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Abstract. Particles interacting through long-range attraction and
short-range repulsion given by power-laws have been widely used
to model physical and biological systems, and to predict or explain
many of the patterns they display. Apart from rare values of the
attractive and repulsive exponents (α, β), the energy minimizing
configurations of particles are not explicitly known, although sim-
ulations and local stability considerations have led to conjectures
with strong evidence over a much wider region of parameters. For
dimension n ≥ 2, and for a segment β = 2 < α < 4 on the mildly
repulsive frontier we employ strict convexity to conclude that the
energy is uniquely minimized (d∞-locally, up to translation) by
a spherical shell. If n = 1 and β = 2 < α − 1, we prove that the
spherical shell is (i) the unique global energy minimizer, and (ii) the
unique d∞-local energy minimizer in the class of even, compactly-
supported probability measures. In a companion work, we show
that in the mildly repulsive range α > β ≥ 2, a unimodal threshold
2 < α∆n(β) ≤ max{β, 4} exists such that equidistribution of par-
ticles over a unit diameter regular n-simplex minimizes the energy
if and only if α ≥ α∆n(β) (and minimizes uniquely up to rigid mo-
tions if strict inequality holds). For n ≥ 2, the point (α, β) = (2, 4)
separates these regimes. At this point we show the minimizers all
lie on a sphere and are precisely characterized by sharing all first
and second moments with the spherical shell. Although the mini-
mizers need not be asymptotically stable, our approach establishes
dα-Lyapunov nonlinear stability of the associated (d2-gradient) ag-
gregation dynamics near the minimizer in both of these adjacent
regimes — without reference to linearization. The Lα-Kantorovich-
Rubinstein-Wasserstein distance dα which quantifies stability is
chosen to match the attraction exponent.
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1. Introduction

The self-interaction energy of a collection of particles with mass dis-
tribution dµ(x) ≥ 0 on Rn is given by

EW (µ) =
1

2

∫∫
Rn×Rn

W (x− y)dµ(x)dµ(y),(1.1)

assuming the particles interact with each other through a pair potential
W (x). Normalizing the distribution to have unit mass ensures that µ
belongs to the space P(Rn) of Borel probability measures on Rn.

Our goal is to identify global energy minimizers of EW (µ) on P(Rn),
for power-law potentials W = Wα,β where

Wα(x) := |x|α/α and(1.2)

Wα,β(x) := Wα(x)−Wβ(x), −n < β < α <∞.(1.3)

When β ≥ 2 the potential is called mildly repulsive [14]. In this paper,
we focus on the mild repulsion threshold β = 2 called the centrifu-
gal line in [39], since, at least on R2, the potential −W2 induces the
outward force which particles rotating uniformly around their common
center of mass seem to experience in a corotating reference frame; see
e.g. [40]. When β = 2 the energy also acts as a Lyapunov function
of the rescaled dynamics of the purely attractive Patlak-Keller-Segel
model [42] [35] in self-similar variables around the time of blow-up [46].
If α ∈ (2, 4), we will show that the minimizer is uniquely given (up to
translations) by a spherical shell, i.e. the uniform probability measure
on a spherical hypersurface of the appropriate radius. For α > 4 and
β ≥ 2, we build on these results to show in a companion paper that the
minimizer is uniquely given (apart from rotations and translations) by
equidistributing its mass over the vertices of a regular n-simplex. To-
gether, these results resolve some questions left open by Sun, Uminsky
and Bertozzi by showing that the linear stability of selfsimilar blow-up
which they found for the aggregation dynamics in these two regimes
can be improved to a nonlinear Lyapunov stability result. On the other
hand, at the threshold exponent separating these two regimes, we will
show that although all centered convex combinations of the configura-
tions mentioned above remain mimimizers, there are many additional
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minimizers as well: indeed for (α, β) = (4, 2) the centered minimizers
consists of those measures supported on the minimizing spherical shell
which share its moments up to order 2. When n ≥ 2, this case is dis-
tinguished from α 6= 4 by the fact that the Lyapunov stable set formed
by global energy minimizers becomes infinite-dimensional.

To understand the literature surrounding these questions, we recall
that heuristically, the aggregation equation

(1.4)
∂µ

∂t
= ∇ · (µ∇(W ∗ µ))

arises as the d2-gradient descent of the energy (1.1) with respect to the
Kantorovich-Rubinstein-Wasserstein metric

(1.5) dp(µ, ν) := inf
X∼µ,Y∼ν

‖X − Y ‖Lp ,

defined for p ∈ [1,∞] on probability measures µ, ν ∈ P(Rn). Here
X ∼ µ denotes a random vector in Rn with law µ, and the infimum
is over all pairs of random vectors with fixed laws µ and ν (respec-
tively). In the mildly repulsive regime, Wα,β is semiconvex and this
heuristic inspired by [49] can be made rigorous [3] [18] [52]: the evo-
lution (1.4) is well-posed in the space of probability measures having
finite second moments. Under the flow which results, the energy (1.1)
is non-increasing; we shall show below that the family of global en-
ergy minimizers forms a dα-Lyapunov stable family of fixed points of
the evolution, where the power p = α quantifies this stability in terms
of the attraction exponent. Steady-state examples of discrete parti-
cle rings [8] [36] approximating the minimizer show that the spherical
shell will not be asymptotically stable (i.e. does not form an attrac-
tor), in spite of the fact [6] that dp-asymptotic stability holds locally in
the more restricted class of spherically symmetric initial data for some
p ≥ 1; c.f. Example 4.1. For α > β > 2 there are uncountably many
d∞-local minima [39] [44] — which we also expect to be asymptoti-
cally stable fixed points of the evolution. Dynamics analogous to (1.4)
have been proposed as models for the kinetic flocking and swarming
behaviour of biological organisms [10] [41] [47], condensation of gran-
ular media [7] [48] [17], self-assembly of nanomaterials [32], and even
strategies in game theory [9]. For this reason, they have often been sim-
ulated and a wide variety of patterns have been observed to emerge,
depending on (α, β) and initial conditions [1] [8] [21] [36] [51].

Despite much attention, there are relatively few cases in which the
global minimum of (1.1) over P(Rn) is known explicitly [39], and many
of these either involve additional effects such as diffusion [15] [23] or
density bounds [11] [30] [31], or fall outside the mildly repulsive regime
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[12] [16] [20] [26] [27]. Several groups of authors have explored how
properties of the mimima, such as dimension of its support [5] [14], vary
with the exponents (α, β). Others have investigated nonlinear stability
of the steady states locally. Following work in one-dimension by Fellner
and Raoul [25], for β > −n, Balagué, Carrillo, Laurent and Raoul [6]
have shown the sign of β−β∗ to determine nonlinear stability (β > β∗)
or instablity (β < β∗) of the spherical shell of radius

(1.6) R = Rα,β =
1

2

[
Γ(β+n−1

2
)Γ(α

2
+ n− 1)

Γ(β
2

+ n− 1)Γ(α+n−1
2

)

] 1
α−β

,

among d∞-small spherically symmetric perturbations, where

β∗ :=
(3− n)α− 10 + 7n− n2

α + n− 3
,

and Γ(·) is Euler’s Gamma function, (A.3). Although it lies outside
the mildly repulsive regime, for β < β∗, Rα,β remains the unique ra-
dius (1.6) at which a spherical shell is a steady state. Families of convex
combinations of spherical shells form an invariant family under the flow
(1.4), on which the dynamics reduces to a system of ordinary differ-
ential equations analyzed by Balagué Guardia, Barbaro, Carrillo and
Volkin [4]. Less has been shown about the dynamics of radial measures
with non-singular densities however. For perturbations which destroy
spherical symmetry, the absence of a spectral gap makes local stability
of steady states a much subtler issue. The asymptotic stability of steady
state spherical shells in certain spaces might be bootstrapped from lin-
ear stability using the framework of von Brecht and McCalla [50], while
for more general steady states including some supported on the discrete
two dimensional rings of Example 4.1 d∞-Lyapunov and d2-asymptotic
stability have also been addressed by Simione [44].

2. Results

Let us preface our results with a proposition reviewing the existence
[20] and some relevant properties of energy minimizers.

Proposition 2.1 (Minimizers). For α > β > 0, minimizers of EWα,β

on P(Rn) exist and the diameter of their supports is uniformly bounded
by e1/β. Moreover, each such minimizer µ satisfies

(2.1) µ[argmin
Rn

(Wα,β ∗ µ)] = 1

Proof. For α > β > 0, [33, Lemma 1] shows the diameter of support
of all (d2-local) minimizers for EWα,β

is bounded by the positive zero,
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say zα,β, of the function wα,β(r) = rα/α − rβ/β. It is easily seen that
zα,β increases as α ↘ β to the limit e1/β. Now to show the existence
of minimizers, consider the set P

(
Be1/β

)
of probability measures con-

centrated in the centered closed ball Be1/β of radius e1/β. As P
(
Be1/β

)
is weakly compact and µ ∈ P

(
Be1/β

)
7→ EWα,β

(µ) is weakly contin-
uous, this energy must attain a minimizer. By the a priori diameter
estimate mentioned above, this minimizer on P

(
Be1/β

)
also minimizes

EWα,β
among probability measures on Rn. The Euler-Lagrange equation

(2.1) for minimizers is established e.g. in [5]. �

Let a (centered) spherical shell denote the uniform probability mea-
sure σR on a (centered) sphere of radius R ≥ 0. Also, let

(2.2) P0(Rn) = {µ ∈ P(Rn) |
∫
|x|dµ(x) <∞,

∫
xdµ(x) = 0}

denote the set of probability measures with center of mass at the origin,
and Pssc (Rn) ⊆ P0(Rn) the subset consisting of spherically symmetric
measures (i.e. those invariant under the action of the orthogonal group
O(n)) having compact support. The first contribution of the present
manuscript is to establish the following result for potentials Wα,β ∗ µ
of spherically symmetric measures in an interval (α, β) ∈ (2, 4) × {2}
along the mildly repulsive frontier:

Theorem 2.2 (Radial potentials have a single inflection point). Fix

(2.3)

{
β = 2 < α < 4 if n ≥ 2,

β = 2 < α− 1 if n = 1,

and let e1 ∈ Rn denote a unit vector. If µ ∈ Pssc (Rn) then f(r) =
fµ(r) := (Wα,β ∗ µ)(re1) satisfies f ′′′(r) > 0 for all r > 0; moreover

f ∈ C3
loc(R\{0})∩C

bαc,α−bαc
loc (R), where bαc denotes the largest integer

k ≤ α. In particular, there exists 0 ≤ R <∞ such that f(r) is strictly
concave on the interval |r| ≤ R, and strictly convex on r > R.

The core of its proof is to establish existence and positivity of the
third derivative f ′′′(r) > 0 for all r > 0. If R = 0 the asserted strict
concavity is vacuous, and f is strictly convex globally.

Since the potential Wα,β ∗µ appears in the Euler-Lagrange equation
(2.1), it is no surprise that this theorem implies the following corollary
concerning stationary solutions of the evolution (1.4). While statement
(a) assumes spherical symmetry, all global minimizers (c) inherit this
symmetry from the strict convexity established by Lopes [37] for the
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energies (2.3) on centered probability densities, which extends to sin-
gular measures and d∞-local minimizers as in [13] [19] and Appendix A
below.

Corollary 2.3 (Classifying energy minimizers and stationary solutions
on part of the centrifugal line). Assume β = 2 and (α, n) satisfy (2.3).
(a) If ∇(Wα,β ∗ µ) = 0 holds µ-a.e. for some µ ∈ Pssc (Rn), then µ =
(1 − s)σr + sδ0, where s ∈ [0, 1] and σr is the uniform probability on
the sphere of radius r > 0.
(b) If n ≥ 2 and µ minimizes the energy EWα,β

on some d∞-ball in
Pc(Rn), then µ is a translate of the spherical shell σr∗ of radius r∗ =(

2
f ′σ1 (1)+2

) 1
α−2 , where fσ1(r) is defined in Theorem 2.2.

(c) For n ≥ 1, the energy EWα,β
is minimized uniquely on P(Rn) by the

spherical shell σr∗ and its translates.
(d) Conclusion (c) extends also to the limit case (α, β, n) = (3, 2, 1);
(e) If n = 1 and µ minimizes the energy EWα,β

on some d∞-ball in the
space Pssc (Rn) of even measures, then µ = σr∗.

A spherical shell fails to minimize EWα,β
if β = 2 < α < 3 and n = 1

however; see [29] for the minimizer and Remark 3.3.
Note that Corollary (c) can also be proved by using Theorem 2.2

to verify that some spherical shell satisfies the Euler-Lagrange/Kuhn-
Tucker conditions (2.1). By the energetic convexity, this is not only
necessary but also sufficient to identify a global minimum. The problem
displays an unexpected subtlety however: normally, a convex gradient-
flow cannot display non-minimizing stationary solutions, such as those
described in Example 4.1. Evidently these discrete ring solutions µ,
although stationary, can only satisfy a localized version of the Euler-
Lagrange / Kuhn-Tucker conditions (2.1), in which W ∗ µ attains a
local but not a global minimum on sptµ.

In the complementary range

(2.4) (α, β) ∈ [2, 4]× (−n, 2)

a different classification problem was solved by Carrillo and Shu [19]
who established that all compactly supported d∞-local minimizers are
spherically symmetric. (In a more restricted range of exponents, they
are able to give a precise description of the global minimizers: on the
centripetal line 4 − n < β < 2 = α their minimizers turn out to be
spherical shells.) Stimulated by an anonymous referee’s query, we im-
prove Corollaries 2.3(b)(e) and A.3, which originally addressed only
minimizers relative to a symmetry constraint, to include d∞-local min-
ima as well. We do this by extending Carrillo and Shu’s classification
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to the relative interior (2, 4)×{2} of the corresponding interval on the
centrifugal line when n ≥ 2 (so nontrivial rotations exist). However, the
next theorem shows no such extension can hold at the right endpoint
(α, β) = (2, 4); it also fails at the left endpoint where W2,2 = 0.

The results of our companion paper [22], which also extend to the in-
terior α > β of the mildly repulsive regime β ≥ 2, allow us to complete
this characterization of minimizers on the frontier β = 2 as follows, at
least for n ≥ 2. A set K ⊆ Rn is called a unit n-simplex if it is the
convex hull of n+ 1 points {x0, x1, ..., xn} in Rn satisfying |xi−xj| = 1
for all 0 ≤ i < j ≤ n. The points {x0, x1, ..., xn} are called vertices of
the simplex. We define

P∆n := {ν ∈ P(Rn) | ν is uniformly distributed(2.5)

over the vertices of a unit n-simplex.}

Theorem 2.4 (Simplices uniquely minimize energy over much of the
mildly repulsive regime [22]). Let n ≥ 2 = β.
(i) If 2 < α < 4, then the unique minimizer of EWα,2 on (2.2) is given
by a spherical shell of positive radius.
(ii) If α = 4, then µ ∈ P0(Rn) minimizes EWα,2 if and only if µ is
concentrated on the centered sphere of radius

√
n

2n+2
with

(2.6)

∫
x⊗ x dµ(x) =

(∫
xixjdµ(x)

)
1≤i,j≤n

=
1

2n+ 2
Id,

where Id denotes the n× n identity matrix.
(iii) If α > 4, the set of minimizers of EWα,2 is precisely P∆n.

In the next section we prove Theorem 2.2 and its corollaries. A sub-
sequent chapter discusses nonlinear stability implications for the evolu-
tion (1.4) near minimizers such as the spherical shell. This is followed by
an appendix extending a strict convexity result for the energy shown
by Lopes [37] for densities to measures, also obtained independently
in [13].

3. Spherical shells minimize for β = 2 < α < 4

Denote by σR ∈ P0(Rn) the uniform measure on a sphere of R ≥ 0
— called a spherical shell — and let σ := σ1 denote the unit spherical
shell. For y ∈ Rn, denote yi = ei · y for i = 1, ..., n, where {ei}1≤i≤n is
the standard basis of Rn. In this section we shall establish Theorem 2.2
whose proof uses the following elementary lemma to establish positivity
of the radial third derivative of the potential Wα,2 ∗ µ induced by any
spherically symmetric measure µ ∈ Pssc (Rn). Positivity of this third
derivative shows that as |x| increases, the radial profile of Wα,2 ∗ µ
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can transition from concave to convex but not from convex to concave.
Thus it is minimized by a unique positive radius. The Euler-Lagrange
equation (2.1) satisfied by a minimizer then forces µ to be a spherical
shell (or a convex combination of such a shell with a Dirac measure at
the origin, which requires an additional argument to rule out). The next
lemma extends the positivity of (3.1) shown for α < 4 by [24, Lemma
4.4] to larger values of α, c.f. [6] [4] [19], as well as establishing (3.2).
To prove Theorem 2.2, we shall eventually show the third derivative
(3.17) of f(r) = (Wα,2 ∗ µ)(re1) to be a positive combination of such
integrals when µ = σ is a spherical shell.

Lemma 3.1 (Positivity of certain spherical integrals). Let n ≥ 2. Then
for all α > 2, the following integrals are absolutely convergent for any
r ∈ R, and define continuous odd functions gα and Gα on R. Moreover
for all r > 0 they are positive:

gα(r) :=

∫
(r − y1)|re1 − y|α−4dσ(y) > 0 and(3.1)

Gα(r) :=

∫
|re1 − y|α−6(r − y1)(1− y2

1)dσ(y) > 0.(3.2)

Remark 3.2 (Non-negativity of the limiting integrals). If instead α =
2, the same proof shows gα(r) ≥ 0 and Gα(r) ≥ 0 unless r = 1 =
n − 1 (in which case the integrals (3.1) and (3.2) no longer converge
absolutely). Equality holds in either (hence both) inequalities if and only
if n = α = 2 and |r| < 1. This endpoint case is reminiscent of Newton’s
shell theorem.

Proof. When r = 1, both integrands have exponent α − 3 > −(n− 1)
on the unit sphere in Rn, hence the integrals are absolutely convergent.
It then follows from the dominated convergence theorem that gα and
Gα are well-defined and continuous in R, and odd. Moreover it is clear
that both integrals are positive for all r ≥ 1. So let us fix r ∈ (0, 1). For
(3.1) we claim that it is sufficient to show g2(r) ≥ 0. To see this, let
us rewrite gα by scaling. Let s = s(r) > 1 be defined by s2 − s2r2 = 1.
Then

gα =

∫
|re1 − y|α−4(r − y1)dσ(y)(3.3)

= s3−α
∫
|sre1 − y|α−4(sr − y1)dσs(y).
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Hence

∂gα
∂α

=− s3−α(log s)

∫
|sre1 − y|α−4(sr − y1)dσs(y)

+ s3−α
∫
|sre1 − y|α−4(log |sre1 − y|)(sr − y1)dσs(y).

Observe the second integral is positive because our choice of s = s(r)
makes the sign of sr − y1 and log |sre1 − y| coincide. Since the first
integral vanishes precisely when gα = 0, we see that

gα ≤ 0 implies
∂gα
∂α

> 0(3.4)

which in turn shows

gα0 ≥ 0 implies gα > 0 for all α > α0(3.5)

to prove the claim. It remains to show g2(r) ≥ 0. Let Hn−1 denote the
area measure on the unit sphere in Rn, so that ωndσ = dHn−1|Sn−1

where

ωn := Hn−1[Sn−1](=
2πn/2

Γ(n
2
)

).

Expressing the Euclidean volume element dnx = rn−1dr
∏n−1

i=1 (sin θi)
i−1dθi

in polar coordinates yields

gα(r) =
1

ωn

∫
Sn−1

|re1 − y|α−4(r − y1)dHn−1(y)

=
ωn−1

ωn

∫ π

0

r − cos θ

(r2 − 2r cos θ + 1)(4−α)/2
(sin θ)n−2dθ.(3.6)

In the special case n = 2 = α we claim the integral (3.6) vanishes.
Indeed, exchanging the order of the integrals yields

ω2

ω1

∫ r

0

g2(s)ds =

∫ π

0

log |r2 − 2r cos θ + 1|dθ.

The last integral is known to vanish, e.g. [45, p 104]. Thus g2(r) = 0
for |r| < 1 when n = 2.

The fact that g2(r) > 0 when n > 2 can be argued as follows. Taking
α = 2, the symmetry cos(π − θ) = − cos θ reduces (3.6) to

ωn
ωn−1

g2(r) = 2r

∫ π/2

0

r2 + 1− 2 cos2 θ

(r2 + 1)2 − 4r2 cos2 θ
(sin θ)n−2dθ.(3.7)

The integrand in (3.7) changes sign only once, at θr := arccos
√

r2+1
2

.

Since the weight sinn−2 θ (uniform when n = 2) becomes an increasing
function of θ ∈ [0, π

2
] for n > 2, it suppresses the contributions from



10 CAMERON DAVIES, TONGSEOK LIM AND ROBERT J. MCCANN

the negative region (0, θr) and enhances the contributions from the
positive region (θr,

π
2
) relative to the unweighted case. Thus positivity

g2(r) > 0 of the weighted integral for n > 2 follows from the fact that
the unweighted integral vanishes when n = 2.

Having established (3.1) we turn now to (3.2). As before, it is clear
that Gα(r) > 0 for all r ≥ 1. So let us fix r ∈ (0, 1). By a similar scaling
argument to (3.3), (3.4), (3.5), we deduce

Gα0(r) ≥ 0 implies Gα(r) > 0 for all α > α0.(3.8)

Thus we only need to show G2(r) ≥ 0 (with equality when n = 2).
Re-expressing (3.2) in spherical polar coordinates analogously to

(3.6) and using the symmetry cos(π − θ) = − cos θ yields that, for
α = 2,

ωn
ωn−1

G2(r) =

∫ π

0

r − cos θ

(1 + r2 − 2r cos θ)2
sinn θ dθ(3.9)

= 2r

∫ π/2

0

((1 + r2)2 − (2 cos θ)2)sin2 θ

((1 + r2)2 − (2r cos θ)2)2
sinn−2 θ dθ.(3.10)

The integrand in (3.10) vanishes only once, at Θr := arccos 1+r2

2
. Again

the weight sinn−2 θ is an increasing function of θ ∈ [0, π
2
] for n > 2,

and suppresses the contributions from the negative region (0,Θr) and
enhances the contributions from the positive region (Θr,

π
2
) relative to

the case n = 2. Thus G2(r) > 0 for n > 2 will follow once we have
established G2(r) = 0 for n = 2. For this, taking n = 2 in (3.9) yields

2ω2

ω1

∫ r

0

G2(s)ds = −
∫ π

0

[
1

1 + s2 − 2s cos θ

]r
s=0

sin2 θ dθ

=
π

2
−
∫ π

0

sin2 θ dθ

1 + r2 − 2r cos θ
.(3.11)

Now we change variables from θ to the angle φ between the horizontal
axis and the vector from re1 to y = (cos θ, sin θ). Notice then φ > θ
and the last integrand above becomes sin2 φ. By considering the triangle
with vertices {0, y, re1}, we find

sin(φ− θ)
r

=
sin θ√

1 + r2 − 2r cos θ
= sinφ, thus

θ = φ− sin−1(r sinφ), and

dθ

dφ
= 1− r cosφ√

1− r2 sin2 φ
.
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This yields∫ π

0

sin2 θ

(r − cos θ)2 + sin2 θ
dθ =

∫ π

0

sin2 φ

(
1− r cosφ√

1− r2 sin2 φ

)
dφ

=
π

2
(3.12)

using antisymmetry of the ratio around φ = π
2

again. Combining (3.11)
with (3.12) gives the desired identity G2(r) = 0 when n = 2 and |r| < 1
to complete the proof of the lemma. �

Proof of Theorem 2.2. For µ ∈ P0(Rn), define Vµ(x) :=
∫
Wα,2(x −

y)dµ(y). Then

Vµ(x) =
1

α

∫
|x− y|αdµ(y)− 1

2
|x|2 − 1

2
Var(µ), and

∇Vµ(x) =

∫
|x− y|α−2(x− y)dµ(y)− x.

For α ∈ (max{4 − n, 2}, 4), if µ is spherically symmetric and com-

pactly supported, we claim fµ ∈ Cbαc,α−bαcloc (R)∩C3
loc((0,∞)) (the latter

being the space of three times continuously differentiable functions)
and f ′′′µ (r) > 0 for all r > 0, where

fµ(r) := Vµ(re1),(3.13)

f ′µ(r) = ∇Vµ(re1) · e1 =

∫
|re1 − y|α−2(r − y1)dµ(y)− r,(3.14)

f ′′µ(r) =

∫
[(α− 2)

(r − y1)2

|re1 − y|4−α
+ |re1 − y|α−2]dµ(y)− 1,(3.15)

and, if α ≥ 3 (or if µ = σ1 and n ≥ 2) also

f ′′′µ (r)

α− 2
=

∫
r − y1

|re1 − y|6−α
(3|re1 − y|2 + (α− 4)(r − y1)2)dµ(y).(3.16)

From these claims, we deduce fµ(r) can have at most one inflection
point R in the range r > 0, and must be convex on r > R (since α > β
and the compact support of µ ensures f ′′µ(r) > 0 for large r). The
symmetry fµ(r) = fµ(−r) and smoothness asserted imply f ′µ(0) = 0,
so either fµ(r) is strictly convex globally (in which case R = 0) or
strictly concave on |r| < R and strictly convex on r > R > 0.

It remains to establish the claims. To see fµ ∈ C
bαc,α−bαc
loc (R) note

that locally at least, the compact support of µ ∈ Pssc (Rn) implies fµ
is an average of uniformly Cbαc,α−bαc functions, justifying the formulas
(3.13)–(3.17) for the first bαc derivatives. We now show f ′′′µ (r) > 0 for

all r > 0 and also, for 2 < α < 3, that fµ ∈ C3
loc((0,∞)); the latter
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has already been established for 3 ≤ α, as when n = 1. We do this
first for the spherical shell µ = σ of unit radius, before tackling the
general case. In dimension n = 1, where σ = 1

2
(δ−1 + δ1) and α > 3 by

hypothesis,

2f ′′′σ (r)

(α− 1)(α− 2)
= |r − 1|α−4(r − 1) + |r + 1|α−4(r + 1)

has the same sign as r, as desired. To show fσ ∈ C3
loc((0,∞)) for 2 <

α < 3 a more delicate argument is needed. Note that both summands
occurring in the integrand of f ′′′µ (r) are dominated in absolute value by
constant multiples of

|re1 − y|α−3 ≤ |1− y2
1|(α−3)/2 ∈ L1(Rn, dσ).

This allows f ′′′σ to be obtained by differentiating under the integral
defining f ′′σ in the usual way: approximating the derivatives by differ-
ence quotients and combining the mean value theorem with Lebesgue’s
dominated convergence theorem, noting α > 2; c.f. [28, Theorem 2.27].
Thus fσ ∈ C3

loc((0,∞)) and its derivatives coincide with the integrals
given above. Now (r − y1)2 = |re1 − y|2 − 1 + y2

1 yields

(3.17)
f ′′′σ (r)

α− 2
= (α− 1)gα(r) + (4− α)Gα(r) > 0,

where gα and Gα are the positive continuous functions from Lemma 3.1.
If instead µ = σR is the spherical shell of radius R > 0, it follows

that f ′′′σR(r) = Rα−3f ′′′σ (r/R) is a positive continuous function of both
variables (r, R) ∈ (0,∞)2. Along the R → 0 boundary, Lebesgue’s
dominated convergence theorem shows

f ′′′σR(r)

(α− 2)(α− 1)
=

∫
r −Ry1

|re1 −Ry|4−α

(
1 +

4− α
α− 1

1− y2
1

|re1 −Ry|2
R2

)
dσ1(y)

converges to 1
(α−2)(α−1)

f ′′′σ0(r) = rα−3. Thus f ′′′σR(r) depends continuously

on (r, R) in any compact rectangle [r0, r1]× [0, R1] satisfying r0 > 0; it
admits a uniform modulus of continuity ω which depends on the rec-
tangle. Any spherically symmetric distribution µ ∈ Pssc (Rn) supported
on the centered ball of radius R1 can be expressed as a weighted aver-
age of spherical shells σR with R ∈ [0, R1]. Therefore fµ ∈ C3([r0, r1])
and its third derivative inherits both the desired positivity from f ′′′σR
and the modulus of continuity ω. �

Proof of Corollary 2.3. (a) Set f(r) = f(−r) = (Wα,β ∗ µ)(re1). We
first notice that the unique inflection point R in Theorem 2.2 is strictly
positive, since if R = 0 then f is strictly convex on R and even, so the
condition in (a) implies µ = δ0, but then it is clear that f ′′(0) = −1 < 0,
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a contradiction. Hence R > 0. Now since f(r) is differentiable, strictly
concave on [0, R), strictly convex on [R,∞) and grows without bound
as r → ∞, its derivative vanishes only at r ∈ {0, r∗}, where r∗ > R is
its minimum. Thus ∇(Wα,β ∗ µ)(x) vanishes only at |x| ∈ {0, r∗}, so
µ = (1− s)σr∗ + sδ0 for some s ∈ [0, 1].

(b and e) If the energy EWα,β
on a d∞-ball in either Pc(Rn) or in

Pssc (Rn) is minimized at the center µ of the ball, then each point x ∈
sptµ is a local minimum of Wα,β ∗µ [40] [5]. This can be thought of as a
modified version of the Euler-Lagrange equation (2.1), appropriate for
d∞-local instead of global minima. Then ∇(Wα,β ∗µ) = 0 holds µ-a.e. If
n ≥ 2, Corollary A.3 asserts spherical symmetry of µ after translation;
the same conclusion is true by hypothesis in case (e). Now (a) implies
µ = (1 − s)σr∗ + sδ0 for some s ∈ [0, 1] and r∗ > 0. Moreover s = 0,
since otherwise x = 0 ∈ sptµ is a strict local maximum of Wα,β ∗ µ, as
observed in the proof of (a).

We obtain the precise value of r∗ = R as follows: for a local minimum
of

fσR(r) = Rαfσ1

( r
R

)
+ (Rα −R2)

(
r2

R2
+1

)
to occur at r = R requires

0 = f ′σR(R) = Rα−1f ′σ1(1) + (Rα −R2)
2

R
.

Since r = 0 does not minimize locally, this implies R =
(

2
f ′σ1 (1)+2

) 1
α−2 .

(c) The strict convexity of the energy shown in Corollary A.2 be-
low implies the minimizer µ is unique and spherically symmetric. It
has compact support by Proposition 2.1. The desired conclusion now
follows from (b).

(d) In the remaining case (α, β, n) = (3, 2, 1), at least one minimizer
is a spherical shell by continuity as α ↘ 3, and a priori uniqueness of
the minimizer completes the proof. �

Remark 3.3 (Optimizers on the real line). (i) Kang, Kim, Lim and
Seo [33, Theorem 2 (2),(6)] showed for (n, β) = (1, 2) and α ≥ 3
that µ∗ := 1

2
(δ− 1

2
+δ 1

2
) is a strict local minimizer with respect to the d∞

metric on P0(R). Our Corollary 2.3 improves this by showing that µ∗ is
the unique compactly supported d∞-local minimizer with even symmetry
for all α > 3, and the unique global minimizer for all α ≥ 3. (ii) [33,
Theorem 2 (4)] showed in the range (n, β) = (1, 2) and 2 < α < 3
excluded by Corollary 2.3, that µ∗ is not a d∞-local minimizer, hence
not a global minimizer. The global minimizer in this range has since
been identified by Frank [29] in response to [22]. (iii) [33, Example 1,
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Theorem 2 (1)] jointly show that e.g. if (α, β, n) = (2.4, 2.1, 1), µ∗ is a
d∞-strict local minimizer but not a global minimizer.

4. Asymptotic vs. Lyapunov stability of spherical shells

Finally, let us clarify the sense in which these energy minimizers
represent stable solutions to the aggregation equation (1.4). Near a
fixed point of a dynamical system, there are several possible notions
of nonlinear stability. Asymptotic stability, requires the fixed point to
attract all solutions in its neighbourhood, i.e. to form what is called an
attractor. Lyapunov stability is a weaker notion, which merely requires
that no point starting sufficiently close to the fixed point strays too
far away: for any ε-ball around the fixed point x there should be an
open ball Bδ(x) of initial conditions whose future trajectories remain
in Bε(x). Both notions admit obvious extensions to families of fixed
points. Moreover, both notions are sensitive to the metric (or topology)
in which closeness is measured, and to the class of initial conditions
permitted.

For the Kantorovich-Rubinstein-Wasserstein family of distances (1.5),
energy minimizers need not form an asymptotically stable family: in
two-dimensions our next example shows that the discrete ring solutions
(whose stability was investigated linearly by Bertozzi, Kolokolnikov,
Sun, Uminsky and von Brecht [36] [8] and nonlinearly by Simione [44])
provide non-minimizing steady states arbitrarily close to the energy
minimizing spherical shell.

Example 4.1 (Steady state periodic rings of many point masses). Let
α > β > 1 and n = 2. Assume for some R > 0 that the spherical shell
σR is a steady-state for (1.4), so that VσR(x) = Wα,β ∗ σR(x) satisfies
∇VσR = 0 on spt(σR). Then for any ε > 0, there exists a steady-state
ω which takes the form of a discrete ring of uniformly spaced identical
point masses (4.1) and satisfies d∞(ω, σR) < ε.

Proof. Let g(r) = ∇Vσr(re1) ·e1. We claim g′(r) > 0 whenever g(r) = 0
and r > 0. To see this, denote y1 = e1 · y and compute

g(r) =

∫
[|re1 − y|α−2(r − y1)− |re1 − y|β−2(r − y1)]dσr(y)

=

∫
[|re1 − ry|α−2(r − ry1)− |re1 − ry|β−2(r − ry1)]dσ1(y)

= rα−1

∫
|e1 − y|α−2(1− y1)dσ1(y)− rβ−1

∫
|e1 − y|β−2(1− y1)dσ1(y)

= cαr
α−1 − cβrβ−1
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where cα =
∫
|e1− y|α−2(1− y1)dσ1(y) and cβ similarly. Now g(R) = 0

gives cβR
β−2 = cαR

α−2, thus g′(R) = cαR
α−2(α − β) > 0, as claimed.

Let

(4.1) ωk,r =
1

k

k∑
m=1

δre2πim/k

denote the discrete ring supported on k points spaced uniformly around
the circle of radius r. We assume re1 ∈ spt(ωk,r). Now g(R) = 0 by
assumption, thus given η > 0, the claim allows us to find R+ ∈ (R,R+
η), R− ∈ (R − η,R) such that g(R+) > 0, g(R−) < 0. Hence by
approximation, for all large enough k we have

∇Vωk,R+ (R+e1) · e1 > 0, ∇Vωk,R− (R−e1) · e1 < 0.

By continuity, there existsR∗ ∈ (R−, R+) so that∇Vωk,R∗ (R∗e1)·e1 = 0.
By symmetry ∇Vωk,R∗ (R∗e1) is parallel to e1, hence ∇Vωk,R∗ (R∗e1) = 0.
By symmetry again ∇Vωk,R∗ vanishes on spt(ωk,R∗), that is ωk,R∗ is a
steady-state. Now d∞(σr, ωk,r) → 0 uniformly on r ∈ [R − ε, R + ε]
as k → ∞. Thus for ε > 0, we choose η < ε/2, k large enough and
R∗ ∈ (R− η,R + η) as above to ensure

d∞(σR, ωk,R∗)≤ d∞(σR, σR∗) + d∞(σR∗ , ωk,R∗) < ε

as desired. �

Remark 4.2 (Minimizers need not be asymptotically stable). By the
Euler-Lagrange equation (2.1), this example implies there exists a steady-
state discrete ring which is dp-arbitrarily close to the spherical shell
minimizer given in Corollary 2.3 for each p ∈ [1,∞]. This nearby ac-
cumulation of non-minimizing steady-states shows that even though the
energy (1.1) is a Lyapunov function for the aggregation dynamics (1.4),
the spherical shells which minimize it are not asymptotically stable.
This is in sharp contradistinction to the results of Simione. In particu-
lar, [44, Theorems 16 and 25] asserts that if a finitely supported steady
state is fully linearly stable, then it is both d∞-Lyapunov stable, and
(d∞; d2)-asymptotically stable, in the sense that probability measures
which start d∞-close to the steady state contract to the steady state in
the d2-metric under the aggregation dynamics (1.4). In view of Corol-
lary A.3 however, the discrete ring solutions of the previous example
are not fully linearly stable when β = 2 < α < 4. Likewise, our results
differ from those of Balagué et al [5], which show local dp-asymptotic
stability of our spherical shell for some p ≥ 1 in the more restricted
class Pssc (Rn) of spherically symmetric initial data.
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Instead, the minimizing family is dα-Lyapunov stable, in the sense
that the evolution stays as dα-close as we please to the minimizing
family if it starts dα-close enough to it. Recall the following variant
of a well-known lemma, in which coercivity of E : X −→ R means
E−1((−∞, h]) is assumed to be compact for each h ∈ R.

Lemma 4.3 (Lyapunov stability). If E : X −→ R is a continuous
coercive function on a metric space (X, d) and Y ⊆ X, then for each
ε > 0 there exist δ > 0 and h ∈ R such that

(4.2) (argmin
X

E)δ ⊆ E−1((−∞, h)) ⊆ (argmin
X

E)ε,

where

Y ε := {x ∈ X | d(x, Y ) := inf
y∈Y

d(x, y) < ε}.

Proof. Continuity and coercivity imply E attains its minimum on X.
Let A = argminX E denote the set of minimizers and e′ = minX E.
Given ε > 0, to derive a contradiction suppose no h > e′ satisfies the
second inclusion (4.2). Then for each k ∈ N there exists xk ∈ X \ Aε
with E(xk) < e′ + 1/k. Coercivity yields an accumulation point x∞ of
{xk}k∈N, which must lie in the closed set X \Aε. Continuity of E yields
E(x∞) = e′, hence x ∈ A — the desired contradiction. We now provide
δ satisfying the first inclusion: since continuity of E yields an open set
E−1((−∞, h)) containing the compact set A, the distance of A to the
closed set E−1([h,∞)) is positive; taking δ to be this positive distance
establishes the lemma. �

To apply the lemma, we take X to consist of the centered measures
with finite α-th moments:

(4.3) Pα,0(Rn) := {µ ∈ P0(Rn) |
∫
Rn

|x|αdµ(x) <∞}.

Corollary 4.4 (dα-Lyapunov stability). For 0 < β < α < ∞ and
α ≥ 1, taking E = EWα,β

and (X, d) = (Pα,0(Rn), dα), the preceding
lemma ensures that any curve (µ(t))t≥0 ∈ X starting within distance
δ > 0 of an energy minimizer remains within distance ε > 0 of an
energy minimizer as long as E(µ(t)) ≤ E(µ(0)) for all t ≥ 0.
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Proof. Let d(x, y) = |x−y|. Jensen’s inequality, ||d||Lβ(µ⊗µ) ≤ ||d||Lα(µ⊗µ),
converts the energy bound

h ≥ EWα,β
(µ)

=
1

α
‖d‖αLα(µ⊗µ) −

1

β
‖d‖β

Lβ(µ⊗µ)

≥ 1

α
‖d‖αLα(µ⊗µ) −

1

β
‖d‖βLα(µ⊗µ)

into a bound on ‖d‖Lα(µ⊗µ). For µ ∈ P0(Rn), a second application of
Jensen’s inequality

‖d‖αLα(µ⊗µ) =

∫∫
Rn×Rn

|x− y|αdµ(x)dµ(y)

≥
∫
Rn

|x|αdµ(x)

= dα(µ, δ0)α

then shows E−1((−∞, h]) is dα-bounded. Now [52, Theorem 7.12] shows
dα-continuity of EWα,β

on (4.3), so E−1((−∞, h]) is also dα-closed. Fi-
nally, [2, Theorem 2.7] asserts closed and bounded subsets of P2(Rn)
are d2-compact, but for α ∈ [1,∞) the same proof yields dα-compactness
of closed bounded subsets of Pα(Rn) with respect to the distance (1.5).
This establishes the desired coercivity of E on (X, d). �

Remark 4.5 (Lyapunov stability of aggregation near energy minima).
Since the aggregation equation (1.4) preserves center of mass without
increasing the energy (1.1), the last corollary asserts the desired Lya-
punov stability result. To obtain this stability, our distance dα is adapted
to match the largest exponent in the interaction potential W = Wα,β.
Note that we need not specify a solution concept for the dynamics, so
long as it preserves (sign, mass, center of mass) and dissipates energy.

A. Appendix: Strict convex/concavity of EWα for
α ∈ (2, 4) ∪ (0, 2)

We end by recalling that the strict convexity proved by Lopes [37]
for the functional EWα extends to singular measures. After posting this
manuscript on the arXiv, we learned from Rupert Frank that this exten-
sion was previously established in the course of proving uniqueness of
energy minimizer up to transition for an interacting gas model satisfy-
ing a polytropic equation of state: Theorem 27 of [13]. We nevertheless
include our own proof, which differs in some ways from that of [13].
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Convexity of the quadratic form (1.1) is equivalent to non-negative
definiteness of its kernel W . For the kernels {Wα}0<α<4, Lopes [37]
explored this sign definiteness using Fourier transforms. Although he
was only interested in the action of such kernels on probability densities,
we now show his considerations extend also to singular probability
measures, while retaining strict convexity. The Fourier transform of a
signed measure is defined by

(A.1) ρ̂(ξ) :=

∫
Rn

e−2πiξ·xdρ(x).

For bounded densities ρ and kernelsW of compact support, Plancherel’s
formula

(A.2) 〈ρ,W ∗ ρ〉L2(Rn) = 〈ρ̂, Ŵ ρ̂〉L2(Rn)

shows the sign of Ŵ determines the sign-definiteness of the quadratic
form. For singular measures and long range, unbounded kernels, things
are potentially more delicate. From Euler’s product representation

(A.3) Γ(z) =
1

z

∞∏
n=1

(1 + 1
n
)z

1 + z
n

recall Γ(z) is analytic except at the negative integers, where it has
simple poles (and where its restriction to the real axis therefore changes
signs). Let Pc(Rn) denote the set of compactly supported probability
measures. We extend Lopes’ result with the following analog of (A.2):

Proposition A.1 (Sign of kernel action on centered neutral measures).
If ρ = µ− ν is the difference of µ, ν ∈ P0(Rn) ∩ Pc(Rn), then

Fα(ρ) : =

∫∫
Rn×Rn

|x− y|αdρ(x)dρ(y)(A.4)

= C(α)

∫
Rn

|ξ|−α−n|ρ̂(ξ)|2dξ =: F̃α(ρ̂)(A.5)

for each α ∈ (0, 2) ∪ (2, 4), where C(α) := 2α+n/2 Γ((α+n)/2)
Γ(−α/2)

.

We shall derive this from Lopes’ results using approximation.

Proof. Lopes shows this result on P0(Rn) ∩ Pc(Rn) ∩ L1(Rn), for the
given range of α. We shall extend it to P0(Rn) ∩ Pc(Rn). Let µ, ν ∈
P0(Rn)∩Pc(Rn). Choose a smooth radial density ϕ ∈ P0(Rn)∩Pc(Rn)
supported in a unit ball, and consider the mollified measures (µε)ε>0,
(νε)ε>0 defined by dµε(x) = (ϕε ∗ µ)(x)dx, where ϕε(x) := 1

εn
ϕ(x

ε
) and

ϕ is the usual smooth probability density compactly supported on the
unit ball. It is then easy to check µε, νε ∈ P0(Rn) ∩ C∞c (Rn), and the
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functions µε, νε are uniformly supported in a ball of radius R for all
ε ∈ (0, 1]. Moreover, d∞(µε, µ), d∞(νε, ν) ≤ ε hence µε → µ, νε → ν
as ε → 0 in ∞-Wasserstein distance (1.5) on P(Rn). Thanks to this
d∞-convergence, we obtain Fα(ρ) = limε→0 Fα(ρε) for any α > 0.

We next show that F̃α(ρ̂ε)→ F̃α(ρ̂). We split the integral as follows:

F̃α(ρ̂ε)

C(α)
=

∫
B1(0)

|ξ|−α−n|ρ̂ε(ξ)|2dξ +

∫
Rn\B1(0)

|ξ|−α−n|ρ̂ε(ξ)|2dξ.

We show each integral converges as ε→ 0. By Schwartz’s Paley-Wiener
theorem [43] for distributions, ρ̂ε is analytic for all ε ≥ 0. Since van-
ishing zeroth and first moments imply ρ̂ε(0) =

∫
dρε(x) = 0 and

(∇ξρ̂ε)(0) = 0, we find ρ̂ε(ξ)
|ξ|2 is also analytic. Then the power series

expansion at the origin implies ρ̂ε(ξ)
|ξ|2 is uniformly bounded in B1(0) for

all ε ∈ [0, 1], since all mixed partial derivatives of order k of µ̂ε, ν̂ε at 0
are bounded by Rk by the basic property of Fourier transforms (A.1).
Hence

∫
B1(0)

|ξ|−α−n|ρ̂ε(ξ)|2dξ =

∫
B1(0)

|ξ|−α−n+4

(
|ρ̂ε(ξ)|
|ξ|2

)2

dξ

ε→0−−→
∫
B1(0)

|ξ|−α−n+4

(
|ρ̂(ξ)|
|ξ|2

)2

dξ

=

∫
B1(0)

|ξ|−α−n|ρ̂(ξ)|2dξ

since α < 4 and pointwise convergence of ρ̂ε to ρ̂, proving the conver-
gence of the first integral by Lebesgue Dominated Convergence Theo-
rem. Next, since |ρ̂ε(ξ)| ≤ 2 for any ξ and |ξ|−α−n ∈ L1(Rn \ B1(0)),
we similarly have∫

Rn\B1(0)

|ξ|−α−n|ρ̂ε(ξ)|2dξ
ε→0−−→

∫
Rn\B1(0)

|ξ|−α−n|ρ̂(ξ)|2dξ.

Summing up we deduce limε→0 F̃α(ρ̂ε) = F̃α(ρ̂), and thereby obtain

Fα(ρ) = lim
ε→0

Fα(ρε) = lim
ε→0

F̃α(ρ̂ε) = F̃α(ρ̂)

where the second equality is due to Lopes [37]. �

Corollary A.2 (Energetic convexity for singular measures). On P0(Rn)∩
Pc(Rn), EWα is strictly convex if 2 < α < 4, and is strictly concave if
0 < α < 2. In addition, EWα is convex if α = 4, and is linear if α = 2.
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Proof. Let µ0, µ1 ∈ P0(Rn) ∩ Pc(Rn), ρ = µ1 − µ0 and let a(t) =
EWα((1− t)µ0 + tµ1) denote the energy along the line segment between
µ0 and µ1. Given that we will be interested in questions of convexity,
we note that a′′(t) = EWα(ρ), so convexity of EWα depends exclusively
on the sign of Fα(ρ) = 2αEWα(ρ).

We first address the α ∈ (0, 2) and the α ∈ (2, 4) cases. In either of
these cases, we apply the formula from Proposition A.1 to see that

Fα(ρ) = C(α)

∫
Rn

|ξ|−n−α|ρ̂(ξ)|2dξ.

Since |ξ|−n−α is strictly positive on Rn\{0}, this integral vanishes if and
only if ρ̂ = 0 on Rn (recall ρ̂ is continuous). However, by the injectivity
of the Fourier-Stieltjes transform, this only happens if µ0 = µ1, so we
can conclude that, unless µ0 = µ1,

∫
|ξ|−n−α|ρ̂(ξ)|2dξ > 0, and hence,

F (ρ) will take the sign of C(α) if µ0 6= µ1. Now C(α) < 0 for α ∈ (0, 2)
and C(α) > 0 for α ∈ (2, 4) according to (A.3). This yields strict
concavity in the former case and strict convexity in the latter.

If α = 2, it is easily seen EW2(µ) = 1
2

∫
|x|2dµ(x) hence depends lin-

early instead of quadratically on µ ∈ P0(Rn), while EW4 = limα↗4 EWα

implies (not necessarily strict) convexity of EW4 . �

Corollary A.3 (Spherical symmetry of d∞-local energy minimizers).
If (α, β) ∈ [2, 4] × (0, 2] \ {(4, 2), (2, 2)} and µ minimizes EWα,β

on a
d∞-ball in Pc(Rn) then, after translation, µ is spherically symmetric if
n ≥ 2. Apart from translations, EWα,β

has a unique global mininimum
on P(Rn) for all n ≥ 1.

Proof. Corollary A.2 shows EWα,β
is strictly convex, so a standard con-

vexity argument shows that, if µ, ν ∈ P0(Rn) ∩ Pc(Rn) are distinct
measures with the same energy, then µ+ν

2
will have strictly lower in-

teraction energy than either. Since Lemma 2.1 shows global energy
minimizers have bounded support, there can only be one such mini-
mizer centered at the origin. On the other hand, if µ minimizes Pc(Rn)
on a d∞-ball of radius ε, we may translate it to have center of mass at
the origin. Any slight rotation ν := Rµ has the same energy as µ. For
a small enough rotation, 1

2
(µ + ν) lies within d∞ distance ε of µ and

has strictly lower energy — producing a contradiction unless µ = Rµ
(or n = 1, in which case the only small rotation is trivial). Thus µ is
invariant under all small (and hence large) rotations if n ≥ 2: i.e. µ has
the desired spherical symmetry. �
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[6] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul. Nonlocal interactions by
repulsive-attractive potentials: radial ins/stability. Phys. D 260 (2013), 5–25.

[7] D. Benedetto, E. Caglioti, E., and M. Pulvirenti. A kinetic equation for granular
media. RAIRO Modél. Math. Anal. Numér. 31 (1997), no. 5, 615–641.

[8] Andrea L. Bertozzi, Theodore Kolokolnikov, Hui Sun, David Uminsky, and
James von Brecht. Ring patterns and their bifurcations in a nonlocal model
of biological swarms. Commun. Math. Sci., 13 (2015) 955–985.

[9] Adrien Blanchet and Guillaume Carlier. From Nash to Cournot-Nash equilibria
via the Monge-Kantorovich problem. Philos. Trans. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci., 372: 20130398 (2014) 11.

[10] C.M. Breder, Jr. Equations descriptive of fish schools and other animal aggre-
gations. Ecology, 35 (1954) No. 3, 361–370.

[11] Almut Burchard, Rustum Choksi, and Ihsan Topaloglu. Nonlocal shape opti-
mization via interactions of attractive and repulsive potentials. Indiana Univ.
Math. J. 67 (2018), no. 1, 375–395.

[12] Almut Burchard, Rustum Choksi, and Elias Hess-Childs. On the strong at-
traction limit for a class of nonlocal interaction energies. Nonlinear Analysis,
Volume 198, September 2020, 111844

[13] J. A. Carrillo, M. G. Delgadino, J. Dolbeault, R. L. Frank, F. Hoffmann.
Reverse Hardy-Littlewood-Sobolev inequalities. J. Math. Pures Appl. (9) 132
(2019), 133-165.

[14] J.A. Carrillo, A. Figalli, and F. S. Patacchini. Geometry of minimizers for
the interaction energy with mildly repulsive potentials. Ann. Inst. H. Poincaré
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2014.

[45] Elias M. Stein and Rami Shakarchi. Complex Analysis. Princeton Lectures in
Analysis 2. Princeton NJ: Princeton University Press, 2003.

[46] Hui Sun, David Uminsky, and Andrea L. Bertozzi. Stability and clustering
of self-similar solutions of aggregation equations, J. Math. Phys., 53 (2012)
115610, 18.

[47] Chad M. Topaz, Andrea L. Bertozzi, and Mark A. Lewis. A nonlocal continuum
model for biological aggregation. Bull. Math. Biol., 68 (2006) 1601–1623.

[48] Giuseppe Toscani. One-dimensional kinetic models of granular flows. M2AN
Math. Model. Numer. Anal., 34 (2000) 1277–1291.

[49] Richard Jordan, David Kinderlehrer, Felix Otto. The variational formulation
of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998), no. 1, 1–17.

[50] James H. von Brecht and Scott G. McCalla. Nonlinear stability through al-
gebraically decaying point spectrum: applications to nonlocal interaction equa-
tions. SIAM J. Math. Anal. 46 (2014), no. 6, 3727–3760.

[51] James H. von Brecht, David Uminsky, Theodore Kolokolnikov, and Andrea L.
Bertozzi. Predicting pattern formation in particle interactions. Math. Models
Methods Appl. Sci., 22: 1140002 (2012) 31.

[52] Cédric Villani. Topics in optimal transportation. American Mathematical So-
ciety, Providence, RI, 2003.

Cameron Davies: Department of Mathematics
University of Toronto, Toronto ON Canada

Email address: cameron.davies@mail.utoronto.ca



24 CAMERON DAVIES, TONGSEOK LIM AND ROBERT J. MCCANN

Tongseok Lim: Krannert School of Management
Purdue University, West Lafayette, Indiana 47907, USA

Email address: lim336@purdue.edu

Robert J. McCann: Department of Mathematics
University of Toronto, Toronto ON Canada

Email address: mccann@math.toronto.edu


	1. Introduction
	2. Results
	3. Spherical shells minimize for = 2<<4
	4. Asymptotic vs. Lyapunov stability of spherical shells
	A. Appendix: Strict convex/concavity of EW for (2,4) (0,2)
	References

