.

The constant € and 7 tend to zero as either m +p — 3 or A — 0.
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The first step is to render the equation (2.1) “dimensionless” and to identify the largest value of
the solution u within Qggr(zo,to). Introduce the change of variables and unknown function

- t—t
=% 0 v 2 (4.14)

— .
v R ’ u(l‘o,to)?’_m_pRp’ U(.’L‘(),to)

This maps Qgr(zo,to) into
Qg = Kg X (—8p,8p].

The function v is a weak solution to
v, —divA(z, 7,v, Dv) = 0 in Qs, (4.15)

where the transformed function

A(z,7,v,Dv) = RP'u(xg,to)?> ™ PA(x,t,u, Du),
satisfies
A(z,7,0,m) - > Colv[™Hn|P,
m>1: ) o (4.16)
|A(Za7—avan)| < Cl‘”|m71|77|p71 + |1)| Py
A(z,1,0,n) -0 > [Colv|™ Yn|P — Ju|mtP=1],
- f ) [Colv|™ = n|P — [v] ] (4.17)
|A(z, 7, 0,m)] < [Crlo|™Hp|P~t + [o]™FP72],

where Cy, (4, are the original constants in the structure conditions (2.2)-(2.3). Establishing the
Proposition consists in finding positive constants € and ¥, depending only upon the data, such that

v(-,t) >77! in K for all ¢t € [—¢€, €.

Hereafter we relabel by x, ¢ the new coordinates z, .

4.3.2 Locating the supremum of v in K;

For 7 € (0,1) introduce the family of nested expanding cubes {K,} centered at the origin, and the
increasing family of positive numbers

M, = supw, N, =(1—-71)5ms.

.

By definition, My = Ny and N, — +o0o, as 7 — 1, whereas M, remains finite. Therefore the
equation M, = N, has roots. Denoting by 7, the largest root

M, =1 —7,) 3 m> and M, < N, for all 7 > 7.

Since v is continuous, the supremum M, is achieved at some z € K., . Choose 7 € (0,1) from

D

(1—7)" 77 =4(1 —7,) 57  ie  7=1-4"

3—m—p
D

(1 —7).

Set also
3—m—p

2r=T—1.=(1-4""7 (1 —mu).
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For those choices, K. (%) C K7, Mz < Nz, and

sup  v(-,0) = (1 —7) 5> =v(z,0) < sup v(-,0)
KT* KQT(i)
<sup v(-,0) <4(1—71,) T,
K»

4.3.3 Estimating the supremum of v in some intrinsic neighbourhood
about (z,0)

Consider the cylinder centered at (z,0)

Qar = [(2,0)+Q5,.(0.)]U[(%,0) + Q3,.(6.)]
= Ko (ZT) x (—0.(2r)P, 0.(2r)7],

where 0, = (1 — 7.)"P. Such a cylinder is included in the box Qg since

3—m—p

0.2 = (1-7)P(1—4" P(1—7)P <8.

Lemma 4.3.6 There exists a positive constant 1, depending only on the data {p,m,N,Cy,C1},
and independent of R, such that

supv < 71 (1 — 7)) Fms,

T

The constant y1 — 400 as p+m — 3 or A — 0.

Proof Apply Theorem 4.3.4 to the function v over the pair of cylinders @, C Q2,. Apply it first
for the choice
s=0, t=20.2r)",

and then apply it again, for the choice
s=—0,(2r)?, t=0.

We obtain

>

Y .
supv < —— ( inf /
Q. (0* (QT)P) NN =20, (2r)P<7<0.(20)P S, (3)

1

+7(2P0,) 3=

<~(1- T*)*p% (]i o u(z, O)d:c)

gy(l—r*)*ﬁ[ﬁ —1—2%]:71(1—7*)7%. O

v(z, T)d(E)

F3
X

+ 4255 (1 — 7,,) 5w

Introduce next the cylinder
Q. (60.) = K. (%) x (=00,77,50,7P] C Qay,

where § € (0,1) is to be chosen.
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Lemma 4.3.7 There exist numbers 6, ¢, and o € (0,1), depending only upon the data {p, m, N, Cy, C1},
and independent of R, such that

[o(-,t) > e(1 — 1) 775 N K,| > a|K,| for all t € [~60.rP,60,7P],
where 0, = (1 —7.)"P. The constants ¢, and « tend to zero as either p+m — 3 or as A — 0. The
constant § tend to zero as p+m — 3.

Proof Apply Theorem 4.3.4 to the function v over the pair of cylinders

Q%(SG*) C Q(00,),
For all t € [—60,7P, 60.r7]

(1—r) 57 =v(z,0) < sup v(-,0)

Kz (2)
5 B W60, 1P\ 57—
< ——= ,t d
- (50*rp)§(/;(pv($ )x) +7( rP )
7(1—7*)717%

2 . .
VT 7 PS\3=m=p (1 — +. )\~ 5=m=p
s (]i v(m)dx) Ay (208) T (1 — 7,) T

r

Choose ¢ from

DN =

and set

2% 3=m=p),,
T2 =27, —=x

s

V3=

>z

For such choices, the constants 8, 72, and 73 depend only upon the data {p,m, N, Cy, C1}. Then,
for all t € [—d0.1P, 00,rP]

P
N 1_7—* T 3—m-p S
72( )

=~

(1 — 1) 575 (1 — 5(2P8) 777

U(x,?ﬁ)dx)%
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From this, for ¢ € (0, 1),

i(l — 1) T < W(}i v(x,t)dw)

V3 2% (3=m—p)

>3

=

IS
N
X

< (1 —7)P
— 9X@B-m-p)

X T __» _d T __» __d }
[]i V@ X <ot rn)TH=7) x+7€<TU(x W a1y~ 5=t %

r

<(1-71, pX (7[ ' g )
<( Ta) . v(x, )X[v(».,t)<a(1—r*) 37517@] T

r

P
Y 2 i
+(1 = 7)P3 (]i v(x’t)X[vc,t)za(lfn)*m]dx)

T

P
A

F3
X

ya
A

<_£ . —%/_p % _ _ﬁ P
<cex(1—7,)73 +77(1—7)73 (]iﬂX[v(.,t)za(l—n)‘m]dx)

To prove the thesis choose
p 1 1/ 1\%
X = — and set a:—(—) . O
273 71\ 273

4.3.4 Expanding the positivity of v

The information provided by Lemma 4.3.7 is the assumption required by the expansion of positivity
for all

00,77 < s < 50,17,
Apply then the expansion of positivity (Proposition 4.2) to v with p = r, M = ¢(1 — 7'*)_375171’
and for s ranging in the indicated interval. It gives
v(t) > ne(l — 7)) T in Ko, (Z) (4.18)
and for all times - B
—60,rP + (1 — ) M3~™"PrP < t < 66,77, (4.19)

for constants 4,0, € (0,1) depending only upon the data {p,m,N,Co,C;} and the constant «,
which itself is determined only in terms of the data.

4.3.5 Expanding the positivity of w and applying the Comparison Prin-
ciple

Consider the boundary value problem

we L(t, GLIAK(2), w5 T € L (t, EWH(Ka(@))),

wy — divA(z, t,w, Dw) =0, in K4(Z) x [tr,1],

w|or, @)= 0, (4:20)
el —1)7N, z € Ko (T),

iz, tr) = { 0, v € Ky(2) \ Ko (2),
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where t; = —660,7P + (1 — )dM3~™~PrP. The problem has a unique solution. Moreover

wlar,z)= 0 < vok,(z)
and
v(z,tr) — w(z, tr) > ne(l — 1)~ 5w —ne(l —7,) N
>ne(l —7,) " N[(1—7) 55 — 1] > 0.
Therefore, by the Comparison Principle
u > win K4(Z) x [tr,1].

To prove the Proposition 4.3.5, it suffices to show that we can determine two constants 4 and £,
depending only upon the data, such that

w(x,t) > 71 in K; for all t € [—¢,2].
Assume Z = 0. Let § € (0, 1) to be chosen. From Theorem 4.3.4, applied with y = 0, s = 0, = 0,

and p = 2, we deduce

3—m-—p

7]6"")/97 P :7*(N7m7p7007013n76vé)'

N
A

sup w(,1) < 60

Ko x [0,9]

On the other hand, by Proposition 2.5.1, for all ¢ € [0, 6]

/ w(z,0)dr < 7/ w(z, t)da + 40577
K; K>

By the definition of w(-, 0)
/ w(z,0)dz = ne.
K

We choose 6 from

- 1
76ﬁ = 5776.

1
// w(z, t)dzdt > =ne.
K2x[0,0] 2

It follows that

Next, for all ¢ € [0, 6]

/ w(x,t)dxdt
K>

S/ w(m,t)dm—i—/ w(x, t)dx
Kyn[w(-,t)<co] KaNfw(:,t)>co]

< co| K| + vl [w(-,t) > o] N Ko,

where ¢g is any positive number. Choosing

1

co = ——1C,
0 4|K2|77
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the previous inequality becomes

1

L t) > N Ks| > ol K = ——nC
|[w(, )_Co} 2|_OZ\ 2|, @ 4%|K2|7707

for all ¢t € [0,0]. By the expansion of positivity (Proposition 4.2.1)

w(z,t) > neg in K4(Z) for all t € [—¢,¢],

for a sufficiently small € depending only the data, «, and ¢y. By the Comparison Principle the proof
is now finished.

4.3.6 Proof of the right-hand side Harnack inequality of Theorem 4.3.1

The estimate in the proof of Theorem 4.3.2 deteriorate as p+m — 3 and as m +p+ & — 3. Stable
estimates for p+m — 3 required in the proof of the right-hand side inequality of Theorem 4.3.1 can
be derived as in Proposition 4.2.3 by almost identical arguments. As remarked in that contest, there
exists o, € (0,1), that can be determined a priori only in terms of {N, Cy, C1} and independent
of p, m, such that, for |p + m — 3| < o,, the expansion of positivity for non-negative solutions to
the class of equations (2.1)-(2.2)-(2.3) behaves as if these equations were neither degenerate nor
singular. Henceforth we let o, be the number claimed by Proposition 4.2.3 and let [p+m — 3| < 0..
With such a restriction at hand, a “forward”; intrinsic Harnack inequality can be derived for non-
negative, local, solutions to these equations, by the same arguments as in Theorem 3.4.1, both for
the degenerate case p +m > 3 and the singular case p +m < 3.
Having fixed (xg,t0) € Ep such that u(zg,to) > 0, let

0 = u(zo,t0)*> """,

and consider the cylinder
(o, t0) + Q,(0) C Er.

Introduce the change of variable (4.14) with R replaced by p. This maps
(zo,to) + Qsip(ﬂ) C Er into Q;E (3=m=P)
and v solves (4.15)-(4.16)-(4.17) in
Qs (MU QE ().

For 7 € [0, 1), introduce the family of nested cylinders {Q; } with the same “vertex” at (0,0), and
the families of non-negative numbers {M,}, {N,} defined by

Q7 = K; x (—1,0], M, = supw, N,=(1-71)"

-

where 8 > 1 is to be chosen. Let 7, be the largest root of the equation M, = N, and let (z,1) € QL
be a point where v achieves its maximum M, . Consider the cylinder

(1 =) C Q;(l-ﬁ-n)'

N =

Qo=lle—al < 50— x (-
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From the definitions

(@) =M, =(1-7)?<supv< sup v< Ni4ry = 2°(1 —7,)7".
Qo Q7

3 (1+74)

Set
1
r=g(-mn), and Mg =21 —71%)7F

and consider the cylinder with “vertex” at (z, )
,0) 4+ QI (M2 P) = K. (z) x (£ — M2"™"PrP .
r B B

This can be taken as the starting cylinder in the proof of the “forward” intrinsic Harnack inequality
of Theorem 3.4.1, provided its geometry is “intrinsic”, that is if

sup v < Mg.
(@DH+Q7 (M3~ ™7)

This occurs if (Z,t) + Q,. (Mg_m_p) C Qg or equivalently if
2BB=—m=p)(1 _ 7,)7AG=m=p) (] _ g P71 = oL, (4.21)

Assuming this inclusion for the moment, proceed as in the proof of the “forward”, intrinsic Harnack
inequality of Theorem 3.4.1. The proof will determine quantitatively the constants €, and ¢, by
a quantitative determination of the parameter § depending only on the data {p, m, N, Cy, C1} and
stable as p +m — 3.

The condition (4.21) does not enter in the determination of 5. It is needed only to ensure
that (z,t) + Q, (63) possesses the correct intrinsic geometry. Having determined 3, the condition
(4.21) is satisfied by choosing 5(3 —m — p) = p — 1. The right-hand side of the Harnack inequality
(4.10)-(4.11) then holds with the constants €,y and ¢ stable for

|p+ m — 3| < Oy = min{g*’ (1 - O’*)Bil}'

To establish the right-hand side inequality of Theorem 4.3.1 assume first 3 — & <p+m <3 — 0.,
and proceed as in the proof of Theorem 4.3.2. This will produce constants J(p, m),&(p, m) that
deteriorate as p+m — 3. For 0 < 3 — m — p < 044 proceed as above, to establish the inequality
with constants that are stable as p +m — 3. O

Remark 4.3.8 If 3 — & < m +p < 3 — 0., the proof of the right-hand side, intrinsic Harnack
inequality (4.11) is a particular case of the right-hand side inequality (4.12) of Theorem 4.3.2.
Having fized m,p such that m +p € (3 — £,3 — 0..] and having determined é(m,p) and 5(m,p),
the inequality continues to hold for any smaller € for the same constant 7.

If 3— 0. < m+p < 3 the proof of the Harnack inequality follows instead the proof of Proposition
3.8.1 for the degenerate case m + p > 3. In that case, the constants ¢ and k have a functional
dependence, made quantitative in Section 3.4. Having determined ¢ and k, the parameter ¢ can be
taken to be smaller, provided k is taken larger.
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4.3.7 Proof of the left-hand side Harnack inequality of Theorem 4.3.1

Let €,y be the constants appearing on the right-hand side Harnack inequality of Theorem 4.3.1.

Set

t= to — 6’11(],‘0, t0)3im7ppp.

Let o € (0,1) to be chosen, consider the cube K,,(z0), and introduce the set
Z/[a = Kap(xO) n [’U/(,E) < ’}/U(.’I,‘(),to)].

Since u is continuous, U, is closed. The parameter a will be chosen, depending only upon ~, such
that U, is also open. Then, if U, is not empty, it coincides with K,,, thereby establishing the
left-hand side, intrinsic Harnack inequality in (4.10)-(4.11), modulo a suitable re-definition of p and
€.

Assume momentarily that U, is not empty, and fix z € U,. Since u is continuous, there exists
a cube K. (z) C Kq,(x0) such that

u(y,t) < 2vyu(xo, to) for all y € K.(2). (4.22)
For each y € K.(z) construct the intrinsic p-paraboloid
Py, ) = (It — 1| > eu(y,1)* " Plz — y[].
If (xo,to) € P(y,t), by the right-hand side Harnack inequality in (4.10)-(4.11)
u(y,t) < yu(zo, to)
and hence y € U, proving U, to be open. This occurs if
eu(y,1)* " Ply —moP < eulxo, to)* " PP,

that is if

m+p—3

ly —xo| <ap  where  a=(2y) »
The right-hand side Harnack inequality can be applied since, in view of (4.22), the cylinder

(y,t) + Qgtp(é) with 0 = u(y,t)>™mP

can be assumed to be contained in Er.
It remains to show that U, # 0. Having determined «, consider the cylinder

Kop(z0) x (£, + vo(yu(wo,t0))* "™ P (ap)?],

where vy € (0,1) is to be chosen, depending only on the data {p,m,N,Cy, C1}. Such a cylinder
crosses the time level tg if

to — eu(wo, to)> ™ P pP + vo(yu(zo, t0))> P (ap)? > to.
Recalling the value of «, this occurs if

vy M PP > € = € < pp2Ptm=3,
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which, by reducing e if necessary, we assume. Note that such a reduction of € is possible by increasing
~ accordingly to Remark 4.3.8. If U, = (), then

u(+, 1) > yu(zo, to) in Ko ,(zo).
Apply Lemma 2.4.1, with 2p replaced by ap, and with
1
2 b
where v is the number in the hypothesis (2.30) of Lemma 2.4.1. For such a choice of 6, (2.30) is
satisfied and the lemma yields

a= £E=1, M = yu(xg, to), 0= VO('yu(xo,to))?’_m_p,

1
u(zo,t0) > §7u(a?0,t0) for all z € K1,,(0).

Computing this for x = xg gives a contradiction if v > 2, which without loss of generality we may
assume. (I

4.3.8 Proof of the left-hand side Harnack inequality of Theorem 4.3.2

Let the assumptions of Theorem 4.3.2 be in force and consider first the left-hand side inequality

(4.12) for the specific value of o
o= to — gu(l’o,to)simippp.

For such fixed value of o, the left-hand side inequality in (4.12) can be derived exactly as in the
case of the left-hand side inequality (4.11) of Theorem 4.3.1 as established in the previous section.
Thus, by possibly redefining 4 and €,

sup u(-, ) < yu(zg, to).
Kp(xo)

Apply Theorem 4.3.4 over the cubes K1 ,(z9) C K,(2o) for the time levels
§s=0 and to <t<ty+ Eu(xg, to)gimippp (423)

so that
eu(xg,to)> ™ PpP <t — s < 2eu(xo, o) PP,

With these choices,

sup u(t) < — 2 P (][ u(x,&)dw)g
Ky ,(@o) exu(zo, to) ™ * Kp(o)
+7(2¢€) CESED u(zo,t0) =
< (RE R + (207 ulo, to)
Fu(wo, to)

This establishes the left-hand side inequality (4.12) for all ¢ = ¢ in the range (4.23), by possibly
redefining 4 and €. For ¢ in the range

t =ty — eu(xo, o) ™ PpP <o <ty
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the proof is the same, starting from (??)-(4.13) of Theorem 4.3.4 with the time levels
t =ty + eu(xo, t0)3_m_ppp and s=o

for o in the indicated range. O

4.4 Harnack estimates for sub-critical singular equations

In this final section we switch back to the complete operator and we do not require the Comparison
Principle anymore. Let u be a non-negative, local, weak solutions to the singular equation (2.1) in
Er, for p,m in the critical and sub-critical range

p
2 <3 - =. 4.24
<p+m< N ( )

As we mentioned in Section 4.1, a Harnack estimate in any of the forms (4.11)-(4.12) fails to hold
when p, m are in the critical and sub-critical range (4.24). Nevertheless a different form of Harnack
estimate holds for p, m in such a range, with constants depending on the ratio of some integral norms
of the solution u. Fix (x¢,t) € Er and p such that K4,(z¢) C E, and introduce the quantity

o= (]ip(%) (- to)dx 3] e (4.25)

where € € (0,1) is to be chosen, and ¢ > 1 is arbitrary. If § > 0 assume that
(20, to) + Qs (0) = Ks,(6) x (to — 6(8p)?, to] € Er, (4.26)

and set

r

S

>

"

(Fic, o0 “q("to)dx)%

(JEK@(IO) ur (e, to — Gpp)da:>

q
Mq _ sup ]l Uq(', s)dx s (428)
to—0pP<s<toJ Ka,(z0)

where r > 1 is any number such that

o =

: (4.27)

3=

Ar=N({p+m—3)+rp>0. (4.29)

Theorem 4.4.1 Let u be a non-negative, locally bounded, local, weak solution to the singular equa-
tion (2.1) in Ep, for 2 <m+p < 3. Introduce 0 as in (4.25) and assume that 0 > 0. There exist
constants € € (0,1), and v, 8 > 1, depending only on the data {p, m, N,Cy,C1} and the parameters
q,r, such that either

ptm—2 ptm—2
Cp >min{l, My, M,, M, """ M, " " } (4.30)
or
inf u > o sup u, (4.31)
(wo,t0)+Q5 (59) (Tot0)+Qp (0)

where o is defined in (4.27), ¢ > 1 and r > 1 satisfies (4.29). The constant € — 0, and v, — o©
as either \, — 0 or A\, — oo.
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Remark 4.4.2 Inequality (4.31) is not a Harnack inequality per se, since o depends upon the
solution itself. It would reduce to a Harnack inequality if o > o for some absolute constant og
depending only upon the data. This however cannot occur since a Harnack inequality for solutions
0 (4.1) does not hold.

Inequality (4.31) can be regarded as a “weak” form of a Harnack estimate valid for all 2 <
m+p<3.

4.4.1 Components of the proof of Theorem 4.4.1

The first is the expansion of positivity presented in 4.2.1; this property of non-negative, local
solutions to the singular, quasi-linear parabolic equation (2.1) holds in the entire range 2 < p+m <
3. The second is Proposition 2.7.1, which states some Lj . estimates backward in time. The last
one is a consequence of Proposition 2.6.1 and Proposition 2.7.1, which we present next.

Theorem 4.4.3 Let u be a non-negative, locally bounded, local, weak solutions to the singular
equation (2.1) in Er, for 2 < p+m < 3, and let r > 1 satisfy (4.29). There exists a positive
constant 7y, depending only upon the data {p, m, N, Cy,C1}, and r, such that either

C’p>min{1,Mr,Mr p-t ,(—S)p(s p)}

pp
or
Tr . v
sup uw < ——— u (x72s—t)dx)
Ko (y)x[s:t] (t—s)> N Ka(y)
t—s ﬁ
+ > )

for all cylinders
Kop(y) x [s—(t—s),s+ (t —s)] C Ep.

The constant v, — oo if either A\, — 0 or A\, — 0.
Proof Apply first Proposition 2.6.1 and then Proposition 2.7.1. g

Remark 4.4.4 Theorem 4.4.3 assumes that u is locally bounded, and turns such a qualitative

information into a quantitative estimate in terms of the L7, integrability of u(-,t).

4.4.2 Estimating the positivity set of the solution

Having fixed (zo,t9) € Er, assume it coincides with the origin, write K,(0) = K, and introduce
the quantity € as in (4.25), which is assumed to be positive. Assume moreover that (4.30) is always
violated. Apply Theorem 2.7.1 for r = g,y = 0, and s € (—60p»,0]. Using the definition (4.25) of 6
gives

GoP)I\ 5——
T, T d:c+Vq((pli\) )3 ’

/ ul(z,0)dx < ’yq/
K K>
“a

P
»/1(2

u(z,T)
ul(z, 7)dx —|—7q5q/ ul(x,0)dz,

P K,
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for all ¢ > 1 and all 7 € (—6p?,0], for a constant vy, depending only on the data {p, m, N, Cy, C1}
and ¢q. Choosing € from

yields

1
/ ul(z, 7)dr > — u?(x,0)dx (4.32)
Ksp 2%1 K,

for all 7 € (—6pP,0]. Next apply Theorem 4.4.3 over the cylinder
1
Ky, % (—gﬂpp,O}

with » > 1 such that A\, > 0, to get

(4p) > iz
sup u <yt N(][ W (2, —~0p)d) " + 407
K2px (= 30p7.0] (0pr)>r VK.,
1

IA
=
w
e
J
Q |
TN
5
S
Q
—~
JH
(==}
~—
QU
8
N—
Q=
+
2
3
[
TN
S
IS
Q
—
&
=
U
8
N—
Q=

I
2
™
~
=
+

Q
()
R
N—
7 N o
=+
>
<
Q
—~
&
o
S~—
S8
8
N~——~"
Q

for a constant v/, depending only upon the data {p, m, N, Cy, C1} and r. One verifies that v, — oo,

as either A\, — 0 or A\, — .
Assume momentarily that 0 < ¢ < 1 so that in the round brackets containing o, the second

term dominates the first one. In such a case

1 :
sup u < ,—(][ uq(sc,O)dx> =M, (4.33)
Ka2pX(—56p7,0] €0 VK,
where
N(B—m—p)
;€ Ar
27,
From this

oM = <]£( uq(a:,())dx)%.

Let v € (0,1) to be chosen. Using (4.32) and (4.34) estimate

(eM)? < 2N+17q][ ul(z, 7)dx
K

2p

PAREA ][ ul(x, 7)dx —1—][ ul(x, 7)dx
Ky ,N[u<vo M] Ky ,N[u>vo M]

> VOM] N K2p|
|K2p|

IN

N1y (g M) 4 2N AL |[u(-, )

IN
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for all 7 € (—36pP,0]. From this
|[’LL(~7T) > VUM] N K2p| Z O[Uq|K2p‘7 (434)

where
8/q _ Vq2N+1,7
a=—"—"1
2N+1,yq ?
for all 7 € (—%pr,O]. By choosing v € (0,1) sufficiently small, only dependent on the data
{p,m, N, Cy,C1} and ,, we can ensure that o € (0, 1) depends only upon the data {p, m, N, Cy, C1}
and ¢, and is independent of o. We summarize

Proposition 4.4.5 Let u be a non-negative, locally bounded, local, weak solution to the singular
equations (2.1)-(2.2)-(2.3), for 2 < p+m < 3. Fiz (zo,t0) € Er, let K4p(zo) C E and let 0
and o be defined by(4.25)-(4.27) for some ¢ € (0,1). Suppose 0 < ¢ < 1. For every r > 1
satisfying (4.29) and every q > 1, there exist constants e, v, € (0,1), depending only upon the data
{p,m,N,Co,C1}, q¢ and r, such that

[[u(-,t) > voM] N Kop(x0)| > ac?| K|

for all't € (to — 30p, o).

4.4.3 A first form of the Harnack inequality
The definitions (4.25) of 8 and the parameters ¢’ and a imply that

1 1 '\3—m—p

59 =e(voM)3~™P, where € = 5 (%) .
By Proposition 4.2.1 with M replaced by vo M and « replaced by ac?, there exist constants 1 and
4 in (0,1), depending upon the data {p,m, N, Cy,C1} and «,c and e such that

u(-,t) > n(ac?, e)voM in Kq,(x0),

for all times )
LE (to — 500" + (vaM)* " P(2p)", ko]

where § includes the quantity 1 — ¢ of Proposition 4.2.1. Without loss of generality we can assume
that this time interval contains (to — 16, to).

Proposition 4.4.6 (A first form of the Harnack inequality) Let u be a non-negative, locally
bounded, local, weak solution to the singular equations (2.1)-(2.2)-(2.3), for 2 < p+m < 3. Fiz
(xo,t0) € Er, let Kap(xo) C E and let 0 and o be defined by(4.25)-(4.27) for some ¢ € (0,1).
Suppose 0 < o < 1. For every r > 1 satisfying (4.29) and every q > 1, there exist constants
g,0 € (0,1), and a continuous, increasing function o — f(o) defined in RT and vanishing at o = 0,
that can be quantitatively determined a priori only in terms of the data {p,m, N,Cy,C1}, q, and r,
such that

K _
1p(x0) (xg,to)+Q2p(%8)

inf u(-,t) > f(o) sup u, (4.35)
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for all
1
te(to— Zpr,to],

provided (xo,to) + Qgp0) C Er.

Remark 4.4.7 The proof of Proposition 4.2.1 shows that the function f(-) can be taken of the form
f(o) ~oB 51,

for constants B,d > 1 depending only upon the data, q and r.

Remark 4.4.8 The function f(-) depends on 8 only through the parameter € in the definition (4.25)
of 6.

Remark 4.4.9 The inequality (4.35) is a Harnack-type estimate of the same form as stated in
section 4.3, where however the constant f(o) depends on the solution itself, through o defined in
(4.27), as a proper quotient of the L} . and Lj,. averages of u, respectively at time t = to on the

cube K,(x0), and at time t =ty — 6p” on the cube Ka,(x0).

Remark 4.4.10 The inequality (4.35) has been derived by assuming that 0 < o < 1. If o > 1
the same proof gives (4.35) where f(o) > f(1), thereby establishing a strong form of the Harnack
estimate for these solutions. Such a strong form is false for p,m in the critical, and sub-critical
range 2 <p+m <3 — %.

In Vespri [53], local Holder continuity for solutions to (2.1)-(2.2)-(2.3) has been proved for all
m + p > 2. We recall this result in the next proposition.

Proposition 4.4.11 Let u be a locally bounded, local, weak solution to the singular equations (2.1)-
(2.2)-(2.3) for 2 < p+m < 3, in Er. There exist constants 3,A > 1 and ¢ € (0,1), depending
only upon the data {p,m,N,Co,C1},q and r, such that for all (xo,t9) € Er, setting

M= esssup u for (zo,t0) + Qr(1) C Er,
(wo,t0)+Q R (1)

there holds

€ss 0sC u <YM (

M)Sfmfp
(wo,to)+Qp (Onr) A

)60, where Oy = (

e RS

for all 0 < p < R, and all cylinders

(wo,t0) + Q, (0ar) C (w0, t0) + QR (1) C Er.

4.4.4 Proof of Theorem 4.4.1 concluded

Assume (zg,ty) coincides with the origin of RN¥*! and determine v and « as in section 4.4.2. We
may assume that

[[u(-,0) <veM]NK,| >0.
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Indeed otherwise (4.34) would hold with ac? = 1 and the proof could be repeated leading to (4.35)
with f depending only on the data {p, m, N,Cy,C1} and independent of . Moreover, by (4.33)

sup u< M
KQPX(—%Q;JP,O]

with 6 given by (4.25). Since u is locally Holder continuous, there exists x1 € K, such that
u(zy,0) = voM.
Using the parameter A claimed by Proposition 4.4.11, construct the cylinder with “vertex” at (x1,0)

(21,0) + Qs, [(%)3_m_pr7’} C Ky, x (— %9;}”,0]

In the definition (4.25) of €, such an inclusion can be realized by possibly increasing A by a fixed

quantitative factor depending only on the data, and by choosing r sufficiently small. Assuming the
choice of r has been made, by Proposition 4.4.11

u(z, ) — u(z,0)] < ﬁM(%)eO

for all

(z,8) € Q1 =: (21,0) + Q; [(VZM)?’_M_IJTP]

From this 1
u(z,t) > 51/0]\/[ for all (z,t) € Q1,

provided r is chosen to be so small that
0 o 1 1 %
l(£) Lo -, that isrzelaflop, where €1 = (i) ’.
vo \p 2 27
Therefore, by Proposition 4.2.1

u > n(voM) in (21,0) + Q3, [(W)g_m_p(%)p}

for an absolute constant n € (0,1). This process can now be iterated to give

oMY

’ILZ ﬂn(VUM) in (x170)+Q;lr|:( A

for all n € N. Choose n as the smallest integer for which

4
2 > 4p that is n > log,y ( : ) .

€10 <0

For such a choice 5
M~ 3—m—p
o (57

for some B = p(data). O



Conclusions and future prospects

In this work we dealt with two different subjects: an Optimal Transportation problem and a class
of doubly nonlinear partial differential equations. For both the arguments we concentrated on
regularity issues, proving some new results.

We analyzed the Optimal Transportation problem (1.2), which has been introduced by Gangbo
and McCann in [27]. The peculiarity of this problem is that the masses are distributed on boundaries
of convex domains, leading to multi-valued optimal mappings, instead of a single-valued optimal
map. The novelty of this work is the quantification of the continuity of such multi-valued mappings,
t*. In particular, we proved Holder continuity for the restrictions of t* to certain subsets of
their domains, under the additional hypothesis that the masses are distributed on n-dimensional
spheres. According to [27], the domain of the mapping ¢ can be partitioned into three subsets
SN = S, U S; US,, where S, represents the domain of t~. A conjecture by Gangbo and McCann,
expressed in Remark 4.5 of [27], claims Hélder continuity for ¢+ on Sy U Sz, when the masses are
supported on boundaries of more general convex domains. Since the Holder constants of Theorem
1.2.4 blow up approaching Sy, the result cannot be extended to S; U S3. On the other hand we
believe that Theorem 1.2.4 continues to hold when the measures are supported on boundaries of
convex domains more general than spheres. Recalling Remark 1.4.3, it would be sufficient to extend
Theorem 1.6.1 to such domains, which seems doable at least for domains which can be obtained by
small perturbations of a sphere.

As for the second subject of my thesis, we proved some Harnack estimates for nonnegative
weak solutions of the class of doubly nonlinear parabolic equations (2.1), satisfying the structure
conditions (2.2)-(2.3). We analyzed both the degenerate and the singular case by means of purely
measure theoretical arguments. As suggested for the model equation (2.4) in [54], the singular
case presents a critical threshold under which only a weak “Harnack-type” estimate can be proven.
Indeed, for the degenerate and the singular super-critical range, we proved an intrinsic Harnack
estimate whose constants depend only on the data; for the singular sub-critical range such inequali-
ties cannot hold, and a weaker Harnack-type estimate has been proven, with coefficients depending
on the solution itself. However, by means of these results, we showed that weak solutions of (2.1)
are Holder continuous in the degenerate case. We were not able to prove the Harnack inequality
for the general operator in the singular super-critical range; we can conclude that the theory of
nonlinear parabolic equations is still at its inception, and some of its aspects are largely open to a
better understanding.
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Appendix A

Some results related to Chapter 1

A.1 Some useful results

In the following we collect some well-known results, but we omit their seemingly well-known proofs.
Proposition A.1.0.1 Subtracting from the cost function ¢ a smooth function x — ¢(z) that de-
pends only on x does not change the solution of the optimal transportation problem. The potential

will be changed according to the rule ¢ — ¢ + ¢(x).

Proposition A.1.0.2 (Strong convexity) Let f belong to C*(R,R).

o If f” > «a, we have, for all tg,t1 € R and 6 € [0,1],
Of(to) + (1 —=0)f(t1) > f(Oto+ (1 — 0)t1) + %a&(l —0)[t; — to|?.
e In all cases, for all to,t; € R and 6 € [0,1], we have
0F(t0) + (1 = O)f(12) — F(Bro -+ (1 0)02)] < 311 11 a1~ )l — 1ol

The following proposition can be found in [22].

Proposition A.1.0.3 Let E ¢ RN and f : E — RY be a Lipschitz function with Lipschitz
constant Lipf. Then

H(f(E)) < (Lipf)*H>(E) Vs =0.
Theorem A.1.0.4 (Mean value theorem) Supposeh:RY — R isCl. Lety = (y*,...,yN),z =

(zY,...,2N) e RN, Then
h(y) = h(z) = Vh(u) - (y - 2),

for some u on the line segment between y and z.
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A.2 Proofs from Section 1.7

Proof of Lemma 1.7.5
Using (1.31) and (1.82), we have

H = ¢(Xo) < =Vxe(Xm, Y0) - (Xo = Xpn) + C1|Xo — X[, (A1)
H =1(X1) < =Vxe(Xp, Y1) - (X1 = X)) + C1| X1 — X[, (A.2)

where Cy depends only on ||c||cz2. By possibly rotating coordinates, we can certainly suppose that x
is parallel to en41. Consider now the function f:t — ¥(Xo + (X1 — Xo)) on [0,1]. Lemma 1.6 of
[27] states that, if w is a Lipschitz domain, then, at dVol-a.e. boundary point x, 1) is tangentially
differentiable. Hence f is dVol-a.e. differentiable. At the points where f" exists we have

1 - 8w
1) = Ozioxk

k=1
> —||D2 ¢l (sn xsm) | X1 — Xo|* — o(| X1 — Xol?),

(7 (X)) (X1 — Xo) (X1 — X0)* — o(| X1 — Xo?)

Zo

with X; = Xo + t(X1 — Xo). We approzimate ¢ with a C?-function Y which satisfies

 Y(Xo) = ¥(Xo), (Xa) = P(Xn),
(X)) =9(X) +o(|X1 — Xo|?)  on [Xo, X,
F'(t) = =lIDZgcll e (s xsm) [ X1 = Xo|? = o| X1 — Xol?),
where f(t) = () (Xo + t(X1 — Xo)) on [0,1]. Applying the first part of Proposition A.1.0.2 to f we

find R ~
D(X) < H+ Co| X, — Xo|? for all X € [Xo, X1],

where Cy depends only on ||c||c=. It follows
Y(X) < H+Co|Xy — Xo>  forall X € [Xo, X1],

where Cy depends only on ||c||c2. We now consider two cases. The first case is when —V x c(Xom, Yo)-
(Xo — Xin) and —Vxc(Xp, Y1) - (X1 — X;n) are not both positive: let us assume for example that
~Vee(Xm, Yo) - (Xo — X,) is negative. Then, using (A.1), we have H < C1|Xo — X,,|?, and using
(A.3) we conclude

w < Cg‘Xl — X0|2 < C3‘X1 — XQHYi — Y0| fO’f’ all X € [Xo,Xl],

where C3 = C1 + Cy. The second case is when —V xc(Xpm,Yo) - (Xo — X)) and —Vx (X, Y1) -
(X1 — X,n) are both positive. This implies that
_VXC(XmaYE)) : (XO - Xm) S _VXC(Xma}/O) : (XO - X1)7
—Vxe(Xm, Y1) - (X1 — Xpn) < =Vxe(Xim, Y1) - (X1 — Xo).
Combining with (A.1) and (A.2) we have
2H ~ —ch(Xm,Yb)-(Xo—Xl)—VXC(Xm,Y1)~(X1—X0)
+ 201X, — Xof?
< | Vxe(Xm, Yo) — Vxe(Xm, Y1)|| X1 — Xo| + 201 | X1 — Xo|?
< (lelle +2C1)(1X1 = Xol[Y1 = Yo + [ X1 — Xof).
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Using | X1 — Xo| < |Y1 — Yol, and then (A.3) we conclude. O

Proof of Lemma 1.7.6
For y € N(z) we have

—(X,Y) + (X0, Y) = —c(X,Yp) + (X m, Yo)+
+ /I[Vyc(Xm, Yo +s(Y —Yp)) — Vye(X, Yo+ s(Y —Yy))] - (Y — Yo)ds
< —Oc(X, Yy) + ¢(Xm, Yp) + CulY — Yo||X — X,
where Cy depends only on ||c||cz. Combining this with Lemma 1.7.5 to estimate ¥(X,,), we get

fr(X)=—cX,Y)+ c(Xn,Y) +¢(Xnm)
—C(X,}/@) + C(Xm,Yg) + C4‘Y - }/‘9HX — Xm| + C3|Y1 — Y()||X1 — XQ‘
= Fy(X)

IN

Inequality ¢ — fy > 0 on 0B, (X,,) will be satisfied if we have Fy(X) < U(X) on the set{X :
|X — Xm| = n}, for some n > 0 and ¥ defined in (1.33). First we restrict 0 € [%,3], then
Fy(X) < U(X) reads

3
E|YI = YoI*n? —on® > Cy|Y1 — Yy|n + C3|Y1 — Y| X1 — Xo|.

The previous inequality will be satisfied if the three following inequalities are satisfied

1
CslY1 = Yo|[ X1 — Xo| < T6|Y1 - Yo|*n?,
1
GlY =Yoln < i = Yo",
1
3 < 1Y, - Y, 2 2-
vt < 1elYa = Yol
To satisfy the first inequality we define
X1 — Xo
2 _ 160 = Kol
! AT
To satisfy the second inequality we define
p Y1 - Yol?,

160, "

and consider Y such that |Y — Yy| < p. The third inequality will then be implied by
vn < i|Y ~ Yy
n= 16 1 ol

which follows from (1.34). O
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Appendix B

Parabolic spaces, embeddings, and
technical facts

This appendix contains some well known results of functional analysis whose proofs can be found
in many textbooks (see for example [16]).

B.1 Poincaré and Sobolev inequalities

Let E be a bounded domain in RY of boundary dE. If f € LI(E) for some 1 < q < oo, denote by
| fllq,= the LY(E)-norm of f over E. We also write || f||; whenever the specification of the domain £
is unambiguous from the context. The function f € L} (E) if || f||lq,x < oo for all compact subsets

K C E. For f € CY(E) denote by Df = (fz,,---, fzy) its gradient and set

1l ps = [ fllp. 5 + I Dfllp.5-
The spaces WP (E) and WP (E) for p > 1 are defined as

WP(E)  the completion of C*°(E) under || - [|1,p:1,
W, P(E) the completion of C§°(E) under | - || p:z-

Equivalently W1?(E) is the Banach space of the functions f € LP(E) whose generalized derivatives
fz, belong to LP(E) for alli=1,...,N.

A function f € Wlif(E) if || fll1,p;x < oo for every compact subset K C E.

Let W1°°(E) denote the Banach space of functions f € L°°(E) whose distributional derivatives
fo; € L®(E), fori=1,...,N.

The space Wlicoo (E) is defined analogously.

Theorem B.1.1 (Gagliardo-Nirenberg inequality) Let v € Wol’p(E) for some p > 1. For
every s > 1 there exists a constant C' depending only upon N,p,q, and s, and independent of E,
such that

lollg. < CIDVIIE gllolls 5"
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where o € [0,1] and p,q > 1, are linked by

and their admissible range s

if N=1, o€ [O»ﬁ}a q € [s,00];
Np - Np
. qg€ls, x5 if s<§5,
if 1<p<N, a[ovl]a { Np b ; N;Dp
g€zt  if szt

Zf 1<N§p, QG[O,%), q€[s,oo)

Corollary B.1.2 Let v € WyP(E), and assume p € [1,N). There exists a constant v = v(N, p)
such that

Np
=N
The boundary OF is piecewise smooth if it is the union of finitely many portions of (N — 1)-
dimensional hypersurfaces of class C1*, for some A € (0,1).

If OF is piecewise smooth, functions v in WP(E) are defined up to OF via their traces denoted
by v|op.

Theorem B.1.3 Let OF be piecewise smooth. There exists a constant C' depending only upon N, p
and the structure of OF such that

[ollg.5 < Dvllp,s,  where ¢ (B.1)

[vllg.0E < Clvllwirg),

where N1
qe[l,%L if 1<p<N
qE[LOO), Zf p:N

If OF is piecewise smooth, the space VVO1 P(E) can be defined equivalently as the set of functions
v € WIP(E) whose trace on JF is zero.

Remark B.1.4 The embedding inequalities of Theorem B.1.1 and Corollary B.1.2 continue to hold
for functions v in WYP(E) not necessarily vanishing on OF in the sense of the traces, provided OF

18 piecewise smooth and
/ v(z)dz = 0.
E

In such a case the constant C depends upon s,p,q, N and the structure of OE. However it does not
depend on the size of E, and in particular it does not change by dilations of E.

B.2 Cuts and truncations of functions in W!?(E) and their
embeddings

Let k be any real number and for a function v € WP(E) consider the truncations of v given by

(v—Fk)y = max{(v—k);0},
(v—FK)_ max{—(v — k); 0}.
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Lemma B.2.1 (Stampacchia) Let v € WYP(E). Then (v —k)+ € WYP(E) for all k € R. If in
addition the trace of v on OF is essentially bounded and

[V|loo,08 < M for some M >0
then (v —k)+ € Wy P(E) for all k> M.
Corollary B.2.2 Let v; € WYP(E) fori=1,...,n € N. Then
w = min{vy,...,v,} € WHP(E).

For a function v defined in F and real numbers k < [, set

>l = {xe€E|v(x)>1l},
[v<k] = {xeE|v(z) <k},
l<v<k] = {ze€E|l<v(z) <k}

For p > 0 and y € RY, denote by B,(y) the ball of radius p centered at y, and by K,(y) the
cube of edge p, centered at y and with faces parallel to the coordinate planes. If y is the origin let
B,(0) = B,, and K,(0) = K.

For a Lebesgue measurable set A C RY denote by |A| its measure.

Lemma B.2.3 (DeGiorgi) Let v € WH(K,(y)), and let k < I be real numbers. There ezists a
constant v depending only upon N,p and independent of k,l,v,y, p, such that

N+1
P

=Rl >0 <y )

|Dv|dx. (B.2)
Remark B.2.4 The conclusion of the lemma continues to hold for functions v € W1 1(E) provided
E is convex. It can be used for balls B,(y).

The embedding (B.1) of Corollary B.1.2 gives a majorization of the LI(E)-norm of u solely in terms
of the LP(E)-norm of its gradient. This is possible because u vanishes on OF in the sense of the
traces.

A Poincaré-type inequality bounds some integral norm of a function u € W1P(E) in terms only
of some integral norm of its gradient, provided some information is available on the set where u
vanishes.

Proposition B.2.5 Let E C RN be bounded and convex and let ¢ € C(E) satisfy
0<9p<1, and the sets [¢p > k| are convex for all k € R*.
Let v € WYP(E) and assume that the set
E=w=0nN[p=1]
has positive measure. There exists a constant C depending only upon N and p, and independent of

v and ¢, such that . . N )
(/E¢|v|pdx)5 < CW(/Engdex)p. (B.3)
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Remark B.2.6 Inequality (B.2) follows from this by applying (B.3) with ¢ =1 and p = 1 to the
function

0 ifv<k
By Lemma B.2.1 such a function is in WH(E).

w:{ min{v,l} =k ifv>k

B.3 Parabolic spaces and embeddings

For 0 < T < oo let Ep denote the cylindrical domain E x (0,7T]. The space L™4(Er) for ¢,r > 1is
the collection of functions f defined and measurable in Er such that

T z %
| fllg,riEr = (/0 (/E |f|qu) dT) < 00.

Also f € LE"(E7), if for every compact subset K C E and every subinterval [t,t2] C (0,7

loc
12 o
/ (/ |fqu> dr < 0.
t1 K

Whenever ¢ = r we set LY%(Er) = L9(Er). These definitions are extended in the obvious way
when either ¢ or r are infinity.

We introduce spaces of functions, depending on (x,t) € Ep, that exhibit different behavior in
the space and time variables. These are spaces where typically solutions to parabolic equations in
divergence form are found.

Let m,p > 1 and consider the Banach spaces

vap(ET) = L°°(O, T; Lm(E)) N LP(O7 T; V[/L?’(E))7
Vo™P(Br) = L®(0,T; L™(E)) N LP(0,T; Wy P (E)),

both equipped with the norm

[l

vmr(Br) = €88 Sup [[0(, 8)|lm,z + | D]|p, 5r-

0<t<T
When m = p set VJ'*(Er) = V¥(Er) and VPP(Er) = VP(Er). Both spaces are embedded in
Li(Er) for some g > p. In a precise way we have

Proposition B.3.1 There exists a constant v depending only upon N,p,m such that for every

v e Vg (Er)
//ET |, t)|9dxdt 74 (//ET |Dv(x,t)pdxdt>

P

x (ess sup /E v(:z:,t)|md:z:>N (B.4)

o<t<T

IN

where
_ N+m
q=2p N
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Moreover

[vllg,Br < Al[vllvme iz (B.5)

Remark B.3.2 The multiplicative inequality (B.4) and the embedding (B.5) continue to hold for
functions v € V™P(Er) such that

/ v(z,t)de =0 for a.e. t € (0,T)
E

provided OF is piecewise smooth. In such a case the constant v depends also on the structure of
OF, but not on its size.

The next corollary follows from Proposition B.3.1 by taking m = p and by applying Holder’s
inequality.

Corollary B.3.3 Let p > 1. There exists a constant vy, depending only upon N and p, such that
for every v € V(ET)

.
10ll5, 2, < YIllvl > 0175 [[0]7, ()
When m = p, Proposition B.3.1 takes the form

Proposition B.3.4 There exists a constant vy, depending only upon N and p, such that for every
A VOP(ET)

[vllg.riEr < A0l (ET),

where the numbers q,r > 1 are linked by

1 N N
roopqg  p*
and their admissible range is
if N =1, qe(p,x], rep? o0);
f1<p<N, g€lp,y5], relpoc;
2

if1<N<p, q€lp ), r € (&, 00].

We conclude this section by stating a parabolic version of Lemma B.2.1 and Corollary B.2.2 con-
cerning the truncated functions (v — k).

Lemma B.3.5 Letv € V"™P(Er). Then (v—k)x € V"™P(Er) for all k € R. Assume in addition
that OF is piecewise smooth and that the trace of v(-,t) on OF is essentially bounded and

ess sup ||v(, 1) |loo,08 < M for some M > 0.
0<t<T

Then (v —k)x € Vy""P(Er) for all k > M.
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B.4 Some technical facts

B.4.1 A lemma on fast geometric convergence

Lemma B.4.1 Let {Y,} forn =0,1,..., be a sequence of positive numbers, satisfying the recursive
iequalities
Y1 < CH"Y,H T,

where C;b > 1 and o > 0 are given numbers. If
1 1
Yo <C ab a2
then {Y,} — 0 as n — oc.

B.4.2 An interpolation lemma

Lemma B.4.2 Let {Y,,} forn=0,1,..., be a sequence of equi-bounded positive numbers satisfying
the recursive inequalities
Y, < Cb"Y, T,

where C,b > 1 and a € (0,1) are given constants. Then

YO S ( 201)a'
bl—=

Remark B.4.3 The lemma turns the qualitative information of equi-boundedness of the sequence
{Y,.} into a quantitative a priori estimate for Yy.

B.4.3 Steklov averages

Let v € L'(Er) and let 0 < h < T’; the Steklov averages vy, (-,t) and vy, (-, t) are defined by

lfH_hv(-,T)dT for ¢€ (0,7 - hl,

h Jt
Vp =
0 for t>T — h.
Lyt w(,mdr for te (h,T,
Vp, =

0 for t<h.

Lemma B.4.4 Letv € L% (Er). Then, as h — 0, vy, = v in LY"(Er_.) for every e € (0,T). If
v e C(0,T; LYE)), then v,(-,t) — v(-,t) in LYE) for every t € (0, T —¢€) for all e € (0,T).

A similar statement holds for v;. The proof of the lemma is straightforward from the theory of LP
spaces.
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