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A monopolist wishes to maximize her profits by finding an optimal price menu. After she announces

a menu of products and prices, each agent will choose to buy that product which maximizes his utility,

if positive. The principal’s profits are the sum of the net earnings produced by each product sold. These

are determined by the costs of production and the distribution of products sold, which in turn are based

on the distribution of anonymous agents and the choices they make in response to the principal’s price

menu.

In this thesis, two existence results will be provided, assuming each agent’s disutility is a strictly

increasing but not necessarily affine (i.e., quasilinear) function of the price paid. This has been an open

problem for several decades before the first multi-dimensional result obtained here and independently

by Nöldeke and Samuelson in 2015.

Additionally, a necessary and sufficient condition for the convexity or concavity of this principal’s (bi-

level) optimization problem is investigated. Concavity when present, makes the problem more amenable

to computational and theoretical analysis; it is key to obtaining uniqueness and stability results for the

principal’s strategy in particular. Even in the quasilinear case, our analysis goes beyond previous work

by addressing convexity as well as concavity, by establishing conditions which are not only sufficient

but necessary, and by requiring fewer hypotheses on the agents’ preferences. Moreover, the analytic

and geometric interpretations of a specific condition relevant to the concavity of the problem has been

explored.

Finally, various examples are given to explain the interaction between preferences of agents’ utility and

monopolist’s profit which ensure statements equivalent to the concavity of the principal-agent problem.

In particular, an example with quasilinear preferences on n-dimensional hyperbolic spaces is given with

explicit solutions to show uniqueness without concavity. Similar results on spherical and Euclidean

spaces are also provided. Additionally, the solutions of hyperbolic and spherical cases converge to those

of Euclidean spaces as curvature goes to 0.
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for sharing vital remarks. I also got much help from the Optimal transport community, including

Afiny Akdemir, Jean-David Benamou, Yann Brenier, Shibing Chen, Marco Cuturi, Alessio Figalli, Nas-

sif Ghoussoub, Nestor Guillen, Young-Heon Kim, Jun Kitagawa, Rosemonde Lareau-Dussault, Justin
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Chapter 1

Introduction

1.1 Problem formulation

As one of the central problems in microeconomic theory, the principal-agent framework characterizes

the type of non-competitive decision-making problems which involve aligning incentives so that one

set of parties (the agents) finds it beneficial to act in the interests of another (the principal) despite

holding private information. Such problem arises in a variety of different contexts. Besides nonlinear

pricing [1, 29, 43, 46], economists also use this framework to model many different types of transactions,

including tax policy [14, 26, 35], contract theory [33], regulation of monopolies [3], product line design

[37], labour market signaling [42], public utilities [34], and mechanism design [17, 23, 24, 27, 31, 45].

Many of these share the same mathematical model. In this thesis, we use nonlinear pricing to motivate

the discussion, although our conclusions may be equally pertinent to many other areas of application.

We only consider the case where both agent types and product attributes are continuous.

Consider the problem for a multiproduct monopolist who sells indivisible products to a population

of consumers, who each buy at most one unit. Assume there is neither cooperation nor competition

between agents. Additionally, assume the monopolist is able to produce enough of each product such

that there are neither product supply shortages nor economies of scale. Taking into account participation

constraints and incentive compatibility, the monopolist would like to find the optimal menu of prices to

maximize her total profit.

Let X,Y be open and bounded subsets in Rm and Rn (m ≥ n), respectively, with closures cl(X) and

cl(Y ). Suppose the monopolist wants to maximize her profits by selecting the dependence of the price

v(y) on each type y ∈ cl(Y ) of product sold. An agent of type x ∈ X will choose to buy that product

which maximizes his benefit

u(x) := max
y∈cl(Y )

G(x, y, v(y)), (1.1.1)

where (x, y, z) ∈ X × cl(Y )×R 7−→ G(x, y, z) ∈ R, is the given direct utility function for agent type x

to choose product type y at price z.

After agents, whose distribution dµ(x) is known to the monopolist, have chosen their favorite items

1



Chapter 1. Introduction 2

to buy, the monopolist calculates her profit given by the functional

Π(v, y) :=

∫
X

π(x, y(x), v(y(x)))dµ(x), (1.1.2)

where y(x) denotes the product type y which agent type x chooses to buy (and which maximizes (1.1.1)),

v(y(x)) denotes the selling price of type y(x) and π ∈ C0(cl(X × Y ) ×R) denotes the principal’s net

profit of selling product type y ∈ cl(Y ) to agent type x ∈ X at price z ∈ R. The monopolist wants to

maximize her net profit among all lower semicontinuous pricing policies.

In economic models, incentive compatibility is needed to ensure that all the agents report their

preferences truthfully. According to the revelation principle (see [30]), this costs no generality. Decisions

made by monopolist according to the information collected from agents then lead to the expected market

reaction (as in [5, 37]). Individual rationality is required to ensure full participation so that each agent

will choose to play, possibly by accepting the outside option. Individual agents accept to contract

only if the benefits they earn are no less than their outside option. We model this by assuming the

existence of a distinguished point y∅ ∈ cl(Y ) which represents the outside option, and whose price

cannot exceed some fixed value z∅ ∈ R beyond the monopolist’s control. This removes any incentive

for the monopolist to raise the prices of other options too high. (We can choose normalizations such as

π(x, y∅, z∅) = 0 = G(x, y∅, z∅) and (y∅, z∅) = (0, 0), or not, as we wish.)

The following is a table of notation:

Table 1.1: Notation

Mathematical

Expression
Economic Meaning

x agent type

y product type

X ⊂ Rm (open, bounded) domain of agent types

cl(Y ) ⊂ Rn domain of product types, closure of Y

v(y) selling price of product type y (in Chapter 3 we use p(y) instead)

v(y∅) ≤ z∅ price normalization of the outside option y∅ ∈ cl(Y )

u(x) indirect utility of agent type x

domDu points in X where u is differentiable

G(x, y, z) direct utility of buying product y at price z for agent x

H(x, y, u) price at which y brings x value u, so that H(x, y,G(x, y, z)) = z

π(x, y, z) the principal’s profit for selling product y to agent x at price z

dµ(x) Borel probability measure giving the distribution of agent types on X

µ � Lm µ vanishes on each subset of Rm having zero Lebesgue volume Lm

Π(v, y) monopolist’s profit facing agents’ responses y(·) to her chosen price policy v(·)
ΠΠΠ(u) monopolist’s profit, viewed instead as a function of agents’ indirect utilities u(·)

Definition 1.1.1 (Incentive compatible and individually rational). A measurable map x ∈ X 7−→
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(y(x), z(x)) ∈ cl(Y × Z) of agents to (product, price) pairs is called incentive compatible if and only

if G(x, y(x), z(x)) ≥ G(x, y(x′), z(x′)) for all (x, x′) ∈ X2. Such a map offers agent x no incentive to

pretend to be x′. It is called individually rational if and only if G(x, y(x), z(x)) ≥ G(x, y∅, z∅) for all

x ∈ X, meaning no individual x strictly prefers the outside option (y∅, z∅) to his assignment (y(x), z(x)).

Proposition 1.1.2. The principal’s program is as follows:

(P0)


sup Π(v, y) =

∫
X
π(x, y(x), v(y(x)))dµ(x) subject to

x ∈ X 7−→ (y(x), v(y(x))) incentive compatible, individually rational,

and v : cl(Y ) −→ cl(Z) lower semicontinuous with v(y∅) ≤ z∅.

1.2 Background

We study a general version of a multidimensional nonlinear pricing model, which is a natural extension

of the models studied by Mussa-Rosen [29], Mirrlees [26], Spence [42, 43], Myerson [31], Baron-Myerson

[3], Maskin-Riley [23], Wilson [46], Rochet-Choné [37], Monteiro-Page [27] and Carlier [5]. A major

distinction lies in whether the agents’ private type is one-dimensional (such as [29, 23]), or multidimen-

sional (such as [33, 37, 27, 5]). Another distinction is whether preferences are quasilinear on price (such

as [1, 5]) or fully nonlinear (such as [32, 25]), especially for multidimensional models.

For the quasilinear case, where the utility G(x, y, z) depends linearly on its third variable, and net

profit π(x, y, z) = z − a(y) represents difference of selling price z and manufacturing cost a of product

type y, theories of existence [4, 38, 5, 27], uniqueness [6, 11, 29, 37] and robustness [4, 11] have been well

studied.

When parameterization of preferences is linear in agent types and price, where cl(X) = cl(Y ) =

[0,∞)n, G(x, y, z) = 〈x, y〉 − z, and (y∅, z∅) = (0, 0), Rochet and Choné (1998, [37]) not only obtain

existence results but also partially characterize optimal solutions and expound their economic interpre-

tations, given that monopolist profits can be characterized by the aggregate difference between selling

prices and quadratic manufacturing costs. Here 〈 , 〉 denotes the Euclidean inner product.

More generally, Carlier ([5]) has proved existence results for general quasilinear utility G(x, y, z) =

b(x, y)−z, where agent type and product type are not necessarily of the same dimension and monopolist

profit equals selling price minus some linear manufacturing cost.

Figalli-Kim-McCann [11] reveals the equivalence of function space convexity to a non-negative fourth

order cross-curvature condition, and conditions of functional concavity, where uniqueness and stability

of the monopolist’s maximizing strategy follow from strict concavity.

1.3 Motivation

Starting from the celebrated work of Nobel laureates Mirrlees [26] and Spence [42], there are two main

types of generalizations. One generalization is regarding dimension, from one-dimensional to multi-

dimensional. The other generalization is in the form of utility functions, to beyond quasilinear.



Chapter 1. Introduction 4

The generalization of quasilinear to nonlinear preferences has many potential applications. For

example, the benefit function G(x, y, v(y)) = b(x, y) − v2(y) models agents who are more sensitive to

higher prices, while the function G(x, y, v(y)) = b(x, y) − v 1
2 (y) models agents who are less sensitive to

higher prices, and utility G(x, y, v(y)) = b(x, y)− f(x, v(y)) describes the scenario when different agents

might have different sensitivities to the same price. See Wilson [46, Chapter 7] for the importance

of taking income effects into account. Very few results are known for such nonlinearities, due to the

complications which they entail.

In 2013, Trudinger’s lecture at the optimal transport program at MSRI inspired us to try generalizing

Carlier [5] and Figalli-Kim-McCann [11] to the non-quasilinear case. With the tools developed by

Trudinger [44] and others [2, 41], we are able to provide existence, convexity, and concavity theorems

for general utility and net profit functions.

The generalized existence problem was also mentioned as a conjecture by Basov [4, Chapter 8].

Independently of the present work, Nöldeke and Samuelson (2015, [32]) provided a general existence

result assuming that cl(X), cl(Y ) are compact and the utility G is decreasing with respect to its third

variable, by implementing a duality argument based on Galois connections.

The equivalence of concavity to the corresponding non-negative cross-curvature condition revealed

by Figalli-Kim-McCann [11] directly motivates our work. In addition to the quasilinearity of G(x, y, z) =

b(x, y)−z essential to their model, they require additional restrictions such as m = n and b ∈ C4(cl(X×
Y )) which are not economically motivated and which we shall relax or remove. However, we shall

eventually show that under certain conditions the concavity or convexity of G and π (or their derivatives)

with respect to v tends to be reflected by the concavity or convexity of Π, not with respect to v or y, but

rather with respect to the agents’ indirect utility u, in terms of which the principal’s maximization is

reformulated. Moreover, our results allow for the monopolist’s profit π to depend in a general way both

on monetary transfers and on the agents’ types x, revealed after contracting. Such dependence plays an

important role in applications such as insurance marketing.

Inspired by Kim-McCann [18], which expressed the fourth-order Ma-Trudinger-Wang condition in

optimal transportation theory as the non-negativity of the sectional curvature in a specific pseudo-

Riemannian geometry, we would like to explore the geometric interpretations of the (G3) hypothesis, a

Ma-Trudinger-Wang type condition, for our concavity results.

The work [11] by Figalli-Kim-McCann provides a non-negative definiteness condition of a certain

fourth order differential expression (B3), which not only is equivalent to the convexity of some function

space, but also implies concavity of the maximization functional, and thus uniqueness follows from a strict

version of (B3). One may wonder what happens if this curvature condition (B3) is violated. Inspired by

Loeper [20], which claims that, for quasilinear Riemannian quadratic utility, (B3) is satisfied only if the

Riemannian sectional curvature is non-negative, some part of the thesis aims to investigate uniqueness

without concavity on the hyperbolic spaces with constant negative curvatures. Besides, previously there

are few explicit results on spaces of dimensions greater than two.

It is worth mentioning that given the technical arguments exploited in this thesis, it may be very fruit-

ful to study possible generalizations of other known results for convex functions to G-convex functions,

which will be defined in Section 2.2.
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1.4 Outline of the thesis

Chapter 2 provides some preliminaries and, in particular, a generalized notion of convexity: the G-

convexity (c.f. [44, 2, 41]). We also see that the incentive compatibility is conveniently encoded by the

G-convexity of the agents’ indirect utility u, which is an analog of Carlier [5].

Initiated independently of [32], Chapter 3 provides a general existence result for the multidimensional

monopolist model with general nonlinear preferences with less restriction on boundedness of the product

domain, by extending Carlier [5] to fully nonlinear preferences. Due to the lack of natural compactness,

the proof of this work is quite different from that of Nöldeke-Samuelson. Furthermore, G-convex analysis,

which is strongly tied to Trudinger’s theory on the regularity of nonlinear PDEs [44] developed for vastly

different purposes, is employed to deal with the difficulty of non-quasilinear preferences.

Chapter 4 presents another general existence result given the generalized single-crossing condition and

boundedness of the consumer-type and product-type spaces. This result is also shown using G-convex

analysis, but the proof is different from Chapter 3, since most assumptions are different.

We will show convexity results in Chapter 5. In Chapter 5, we generalize uniqueness and concavity

results of Figalli-Kim-McCann to the non-quasilinear case. In this work, we first give a necessary and

sufficient condition (G3) under which the function space U∅ is convex.

We then provide the equivalent conditions, respectively, to the concavity, convexity, uniform conca-

vity, and uniform convexity of the functional ΠΠΠ. We also give sufficient conditions for strict concavity,

which implies uniqueness for this problem. Besides, the maximizers of ΠΠΠ may not be unique under con-

vexity but are attained at some extreme point(s) (the elements that cannot be represented by a convex

combination of other elements) of the function space U∅.

We also show that the concavity condition is equivalent to the non-positive definiteness of some

quadratic form on Rn+1.

The condition (G3) is so crucial to the concavity result that we want to investigate it a bit more.

Chapter 6 shows that (G3) is equivalent to the non-positive definiteness of some fourth order differential

expression along affinely parametrized line segments, which is an analog of the non-negative definiteness

of the fourth order condition given in Trudinger [44] for regularity of prescribed Jacobian equations. It

also coincides in the quasilinear case with the fourth order condition provided by Figalli-Kim-McCann

in [11], which strengthens to the Ma-Trudinger-Wang condition [21] in regularity theory of Optimal

Transport.

Motived by Kim-McCann [18], in Chapter 7, we will show that (G3) is equivalent to the non-negativity

of the sectional curvature in a natural pseudo-Riemannian geometry associated to the economic problem

at hand.

Oriented by Loeper’s work [20], Chapter 8 proves uniqueness by showing (in exact form) the unique

solutions of special examples with quasilinear preferences where domains are symmetric disks on the n-

dimensional hyperbolic spaces Hn, and the utilities are quasilinear quadratic hyperbolic distances. It also

shows solutions on the spheres Sn and Euclidean spaces Rn, where the utilities are quasilinear quadratic

spherical and Euclidean distances, respectively. Moreover, the solutions on Sn and Hn converge to those

on Rn as curvature goes to 0.
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For non-quasilinear preferences, we specialize the form obtained from Chapter 5 into various examples

and give the equivalent conditions to the concavity/convexity of the maximization problem.

Remark 1.4.1. Chapter 4, 5, 6, 7 and the second part of Chapter 8 are joint work with my advisor

Robert J. McCann (see McCann-Zhang [25]). It should be mentioned here that neither the convexity

work, nor the earlier two existence results, require the monopolist’s profit to take on a particular form,

which is a generalization from much of the literature. We believe that the (G3) condition and the

concavity results are critical steps for the computational analysis of the multidimensional nonlinear

principal-agent problem. It will be exciting to investigate the situations when the monopolist has less or

inaccurate information, as well as how our results apply to the duopoly and other oligopoly games. The

G-convexity method in this thesis is potentially applicable to other problems under the same principal-

agent framework, such as the study of tax policy ([26]) and other regulatory policies ([3]). For an

application of G-convexity to geometric optics, see [16].



Chapter 2

Preliminaries and G-convexity

2.1 Preliminaries

Let X be a subset of Rm.

Definition 2.1.1 (Subdifferential). Recall that the subdifferential of a function u : X −→ R at x0 ∈ X
is defined as the set:

∂u(x0) := {y ∈ Rm | u(x)− u(x0) ≥ 〈x− x0, y〉, for all x ∈ X} . (2.1.1)

Here 〈 , 〉 denotes the Euclidean inner product.

Lemma 2.1.2. The set defined in (2.1.1) is nonempty for every x0 ∈ X if and only if u is convex.

We give a proof below for a generalized version of this lemma.

For any vectors p, w ∈ Rn, we denote p ‖ w if p and w are parallel.

We use Lm to denote Lebesgue measure on Rm, which characterizes the m-dimensional volume. A

non-negative measure µ is said to be absolutely continuous with respect to Lm if for every measurable

set A, Lm(A) = 0 implies µ(A) = 0. This is written as µ� Lm.

Let f be a function on X. We say f ∈ L1(X) if
∫
X
|f(x)|dLm(x) < ∞. Denote by W 1,1(X) the

Sobolev space of L1(X) functions whose first derivatives exist in the weak sense and belong to L1(X).

For more properties of Sobolev spaces and weak derivatives, see Evans [10, Chapter 5]. If ω is a subset

of X, the notation ω ⊂⊂ X means that the closure of ω is also included in X.

Here we use Gx =
(
∂G
∂x1 ,

∂G
∂x2 , ...,

∂G
∂xm

)
, Gy =

(
∂G
∂y1 ,

∂G
∂y2 , ...,

∂G
∂yn

)
, Gz = ∂G

∂z to denote derivatives with

respect to x ∈ X ⊂ Rm , y ∈ Y ⊂ Rn, and z ∈ R, respectively. Also, for second partial derivatives, we

adopt the following notation

Gx,y =


∂2G

∂x1∂y1
∂2G

∂x1∂y2 ... ∂2G
∂x1∂yn

∂2G
∂x2∂y1

∂2G
∂x2∂y2 ... ∂2G

∂x2∂yn

...
...

. . .
...

∂2G
∂xm∂y1

∂2G
∂xm∂y2 ... ∂2G

∂xm∂yn
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and Gx,z =
(
∂2G
∂x1∂z ,

∂2G
∂x2∂z , ...,

∂2G
∂xm∂z

)
.

A function is said to be C0 if it is continuous on its domain. We say G ∈ C1(cl(X × Y × Z)),

if all the partial derivatives ∂G
∂x1 , ..., ∂G∂xm , ∂G

∂y1 , ..., ∂G
∂yn , ∂G

∂z exist and are continuous. Also, we say

G ∈ C2(cl(X × Y × Z)), if all the partial derivatives up to second order (i.e. ∂2G
∂α∂β , where α, β =

x1, ..., xm, y1, ..., yn, z) exist and are continuous. Any bijective continuous function whose inverse is also

continuous, is called a homeomorphism (a.k.a. bicontinuous).

We will use Einstein notation for simplifying expressions including summations of vectors, matrices,

and general tensors for higher order derivatives. There are essentially three rules of Einstein summation

notation, namely: 1. repeated indices are implicitly summed over; 2. each index can appear at most

twice in any term; 3. both sides of an equation must contain the same non-repeated indices. For

example, aijvi =
∑
i aijvi, aijb

kjvk =
∑
j

∑
k aijb

kjvk. We also use a comma to separate subscripts:

the subscripts before the comma represent derivatives with respect to first variable and those after the

comma represent derivatives with respect to the second variable. For instance, for b = b(x, y), b,kl

represents second derivatives with respect to y only. And for G = G(x, y, z), where z ∈ R, Gi,jz denotes

third order derivatives with respect to x, y and z, instead of using another comma to separate subscripts

corresponding to y and z.

2.2 G-convex, G-subdifferentiability

In this section, we introduce some tools from convex analysis and the notion of G-convexity (c.f. [44, 2,

41]), which is a generalization of ordinary convexity.

Let X, Y , and Z be subsets of Rm, Rn, and R respectively. Assume G : X × Y × Z −→ R is any

function which is strictly decreasing in its last variable. For each (x, y) ∈ X×cl(Y ) and u ∈ G(x, y, cl(Z)),

define H(x, y, u) := z whenever G(x, y, z) = u, i.e., H(x, y, ·) = G−1(x, y, ·). In the context of nonlinear

pricing, G(x, y, z) represents the utility that consumer x obtains for purchasing product y at price z,

while H(x, y, u) denotes the price paid by agent x for product y when receiving value u.

From Lemma 2.1.2, for any convex function u on X and any fixed point x0 ∈ X, there exists

y0 ∈ ∂u(x0), satisfying

u(x) ≥ 〈x, y0〉 − (〈x0, y0〉 − u(x0)), for all x ∈ X, (2.2.1)

where equality holds at x = x0. On the other hand, if for any x0 ∈ X, there exists y0, such that (2.2.1)

holds for all x ∈ X, then u is convex. The following definition is analogous to this property, which is a

special case of G-convexity, when G(x, y, z) = 〈x, y〉 − z. In this case, we have H(x, y, u) = 〈x, y〉 − u.

Definition 2.2.1 (G-convexity). A function u ∈ C0(X) is called G-convex if for each x0 ∈ X, there

exist y0 ∈ cl(Y ), and z0 ∈ cl(Z) such that u(x0) = G(x0, y0, z0), and u(x) ≥ G(x, y0, z0), for all x ∈ X.

Similarly, one can also generalize the definition of subdifferential from (2.2.1).

Definition 2.2.2 (G-subdifferentiability). The G-subdifferential of a function u : X −→ R is a point-

to-set mapping defined by

∂Gu(x) := {y ∈ cl(Y )|u(x′) ≥ G(x′, y,H(x, y, u(x))), for all x′ ∈ X}.
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A function u is said to be G-subdifferentiable at x if and only if ∂Gu(x) 6= ∅.1

In particular, if G(x, y, z) = 〈x, y〉 − z, then the G-subdifferential coincides with the subdifferential.

There are other generalizations of convexity and subdifferentiability. For instance, h-convexity in Carlier

[5], or equivalently, b-convexity in Figalli-Kim-McCann [11], or c-convexity in Gangbo-McCann [12], is

a special form of G-convexity, where G(x, y, z) = h(x, y) − z, which plays an important role in the

quasilinear case. For more references of convexity generalizations, see Kutateladze-Rubinov [19], Elster-

Nehse [9], Balder [2], Dolecki-Kurcyusz [7], Singer [41], Rubinov [40], and Mart́ınez-Legaz [22].

As mentioned above, a well-known result in convex analysis is that a function is convex if and only

if it is subdifferentiable everywhere. The following lemma adapts this to G-convexity.

Lemma 2.2.3. A function u : X → R is G-convex if and only if it is G-subdifferentiable everywhere.

Proof. Assume u is G-convex, we want to show that u is G-subdifferentiable everywhere, i.e., we need

to prove ∂Gu(x0) 6= ∅ for all x0 ∈ X.

Since u is G-convex, by definition, for each x0, there exists y0, z0, such that u(x0) = G(x0, y0, z0),

and for all x ∈ X,

u(x) ≥ G(x, y0, z0) = G(x, y0, H(x0, y0, u(x0))).

By the definition of G-subdifferentiability, y0 ∈ ∂Gu(x0), i.e. ∂Gu(x0) 6= ∅.
On the other hand, assume u is G-subdifferentiable everywhere, then for each x0 ∈ X, there exists

y0 ∈ ∂Gu(x0). Set z0 := H(x0, y0, u(x0)) so that u(x0) = G(x0, y0, z0).

Since y0 ∈ ∂Gu(x0), for all x ∈ X, we have

u(x) ≥ G(x, y0, H(x0, y0, u(x0))) = G(x, y0, z0).

By definition, u is G-convex.

Using Lemma 2.2.3, one can show the following result, which connects incentive compatibility in the

economic context with G-convexity and G-subdifferentiability in mathematical analysis, generalizing the

results of Rochet [36] and Carlier [5].

Proposition 2.2.4 (G-convex utilities characterize incentive compatibility). Let (y, z) be a pair of

mappings from X to cl(Y ) × cl(Z). This (product, price) pair is incentive compatible if and only if

u(·) := G(·, y(·), z(·)) is G-convex and y(x) ∈ ∂Gu(x) for each x ∈ X.

Proof. “ ⇒ ”. Suppose (y, z) is incentive compatible. For any fixed x0 ∈ X, let y0 = y(x0) and

z0 = z(x0). Then u(x0) = G(x0, y(x0), z(x0)) = G(x0, y0, z0). By incentive compatibility of the contract

(y, z), for any x ∈ X, one has G(x, y(x), z(x)) ≥ G(x, y(x0), z(x0)). This implies u(x) ≥ G(x, y0, z0), for

any x ∈ X, since u(x) = G(x, y(x), z(x)), y0 = y(x0) and z0 = z(x0). By definition, u is G-convex.

Since u(x0) = G(x0, y0, z0), by definition of function H, one has z0 = H(x0, y0, u(x0)). Com-

bining with u(x) ≥ G(x, y0, z0), for any x ∈ X, which is concluded from above, we have u(x) ≥
G(x, y0, H(x0, y0, u(x0))), for any x ∈ X. By definition of G-subdifferentiability, one has y0 ∈ ∂Gu(x0),

and thus y(x0) = y0 ∈ ∂Gu(x0).

1In Trudinger [44], this point-to-set mapping ∂Gu is also called G-normal mapping; see this paper for more properties
related to G-convexity.
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“ ⇐ ”. Assume that u = G(x, y(x), z(x)) is G-convex, and y(x) ∈ ∂Gu(x), for any x ∈ X. For any

fixed x ∈ X, since y(x) ∈ ∂Gu(x), for any x′ ∈ X, one has

u(x′) ≥ G(x′, y(x), H(x, y(x), u(x))). (2.2.2)

Since u(x) = G(x, y(x), z(x)), by definition of function H, one has z(x) = H(x, y(x), u(x)). Combining

with the inequality (2.2.2), we have u(x′) ≥ G(x′, y(x), z(x)). Noticing u(x′) = G(x′, y(x′), z(x′)), one

has G(x′, y(x′), z(x′)) = u(x′) ≥ G(x′, y(x), z(x)). By definition, (y, z) is incentive compatible.



Chapter 3

Existence: unbounded product

spaces

3.1 Introduction

Recently, Nöldeke-Samuelson (2015, [32]) provided a general existence result assuming that the consumer

and product space are compact, by implementing a duality argument based on Galois connections. In this

chapter, we explore existence using G-convex analysis, which was introduced in Section 2.2, but with less

restriction on boundedness of the product domain and without assuming the generalized single-crossing

condition. As a result of the lack of natural compactness, the proof of this result is quite different from

that of Nöldeke-Samuelson [32]. It should be mentioned here that the existence results from this chapter,

Chapter 4, and Nöldeke-Samuelson require no restrictions on the monopolist profit to take on a special

form, which is a generalization from much of the literature.

In Section 2.2, we identified incentive compatibility with a G-convexity constraint. In this chapter,

we will rewrite the maximization problem by converting the optimization variables from a product-price

pair of mappings to a product-value pair. It can then be shown that the product-value pair converges

under the G-convexity constraint. The existence result follows.

The remainder of this chapter is organized as follows. Section 3.2 states the mathematical model and

assumptions. Section 3.3 reformulates the monopolist’s problem and prepares some propositions for the

next section. In Section 3.4, we state the existence theorem as well as the convergence proposition.

3.2 Model

Our model of the principal-agent problem is a bilevel optimization. After a monopolist publishes her

price menu, each agent maximizes his utility through the purchase of at most one product. Knowing only

the distribution of agent types, the monopolist maximizes aggregate profits based on agents’ choices,

which are based on the price menus.

Suppose the agents’ preferences are given by some parametrized utility function G(x, y, z), where x

is a M -dimensional vector of consumer characteristics, y is a N -dimensional vector of attributes of each

product, and z represents the price of each product. Denote by X the space of agent types, by Y the

11
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space of products, by cl(Y ) the closure of Y , by Z the space of prices, and by cl(Z) the closure of Z.

In this chapter only, we use the letters M and N as dimensions of the spaces of agents and products.

Other chapters adopt m and n as dimensions of the corresponding spaces.

The monopolist sells indivisible products to agents, i.e., she will sell neither a part/percentage of

one product nor a product with some probability. Each agent buys at most one unit of product. We

assume no competition, cooperation, or communication between agents. For any given price menu

p : cl(Y )→ cl(Z), an agent x ∈ X knows his utility G(x, y, p(y)) for purchasing each product y at price

p(y). It follows that each agent solves the following maximization problem

u(x) := max
y∈cl(Y )

G(x, y, p(y)), (3.2.1)

where u(x) represents the maximal utility agent x can obtain, and u : X −→ R is also called the value

function or indirect utility function. At this point, it is assumed that the maximum in (3.2.1) is attained

for each agent x.

If agent x purchases product y at price p(y), the monopolist would earn from this transaction a

profit of π(x, y, p(y)). For example, monopolist profit can take the form π(x, y, p(y)) = p(y) − c(y),

where c(y) is a variable manufacturing cost function. Summing over all agents in the distribution dµ(x),

the monopolist’s total profit is characterized by

Π(p, y) :=

∫
X

π(x, y(x), p(y(x)))dµ(x), (3.2.2)

which depends on her price menu p : cl(Y )→ cl(Z) and agents’ choices y : X → cl(Y ).1

Since the monopolist only observes the overall distribution of agent attributes and is unable to

distinguish individual agent characteristics, the monopolist takes into account the following incentive-

compatibility constraint when determining product-price pairs (y, p(y)), which ensures that no agent has

the incentive to pretend to be another agent type.

In addition, we adopt a participation constraint in order to rule out the possibility of the monopolist

charging exorbitant prices and the agents still having to make transactions despite this: each agent

x ∈ X will refuse to participate to the market if the maximum utility he can obtain is less than his

reservation value u∅(x), where the function u∅ : X → R is given in the form u∅(x) := G(x, y∅, z∅), for

some (y∅, z∅) ∈ cl(Y ×Z), where y∅ represents the outside option, whose price equals to some fixed value

z∅ ∈ R beyond the monopolist’s control.

1It is worth mentioning that in some literature, the monopolist’s objective is to design a product line Ỹ (i.e. a subset

of cl(Y )) and a price menu p̃ : Ỹ → R that jointly maximize overall monopolist profit. Then, given Ỹ and p̃, an agent of

type x chooses the product y(x) that solves

max
y∈Ỹ

G(x, y, p̃(y)) := u(x).

Allowing the price to take value z̄ (which may be +∞), and assuming Assumption 1 below, the effect of designing a product

line Ỹ and price menu p̃ : Ỹ → R is equivalent to that of designing a price menu p : cl(Y ) → (−∞,+∞], which equals p̃

on Ỹ and maps cl(Y ) \ Ỹ to z̄, such that no agents choose to purchase any product from cl(Y ) \ Ỹ , which is less attractive

than the outside option y∅ according to Assumption 1. In this paper, we use the latter as the monopolist’s objective.

For any given price menu p : cl(Y ) → (−∞,+∞], one can construct a mapping y : X → cl(Y ) such that each y(x)
solves the maximization problem in (3.2.1). But such mapping is not unique, for some fixed price menu, without the
single-crossing type assumptions. Therefore, we adopt in (3.2.2) the total profit as a functional of both price menu p and
its corresponding mapping y.
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For monopolist profit, some literature assumes π(x, y∅, z∅) ≥ 0 for all x ∈ X to ensure that the

outside option is harmless to the monopolist. Here, it is not necessary to adopt such an assumption for

the sake of generality.

The monopolist’s problem can be described as follows:

(P1)



sup Π(p, y) =
∫
X
π(x, y(x), p(y(x))) dµ(x)

s.t. (y, p(y)) is incentive compatible;

s.t. G(x, y(x), p(y(x))) ≥ u∅(x) for all x ∈ X;

s.t. p is lower semicontinuous.

(3.2.3)

We assume that p is lower semicontinuous, without which the maximum in (3.2.1) may not be

attained.

The following assumptions are made. We use C0(X) to denote the space of all continuous functions on

X, and use C1(X) to denote the space of all differentiable functions on X whose derivative is continuous.

Note that, even in the 1 dimensional case, we assume no single-crossing type condition.

Assumption 1. Agents’ utility G ∈ C1(cl(X × Y × Z)), where the space of agents X is a bounded

open convex subset in RM with C1 boundary, the space of products Y ⊂ RN , and range of prices

Z = (z, z̄) with −∞ < z < z̄ ≤ +∞. Assume G(x, y, z̄) := limz−→z̄ G(x, y, z) ≤ G(x, y∅, z∅), for all

(x, y) ∈ X × cl(Y ); and assume this inequality is strict when z̄ = +∞.

Here we do not necessarily assume X, Y , and Z are compact spaces; in particular, Y and Z are

potentially unbounded (i.e. we do not set a priori bounds for product attributes or an a priori upper

bound for price). However, we do specify a lower bound for the price range, since the monopolist has no

incentive to set price close to negative infinity.

Assumption 2. G(x, y, z) is strictly decreasing in z for each (x, y) ∈ cl(X × Y ).

This assumption says that the higher the price paid to the monopolist, the lower the utility that will

be left for the agent, for any given product.

Assumption 3. G is coordinate-monotone in x. That is, for each (y, z) ∈ cl(Y × Z), and for all

(α, β) ∈ X2, if αi ≥ βi for all i = 1, 2, ...,M , then G(α, y, z) ≥ G(β, y, z).

In Assumption 3, we assume that agent utility increases along each consumer attribute coordinate.

In the following, we use DxG(x, y, z) := ( ∂G∂x1
, ∂G∂x2

, . . . , ∂G
∂xM

)(x, y, z) to denote derivative with respect

to x. For any vector in RM or RN , we use || · || and || · ||α to denote its Euclidean 2-norm and α-norm

(α ≥ 1), respectively. For example, for x ∈ RM , we have ||x|| =
√∑M

i=1 x
2
i and ||x||α = (

∑M
i=1 |xi|α)

1
α .

We use H defined in Section 2.2 as the inverse of G with respect to the third variable, i.e., for each

(x, y) ∈ X × cl(Y ), H(x, y, ·) = G−1(x, y, ·). Here, H(x, y, u) represents the price paid by agent x for

product y when receiving value u.

In Rochet-Choné’s model, H(x, y, u) = x · y − u and π(x, y, z) = z − C(y), for some superlinear cost

function C. In this case, π(x, y,H(x, y, u)) = x · y − u − C(y). Since C is superlinear and the space X

is bounded, it is reasonable to assume the following:
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Assumption 4. π(x, y,H(x, y, u)) is (super-)linearly decreasing in y. That is, there exist α ≥ 1, a1, a2 >

0 and b ∈ R, such that π(x, y,H(x, y, u)) ≤ −a1||y||αα − a2u + b for all (x, y, u) ∈ {(x, y,G(x, y, z))|x ∈
X, y ∈ Y, z ∈ R}; or equivalently, π(x, y, z)+a2G(x, y, z) ≤ −a1||y||αα+b for all (x, y, z) ∈ X×cl(Y )×R.

As shown in the alternative formulation, Assumption 4 requires the existence of some weighted

surplus which is superlinearly decreasing with respect to the product. In the case where Y is bounded,

Assumption 4 is equivalent to the existence of some weighted surplus bounded from above.

Assumptions 5 - 7 are some technical assumptions on DxG, which are automatically satisfied for X,

Y , Z being compact.

Assumption 5. DxG(x, y, z) is Lipschitz with respect to x, uniformly in (y, z), meaning there exists

k ∈ R such that ||DxG(x, y, z)−DxG(x′, y, z)|| ≤ k||x− x′|| for all (x, x′, y, z) ∈ X2 × cl(Y )× cl(Z).

Assumption 6. ||DxG(x, y, z)||1 increases sub-linearly with respect to y. More precisely, there exist

β ∈ (0, α], c > 0, and d ∈ R, such that ||DxG(x, y, z)||1 ≤ c||y||ββ + d for all (x, y, z) ∈ X × cl(Y )× cl(Z).

Assumption 7. Coercivity of 1-norm of (DxG). For all s > 0, there exists r > 0, such that

M∑
i=1

|DxiG(x, y, z)| ≥ s

for all (x, y, z) ∈ X × cl(Y )× cl(Z), whenever ||y|| ≥ r.

Allowing Assumption 3, the derivatives DxiG are always nonnegative; therefore, we no longer need

to take absolute values of DxiG in the inequality of Assumption 7. And then Assumption 7 says that

the marginal utility of agents who select the same product y will increase to infinity as ||y|| approaches

infinity, uniformly for all agents and prices. For instance, when M = N , utility G(x, y, z) =
∑M
i=1 xiy

2
i −

f(z) satisfies Assumption 7, because
∑M
i=1 |DxiG(x, y, z)| =

∑M
i=1DxiG(x, y, z) =

∑M
i=1 y

2
i → +∞ as

||y|| → +∞. In addition, this G also satisfies all the other assumptions.

In general, if Y is bounded, any G in the form of G(x, y, z) = b(x, y)−f(y, z), with b ∈ C1(cl(X×Y ))

and f ∈ C0(cl(Y × Z)), satisfies Assumption 5 - 7.

Assumptions 8 states constraints on the continuity of principal’s profit function π, integrability of

participation constraint u∅, and absolute continuity of the measure µ with respect to the Lebesgue

measure.

Assumption 8. The profit function π is continuous on cl(X ×Y ×Z). The participation constraint u∅

is integrable with respect to dµ, where the measure dµ is equivalent to the Lebesgue measure restricted

on X.

For α ≥ 1, denote Lα(X) as the space of functions for which the α-th power of the absolute value is

Lebesgue integrable with respect to the measure dµ. That is, a function f : X −→ R is in Lα(X) if and

only if
∫
X
|f |αdµ < +∞. For instance, Assumption 8 implies u∅ ∈ L1(X).
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3.3 Reformulation of the monopolist’s problem

The purpose of this section is to fix terminology and prepare the preliminaries for the main results in

the next section. We also rewrite the monopolist’s problem in Proposition 3.3.4, which is an equivalent

form of (3.2.3).

We introduce implementability here, which is closely related to incentive-compatibility and can also

be exhibited by G-convexity and G-subdifferential.

Definition 3.3.1 (implementability). A function y : X → cl(Y ) is called implementable if and only if

there exists a function z : X → R such that the pair (y, z) is incentive compatible.

Remark 3.3.2. Allowing Assumption 2, a function y is implementable if and only if there exists a price

menu p : cl(Y )→ R such that the pair (y, p(y)) is incentive compatible.

Proof. One direction is easier: given p and y, define z(·) := p(y(·)). Then the conclusion follows directly.

Given an incentive-compatible pair (y, z) : X → cl(Y ) × R, we need to construct a price menu

p : cl(Y ) → R. If y = y(x) for some x ∈ X, define p(y) := z(x); for any other y ∈ cl(Y ), define

p(y) := z̄.

We first show p is well-defined. Suppose y(x) = y(x′) with x 6= x′, from incentive compatibility of

(p, y), we have G(x, y(x), z(x)) ≥ G(x, y(x′), z(x′)) = G(x, y(x), z(x′)). Since G is strictly decreasing on

its third variable, the above inequality implies z(x) ≤ z(x′). Similarly, one has z(x) ≥ z(x′). Therefore,

z(x) = z(x′) and thus p is well-defined.

The incentive compatibility of (y, p(y)) follows from that of (y, z) and definition of p.

As a corollary of Proposition 2.2.4, implementable functions can be characterized as G-subdifferential

of G-convex functions.

Corollary 3.3.3. Given Assumption 2, a function y : X → cl(Y ) is implementable if and only if there

exists a G-convex function u(·) such that y(x) ∈ ∂Gu(x) for each x ∈ X.

Proof. One direction is immediately derived from the definition of implementability and Proposition

2.2.4.

Suppose there exists some convex function u such that y(x) ∈ ∂Gu(x) for each x ∈ X. Define z(·) :=

H(·, y(·), u(·)), then u(x) = G(x, y(x), z(x)). Proposition 2.2.4 implies (y, z) is incentive compatible, and

thus y is implementable.

When parameterization of preferences is linear in agent types and price, Corollary 3.3.3 says that

a function is implementable if and only if it is monotone increasing. In general quasilinear cases, this

coincides with Proposition 1 of Carlier [5].

From the original monopolist’s problem (3.2.3), we replace product-price pair (p, y) by the value-

product pair (u, y), using u(·) = G(·, y(·), p(y(·))). Combining this with Proposition 2.2.4, the incentive-

compatibility constraint (y, p(y)) is equivalent to G-convexity of u(·) and y(x) ∈ ∂Gu(x) for all x ∈ X.

Therefore, one can rewrite the monopolist’s problem as follows.

Proposition 3.3.4. Given Assumptions 1 and 2, the monopolist’s problem (P1) is equivalent to
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(P2)


sup Π̃(u, y) :=

∫
X
π(x, y(x), H(x, y(x), u(x)))dµ(x)

s.t. u is G-convex ;

s.t. y(x) ∈ ∂Gu(x) and u(x) ≥ u∅(x) for all x ∈ X.

(3.3.1)

Proof. We need to prove both directions for equivalence of (P1) and (P2).

1. For any incentive-compatible pair (y, p(y)), define u(·) := G(·, y(·), p(y(·))). Then by Proposition

2.2.4, we have u(·) is G-convex and y(x) ∈ ∂Gu(x) for all x ∈ X. From the participation constraint,

G(x, y(x), p(y(x))) ≥ u∅(x) for all x ∈ X. This implies u(x) ≥ u∅(x) for all x ∈ X. Besides, two

integrands are equal: π(x, y(x), p(y(x))) = π(x, y(x), H(x, y(x), u(x))). Therefore, (P1) ≤ (P2).

2. On the other hand, assume u(·) is G-convex, y(x) ∈ ∂Gu(x) and u(x) ≥ u∅(x) for all x ∈ X.

From Corollary 3.3.3 and Remark 3.3.2, we know y is implementable and there exists a price menu

p : cl(Y ) → R, such that the pair (y, p(y)) is incentive compatible, where p(y) = H(x, y(x), u(x)) for

y = y(x) ∈ y(X) := {y(x) ∈ cl(Y )|x ∈ X}; p(y) = z̄ for other y ∈ cl(Y ). Firstly, the mapping p is

well-defined, using the same argument as that in Remark 3.3.2. Secondly, the participation constraint

holds since G(x, y(x), p(y(x))) = u(x) ≥ u∅(x) for all x ∈ X.

Thirdly, let us show this price menu p is lower semicontinuous. Let p̃ be the restriction of p to

y(X). Suppose that {yk} ⊂ y(X) converges y0 ∈ y(X) with yk = y(xk) and y0 = y(x0), satisfying

lim
k→∞

p̃(yk) = lim inf
y→y0

p̃(y). Let zk := p̃(yk) and z∞ := lim
k→∞

zk. To prove lower semicontinuity of p̃, we

need to show p̃(y0) ≤ z∞. Since yk ∈ ∂Gu(xk), we have u(x) ≥ G(x, yk, H(xk, yk, u(xk))) = G(x, yk, zk).

Taking k →∞, we have u(x) ≥ G(x, y0, z∞). This implies G(x0, y0, p̃(y0)) = u(x0) ≥ G(x0, y0, z∞). By

Assumption 2, we know p̃(y0) ≤ z∞. Thus p̃ is lower semicontinuous. Since p is an extension of p̃ from

y(X) to cl(Y ) as its lower semicontinuous hull, satisfying v(y) = z̄ for all y ∈ cl(Y ) \ y(X), we know p

is also lower semicontinuous.

Lastly, two integrands are equal: π(x, y(x), p(y(x))) = π(x, y(x), H(x, y(x), u(x))). Therefore, (P1) ≥
(P2).

In the next section, we will show the existence result of the rewritten monopolist’s problem (P2) given

in (3.3.1). For the preparation of the main result, we introduce the following lemma and propositions.

Proposition 3.3.5 shows that the inverse function of G is also continuous, because G is continuous

and monotonic on the price variable.

Proposition 3.3.5. Given Assumption 1 and Assumption 2, the function H is continuous.

Proof. (Proof by contradiction). Suppose H is not continuous, then there exists a sequence (xn, yn, zn) ⊂
cl(X × Y × Z) converging to (x, y, z) and ε > 0 such that |H(xn, yn, zn)−H(x, y, z)| > ε for all n ∈ N.

Without loss of generality, we assume H(xn, yn, zn) − H(x, y, z) > ε for all n ∈ N. Therefore, we

have H(xn, yn, zn) > H(x, y, z) + ε. By Assumption 2, this implies zn < G(xn, yn, H(x, y, z) + ε) for

all n ∈ N. Taking limit n → ∞ at both sides, since G is continuous from Assumption 1, we have

z ≤ G(x, y,H(x, y, z) + ε). This implies H(x, y, z) ≥ H(x, y, z) + ε, a contradiction.

Given coordinate monotonicity of G in the first variable, one can show that all the G-convex functi-

ons are nondecreasing. Therefore, the value functions are also monotonic with respect to the agents’

attributes.
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Proposition 3.3.6. Given Assumption 3, G-convex functions are nondecreasing in coordinates.

Proof of Proposition 3.3.6. Let u be any G-convex function, and let α, β be any two agent types in

X with α ≥ β. By G-convexity of u, for this β, there exist y ∈ cl(Y ) and z ∈ cl(Z), such that

u(β) = G(β, y, z) and u(x) ≥ G(x, y, z), for any x ∈ X. Since α ≥ β, by Assumption 3, we have

G(α, y, z) ≥ G(β, y, z). Combining with u(α) ≥ G(α, y, z) and u(β) = G(β, y, z), one has u(α) ≥ u(β).

Thus, u is nondecreasing.

Proposition 3.3.7 presents that uniform boundedness of the agents’ value functions on some compact

subset implies uniform boundedness of the corresponding agents’ choices of their favorite products.

Proposition 3.3.7. Given Assumptions 1, 2, 3, 7, and let u(·) be a G-convex function on X, ω be a

compact subset of X, δ > 0, R > 0, satisfying ω + δB(0, 1) ⊂ X and |u(x)| ≤ R for all x ∈ ω + δB(0, 1)

(here, B(0, 1) denotes the closed unit ball of RM ). Then, there exists T = T (ω, δ,R) > 0, such that

||y|| ≤ T for any x ∈ ω and any y ∈ ∂Gu(x).

Proof. (Proof by contradiction).

By Assumption 3 and Assumption 7, for s = 4R
√
M

δ , there exists r > 0, such that for any (x, y, z) ∈

X × cl(Y )× cl(Z), whenever ||y|| ≥ r, we have
M∑
i=1

DxiG(x, y, z) ≥ 4R
√
M

δ .

Assume the boundedness conclusion of this proposition is not true. Then for this r, there exist x0 ∈ ω
and y0 ∈ ∂Gu(x0), such that ||y0|| ≥ r. Thus,

M∑
i=1

DxiG(x, y0, z) ≥
4R
√
M

δ
, for all x ∈ X, z ∈ R. (3.3.2)

Since y0 ∈ ∂Gu(x0), by definition of G-subdifferential, we have u(x) ≥ G(x, y0, H(x0, y0, u(x0))), for

any x ∈ X. Take x = x0 + δx−1, where x−1 := ( 1√
M
, 1√

M
, · · · , 1√

M
) is a unit vector in RM with each

coordinate equal to 1√
M

. Then

u(x0 + δx−1) ≥ G(x0 + δx−1, y0, H(x0, y0, u(x0))). (3.3.3)

For any x ∈ ω + δB(0, 1), from conditions in the proposition, we have ||u(x)|| ≤ R. Therefore,

2R ≥ |u(x0 + δx−1)|+ |u(x0)|

≥ |u(x0 + δx−1)− u(x0)| (By the triangle inequality)

≥ u(x0 + δx−1)− u(x0)

≥ G(x0 + δx−1, y0, H(x0, y0, u(x0))) (By inequality (3.3.3)) and (by definition

−G(x0, y0, H(x0, y0, u(x0))) of H, u(x0) = G(x0, y0, H(x0, y0, u(x0)))

=

∫ 1

0

δ〈x−1, DxG(x0 + tδx−1, y0, H(x0, y0, u(x0)))〉dt (By the fundamental theorem of Calculus)

=
δ√
M

∫ 1

0

M∑
i=1

DxiG(x0 + tδx−1, y0, H(x0, y0, u(x0)))dt

≥ δ√
M

∫ 1

0

4R
√
M

δ
dt (By inequality (3.3.2))
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=
δ√
M
· 4R
√
M

δ

= 4R,

a contradiction. Thus, our assumption is wrong. Therefore, there exists T > 0, such that for any x ∈ ω,

y ∈ ∂Gu(x), one has ||y|| ≤ T . In addition, here T = T (ω, δ,R) is independent of u. In fact, from the

above argument, we can see that T ≤ r, which does not depend on u.

The above two propositions will also be employed in the proof of Proposition 3.4.3.

3.4 Main result

In this section, we state the existence theorem, the proof of which is provided at the end of this section.

Theorem 3.4.1 (Existence). Under Assumptions 1 - 8, the monopolist’s problem (P2) admits at least

one solution.

Technically, in order to demonstrate existence, we start from a sequence of value-product pairs, whose

total profits have a limit that is equal to the supremum of (P2). Then we need to show that this sequence

converges, up to a subsequence, to a pair of limit mappings. Then we show this limit value-product pair

satisfies the constraints of (P2), and its corresponding total payoff is no worse than those of any other

admissible pairs.

In the following, the notation ω ⊂⊂ X represents the closure of ω is also included in X.

Lemma 3.4.2 provides convergence results of a sequence of convex functions, which are uniformly

bounded in Sobolev spaces on open convex subsets. We state this classical result without proof, which

can be found in Carlier [5].

Lemma 3.4.2. Let {un} be a sequence of convex functions on X such that, for every open convex set

ω ⊂⊂ X, the following holds:

sup
n
||un||W 1,1(ω) < +∞.

Then there exists a function u∗ which is convex in X, a measurable subset A of X and a subsequence

again labeled {un} such that

1. {un} converges to u∗ uniformly on compact subsets of X;

2. {∇un} converges to ∇u∗ pointwise in A and dimH(X \ A) ≤ M − 1, where dimH(X \ A) is the

Hausdorff dimension of X \A.

We extend the above convergence result to G-convex functions in the following proposition, which

is required in the proof of the Existence Theorem, as it extracts a limit function from a converging

sequence of value functions.

Proposition 3.4.3. Assume Assumptions 1, 2, 3, 5, 7, and let {un} be a sequence of G-convex functions

in X such that for every open convex set ω ⊂⊂ X, the following holds:

sup
n
||un||W 1,1(ω) < +∞.
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Then there exists a function u∗ which is G-convex in X, a measurable subset A of X, and a subsequence

again labeled {un} such that

1. {un} converges to u∗ uniformly on compact subsets of X;

2. {∇un} converges to ∇u∗ pointwise in A and dimH(X \A) ≤M − 1.

Proof. In this proof, we will show that the sequence of G-convex functions is convergent by applying

results from Lemma 3.4.2, then prove that the limit function is also G-convex. Assume {un} is a sequence

of G-convex functions in X such that for every open convex set ω ⊂⊂ X, the following holds:

sup
n
||un||W 1,1(ω) < +∞.

Step 1: By Assumption 5, there exists k > 0, such that for any (x, x′) ∈ X2, y ∈ cl(Y ) and z ∈ cl(Z),

one has ||DxG(x, y, z) − DxG(x′, y, z)|| ≤ k||x − x′||. Denote Gλ(x, y, z) := G(x, y, z) + λ||x||2, where

λ ≥ 1
2 Lip(DxG), with Lip(DxG) := sup

{(x,x′,y,z)∈X×X×cl(Y )×cl(Z): x 6=x′}

||DxG(x,y,z)−DxG(x′,y,z)||
||x−x′|| .

Then, for any (x, x′) ∈ X2, by Cauchy–Schwarz inequality, one has

〈DxGλ(x, y, z)−DxGλ(x′, y, z), x− x′〉

= 〈DxG(x, y, z)−DxG(x′, y, z), x− x′〉+ 2λ||x− x′||2 (By definition of Gλ(x, y, z))

≥ − ||DxG(x, y, z)−DxG(x′, y, z)||||x− x′||+ 2λ||x− x′||2 (By Cauchy–Schwarz inequality)

≥ [2λ− Lip(DxG)]||x− x′||2 (By definition of Lip(DxG))

≥ 0.

Thus, Gλ(·, y, z) is a convex function on X, for any fixed (y, z) ∈ cl(Y )× cl(Z).

Step 2: Since un is G-convex, by Lemma 2.2.3, we know

un(x) = max
x′∈X,y∈∂Gun(x′)

G(x, y,H(x′, y, un(x′))).

Define vn(x) := un(x) + λ||x||2. Then

vn(x) = max
x′∈X,y∈∂Gun(x′)

G(x, y,H(x′, y, un(x′))) + λ||x||2

= max
x′∈X,y∈∂Gun(x′)

(G(x, y,H(x′, y, un(x′))) + λ||x||2)

= max
x′∈X,y∈∂Gun(x′)

Gλ(x, y,H(x′, y, un(x′))).

Since Gλ(·, y,H(x′, y, un(x′))) is convex for each (x′, y), we have vn(x), as supremum of convex

functions, is also convex, for all n ∈ N.

Step 3: Since vn := un+λ||x||2 and sup
n
||un||W 1,1(ω) < +∞, one has sup

n
||vn||W 1,1(ω) < +∞, for any

ω ⊂⊂ X. Hence {vn} satisfies all the assumptions of Lemma 3.4.2. So, by conclusion of Lemma 3.4.2,

there exists a convex function v∗ in X and a measurable set A ⊂ X, such that dim(X \A) ≤M − 1 and

up to a subsequence, {vn} converges to v∗ uniformly on compact subset of X and (∇vn) converges to

∇v∗ pointwise in A.

Let u∗(x) := v∗(x)−λ||x||2, then (un) converges to u∗ uniformly on compact subset of X and (∇un)
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converges to ∇u∗ pointwise in A.

Step 4: Finally, let us prove that u∗ is G-convex.

Define Γ(x) := ∩i≥1∪n≥i∂Gun(x), for all x ∈ X.

Step 4.1. Claim: For any x′ ∈ X, we have Γ(x′) 6= ∅.
Proof of this Claim:

Step 4.1.1. Let us first show for any ω ⊂⊂ X, sup
n
||un||L∞(ω̄) < +∞.

If not, then there exits a sequence {xn}∞n=1 ⊂ ω̄, such that lim sup
n
|un(xn)| = +∞.

Since ω̄ is compact, there exists x̄ ∈ ω̄, such that, up to a subsequence, xn → x̄. Again up to a

subsequence, we may assume that un(xn)→ +∞.

Since x̄ ∈ ω̄ ⊂⊂ X, there exists δ > 0, such that x̄ + δx−1 ∈ X, where x−1 := ( 1√
M
, 1√

M
, · · · , 1√

M
)

is a unit vector in RM with each coordinate equal to 1√
M

. For any x > x̄+ δx−1, there exists n0, such

that for any n > n0, we have x > xn. By Proposition 3.3.6, un are nondecreasing, and thus∫
{x∈X,x>x̄+δx−1}

un(x)dx ≥ m{x ∈ X,x > x̄+ δx−1}un(xn)→ +∞, (3.4.1)

where m{x ∈ X,x > x̄+ δx−1} denotes Lebesgue measure of {x ∈ X,x > x̄+ δx−1}, which is positive.

Therefore, we have ||un||W 1,1(ω′) ≥ ||un||L1(ω′) ≥
∫
ω′
un(x)dx→ +∞. This implies sup

n
||un||W 1,1(ω′) =

+∞.

On the other hand, denote ω′ := {x ∈ X| x > x̄ + δx−1}, then ω′ = X ∩ {x ∈ RM | x > x̄ + δx−1}.
Since both X and {x ∈ RM | x > x̄ + δx−1} are open and convex, we have ω′ is also open and convex.

Therefore, by assumption, we have sup
n
||un||W 1,1(ω′) < +∞.

This is a contradiction, and thus for any ω ⊂⊂ X, we have sup
n
||un||L∞(ω̄) < +∞.

Step 4.1.2. For any fixed x′ ∈ X, there exists an open set ω ⊂⊂ X and δ > 0, such that x′ ∈ ω and

ω + δB(0, 1) ⊂⊂ X.

From Step 4.1.1, we know sup
n
||un||L∞(ω+δB(0,1))

< +∞. So there exists R > 0, such that for

all n ∈ N, we have |un(x)| ≤ R, for all x ∈ ω + δB(0, 1). Since un are G-convex functions, by

Proposition 3.3.7, there exists T = T (ω, δ,R) > 0, independent of n, such that ||y|| ≤ T , for any

y ∈ ∂Gun(x′) and any n ∈ N. Thus, there exists a sequence {yn}, such that yn ∈ ∂Gun(x′) and

||yn|| ≤ T , for all n ∈ N.

By compactness theorem for sequence {yn}, there exists y′, such that, up to a subsequence, yn → y′.

Thus, we have y′ ∈ ∪n≥i∂Gun(x′), for all i ∈ N. It implies y′ ∈ ∩i≥1∪n≥i∂Gun(x′) = Γ(x′).

Therefore Γ(x′) 6= ∅, for all x′ ∈ X.

Step 4.2. Now for any fixed x ∈ X, and any y ∈ Γ(x), by Cantor’s diagonal argument, there

exists {ynk}∞k=1, such that ynk ∈ ∂Gunk(x) and lim
k→∞

ynk = y. For any k ∈ N, by definition of G-

subdifferentiability, unk(x′) ≥ G(x′, ynk , H(x, ynk , unk(x))), for any x′ ∈ X. Take limit k → ∞ at

both sides, we get u∗(x′) ≥ G(x′, y,H(x, y, u∗(x))), for any x′ ∈ X. Here we use the fact that both

functions G and H are continuous by Assumption 1 and Proposition 3.3.5. Then by definition of G-

subdifferentiability, the above inequality implies y ∈ ∂Gu∗(x).

So ∂Gu∗(x) 6= ∅, for any x ∈ X, which means u∗ is G-subdifferentiable everywhere. By Lemma 2.2.3,

u∗ is G-convex.
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Lastly, we show the proof of the main theorem.

Proof of the Existence Theorem. Step 1: Define Φu : x 7−→ argmin∂Gu(x) {−π(x, ·, H(x, ·, u(x)))}, then

by Proposition 3.3.7, for any compact set ω ⊂ X, one has ∪x∈ω∂Gu(x) is nonempty and compact, Φu(x)

is nonempty and compact for all x ∈ ω, and ∪x∈ω{(x, y)|y ∈ Φu(x)} is a Borel set. By the measurable

selection theorem (cf. [8, Theorem 1.2, Chapter VIII]), there exists a measurable mapping y : ω → Y

such that for almost all x, y(x) ∈ Φu(x). Let {ωn}∞n=1 denote a sequence of compact sets such that

ω1 ⊂ ω2 ⊂ ... ⊂ ωn ⊂ ... ⊂ X with ∪nωn = X. On each ωn, there exists a measurable selection map

yn : ωn → Y . Define ȳ : X → Y , such that ȳ = y1 on ω1 and ȳ = yn on ωn \ ωn−1 for n ≥ 2. Then ȳ is

a measurable selection of Φu, i.e., ȳ is measurable and ȳ(x) ∈ Φu(x) for almost every x.

Let {(un, yn)} be a maximizing sequence of (P2), where maps un : X → R and yn : X → cl(Y ), for all

n ∈ N. Without loss of generality, we may assume that for all n, yn(·) is measurable and yn(x) ∈ Φun(x),

for each x ∈ X. Starting from {(un, yn)}, we would find an value-product pair (u∗, y∗) satisfying all the

constraints in (3.3.1), and show that it is actually a maximizer.

Step 2: From Assumption 4, there exist α ≥ 1, a1, a2 > 0 and b ∈ R, such that for each x ∈ X and

n ∈ N,

a1||yn(x)||αα ≤− π(x, yn(x), H(x, yn(x), un(x)))− a2un(x) + b

≤− π(x, yn(x), H(x, yn(x), un(x)))− a2u∅(x) + b,

where the second inequality comes from un ≥ u∅. Together with Assumption 8, this implies {yn} is

bounded in Lα(X).

By participation constraint and Assumption 4, we know

u∅(x) ≤ un(x) = G(x, yn(x), H(x, yn(x), un(x))) ≤ 1

a2
(b− π(x, yn(x), H(x, yn(x), un(x)))).

Together with Assumption 8, we know {un} is bounded in L1(X).

By G-subdifferentiability, Dun(x) = DxG(x, yn(x), H(x, yn(x), un(x))). By Assumption 6, we have

||Dun||1 ≤ c||yn||ββ + d ≤ c(N + ||yn||αα) + d. The last inequality holds because β ∈ (0, α]. Because X is

bounded and {yn} is bounded in Lα(X), we know {Dun} is bounded in L1(X).

Since both {un} and {Dun} are bounded in L1(X), one has {un} is bounded in W 1,1(X). By

Proposition 3.4.3, there exists a G-convex function u∗ on X, such that, up to a subsequence, {un}
converges to u∗ in L1 and uniformly on compact subset of X, and ∇un converges to ∇u∗ almost

everywhere.

Step 3: Denote y∗(x) as a measurable selection of Φu∗ . Let us show (u∗, y∗) is a maximizer of the

principal’s program (P2).

Step 3.1: By Assumption 4, for all x, yn(x) and un(x), one has

− π(x, yn(x), H(x, yn(x), un(x)))

≥ a2G(x, yn(x), H(x, yn(x), un(x)))− b

= a2un(x)− b

≥ a2u∅(x)− b.
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By Assumption 8, u∅ is measurable, thus one can apply Fatou’s Lemma and get

sup Π̃(u, y) = lim sup
n

Π̃(un, yn)

= − lim inf
n

∫
X

−π(x, yn(x), H(x, yn(x), un(x))) dµ(x)

≤ −
∫
X

lim inf
n
−π(x, yn(x), H(x, yn(x), un(x))) dµ(x).

(3.4.2)

Let γ(x) := lim inf
n
−π(x, yn(x), H(x, yn(x), un(x))). For each x ∈ X, by extracting a subsequence of

{yn}, which is denoted as {ynx}, we assume γ(x) = lim
nx
−π(x, ynx(x), H(x, ynx(x), unx(x))).

Step 3.2: For any fixed x ∈ X, since unx are G-convex functions and {unx} is bounded in L1(X),

by Proposition 3.3.6, it is also bounded in L∞loc(X). Then by Proposition 3.3.7, {ynx} is also bounded

in L∞loc(X) . Thus there exists a subsequence of {ynx(x)}, again denoted as {ynx(x)}, that converges.

Denote ỹ a mapping on X such that ynx(x)→ ỹ(x).

Since π and H are continuous, we have γ(x) = −π(x, ỹ(x), H(x, ỹ(x), u∗(x))).

For each fixed x ∈ X, since unx are G-convex and ynx(x) ∈ ∂Gunx(x), for any x′ ∈ X, we have

unx(x′) ≥ G(x′, ynx(x), H(x, ynx(x), unx(x))).

Take limit nx → +∞ at both sides, we get u∗(x′) ≥ G(x′, ỹ(x), H(x, ỹ(x), u∗(x))), for any x′ ∈ X. By

definition of G-subdifferentiability, we have ỹ(x) ∈ ∂Gu∗(x).

Step 3.3: By definition of y∗, one has

−π(x, y∗(x), H(x, y∗(x), u∗(x))) ≤ −π(x, ỹ(x), H(x, ỹ(x), u∗(x))) = γ(x).

So, together with (3.4.2), we know

sup Π̃(u, y) ≤ −
∫
X

γ(x)dµ(x) ≤ −
∫
X

−π(x, y∗(x), H(x, y∗(x), u∗(x)))dµ(x) = Π̃(u∗, y∗). (3.4.3)

Since {un} converges to u∗, and un(x) ≥ u∅(x) for all n ∈ N and x ∈ X, we have u∗(x) ≥ u∅(x)

for all x ∈ X. In addition, because u∗ is G-convex and y∗(x) ∈ ∂Gu∗(x), we know (u∗, y∗) satisfies

all the constraints in (3.3.1). Together with (3.4.3), we proved (u∗, y∗) is a solution of the principal’s

program.



Chapter 4

Existence: bounded product spaces

4.1 Introduction

In this chapter, we will first state the hypotheses that will be needed for this and most of the following

chapters. The purpose of Section 4.2 is to fix terminology for the main results of the following chapters.

In Section 4.3, we will reformulate the principal’s program in the language of G-convexity and G-

subdifferentiability, state and prove the existence theorem, where the product space is bounded.

4.2 Hypotheses

For notational convenience, we adopt the following technical hypotheses, inspired by those of Trudin-

ger [44] and Figalli-Kim-McCann [11].

The following hypotheses will be relevant: (G1)-(G3) represent partial analogs of the twist, dom-

ain convexity, and non-negative cross-curvature hypotheses from the quasilinear setting [11] [20]; (G4)

encodes a form of the desirability of money to each agent, while (G5) quantifies the assertion that the

maximum price z̄ is high enough that no agent prefers paying it for any product y to the outside option.

(G0) G ∈ C1(cl(X × Y × Z)), where X ⊂ Rm, Y ⊂ Rn are open and bounded and Z = (z, z̄) with

−∞ < z < z̄ ≤ +∞.

(G1) For each x ∈ X, the map (y, z) ∈ cl(Y × Z) 7−→ (Gx, G)(x, y, z) is a homeomorphism onto its

range;

(G2) its range (cl(Y × Z))x := (Gx, G)(x, cl(Y × Z)) ⊂ Rm+1 is convex.

For each x0 ∈ X and (y0, z0), (y1, z1) ∈ cl(Y ×Z), define (yt, zt) ∈ cl(Y ×Z) such that the following

equation holds:

(Gx, G)(x0, yt, zt) = (1− t)(Gx, G)(x0, y0, z0) + t(Gx, G)(x0, y1, z1),

for each t ∈ [0, 1].
(4.2.1)

23
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By (G1) and (G2), (yt, zt) is uniquely determined by (4.2.1). We call t ∈ [0, 1] 7−→ (x0, yt, zt) the

G-segment connecting (x0, y0, z0) and (x0, y1, z1).

(G3) For each x, x0 ∈ X, assume t ∈ [0, 1] 7−→ G(x, yt, zt) is convex along all G-segments (4.2.1).

(G4) For each (x, y, z) ∈ X × cl(Y )× cl(Z), assume Gz(x, y, z) < 0.

(G5) π ∈ C0(cl(X × Y × Z)) and u∅(x) := G(x, y∅, z∅) for some fixed (y∅, z∅) ∈ cl(Y × Z) satisfying

G(x, y, z̄) := lim
z→z̄

G(x, y, z) ≤ G(x, y∅, z∅) for all (x, y) ∈ X × cl(Y ).

When z̄ = +∞ assume this inequality is strict, and moreover that z sufficiently large implies

G(x, y, z) < G(x, y∅, z∅) for all (x, y) ∈ X × cl(Y ).

For each u ∈ R, (G4) allows us to define H(x, y, u) := z if G(x, y, z) = u, i.e. H(x, y, ·) = G−1(x, y, ·).

4.3 Reformulation of the principal’s program, existence theo-

rem

In this section, we reformulate the principal’s program using u as a proxy for the prices v controlled

by the principal, thus generalizing Carlier’s approach [5] to the non-quasilinear setting. Moreover, the

agent’s indirect utility u and product selling price v are G-dual to each other in the sense of [44].

We now show each G-convex function defined in Definition 2.2.1 can be achieved by some price menu

v, and conversely each price menu yields a G-convex indirect utility [44]. We require either (G5) or

(4.3.1), which asserts all agents are repelled by the maximum price and insensitive to which contract

they receive at that price.

Proposition 4.3.1 (Duality between prices and indirect utilities). Assume (G0) and (G4). (a) If

G(x, y, z̄) := lim
z→z̄

G(x, y, z) = inf
(ỹ,z̃)∈cl(Y×Z)

G(x, ỹ, z̃),

for all (x, y) ∈ X × cl(Y ),

(4.3.1)

then a function u ∈ C0(X) is G-convex if and only if there exist a lower semicontinuous v : cl(Y ) −→
cl(Z) such that u(x) = maxy∈cl(Y )G(x, y, v(y)). (b) If instead of (4.3.1) we assume (G5), then u∅ ≤
u ∈ C0(X) is G-convex if and only if there exists a lower semicontinuous function v : cl(Y ) −→ cl(Z)

with v(y∅) ≤ z∅ such that u(x) = maxy∈cl(Y )G(x, y, v(y)).

Proof. 1. Suppose u is G-convex. Then for any agent type x0 ∈ X, there exists a product and price

(y0, z0) ∈ cl(Y × Z), such that u(x0) = G(x0, y0, z0) and u(x) ≥ G(x, y0, z0), for all x ∈ X.

Let A := ∪x∈X∂Gu(x) denote the corresponding set of products. For y0 ∈ A, define v(y0) = z0,

where z0 ∈ cl(Z) and x0 ∈ X satisfy u(x0) = G(x0, y0, z0) and u(x) ≥ G(x, y0, z0) for all x ∈ X. We

shall shortly show this makes v : A −→ cl(Z) (i) well-defined and (ii) lower semicontinuous. Taking (i)
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for granted, our construction yields

u(x) = max
y∈A

G(x, y, v(y)) ∀x ∈ X. (4.3.2)

(i) Now for y0 ∈ A, suppose there exist (x0, z0), (x1, z1) ∈ X × cl(Z) with z0 6= z1, such that

u(xi) = G(xi, y0, zi) and u(x) ≥ G(x, y0, zi) for all x ∈ X and i = 0, 1. Without loss of generality, assume

z0 < z1. By (G4), we know u(x1) = G(x1, y0, z1) < G(x1, y0, z0), contradicting u(x) ≥ G(x, y0, z0), for

all x ∈ X. Having shown v : A −→ cl(Z) is well-defined, we now show it is lower semicontinuous.

(ii) Suppose {yk} ⊂ A converges to y0 ∈ A and z∞ := lim
k→∞

v(yk) = lim inf
y→y0

v(y). We need to show

v(y0) ≤ z∞. Letting zk := v(yk) for each k, there exists xk ∈ X such that

u(x) ≥ G(x, yk, zk) ∀x ∈ X and k = 0, 1, 2, . . . , (4.3.3)

with equality holding at x = xk. In case (b) we deduce z∞ <∞ from

G(xk, yk, zk) = u(xk) ≥ G(xk, y∅, z∅)

and (G5). Taking k →∞, (G0) (or (4.3.1) in case (a) when z∞ = +∞) implies

u(x) ≥ G(x, y0, z∞) ∀x ∈ X. (4.3.4)

Applying (G4) to G(x0, y0, z0) = u(x0) ≥ G(x0, y0, z∞) yields the desired semicontinuity: z0 ≤ z∞.

(iii) We extend v from A to cl(Y ) by taking its lower semicontinuous hull; this does not change the

values of v on A, but satisfies v(y0) := z̄ on y0 /∈ cl(A). We now show this choice of price menu v yields

(1.1.1). Recall for each x ∈ X, there exists (y0, z0) ∈ cl(Y × Z) such that

u(x) = G(x, y0, z0) ≥ (u∅(x) := G(x, y∅, z∅) ≥) sup
y∈cl(Y )\cl(A)

G(x, y, v(y)),

in view of (4.3.1) (or (G5)), and the fact that v(y) = z̄ for each y outside cl(A). Thus to establish

(1.1.1), we need only show that (4.3.2) remains true when the domain of the maximum is enlarged from

A to cl(A). Since we have chosen the largest lower semicontinuous extension of v outside of A, each

y0 ∈ cl(A) \A is approximated by a sequence {yk} ⊂ A for which zk := v(yk) converges to z∞ := v(y0).

As before, (4.3.3) holds and implies (4.3.4), showing (4.3.2) indeed remains true when the domain of the

maximum is enlarged from A to cl(A), and establishing (1.1.1). Finally, if v(y∅) > z∅ in case (b) then

(G4) yields u(x) ≥ u∅(x) > G(x, y∅, v(y∅)), and we may redefine v(y∅) := z∅ without violating either

(1.1.1) or the lower semicontinuity of v.

2. Conversely, suppose there exist a lower semicontinuous function v : cl(Y ) −→ cl(Z), such that

u(x) = maxy∈cl(Y )G(x, y, v(y)). Then for any x0 ∈ X, there exists y0 ∈ cl(Y ), such that u(x0) =

G(x0, y0, v(y0)). Let z0 := v(y0), then u(x0) = G(x0, y0, z0), and for all x ∈ X, u(x) ≥ G(x, y0, z0). By

definition, u is G-convex. If v(y∅) ≤ z∅ then u(·) ≥ G(·, y∅, v(y∅)) ≥ u∅(·) by (1.1.1) and (G4).

Remark 4.3.2 (Optimal agent strategies). Assume (G0) and (G4). When z̄ < ∞, lower semicontinuity

of v : cl(Y ) −→ cl(Z) is enough to ensure the maximum (1.1.1) is attained. However, when z̄ = +∞ we
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can reach the same conclusion either by assuming the limit (4.3.1) converges uniformly with respect to

y ∈ cl(Y ), or else by assuming v(y∅) ≤ z∅ and (G5).

Proof. For any fixed x ∈ X let u(x) = sup
y∈cl(Y )

G(x, y, v(y)). We will show that the maximum is attained.

Since cl(Y ) is compact, suppose {yk} ⊂ cl(Y ) converges to y0 ∈ cl(Y ), z∞ := lim sup
k→∞

v(yk) and u(x) =

lim
k→∞

G(x, yk, v(yk)). By extracting subsequence of {yk} and relabelling, without loss of generality,

assume lim
k→∞

v(yk) = z∞.

1. If z∞ < z̄ then lower semicontinuity of v yields v(y0) ≤ z∞ < +∞. By (G4), one has

G(x, y0, v(y0)) ≥ G(x, y0, z∞) = lim
k→∞

G(x, yk, v(yk))

= u(x) = sup
y∈cl(Y )

G(x, y, v(y)).
(4.3.5)

Therefore, the maximum is attained by y0.

2. If z∞ = z̄ then lim
k→∞

v(yk) = z̄ = +∞.

2.1. By assuming the limit (4.3.1) converges uniformly with respect to y ∈ cl(Y ), we have

inf
(ỹ,z̃)∈cl(Y×Z)

G(x, ỹ, z̃) = G(x, y0, z̄) = lim
k→∞

G(x, yk, v(yk))

= u(x) = sup
y∈cl(Y )

G(x, y, v(y)).

In this case, the maximum is attained by y0.

2.2. By assuming (G5), for sufficient large k, we have G(x, yk, v(yk)) < G(x, y∅, z∅). Taking k →∞,

by v(y∅) ≤ z∅ and (G4), one has

sup
y∈cl(Y )

G(x, y, v(y)) = u(x) = lim
k→∞

G(x, yk, v(yk))

≤ G(x, y∅, z∅) ≤ G(x, y∅, v(y∅)).

Thus, the maximum is attained by y∅.

From the definition of G-convexity, we know if u is a G-convex function, for any x ∈ X where u

happens to be differentiable, denoted x ∈ domDu, there exists y ∈ cl(Y ) and z ∈ cl(Z) such that

u(x) = G(x, y, z), Du(x) = DxG(x, y, z). (4.3.6)

Conversely, when (4.3.6) holds, one can identify (y, z) ∈ cl(Y ×Z) in terms of u(x) and Du(x), according

to Condition (G1). We denote it as

ȳG(x, u(x), Du(x)) := (yG, zG)(x, u(x), Du(x)),

and drop the subscript G when it is clear from the context. Under our hypotheses, ȳG is a continuous

function on the relevant domain of definition.1 It will often prove convenient to augment the types x

1Namely (idX , G,Gx)({(x, y, z) ∈ cl(X × Y × Z) | G(x, y, z) ≥ G(x, y∅, z∅)}).
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and y with an extra real variable; here and later we use the notation x̄ ∈ Rm+1 and ȳ ∈ Rn+1 to signify

this augmentation. Besides, the set X \ domDu has Lebesgue measure zero, which will be shown in the

proof of Theorem 4.3.3.

The following proposition not only reformulates the principal’s problem but manifests the existence

of maximizer(s). Besides Chapter 3 which relaxes relative compactness of the domain, for other existence

results guaranteeing this supremum is attained in the non-quasilinear setting, see Nöldeke-Samuelson

[32] who require mere continuity of the direct utility G.

Theorem 4.3.3 (Reformulating the principal’s program using the agents’ indirect utilities). Assume

hypotheses (G0)-(G1) and (G4)-(G5), z̄ < +∞ and µ� Lm. Setting

Π̃(u, y) =

∫
X

π(x, y(x), H(x, y(x), u(x)))dµ(x),

the principal’s problem (P0) is equivalent to

(P3)

max Π̃(u, y)

among G-convex u(x) ≥ u∅(x) with y(x) ∈ ∂Gu(x) for all x ∈ X.

This maximum is attained. Moreover, u determines y(x) uniquely for a.e. x ∈ X.

Proof. 1. Proposition 4.3.1 encodes a bijective correspondence between lower semicontinuous price menus

v : cl(Y ) −→ cl(Z) with v(y∅) ≤ z∅ and G-convex indirect utilities u ≥ u∅; it also shows (1.1.1) is

attained. Fix a G-convex u ≥ u∅ and the corresponding price menu v. For each x ∈ X let y(x)

denote the point achieving the maximum (1.1.1), so that u(x) = G(x, y(x), z(x)) with z(x) := v(y(x)) =

H(x, y(x), u(x)) and Π(v, y) = Π̃(u, y). From (1.1.1) we see

G(·, y(·), v ◦ y(·)) = u(·) ≥ G(·, y(x), H(x, y(x), u(x))), (4.3.7)

so that y(x) ∈ ∂Gu(x). Apart from the measurability established below, Proposition 2.2.4 asserts

incentive compatibility of (y, v ◦ y), while u ≥ u∅ shows individual rationality, so (P3) ≤ (P0).

2. The reverse inequality begins with a lower semicontinuous price menu v : cl(Y ) −→ cl(Z) with

v(y∅) ≤ z∅ and an incentive compatible, individually rational map (y, v ◦y) on X. Proposition 2.2.4 then

asserts G-convexity of u(·) := G(·, y(·), v(y(·))) and that y(x) ∈ ∂Gu(x) for each x ∈ X. Choosing · = x

in the corresponding inequality (4.3.7) produces equality, whence (G4) implies v(y(x)) = H(x, y(x), u(x))

and Π(v, y) = Π̃(u, y). Since u ≥ u∅ follows from individual rationality, we have established equivalence

of (P3) to (P0). Let us now argue the supremum (P3) is attained.

3. Let us first show π(x, y(x), H(x, y(x), u(x))) is measurable on X for all G-convex u and y(x) ∈
∂Gu(x).

By (G0), we know G is Lipschitz, i.e., there exists L > 0, such that |G(x1, y1, z1) − G(x2, y2, z2)| <
L||(x1 − x2, y1 − y2, z1 − z2)||, for all (x1, y1, z1), (x2, y2, z2) ∈ cl(X × Y × Z). Since u is G-convex, for

any x1, x2 ∈ X, there exist (y1, z1), (y2, z2) ∈ cl(Y × Z), such that u(xi) = G(xi, yi, zi), for i = 1, 2.
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Therefore,

u(x1)− u(x2) ≥ G(x1, y2, z2)−G(x2, y2, z2) > −L||x1 − x2||;

u(x1)− u(x2) ≤ G(x1, y1, z1)−G(x2, y1, z1) < L||x1 − x2||.

That is to say, u is also Lipschitz with Lipschitz constant L. By Rademacher’s theorem and µ� Lm, we

have µ(X \domDu) = Lm(X \domDu) = 0. Moreover, since u is continuous, ∂u(x)
∂xj

= lim
h→0

u(x+hej)−u(x)
h

is measurable on domDu, for j = 1, 2, ...,m, where ej = (0, ...0, 1, 0, ..., 0) is the unit vector in Rm with

j-th coordinate nonzero. Thus, Du is also Borel on domDu.

Since y(x) ∈ ∂Gu(x), for all x ∈ domDu, we have

u(x) = G(x, y(x), H(x, y(x), u(x))),

Du(x) = DxG(x, y(x), H(x, y(x), u(x))).
(4.3.8)

By (G1), there exists a continuous function yG, such that

y(x) = yG(x, u(x), Du(x)).

Thus y(x) is Borel on domDu, which implies π(x, y(x), H(x, y(x), u(x))) is measurable on X, given

π ∈ C0(cl(X × Y × Z)) and µ � Lm. Here we use the fact that H is also continuous since G is

continuous and strictly decreasing with respect to its third variable.

4. To show the supremum is attained, let {uk}k∈N be a sequence of G-convex functions, uk(x) ≥ u∅(x)

and yk(x) ∈ ∂Guk(x) for any x ∈ X and k ∈ N, such that limk→∞ Π̃(uk, yk) = sup Π̃(u, y), among all

feasible (u, y). Below we construct a feasible pair (u∞, y∞) attaining the maximum.

4.1. Claim: There exists M > 0, such that |u(x)| < M , for any G-convex u and any x ∈ X. Thus

{uk}k∈N is uniformly bounded.

Proof: Since u is G-convex, for any x ∈ X, there exists (y, z) ∈ cl(Y ×Z), such that u(x) = G(x, y, z).

Notice that G is bounded, since G is continuous on a compact set. Thus, there exists M > 0, such that

|u(x)| = |G(x, y, z)| < M is also bounded.

4.2. From part 1, we know {uk}k∈N are uniformly Lipschitz with Lipschitz constant L, thus {uk}k∈N
are uniformly equicontinuous.

4.3. By Arzelà-Ascoli theorem, there exists a subsequence of {uk}k∈N, again denoted as {uk}k∈N,

and u∞ : X −→ R such that {uk}k∈N converges uniformly to u∞ on X.

4.4. Claim: u∞ is also Lipschitz.

Proof: For any ε > 0, any x1, x2 ∈ X, since {uk}k∈N converges to u∞ uniformly, there exist K > 0,

such that for any k > K, we have |uk(xi)− u∞(xi)| < ε, for i = 1, 2. Therefore,

|u∞(x1)− u∞(x2)|

≤ |uk(x1)− u∞(x1)|+ |uk(x2)− u∞(x2)|+ |uk(x1)− uk(x2)|

< 2ε+ L||x1 − x2||.

Since the above inequality is true for all ε > 0, thus u∞ is also Lipschitz.
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4.5. For any x ∈ X, since uk(x) ≥ u∅(x) and lim
k→∞

uk(x) = u∞(x), we have u∞(x) ≥ u∅(x).

Therefore, u∞ satisfies the participation constraint.

4.6. For any fixed x ∈ X, since {yk(x)}k∈N ⊂ cl(Y ) which is compact, there exists a subsequence

{ykl(x)}l∈N which converges. Define y∞(x) := lim
l→∞

ykl(x) ∈ cl(Y ). For each l ∈ N, because ykl(x) ∈
∂Gukl(x), by definition, we have ukl(x0) ≥ G(x0, ykl(x), H(x, ykl(x), ukl(x))), for any x0 ∈ X. This

implies, for all x0 ∈ X, we have

u∞(x0) = lim
l→∞

ukl(x0) ≥ lim
l→∞

G(x0, ykl(x), H(x, ykl(x), ukl(x)))

≥ G(x0, y∞(x), H(x, y∞(x), u∞(x))).

Thus, y∞(x) ∈ ∂Gu∞(x).

Therefore, ∂Gu∞(x) 6= ∅, for any x ∈ X. By Lemma 2.2.3, this implies u∞ is G-convex.

At this point, we have found a feasible pair (u∞, y∞), satisfying all the constraints in (P3).

4.7. Claim: For any x ∈ domDu∞, the sequence {yk(x)}k∈N ⊂ cl(Y ) converges to y∞(x).

Proof: Since u∞ is Lipschitz, by Rademacher’s theorem, u∞ is differentiable almost everywhere in

X, i.e. µ(X \ domDu∞) = Lm(X \ domDu∞) = 0.

For any x ∈ domDu∞ and any ỹ ∈ ∂Gu∞(x), we have

ỹ(x) = yG(x, u∞(x), Du∞(x)),

according to equation (4.3.8) and hypothesis (G1). This implies ∂Gu∞(x) is a singleton for each x ∈
domDu∞, i.e. ∂Gu∞(x) = {y∞(x)}.

For any x ∈ domDu∞, by similar argument to that above in part 4.6, we can show that any (other)

accumulation points of {yk(x)}k∈N are elements in the set ∂Gu∞(x) = {y∞(x)}, i.e. the sequence

{yk(x)}k∈N converges to y∞(x).

4.8. Finally, since µ� Lm, by Fatou’s lemma, we have

Π̃(u∞, y∞) =

∫
X

π(x, y∞(x), H(x, y∞(x), u∞(x)))dµ(x)

=

∫
X

lim sup
k→∞

π(x, yk(x), H(x, yk(x), uk(x)))dµ(x)

≥ lim sup
k→∞

∫
X

π(x, yk(x), H(x, yk(x), uk(x)))dµ(x)

= lim
k→∞

Π̃(uk, yk)

= sup Π̃(u, y),

among all feasible (u, y). Thus, the supremum is attained.

Remark 4.3.4 (More singular measures). If G ∈ C2 (uniformly in z ∈ Z) the same conclusions extend to

µ which need not be absolutely continuous with respect to the Lebesgue measure, provide µ vanishes on

all hypersurfaces parameterized locally as a difference of convex functions [11] [13], essentially because

G-convexity then implies semiconvexity of u. On the other hand, apart from its final sentence, the
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proposition extends to all probability measures µ if G is merely continuous, according to Nöldeke-

Samuelson [32]. Our argument is simpler than theirs on one point however: Borel measurability of y(x)

on domDu follows automatically from (G0) − (G1); in the absence of these extra hypotheses, they are

required to make a measurable selection from among each agent’s preferred products to define y(x).

Remark 4.3.5 (Tie-breaking rules for singular measures). When an agent x finds more than one product

which maximize his utility, in order to reduce the ambiguity, it is convenient to assume the principal

has satisfactory persuasion to convince the agent to choose one of those products which maximize the

principal’s profit. According to equation (4.3.6) and condition (G1), this scenario would occur only for

x ∈ X \ domDu, which has Lebesgue measure zero. Thus, this convention has no effect for absolutely

continuous measures, but can be used as in Figalli-Kim-McCann [11] to extend our result to singular

measures.



Chapter 5

Convexity

5.1 Introduction

In this chapter, we will show concavity and uniqueness results of the principal’s problem, under the

settings in Section 4.2.

In Section 5.2, we will first rewrite the principal’s problem as (5.2.1), then state the equivalent

condition to convexity of the functional domain U∅. Then we will show a variety of necessary and sufficient

conditions for concavity (and convexity) of the principal’s problem, and the resulting uniqueness of her

optimal strategy.

In Section 5.3, we assume the monopolist’s utility does not depend on the agent’s private information,

which in certain circumstances allows us to provide a necessary and sufficient condition for the concavity

of her profit functional.

5.2 Concavity and convexity results

The advantage of the reformulation from Section 4.3 is to make the principal’s objective ΠΠΠ depend on

a scalar function u instead of a vector field y. By (G1), the optimal choice y(x) of Lebesgue almost

every agent x ∈ X is uniquely determined by u. Recall that ȳG(x, u(x), Du(x)) is the unique solution

(y, z) of the system (4.3.6), for any x ∈ domDu. Then the principal’s problem (P3) can be rewritten as

maximizing a functional depending only on the agents’ indirect utility u:

(P4) max
u≥u∅

u is G-convex

ΠΠΠ(u) := max
u≥u∅

u is G-convex

∫
X

π(x, ȳG(x, u(x), Du(x)))dµ(x). (5.2.1)

Define U := {u : X −→ R | u is G-convex} and U∅ := {u ∈ U | u ≥ u∅}. Then the problem becomes

to maximize ΠΠΠ on U∅. In this section, we give conditions under which the function space U∅ is convex

and the functional ΠΠΠ is concave, often strictly. Uniqueness and stability of the principal’s maximizing

strategy follow from strict concavity as in [11]. We also provide conditions under which ΠΠΠ is convex. In

this situation, the maximizers of ΠΠΠ may not be unique but are attained at extreme points of U∅. (Recall

that u ∈ U is called extreme if u does not lie at the midpoint of any segment in U .)

31
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Theorem 5.2.1 (G-convex functions form a convex set). If G : cl(X×Y ×Z) −→ R satisfies (G0)-(G2),

then (G3) becomes necessary and sufficient for the convexity of the set U .

Proof. Assuming (G0)-(G2), for any u0, u1 ∈ U , define ut(x) := (1 − t)u0(x) + tu1(x), t ∈ (0, 1). We

want to show ut is G-convex as well, for each t ∈ (0, 1).

For any fixed x0 ∈ X, since u0, u1 are G-convex, there exist (y0, z0), (y1, z1) ∈ cl(Y × Z), such that

u0(x0) = G(x0, y0, z0), u1(x0) = G(x0, y1, z1), u0(x) ≥ G(x, y0, z0) and u1(x) ≥ G(x, y1, z1), for all

x ∈ X.

Denote (x0, yt, zt) theG-segment connecting (x0, y0, z0) and (x0, y1, z1). Then ut(x0) = (1−t)u0(x0)+

tu1(x0) = (1− t)G(x0, y0, z0) + tG(x0, y1, z1) = G(x0, yt, zt), where the last equality comes from (4.2.1).

In order to prove ut is G-convex, it remains to show ut(x) ≥ G(x, yt, zt), for all x ∈ X.

By (G3), G(x, yt, zt) is convex in t, i.e., G(x, yt, zt) ≤ (1− t)G(x, y0, z0) + tG(x, y1, z1). So, ut(x) =

(1 − t)u0(x) + tu1(x) ≥ (1 − t)G(x, y0, z0) + tG(x, y1, z1) ≥ G(x, yt, zt), for each x ∈ X. By definition,

ut is G-convex, i.e., ut ∈ U , for all t ∈ (0, 1). Thus, U is convex.

Conversely, assume U is convex. For any fixed x0 ∈ X, (yt, zt) ∈ cl(Y × Z) with (x0, yt, zt) being a

G-segment, we would like to show G(x, yt, zt) ≤ (1− t)G(x, y0, z0) + tG(x, y1, z1), for any x ∈ X.

Define ui(x) := G(x, yi, zi), for i = 0, 1. Then by definition of G-convexity, u0, u1 ∈ U . Denote

ut := (1− t)u0 + tu1, for all t ∈ (0, 1). Since U is a convex set, ut is also G-convex. For this x0 and each

t ∈ (0, 1), there exists (ỹt, z̃t) ∈ cl(Y × Z), such that ut(x) ≥ G(x, ỹt, z̃t), for all x ∈ X, and equality

holds at x0. Thus, Dut(x0) = DxG(x0, ỹt, z̃t).

Since (x0, yt, zt) is a G-segment, from (4.2.1), we know DxG(x0, yt, zt) = (1 − t)DxG(x0, y0, z0) +

tDxG(x0, y1, z1) = (1 − t)Du0(x0) + tDu1(x0) = Dut(x0). Thus, by (G1), (ỹt, z̃t) = (yt, zt), for each

t ∈ (0, 1). Therefore, (1 − t)G(x, y0, z0) + tG(x, y1, z1) = ut ≥ G(x, ỹt, z̃t) = G(x, yt, zt), for all x ∈ X,

i.e., G(x, yt, zt) is convex in t along any G-segment (x0, yt, zt).

The following theorem provides a necessary and sufficient condition for the functional ΠΠΠ(u) to be

concave. It reveals the relationship between linear interpolations on the function space U and G-segments

on the underlying type space cl(Y × Z).

Theorem 5.2.2 (Concavity of the principal’s objective). If G and π : cl(X × Y × Z) −→ R satisfy

(G0)-(G5), the following statements are equivalent:

(i) t ∈ [0, 1] 7−→ π(x, yt, zt) is concave along all G-segments (x, yt, zt);

(ii) ΠΠΠ(u) is concave in U for all µ� Lm.

Proof. (i) ⇒ (ii). For any u0, u1 ∈ U , t ∈ (0, 1), define ut = (1 − t)u0 + tu1. We want to prove

ΠΠΠ(ut) ≥ (1− t)ΠΠΠ(u0) + tΠΠΠ(u1), for any µ� Lm.

Equations (4.3.6) implies that there exist y0, y1 : domDu −→ cl(Y ) and z0, z1 : domDu −→ cl(Z)

such that

(Gx, G)(x, y0(x), z0(x)) = (Du0, u0)(x),

(Gx, G)(x, y1(x), z1(x)) = (Du1, u1)(x).
(5.2.2)
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For each x ∈ domDu, (y0(x), z0(x)), (y1(x), z1(x)) ∈ cl(Y × Z), let t ∈ [0, 1] 7−→ (x, yt(x), zt(x)) be the

G-segment connecting (x, y0(x), z0(x)) and (x, y1(x), z1(x)). Combining (5.2.2) and (4.2.1), we have

(Gx, G)(x, yt(x), zt(x)) = (Dut, ut)(x). (5.2.3)

Thus, by concavity of π on G-segments, for every t ∈ [0, 1],

ΠΠΠ(ut) =

∫
X

π(x, yt(x), zt(x))dµ(x)

≥
∫
X

(1− t)π(x, y0(x), z0(x)) + tπ(x, y1(x), z1(x))dµ(x)

= (1− t)ΠΠΠ(u0) + tΠΠΠ(u1).

Thus, ΠΠΠ is concave in U .

(ii)⇒ (i). To derive a contradiction, assume (i) fails. Then there exists aG-segment (x0, yt(x0), zt(x0))

and t0 ∈ (0, 1) such that

π(x0, yt0(x0), zt0(x0)) < (1− t0)π(x0, y0(x0), z0(x0)) + t0π(x0, y1(x0), z1(x0)).

Let u0(x) := G(x, y0(x0), z0(x0)), u1(x) := G(x, y1(x0), z1(x0)) and ut0 = (1 − t0)u0 + t0u1. Then

u0, u1, ut0 ∈ U . From (5.2.2) we know, yi(x) ≡ yi(x0), zi(x) ≡ zi(x0), for i = 0, 1. Let t ∈ [0, 1] 7−→
(x, yt(x), zt(x)) be the G-segment connecting (x, y0(x), z0(x)) and (x, y1(x), z1(x)). And combining

(4.3.6) and (4.2.1), we have

(Gx, G)(x, y0(x0), z0(x0)) = (Du0, u0)(x),

(Gx, G)(x, y1(x0), z1(x0)) = (Du1, u1)(x).

(Gx, G)(x, yt0(x), zt0(x)) = (Dut0 , ut0)(x).

Since π, yt0 and zt0 are continuous, there exists ε > 0, such that for all x ∈ Bε(x0), one has

π(x, yt0(x), zt0(x)) < (1− t0)π(x, y0(x0), z0(x0)) + t0π(x, y1(x0), z1(x0)).

Here we use Bε(x0) denote the open ball in Rm centered at x0 with radius ε. Take dµ = dLm |Bε(x0)

/Lm(Bε(x0)) to be uniform measure on Bε(x0). Thus,

ΠΠΠ(ut0) =

∫
X

π(x, yt0(x), zt0(x))dµ(x)

<

∫
X

(1− t0)π(x, y0(x0), z0(x0)) + t0π(x, y1(x0), z1(x0))dµ(x)

= (1− t0)ΠΠΠ(u0) + t0ΠΠΠ(u1).

This contradicts the concavity of ΠΠΠ.

A similar proof shows the following result. Corollary 5.2.3 implies that the concavity of the prin-

cipal’s profit is equivalent to the concavity of principal’s utility along qualified G-segments. Moreover,

Theorem 5.2.1 and Corollary 5.2.3 together imply that the principal’s profit ΠΠΠ is a concave functional
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on a convex space, under assumptions (G0)-(G5), µ� Lm, and (i)′ below.

Corollary 5.2.3. If G and π satisfy (G0)-(G5), the following are equivalent:

(i)′ t ∈ [0, 1] 7−→ π(x, yt(x), zt(x)) is concave along all G-segments (x, yt(x), zt(x)) whose endpoints

satisfy min{G(x, y0(x), z0(x)), G(x, y1(x), z1(x))} ≥ u∅(x);

(ii)′ ΠΠΠ(u) is concave in U∅ for all µ� Lm.

To obtain uniqueness and stability of optimizers requires a stronger form of convexity. Recall that a

function f defined on a convex subset of a normed space is said to be strictly convex if f((1− t)x+ ty) >

(1− t)f(x) + tf(y) whenever 0 < t < 1 and x 6= y. It is said to be (2-)uniformly concave, if there exists

λ > 0, such that for any x, y in the domain of f and t ∈ [0, 1], the following inequality holds.

f((1− t)x+ ty)− (1− t)f(x)− tf(y) ≥ t(1− t)λ||x− y||2.

For such strengthenings, it is necessary to view indirect utilities u ∈ U as equivalence classes of functions

which differ only on sets of µ measure zero. More precisely, it is natural to adopt the Sobolev norm

‖u‖2W 1,2(X,dµ) :=

∫
X

(|u|2 + |Du|2)dµ(x)

on U and U∅. We then have the following results:

Corollary 5.2.4. Let π and G satisfy (G0)-(G5). If

(iii) t ∈ [0, 1] 7−→ π(x, yt, zt) is strictly concave along all G-segments (x, yt, zt), then

(iv) ΠΠΠ(u) is strictly concave in U ⊂W 1,2(X, dµ) for all µ� Lm. If

(iii)′ t ∈ [0, 1] 7−→ π(x, yt(x), zt(x)) is strictly concave along all G-segments (x, yt(x), zt(x)) whose end-

points satisfy min{G(x, y0(x), z0(x)), G(x, y1(x), z1(x))} ≥ u∅(x), then

(iv)′ ΠΠΠ(u) is strictly concave in U∅ ⊂W 1,2(X, dµ) for all µ� Lm.

Besides, Theorem 5.2.1 and Corollary 5.2.4 together imply strict concavity of principal’s profit on a

convex space, which guarantees a unique solution to the monopolist’s problem.

Define Ḡ(x̄, ȳ) = Ḡ(x, x0, y, z) := x0G(x, y, z), where x̄ = (x, x0), ȳ = (y, z) and x0 ∈ X0, where

X0 ⊂ (−∞, 0) is an open bounded interval containing −1. Hereafter, in this chapter and Section 8.2 only,

we use x0 to denote a number in X0. For further applications, we need the following non-degeneracy

assumption.

(G6) G ∈ C2(cl(X × Y ×Z)), and Dx̄,ȳ(Ḡ)(x,−1, y, z) has full rank, for each (x, y, z) ∈ cl(X × Y ×Z).

Since (G1) implies m ≥ n, full rank means Dx̄,ȳ(Ḡ)(x,−1, y, z) has rank n+ 1.

Theorem 5.2.5 (Uniform concavity of the principal’s objective). Assume G ∈ C2(cl(X × Y × Z))

satisfies (G0)-(G6). In case z̄ = +∞, assume the homeomorphisms of (G1) are uniformly bi-Lipschitz.

Then the following statements are equivalent:
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(v) Uniform concavity of π along G-segments, i.e., there exists λ > 0, for any G-segment (x, yt, zt),

and any t ∈ [0, 1],

π(x, yt(x), zt(x))− (1− t)π(x, y0(x), z0(x))− tπ(x, y1(x), z1(x))

≥t(1− t)λ||(y1(x)− y0(x), z1(x)− z0(x))||2Rn+1

(5.2.4)

(vi) ΠΠΠ(u) is uniformly concave in U ⊂W 1,2(X, dµ), uniformly for all µ� Lm.

Proof. (v)⇒ (vi). With the same notation as last proof, we want to prove there exists λ̃ > 0, such that

ΠΠΠ(ut)− (1− t)ΠΠΠ(u0)− tΠΠΠ(u1) ≥ t(1− t)λ̃||u1−u0||2W 1,2(X,dµ), for any µ� Lm, u0, u1 ∈ U and t ∈ (0, 1).

Similar to the last proof, we have (5.2.2) and (5.2.3). Denote Lip(Gx, G) the uniform Lipschitz

constant of the map (x, y, z) ∈ X × Y × Z 7−→ (Gx, G)(x, y, z).

Thus by uniform concavity of π on G-segments, there exists λ > 0, such that for every t ∈ [0, 1],

ΠΠΠ(ut)− (1− t)ΠΠΠ(u0)− tΠΠΠ(u1)

=

∫
X

π(x, yt(x), zt(x))− (1− t)π(x, y0(x), z0(x))− tπ(x, y1(x), z1(x))dµ(x)

≥
∫
X

t(1− t)λ||(y1(x)− y0(x), z1(x)− z0(x))||2Rn+1dµ(x)

≥
∫
X

t(1− t)λ||(Du1(x)−Du0(x), u1(x)− u0(x))||2Rn+1/Lip2(Gx, G)dµ(x)

= t(1− t) λ

Lip2(Gx, G)
||u1 − u0||W 1,2(X,dµ).

Thus, ΠΠΠ is uniformly concave in U , with λ̃ = λ
Lip2(Gx,G)

> 0.

(vi)⇒ (v). To derive a contradiction, assume (v) fails. Then for any λ > 0, there exists a G-segment

(x0, yt(x
0), zt(x

0)), and some τ ∈ (0, 1), such that π(x0, yτ (x0), zτ (x0)) − (1 − τ)π(x0, y0(x0), z0(x0)) −
τπ(x0, y1(x0), z1(x0)) < τ(1− τ)λ||(y1(x0)− y0(x0), z1(x0)− z0(x0))||2Rn+1 .

Take u0(x) := G(x, y0(x0), z0(x0)), u1(x) := G(x, y1(x0), z1(x0)) and for t ∈ (0, 1), assign ut := (1−
t)u0 + tu1. Then ut ∈ U , for t ∈ [0, 1]. From (5.2.2) we know, yi(x) ≡ yi(x0), zi(x) ≡ zi(x0), for i = 0, 1.

Let t ∈ [0, 1] 7−→ (x, yt(x), zt(x)) be the G-segment connecting (x, y0(x), z0(x)) and (x, y1(x), z1(x)).

And combining (4.3.6) and (4.2.1), we have

(Gx, G)(x, y0(x0), z0(x0)) = (Du0, u0)(x),

(Gx, G)(x, y1(x0), z1(x0)) = (Du1, u1)(x).

(Gx, G)(x, yt(x), zt(x)) = (Dut, ut)(x).

Since π, yτ and zτ are continuous, there exists ε > 0, such that for all x ∈ Bε(x0),

π(x, yτ (x), zτ (x))− (1− τ)π(x, y0(x0), z0(x0))− τπ(x, y1(x0), z1(x0))

< τ(1− τ)λ||(y1(x0)− y0(x0), z1(x0)− z0(x0))||2Rn+1 .

Here we use Bε(x
0) denote the open ball in Rm centered at x0 with radius ε. Take dµ = dLm |Bε(x0)

/Lm(Bε(x
0)) to be uniform measure on Bε(x

0). By (G6), the map ȳG : (x, p, q) 7−→ (y, z), which solves

equation (4.3.6), is uniformly Lipschitz on X ×R×Rm. Denote Lip(ȳG) its Lipschitz constant.
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Thus for such τ , u0, u1 and µ, we have

ΠΠΠ(uτ )− (1− τ)ΠΠΠ(u0)− τΠΠΠ(u1)

=

∫
X

π(x, yτ (x), zτ (x))− (1− τ)π(x, y0(x0), z0(x0))− τπ(x, y1(x0), z1(x0))dµ(x)

<

∫
X

τ(1− τ)λ||(y1 − y0, z1 − z0)||2Rn+1dµ(x)

≤ τ(1− τ)λLip2(ȳG)||u1 − u0||2W 1,2(X,dµ).

This contradicts the uniform concavity of ΠΠΠ.

A similar argument implies the following equivalence. Theorem 5.2.1 and Corollary 5.2.6 together

imply that the principal’s profit ΠΠΠ is a uniformly concave functional on a convex space, under assumptions

(G0)-(G6), µ� Lm, and (v)′.

Corollary 5.2.6. Under the same assumptions as in Theorem 5.2.5, the following are equivalent:

(v)′ Uniform concavity of π (in the sense of equation (5.2.4)) along G-segments (x, yt(x), zt(x)) whose

endpoints satisfy min{G(x, y0(x), z0(x)), G(x, y1(x), z1(x))} ≥ u∅(x);

(vi)′ ΠΠΠ(u) is uniformly concave in U∅ ⊂W 1,2(X, dµ) uniformly for all µ� Lm.

The preceding concavity results also have convexity analogs. Unlike strict concavity, strict convexity

does not imply uniqueness of the principal’s profit-maximizing strategy, though it suggests it should

only be attained at extreme points of the strategy space U , where extreme point needs to be interpreted

appropriately.

Remark 5.2.7 (Convexity of principal’s objective). If π and G satisfy (G0)-(G5), the equivalences (i)⇔
(ii) and (i)′ ⇔ (ii)′ and implications (iii) ⇒ (iv) and (iii)′ ⇒ (iv)′ remain true when all occurences of

concavity are replaced by convexity. Similarly, the equivalences (v)⇔ (vi) and (v)′ ⇔ (vi)′ remain true

when both occurences of uniform concavity are replaced by uniform convexity in Theorem 5.2.5.

Assuming (G6), we denote (Ḡx̄,ȳ)−1 the left inverse of Dx̄,ȳ(Ḡ)(x, x0, y, z). Starting from now, for

subscripts, we use i, k, j, l, α, β denoting integers from either {1, ...,m} or {1, ..., n}, and ī, k̄, j̄, l̄ denoting

augmented indices from {1, ...,m + 1} or {1, ..., n + 1}. For instance, πi, denotes first order derivative

with respect to x only, π,k̄j̄ represents Hessian matrix with respect to ȳ only, and Ḡī,k̄j̄ denotes a third

order derivative tensor which can be viewed as taking x̄-derivative of Ḡ,k̄j̄ .

The following remark reformulates concavity of π on G-segments using non-positive definiteness of

a matrix. This equivalent form provides a simple method to verify the concavity condition stated in

Theorem 5.2.2. We will apply this matrix form to establish Corollary 5.3.2 and Example 8.2.1− 8.2.3.

Lemma 5.2.8 (Characterizing concavity of principal’s profit in the smooth case). When G ∈ C3(cl(X×
Y × Z)) satisfies (G0)-(G6) and π ∈ C2(cl(X × Y × Z)), then differentiating π along an arbitrary G-

segment t ∈ [0, 1] −→ (x, yt, zt) yields

d2

dt2
π(x, yt, zt) = (π,k̄j̄ − π,l̄Ḡī,l̄Ḡī,k̄j̄) ˙̄yk̄ ˙̄yj̄ (5.2.5)
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where Ḡī,l̄ denotes the left inverse of the matrix Ḡī,k̄ and ˙̄yk̄ = ( ddt )ȳ
k̄
t . Thus (i) in Theorem 5.2.2 is

equivalent to non-positive definiteness of the quadratic form π,k̄j̄ − π,l̄Ḡī,l̄Ḡī,k̄j̄ on Tȳ(Y × Z) = Rn+1,

for each (x, ȳ) ∈ X × Y ×Z. Similarly, Theorem 5.2.5 (v) is equivalent to uniform negative definiteness

of the same form.

Proof. For any G-segments (x, yt, zt) satisfying equation (5.2.3) and π ∈ C2(cl(X×Y ×Z)), t ∈ [0, 1] 7−→
π(x, yt, zt) is concave [uniformly concave] if and only if d2

dt2π(x, yt, zt) ≤ 0 [≤ −λ||(ẏt, żt)||2Rn+1 < 0], for

all t ∈ [0, 1].

On the one hand, since d
dtπ(x, yt, zt) = π,k̄ ˙̄yk̄, taking another derivative with respect to t gives

d2

dt2
π(x, yt, zt) = π,k̄j̄ ˙̄yk̄ ˙̄yj̄ + π,l̄ ¨̄y

l̄. (5.2.6)

On the other hand, taking second derivative with respect to t at both sides of equation (5.2.3), which is

equivalent to Ḡī,(x, x0, yt(x), zt(x)) = (x0Dut, ut)(x), for some fixed x0 ∈ X0, implies

Ḡī,k̄j̄ ˙̄yk̄ ˙̄yj̄ + Ḡī,k̄ ¨̄yk̄ = 0 (5.2.7)

Combining equations (5.2.6) with (5.2.7) yields (5.2.5). For x ∈ X, there is a G-segment with any

given tangent direction through ȳ = (y, z) ∈ Y × Z. Thus, the non-positivity of d2

dt2π(x, yt, zt) along

all G-segments (x, yt, zt) is equivalent to non-positive definiteness of the matrix (π,k̄j̄ − π,l̄Ḡī,l̄Ḡī,k̄j̄) on

Tȳ(Y × Z) = Rn+1.

In addition, the uniform concavity of π(x, yt, zt) along all G-segments (x, yt, zt) is equivalent to

uniform negative definiteness of (π,k̄j̄ − π,l̄Ḡī,l̄Ḡī,k̄j̄) on Rn+1.

5.3 Concavity of principal’s objective when her utility does not

depend directly on agents’ private types: A sharper, more

local result

In this section, we reveal a necessary and sufficient condition for the concavity of principal’s maximization

problem, not for some specific examples in Chapter 8, but for many other private-value circumstances,

where principal’s utility only directly depends on the products sold and their selling prices, but not the

buyer’s type.

Before we state the results, we need the following definition, which is a generalized Legendre transform

(see Moreau [28], Kutateladze-Rubinov [19], Elster-Nehse [9], Balder [2], Dolecki-Kurcyusz [7], Gangbo-

McCann[12], Singer[41], Rubinov[40, 39], and Mart́ınez-Legaz [22] for more references).

Definition 5.3.1 (Ḡ-concavity, Ḡ∗-concavity). A function φ : cl(X ×X0) −→ R is called Ḡ-concave if

φ = (φḠ
∗
)Ḡ and a function ψ : cl(Y × Z) −→ R is called Ḡ∗-concave if ψ = (ψḠ)Ḡ

∗
, where

ψḠ(x̄) = min
ȳ∈cl(Y×Z)

Ḡ(x̄, ȳ)− ψ(ȳ),

and φḠ
∗
(ȳ) = min

x̄∈cl(X×X0)
Ḡ(x̄, ȳ)− φ(x̄).

(5.3.1)
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We say ψ is strictly Ḡ∗-concave, if in addition ψḠ ∈ C1(X ×X0).

Note that, apart from an overall sign and the extra variables, Definition 5.3.1 coincides with a

quasilinear version G(x̄, ȳ, z) = Ḡ(x̄, ȳ)− z of Definition 2.2.1.

The following corollary characterizes the concavity of principal’s profit when her utility, on the

one hand, is not influenced by the agents’ identity, and, on the other hand, has adequate generality

to encompass a tangled nonlinear relationship between products and selling prices. It generalizes the

convexity result in Figalli-Kim-McCann [11], where G(x, y, z) = b(x, y)− z and π(x, y, z) = z − a(y).

Corollary 5.3.2 (Concavity of principal’s objective with her utility not depending on agents’ types).

If G ∈ C3(cl(X × Y × Z)) satisfies (G0)-(G6), π ∈ C2(cl(Y × Z)) is Ḡ∗-concave and µ � Lm, then ΠΠΠ

is concave.

Proof. According to Lemma 5.2.8, for concavity, we only need to show non-positive definiteness of

(πk̄j̄ − πl̄Ḡī,l̄Ḡī,k̄j̄) on Rn+1, i.e., for any x̄ = (x, x0) ∈ X × X0, ȳ ∈ Y × Z and ξ ∈ Rn+1,
(
πk̄j̄(ȳ) −

πl̄(ȳ)Ḡī,l̄(x̄, ȳ)Ḡī,k̄j̄(x̄, ȳ)
)
ξk̄ξj̄ ≤ 0.

For any fixed x̄ = (x, x0) ∈ X ×X0, ȳ ∈ Y ×Z, ξ ∈ Rn+1, there exist δ > 0 and t ∈ (−δ, δ) 7−→ ȳt ∈
Y × Z, such that ȳt|t=0 = ȳ, ˙̄y|t=0 = ξ and d2

dt2 Ḡī,(x̄, ȳt) = 0. Thus,

0 =
d2

dt2

∣∣∣∣
t=0

Ḡī,(x̄, ȳt) = Ḡī,k̄j̄(x̄, ȳ)ξk̄ξj̄ + Ḡī,k̄(x̄, ȳ)(¨̄yt)
k̄
∣∣∣
t=0

. (5.3.2)

Since π is Ḡ∗-concave, we have π(ȳ) = minx̃∈cl(X×X0) Ḡ(x̃, ȳ) − φ(x̃), for some Ḡ-concave function

φ. Since cl(X × X0) is compact, for this ȳ, there exists x̄∗ = (x∗, x0
∗) ∈ cl(X × X0), such that

πl̄(ȳ) = Ḡ,l̄(x̄
∗, ȳ) for each l̄ = 1, 2, ..., n + 1 and πk̄j̄(ȳ)ξk̄ξj̄ ≤ Ḡ,k̄j̄(x̄

∗, ȳ)ξk̄ξj̄ for each ξ ∈ Rn+1.

Combined with (5.3.2) this yields(
πk̄j̄(ȳ)− πl̄(ȳ)Ḡī,l̄(x̄, ȳ)Ḡī,k̄j̄(x̄, ȳ)

)
ξk̄ξj̄

≤
(
Ḡ,k̄j̄(x̄

∗, ȳ)− Ḡ,l̄(x̄∗, ȳ)Ḡī,l̄(x̄, ȳ)Ḡī,k̄j̄(x̄, ȳ)
)
ξk̄ξj̄

= Ḡ,k̄j̄(x̄
∗, ȳ)ξk̄ξj̄ + Ḡ,l̄(x̄

∗, ȳ) · (¨̄yt)
l̄
∣∣
t=0

=
d2

dt2

∣∣∣∣
t=0

Ḡ(x̄∗, ȳt)

= x0
∗ · d

2

dt2

∣∣∣∣
t=0

G(x∗, ȳt)

≤ 0.

The last inequality comes from x0
∗ ≤ 0 and (G3).

The following proposition shows a version of a necessary and sufficient condition to the concavity in

corollary 5.3.2.

Proposition 5.3.3 (Concavity of principal’s objective when her payoff is independent of agents’ types).

Suppose G ∈ C3(cl(X × Y × Z)) satisfies (G0)-(G6), π ∈ C2(cl(Y × Z)), and assume there exists a set

J ⊂ cl(X) such that for each ȳ ∈ Y × Z, 0 ∈ (πȳ + Gȳ)(cl(J), ȳ). Then the following statements are

equivalent:
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(i) local Ḡ
∗
-concavity of π: i.e. πȳȳ(ȳ) + Gȳȳ(x, ȳ) is non-positive definite whenever (x, ȳ) ∈ cl(J) ×

Y × Z satisfies πȳ(ȳ) +Gȳ(x, ȳ) = 0;

(ii) ΠΠΠ is concave on U for all µ� Lm.

Remark 5.3.4. The sufficient condition, i.e., existence of J ⊂ cl(X) (such that for each ȳ ∈ Y × Z,

0 ∈ (πȳ + Gȳ)(cl(J), ȳ)), make the statement more general than taking some specific subset of cl(X)

instead. In particular, if J = cl(X), this condition is equivalent to: for each ȳ ∈ Y × Z, there exists

x ∈ cl(X), such that (πȳ +Gȳ)(x, ȳ) = 0. One of its economic interpretations is that for each product-

price type, there exists a customer type, such that his marginal disutility, the gradient with respect to

product type (e.g., quality, quantity, etc.) and price type, coincides with the marginal utility of the

monopolist.

Proof of Proposition 5.3.3. (i) ⇒ (ii). Similar to the proof of Corollary 5.3.2, we only need to show

non-positive definiteness of (πk̄j̄ − πl̄Ḡ
ī,l̄Ḡī,k̄j̄), i.e., for any x̄ = (x, x0) ∈ X × X0, ȳ ∈ Y × Z and

ξ ∈ Rn+1,
(
πk̄j̄(ȳ)− πl̄(ȳ)Ḡī,l̄(x̄, ȳ)Ḡī,k̄j̄(x̄, ȳ)

)
ξk̄ξj̄ ≤ 0.

For any fixed x̄ = (x, x0) ∈ X × X0, ȳ ∈ Y × Z, ξ ∈ Rn+1, there exist δ > 0 and a curve

t ∈ (−δ, δ) 7−→ ȳt ∈ Y × Z, such that ȳt|t=0 = ȳ, ˙̄yt|t=0 = ξ and d2

dt2 Ḡī,(x̄, ȳt) = 0. Thus,

0 =
d2

dt2

∣∣∣∣
t=0

Ḡī,(x̄, ȳt) = Ḡī,k̄j̄(x̄, ȳ)ξk̄ξj̄ + Ḡī,k̄(x̄, ȳ) · (¨̄yt)
k̄
∣∣
t=0

(5.3.3)

For this ȳ, since 0 ∈ (πȳ + Gȳ)(cl(J), ȳ), there exists x∗ ∈ cl(J), such that (πȳ + Gȳ)(x∗, ȳ) = 0. By

property (i), one has (πȳȳ(ȳ) + Gȳȳ(x∗, ȳ))ξk̄ξj̄ ≤ 0. Let x̄∗ = (x∗,−1), then πl̄(ȳ) = Ḡ,l̄(x̄
∗, ȳ) and

πk̄j̄(ȳ)ξk̄ξj̄ ≤ Ḡ,k̄j̄(x̄∗, ȳ)ξk̄ξj̄ , for each l̄ = 1, 2, ..., n+ 1. Thus, combining (5.3.3) and (G3), we have

(
πk̄j̄(ȳ)− πl̄(ȳ)Ḡī,l̄(x̄, ȳ)Ḡī,k̄j̄(x̄, ȳ)

)
ξk̄ξj̄

≤
(
Ḡ,k̄j̄(x̄

∗, ȳ)− Ḡ,l̄(x̄∗, ȳ)Ḡī,l̄(x̄, ȳ)Ḡī,k̄j̄(x̄, ȳ)
)
ξk̄ξj̄

= Ḡ,k̄j̄(x̄
∗, ȳ)ξk̄ξj̄ + Ḡ,l̄(x̄

∗, ȳ) · (¨̄yt)
l̄
∣∣
t=0

=
d2

dt2

∣∣∣∣
t=0

Ḡ(x̄∗, ȳt)

= − d2

dt2

∣∣∣∣
t=0

G(x∗, ȳt)

≤ 0.

(5.3.4)

(ii) ⇒ (i). For any (x, ȳ) ∈ cl(J) × Y × Z, satisfying πȳ(ȳ) + Gȳ(x, ȳ) = 0, we would like to show

(πk̄j̄(ȳ) + G,k̄j̄(x, ȳ))ξk̄ξj̄ ≤ 0, for any ξ ∈ Rn+1. Let x̄ = (x,−1), there exist δ > 0 and a curve

t ∈ (−δ, δ) 7−→ ȳt ∈ Y ×Z, such that ȳt|t=0 = ȳ, ˙̄yt|t=0 = ξ and d2

dt2 Ḡī,(x̄, ȳt) = 0. Thus, equation (5.3.3)

holds.

Since ΠΠΠ is concave, by Theorem 5.2.2 and Lemma 5.2.8 as well as equation (5.3.3), we have

0 ≥
(
πk̄j̄(ȳ)− πl̄(ȳ)Ḡī,l̄(x̄, ȳ)Ḡī,k̄j̄(x̄, ȳ)

)
ξk̄ξj̄

=
(
πk̄j̄(ȳ)− Ḡ,k̄j̄(x̄, ȳ) + Ḡ,k̄j̄(x̄, ȳ)− Ḡ,l̄(x̄, ȳ)Ḡī,l̄(x̄, ȳ)Ḡī,k̄j̄(x̄, ȳ)

)
ξk̄ξj̄

=
(
πk̄j̄(ȳ)− Ḡ,k̄j̄(x̄, ȳ)

)
ξk̄ξj̄ +

d2

dt2

∣∣∣∣
t=0

Ḡ(x̄, ȳt)
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=
(
πk̄j̄(ȳ)− Ḡ,k̄j̄(x̄, ȳ)

)
ξk̄ξj̄

=(πk̄j̄(ȳ) +G,k̄j̄(x, ȳ))ξk̄ξj̄ ,

which completes the proof.

The following remark provides an equivalent condition for the uniform concavity of principal’s max-

imization problem. Its proof is very similar to that of the above proposition.

Remark 5.3.5. In addition to the hypotheses of Proposition 5.3.3, when z̄ = +∞ assume the homeomor-

phisms of (G1) are uniformly bi-Lipschitz. Then the following statements are equivalent:

(i) πȳȳ(ȳ) + Gȳȳ(x, ȳ) is uniformly negative definite for all (x, ȳ) ∈ cl(J) × Y × Z such that πȳ(ȳ) +

Gȳ(x, ȳ) = 0;

(ii) ΠΠΠ is uniformly concave on U ⊂W 1,2(X, dµ), uniformly for all µ� Lm.

When m = n, G(x, y, z) = b(x, y)−z ∈ C3(cl(X×Y ×Z)) satisfies (G0)-(G8), and π(y, z) = z−a(y) ∈
C2(cl(Y × Z)), then Corollary 5.3.2 shows b∗-convexity of a is a sufficient condition for concavity of ΠΠΠ

for all µ� Lm. One may wonder under what hypotheses it would become a necessary condition as well.

From Theorem A.1 in [18], under the same assumptions as above, the manufacturing cost a is b∗-convex

if and only if it satisfies the following local b∗-convexity hypothesis: D2a(y) ≥ D2
yyb(x, y) whenever

Da(y) = Dyb(x, y).

Combined with Proposition 5.3.3, we have the following corollary.

Corollary 5.3.6. Adopting the terminology of Figalli-Kim-McCann [11], i.e. (B0)-(B3), G(x, y, z) =

b(x, y)− z ∈ C3(cl(X × Y × Z) and π(x, y, z) = z − a(y) ∈ C2(cl(Y × Z), then a(y) is b∗-convex if and

only if Π is concave on U and for every y ∈ Y , there exists x ∈ cl(X) such that Da(y) = Dyb(x, y).

Proof. Assume a is b∗-convex, by definition, there exists a function a∗ : cl(X) → R, such that for any

y ∈ Y , a(y) = maxx∈cl(X) b(x, y)− a∗(x). Therefore, for any y0 ∈ Y , there exists x0 ∈ cl(X), such that

a(y) ≥ b(x0, y)−a∗(x0) for all y ∈ Y , with equality holds at y = y0. This implies, Da(y0) = Dyb(x
0, y0).

Taking J = cl(X) and applying Proposition 5.3.3, we have concavity of Π, since local b∗-convexity of a

is automatically satisfied by a b∗-convex function a.

On the other hand, assuming Π is concave on U and for every y ∈ Y , there exists x ∈ cl(X) such

that Da(y) = Dyb(x, y), Proposition 5.3.3 implies local b∗-convexity of a. Together with Theorem A.1

in [18], we know a is b∗-convex.



Chapter 6

Analytic representation of condition

(G3)

6.1 A fourth-order differential re-expression of condition (G3)

In our convexity argument, hypothesis (G3) plays a crucial role. In this chapter, we localize this hypothe-

sis using differential calculus. Inspired by and strongly connected with Trudinger’s theory of generalized

prescribed Jacobian equations, this form is analogous to the non-negative cross-curvature condition (B3)

of Figalli-Kim-McCann [11], a fourth order condition in the spirit of the Ma-Trudinger-Wang [21]. For

another formulation, see e.g. [15].

Apart from the assumptions of Section 4.2, we shall need the non-degeneracy condition assumed in

Section 5.2:

(G6) G ∈ C2(cl(X × Y ×Z)), and Dx̄,ȳ(Ḡ)(x,−1, y, z) has full rank, for each (x, y, z) ∈ cl(X × Y ×Z).

For this and the next chapter only, we assume the dimensions of spaces X and Y are equal, i.e. m = n,

so that the matrix mentioned in (G6) is square. We shall also need to extend the twist and convex range

hypotheses (G1) and (G2) to the function H in place of G. This is equivalent to assuming:

(G7) For each (y, z) ∈ cl(Y × Z) the map x ∈ X 7−→ Gy
Gz

(·, y, z) is one-to-one;

(G8) its range X(y,z) :=
Gy
Gz

(X, y, z) ⊂ Rn is convex.

We can now state:

Theorem 6.1.1. Assume (G0)-(G2) and (G4)-(G8). If, in addition, G ∈ C4(cl(X × Y × Z)), then the

following statements are equivalent:

(i) (G3).

(ii) For any given x0, x1 ∈ X, any curve (yt, zt) ∈ cl(Y × Z) connecting (y0, z0) and (y1, z1), we have

∂2

∂s2

(
1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)∣∣∣∣∣
t=t0

≤ 0,

41
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whenever s ∈ [0, 1] 7−→ Gy
Gz

(xs, yt0 , zt0) forms an affinely parametrized line segment for some

t0 ∈ [0, 1].

(iii) For any given curve xs ∈ X connecting x0 and x1, any (y0, z0), (y1, z1) ∈ cl(Y × Z), we have

∂2

∂s2

(
1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)∣∣∣∣∣
s=s0

≤ 0,

whenever t ∈ [0, 1] 7−→ (Gx, G)(xs0 , yt, zt) forms an affinely parametrized line segment for some

s0 ∈ [0, 1].

The proof of this theorem and its embellishments are represented in the following section:

6.2 Proof and variations on Theorem 6.1.1

Proof of Theorem 6.1.1. (i) ⇒ (ii). Suppose for some t0 ∈ [0, 1], s ∈ [0, 1] 7−→ Gy
Gz

(xs, yt0 , zt0) forms an

affinely parametrized line segment.

For any fixed s0 ∈ [0, 1], consider xs0 ∈ X, there is a G-segment (xs0 , y
s0
t , z

s0
t ) passing through

(xs0 , yt0 , zt0) at t = t0 with the same tangent vector as (xs0 , yt, zt) at t = t0, i.e., there exists another

curve (ys0t , z
s0
t ) ∈ cl(Y × Z), such that (ys0t , z

s0
t ) |t=t0= (yt, zt) |t=t0 , (ẏt

s0 , żt
s0) |t=t0‖ (ẏt, żt) |t=t0 , and

(Gx, G)(xs0 , y
s0
t , z

s0
t ) = (1− t)(Gx, G)(xs0 , y

s0
0 , z

s0
0 ) + t(Gx, G)(xs0 , y

s0
1 , z

s0
1 ).

Computing the fourth mixed derivative yields

∂2

∂s2

(
1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)

=
∂2

∂s2

(
1

Gz

)
∂2

∂t2
G+ 2

∂

∂s

(
1

Gz

)
∂3

∂s∂t2
G+

1

Gz

∂4

∂s2∂t2
G

= [−(Gz)
−2Gi,zẍs

i − (Gz)
−2Gij,zẋs

iẋs
j + 2(Gz)

−3Gi,zGj,zẋs
iẋs

j ] · [G,kÿtk +Gz z̈t +G,klẏt
kẏt

l

+ 2G,kz ẏt
kżt +Gzz(żt)

2]

+ 2[−(Gz)
−2Gi,zẋs

i] · [Gj,kẋsj ÿtk +Gj,zẋs
j z̈t +Gj,klẋs

j ẏt
kẏt

l + 2Gj,kzẋs
j ẏt

kżt +Gj,zzẋs
j(żt)

2]

+ (Gz)
−1[Gi,kẍs

iÿt
k +Gij,kẋs

iẋs
j ÿt

k +Gi,zẍs
iz̈t +Gij,zẋs

iẋs
j z̈t +Gi,klẍs

iẏt
kẏt

l +Gij,klẋs
iẋs

j ẏt
kẏt

l

+ 2Gi,kzẍs
iẏt

kżt + 2Gij,kzẋs
iẋs

j ẏt
kżt +Gi,zzẍs

i(żt)
2 +Gij,zzẋs

iẋs
j(żt)

2]

= [((Gz)
−1Gi,k − (Gz)

−2Gi,zG,k)ẍs
i + ((Gz)

−1Gij,k − (Gz)
−2G,kGij,z − 2(Gz)

−2Gi,zGj,k

+ 2(Gz)
−3G,kGi,zGj,z)ẋs

iẋs
j ]ÿt

k

+ [(Gz)
−1Gi,kl − (Gz)

−2Gi,zG,kl]ẍs
iẏt

kẏt
l

+ [(Gz)
−1Gij,kl − (Gz)

−2Gij,zG,kl + 2(Gz)
−3Gi,zGj,zG,kl − 2(Gz)

−2Gi,zGj,kl]ẋs
iẋs

j ẏt
kẏt

l

+ [2(Gz)
−1Gi,kz − 2(Gz)

−2Gi,zG,kz]ẍs
iẏt

kżt

+ [2(Gz)
−1Gij,kz − 2(Gz)

−2Gij,zG,kz + 4(Gz)
−3Gi,zGj,zG,kz − 4(Gz)

−2Gi,zGj,kz]ẋs
iẋs

j ẏt
kżt

+ [(Gz)
−1Gi,zz − (Gz)

−2Gi,zGzz]ẍs
i(żt)

2

+ [(Gz)
−1Gij,zz − (Gz)

−2Gij,zGzz + 2(Gz)
−3Gi,zGj,zGzz − 2(Gz)

−2Gi,zGj,zz]ẋs
iẋs

j(żt)
2.

The coefficient of ÿt
k vanishes when this expression is evaluated at t = t0, due to the assumption
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that s ∈ [0, 1] 7−→ Gy
Gz

(xs, yt0 , zt0) forms an affinely parametrized line segment, which implies

0 =
∂2

∂s2

Gy
Gz

(xs, yt0 , zt0)

= [((Gz)
−1Gi,y − (Gz)

−2Gi,zG,y)ẍi + ((Gz)
−1Gij,y − (Gz)

−2G,yGij,z

− 2(Gz)
−2Gi,zGj,y + 2(Gz)

−3G,yGi,zGj,z)ẋ
iẋj ]

for all s ∈ [0, 1].

Since (ẏt
s0 , żt

s0)|t=t0 ‖ (ẏt, żt)|t=t0 , there exists some constant C1 > 0, such that (ẏt, żt)|t=t0 =

C1(ẏt
s0 , żt

s0)|t=t0 . Moreover, since (yt, zt) |t=t0= (ys0t , z
s0
t ) |t=t0 , we have

∂2

∂s2

(
1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)∣∣∣∣∣
t=t0

= C2
1

∂2

∂s2

(
1

Gz(xs, y
s0
t , z

s0
t )

∂2

∂t2
G(xs, y

s0
t , z

s0
t )

)∣∣∣∣∣
t=t0

.

Denote g(s) := ∂2

∂t2 |t=t0G(xs, y
s0
t , z

s0
t ), for s ∈ [0, 1]. Since (xs0 , y

s0
t , z

s0
t ) is a G-segment, by (G3), we

have g(s) ≥ 0, for all s ∈ [0, 1]. By definition of (ys0t , z
s0
t ), it is clear that g(s0) = 0. The first- and

second-order conditions for an interior minimum then give g′(s0) = 0 ≤ g′′(s0); (in fact g′(s0) = 0 also

follows directly from the definition of a G-segment).

By the assumption (G4), we have Gz < 0, thus,

∂2

∂s2

(
1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)∣∣∣∣∣
(s,t)=(s0,t0)

= C2
1

∂2

∂s2

(
1

Gz(xs, y
s0
t , z

s0
t )

∂2

∂t2
G(xs, y

s0
t , z

s0
t )

)∣∣∣∣∣
(s,t)=(s0,t0)

= C2
1

∂2

∂s2

∣∣∣∣∣
(s,t)=(s0,t0)

(
1

Gz
(xs, y

s0
t , z

s0
t )

)
g(s0)

+ 2C2
1

∂

∂s

∣∣∣∣∣
(s,t)=(s0,t0)

(
1

Gz(xs, y
s0
t , z

s0
t )

)
g′(s0) +

C2
1

Gz(xs, y
s0
t , z

s0
t )

g′′(s0)

≤ 0.

(ii)⇒ (i). For any fixed x0 ∈ X and G-segment (x0, yt, zt), we need to show ∂2

∂t2G(x1, yt, zt) ≥ 0, for

all t ∈ [0, 1] and x1 ∈ X.

For any fixed t0 ∈ [0, 1] and x1 ∈ X, define xs as the solution x̂ to the equation

Gy
Gz

(x̂, yt0 , zt0) = (1− s)Gy
Gz

(x0, yt0 , zt0) + s
Gy
Gz

(x1, yt0 , zt0). (6.2.1)

By (G7) and (G8), xs is uniquely determined for each s ∈ (0, 1). In addition, x0 and x1 satisfy the

above equation for s = 0 and s = 1, respectively.

Define g(s) := 1
Gz(xs,yt,zt)

∂2

∂t2G(xs, yt, zt)
∣∣∣
t=t0

for s ∈ [0, 1].

Then g(0) = 0 = g′(0) from the two conditions defining a G-segment.
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In our setting, s ∈ [0, 1] 7−→ Gy
Gz

(xs, yt0 , zt0) forms an affinely parametrized line segment, thus 0 ≥
∂2

∂s2

(
1

Gz(xs,yt,zt)
∂2

∂t2G(xs, yt, zt)
)∣∣∣
t=t0

= g′′(s) for all s ∈ [0, 1] by hypothesis (ii).

Hence g is concave in [0, 1], and g(0) = 0 is a critical point, thus g(1) ≤ 0. Since Gz < 0 this implies
∂2

∂t2

∣∣∣
t=t0

G(x1, yt, zt) ≥ 0 for any t0 ∈ [0, 1] and x1 ∈ X, as desired.

(i) ⇒ (iii). For any fixed s0 ∈ [0, 1], suppose t ∈ [0, 1] 7−→ (Gx, G)(xs0 , yt, zt) forms an affinely

parametrized line segment. For any fixed t0 ∈ [0, 1], define g(s) :=
(

1
Gz(xs,yt,zt)

∂2

∂t2G(xs, yt, zt)
)∣∣∣
t=t0

, for

all s ∈ [0, 1]. By (G3)-(G4), we know g(s) ≤ 0, for all s ∈ [0, 1]. By the definition of (yt, zt), we have

g(s0) = g′(s0) = 0. Thus g′′(s0) ≤ 0.

(iii) ⇒ (i). For any fixed x0 ∈ X, suppose (x0, y
0
t , z

0
t ) is a G-segment, then we need to show

∂2

∂t2G(x1, y
0
t , z

0
t ) ≥ 0, for all t ∈ [0, 1], x1 ∈ X.

For any fixed t0 ∈ [0, 1], x1 ∈ X, define xs as the solution x̂ of equation

Gy
Gz

(x̂, y0
t0 , z

0
t0) = (1− s)Gy

Gz
(x0, y

0
t0 , z

0
t0) + s

Gy
Gz

(x1, y
0
t0 , z

0
t0).

By (G7) and (G8), xs is uniquely determined for each s ∈ (0, 1). In addition, x0 and x1 satisfy the

above equation for s = 0 and s = 1 respectively.

Define g(s) := 1
Gz(xs,y0

t ,z
0
t )

∂2

∂t2G(xs, y
0
t , z

0
t )
∣∣∣
t=t0

, for s ∈ [0, 1].

Then g(0) = g′(0) = 0 by the two conditions defining a G-segment.

For any fixed s0 ∈ [0, 1], there is a G-segment (xs0 , y
s0
t , z

s0
t ) passing through (xs0 , y

0
t0 , z

0
t0) at t = t0

with the same tangent vector as (xs0 , y
0
t , z

0
t ) at t = t0, i.e., there exists another curve (ys0t , z

s0
t ) ∈ cl(Y ×Z)

and some constant C2 > 0, such that (ys0t , z
s0
t ) |t=t0= (y0

t , z
0
t ) |t=t0 , (ẏt

s0 , żt
s0) |t=t0= 1

C2
(ẏ0
t , ż

0
t ) |t=t0 ,

and (Gx, G)(xs0 , y
s0
t , z

s0
t ) = (1− t)(Gx, G)(xs0 , y

s0
0 , z

s0
0 ) + t(Gx, G)(xs0 , y

s0
1 , z

s0
1 ).

Computing the mixed fourth derivative yields

∂2

∂s2

(
1

Gz(xs, y0
t , z

0
t )

∂2

∂t2
G(xs, y

0
t , z

0
t )

)∣∣∣∣∣
(s,t)=(s0,t0)

= C2
2

∂2

∂s2

(
1

Gz(xs, y
s0
t , z

s0
t )

∂2

∂t2
G(xs, y

s0
t , z

s0
t )

)∣∣∣∣∣
(s,t)=(s0,t0)

,

where the equality is derived from the condition that s ∈ [0, 1] 7−→ Gy
Gz

(xs, yt0 , zt0) forms an affinely pa-

rametrized line segment, (ys0t , z
s0
t ) |t=t0= (yt, zt) |t=t0 and (ẏ0

t , ż
0
t ) |t=t0= C2(ẏt

s0 , żt
s0) |t=t0 . Moreover,

the latter expression is non-positive by assumption (iii).

Thus g′′(s0) ≤ 0 for all s0 ∈ [0, 1]. Since g is concave in [0, 1], and g(0) = 0 is a critical point, we have

g(1) ≤ 0. Thus Gz < 0 implies ∂2

∂t2

∣∣∣
t=t0

G(x1, y
0
t , z

0
t ) ≥ 0 for all t0 ∈ [0, 1] and x1 ∈ X, as desired.

For strictly concavity of the profit functional, one might need a strict version of hypothesis (G3):

(G3)s For each x, x0 ∈ X and x 6= x0, assume t ∈ [0, 1] 7−→ G(x, yt, zt) is strictly convex along all

G-segments (x0, yt, zt) defined in (4.2.1).

Remark 6.2.1. Strict inequality in (ii) [or (iii)] implies (G3)s but the reverse is not necessarily true, i.e.

(G3)s is intermediate in strength between (G3) and strict inequality version of (ii) [or (iii)]. Besides,

strict inequality versions of (ii) and (iii) are equivalent, and denoted by (G3)u.
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Note inequality (6.2.2) below and its strict and uniform versions (G3)s and (G3)u precisely generalize

of the analogous hypotheses (B3), (B3)s and (B3)u from the quasilinear case in [11].

Proof. We only show strict inequality of (ii) implies that of (iii) here since the other direction is similar.

For any fixed s0 ∈ [0, 1], suppose t ∈ [0, 1] 7−→ (Gx, G)(xs0 , yt, zt) forms an affinely parametrized

line segment. For any fixed t0 ∈ [0, 1], define xt0s as a solution to the equation
Gy
Gz

(xt0s , yt0 , zt0) =

(1 − s)
Gy
Gz

(xt00 , yt0 , zt0) + s
Gy
Gz

(xt01 , yt0 , zt0), with initial conditions xt0s |s=s0 = xs0 and ẋt0s |s=s0 = C1

·ẋs|s=s0 , for some constant C1 > 0. Thus, by strict inequality of (ii), we have

0 >
∂2

∂s2

( 1

Gz(x
t0
s , yt, zt)

∂2

∂t2
G(xt0s , yt, zt)

)∣∣∣
(s,t)=(s0,t0)

=
∂2

∂s2

( 1

Gz(x
t0
s , yt, zt)

) ∂2

∂t2
G(xt0s , yt, zt)

∣∣∣
(s,t)=(s0,t0)

+
∂

∂s

( 1

Gz(x
t0
s , yt, zt)

) ∂3

∂s∂t2
G(xt0s , yt, zt)

∣∣∣
(s,t)=(s0,t0)

+
1

Gz(x
t0
s , yt, zt)

∂4

∂s2∂t2
G(xt0s , yt, zt)

∣∣∣
(s,t)=(s0,t0)

= − Gx,z(x
t0
s , yt, zt)

G2
z(x

t0
s , yt, zt)

∂2

∂t2
Gx(xt0s , yt, zt)(ẋ

t0
s )2
∣∣∣
(s,t)=(s0,t0)

+
1

Gz(x
t0
s , yt, zt)

∂2

∂t2
Gxx(xt0s , yt, zt)(ẋ

t0
s )2
∣∣∣
(s,t)=(s0,t0)

= C2
1

[
− Gx,z(xs, yt, zt)

G2
z(xs, yt, zt)

∂2

∂t2
Gx(xs, yt, zt)(ẋs)

2
∣∣∣
(s,t)=(s0,t0)

+
1

Gz(xs, yt, zt)

∂2

∂t2
Gxx(xs, yt, zt)(ẋs)

2
∣∣∣
(s,t)=(s0,t0)

]
= C2

1

∂2

∂s2

( 1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)∣∣∣
(s,t)=(s0,t0)

.

Here we use the initial condition xt0s |s=s0 = xs0 and ẋt0s |s=s0 = C1ẋs|s=s0 . Besides, since (xs0 , yt, zt)

forms a G-segment, therefore we have

∂2

∂t2
G(xt0s , yt, zt)

∣∣∣
(s,t)=(s0,t0)

=
∂2

∂t2
G(xs, yt, zt)

∣∣∣
(s,t)=(s0,t0)

= 0,

and
∂2

∂t2
Gx(xt0s , yt, zt)

∣∣∣
(s,t)=(s0,t0)

=
∂2

∂t2
Gx(xs, yt, zt)

∣∣∣
(s,t)=(s0,t0)

= 0.

From the above inequality and C1 > 0, one has

∂2

∂s2

( 1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)∣∣∣
(s,t)=(s0,t0)

< 0,

whenever ẋs|s=s0 and (ẏt, żt)|t=t0 are nonzero. Since this inequality holds for each fixed t0 ∈ [0, 1], the

strict version of (iii) is proved.

Combining (ii) and (iii), one can conclude they are also equivalent to the following statement (iv).
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Corollary 6.2.2. Assuming (G0)-(G2), (G4)-(G8) and G ∈ C4(cl(X×Y ×Z)), then (G3) is equivalent

to the following statement:

(iv) For any given curve xs ∈ X connecting x0 and x1, and any curve (yt, zt) ∈ cl(Y × Z) connecting

(y0, z0) and (y1, z1), we have

∂2

∂s2

(
1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)∣∣∣∣∣
(s,t)=(s0,t0)

≤ 0, (6.2.2)

whenever either of the two curves t ∈ [0, 1] 7−→ (Gx, G)(xs0 , yt, zt) and s ∈ [0, 1] 7−→ Gy
Gz

(xs, yt0 , zt0)

forms an affinely parametrized line segment.



Chapter 7

Geometric re-expression of condition

(G3)

7.1 Introduction

As part of optimal transport theory, Ma-Trudinger-Wang [21] in 2005 gave sufficient conditions on a

transportation cost to guarantee smoothness of the optimal transportation map, while Loeper [20] showed

these conditions are also necessary. In 2010, Kim-McCann [18] expressed them via non-negativity of the

sectional curvature of certain null-planes in a novel but natural pseudo-Riemannian geometry which was

induced by the cost function on some product space.

In Chapter 6, we show that (G3) is, in fact, a fourth order condition in the spirit of the Ma-Trudinger-

Wang condition. Inspired by Kim-McCann [18], we will show in this chapter a geometric representation

of condition (G3), which is non-negativity of the sectional curvature in a pseudo-Riemannian geometry

induced by the utility Ḡ, up to the additional variable, on the product space X ×R× Y ×R.

7.2 Context

In this section, we will define the pseudo-Riemannian metric g and calculate the Christoffel symbols Γ

and the curvature tensor R.

Let Ḡ(x,w, y, z) = wG(x, y, z), x̄ = (x,w), ȳ = (y, z), and δ(x̄, ȳ, x̄0, ȳ0) = −Ḡ(x̄, ȳ) − Ḡ(x̄0, ȳ0) +

Ḡ(x̄, ȳ0) + Ḡ(x̄0, ȳ).

For some fixed (x̄0, ȳ0), one can view the δ defined above as a function of variable Ξ = (x̄, ȳ) on the

space M = X ×R× Y ×R, with the following first order derivatives.

∇iδ(x̄, ȳ, x̄0, ȳ0) =

−Ḡi,(x̄, ȳ) + Ḡi,(x̄, ȳ0), i ≤ n+ 1

−Ḡ,̄i(x̄, ȳ) + Ḡ,̄i(x̄0, ȳ), i > n+ 1
(7.2.1)

Here we adopt this notation ī := i− (n+ 1) for n+ 1 < i ≤ 2(n+ 1). As a notation convention, we use

a comma to separate subscripts of Ḡ, which correspond to the derivatives with respect to the variables

x̄ in spaces X ×R (before comma) and ȳ in Y ×R (after comma), respectively.

47
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If G ∈ C2, for each fixed (x̄0, ȳ0), since the first derivative of δ vanishes at (x̄, ȳ) = (x̄0, ȳ0), the

second order derivatives of δ at Ξ0 = (x̄0, ȳ0) is well-defined and can be written as follows.

∇ijδ(x̄, ȳ, x̄0, ȳ0)
∣∣
(x̄,ȳ)=(x̄0,ȳ0)

=


−Ḡi,j̄(x̄0, ȳ0), i ≤ n+ 1 < j

−Ḡj,̄i(x̄0, ȳ0), i > n+ 1 ≥ j

0, otherwise

(7.2.2)

Let TΞ0
M denote the tangent space to M at Ξ0. Define the pseudo-Riemannian metric gΞ0

: TΞ0
M×

TΞ0
M → R at Ξ0 on M to be the above 2(n+ 1)× 2(n+ 1) symmetric matrix.

One can calculate the Christoffel symbols using the following formula with Einstein summation

convention where gml is the inverse matrix of g:

Γmij =
1

2
gml

(
∂gil
∂Ξj

+
∂gjl
∂Ξi

− ∂gij
∂Ξl

)
. (7.2.3)

Here is a calculation of each component:

gil;j :=
∂gil
∂Ξj

=



−Ḡi,j̄l̄, i ≤ n+ 1 < j, l;

−Ḡij,l̄, i, j ≤ n+ 1 < l;

−Ḡl,̄ij̄ , l ≤ n+ 1 < i, j;

−Ḡjl,̄i, j, l ≤ n+ 1 < i;

0 otherwise.

(7.2.4)

Similarly, one has

glj;i :=
∂glj
∂Ξi

=



−Ḡj,̄il̄, j ≤ n+ 1 < i, l;

−Ḡij,l̄, i, j ≤ n+ 1 < l;

−Ḡl,̄ij̄ , l ≤ n+ 1 < i, j;

−Ḡil,j̄ , i, l ≤ n+ 1 < j;

0 otherwise;

(7.2.5)

gij;l :=
∂gij
∂Ξl

=



−Ḡi,j̄l̄, i ≤ n+ 1 < j, l;

−Ḡil,j̄ , i, l ≤ n+ 1 < j;

−Ḡj,̄il̄, j ≤ n+ 1 < i, l;

−Ḡjl,̄i, j, l ≤ n+ 1 < i;

0 otherwise.

(7.2.6)

Therefore, putting together these three terms, one has

∂gil
∂Ξj

+
∂glj
∂Ξi

− ∂gij
∂Ξl

=


−2Ḡij,l̄, i, j ≤ n+ 1 < l;

−2Ḡl,̄ij̄ , i, j > n+ 1 ≥ l;

0, otherwise.

(7.2.7)
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Denote Ḡm,l̄ as the inverse matrix of Ḡk,l̄. Since gmlglk = gmk , one has

gml =


−Ḡm,l̄, m ≤ n+ 1 < l;

−Ḡl,m̄, l ≤ n+ 1 < m;

0, otherwise.

(7.2.8)

Therefore, the Christoffel symbols could be represented as follows.

Γmij =
1

2
gml(gil;j + glj;i − gij;l)

=


Ḡm,l̄Ḡij,l̄, i, j,m ≤ n+ 1 < l;

Ḡl,m̄Ḡl,̄ij̄ , i, j,m > n+ 1 ≥ l;

0, otherwise.

(7.2.9)

Then one can calculate the pseudo-Riemannian curvature tensor R.

Rijkl = gimR
m
jkl (7.2.10)

= −gim
[
∂

∂Ξl
Γmjk −

∂

∂Ξk
Γmjl + ΓmlαΓαjk − ΓmkαΓαjl

]
(7.2.11)

=



−Ḡil,αḠβ,αḠβ,j̄k̄ + Ḡil,j̄k̄, i, l ≤ n+ 1 < k, j;

Ḡik,αḠ
β,αḠβ,j̄l̄ − Ḡik,j̄l̄, i, k ≤ n+ 1 < l, j;

−Ḡjk,αḠβ,αḠβ,̄il̄ + Ḡjk,̄il̄, j, k ≤ n+ 1 < l, i;

Ḡjl,αḠ
β,αḠβ,̄ik̄ − Ḡjl,̄ik̄, j, l ≤ n+ 1 < k, i;

0, otherwise.

(7.2.12)

7.3 G-segments are geodesics

Definition 7.3.1 (G-segment with the notion of additional variable). For each x̄0 = (x0, w0) ∈ X ×R,

ȳ0, ȳ1 ∈ cl(Y × Z) with w0 6= 0, define ȳt ∈ cl(Y × Z) such that the following equation

Dx̄Ḡ(x̄0, ȳt) = (1− t)Dx̄Ḡ(x̄0, ȳ0) + tDx̄Ḡ(x̄0, ȳ1) (7.3.1)

holds for each t ∈ [0, 1]. By conditions (G1) and (G2), ȳt is uniquely determined by (7.3.1). We call

t ∈ [0, 1] 7−→ (x̄0, ȳt) the G-segment connecting (x̄0, ȳ0) and (x̄0, ȳ1) on M .

For any continuous, piecewise continuously differentiable curves γ : [0, 1] −→M , let E(·) denote the

energy functional:

E(γ) =
1

2

∫ 1

0

gγ(t)(γ̇(t), γ̇(t))dt. (7.3.2)

Then the Euler-Lagrange equations of motion for the functional E are given by

d2Ξm

dt2
+ Γmij

dΞi

dt

dΞj

dt
= 0, (7.3.3)
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where Γmij is the Christoffel symbol define in (7.2.3). The above equality (7.3.3) is the so-called geodesic

equation.

Proposition 7.3.2 (G-segments are geodesics). Assume (G1) and (G2). For any G-segment t ∈
[0, 1] 7−→ (x̄0, ȳt), defined in Definition 7.3.1, connecting (x̄0, ȳ0) and (x̄0, ȳ1) on M , it satisfies the

geodesic equation (7.3.3).

Proof. Since G-segment t ∈ [0, 1] 7−→ (x̄0, ȳt) satisfies (7.3.1), the following equations hold:

0 = ∂2
tDx̄Ḡ(x̄0, ȳt) (7.3.4)

= Dx̄kȳmḠ · ¨̄ymt +Dx̄kȳiȳj Ḡ · ˙̄yit ˙̄yjt . (7.3.5)

This implies

¨̄ymt + [(Dx̄kȳmḠ)−1]k,m ·Dx̄kȳiȳj Ḡ · ˙̄yit ˙̄yjt = 0. (7.3.6)

Rewrite the above equation in terms of variable Ξ, then one has

Ξ̈mt + Ḡk,m̄ · Ḡk,̄ij̄ · Ξ̇it Ξ̇jt = 0, where k ≤ n+ 1 < i, j,m. (7.3.7)

Combining with (7.2.9), this implies the geodesic equation (7.3.3).

7.4 Condition (G3) is a non-negative sectional curvature condi-

tion

Recall that in concavity arguments in Chapter 5, condition (G3) plays the most important role. In

Section 6.1, we introduced the fourth-order differential re-expression of condition (G3). One may also

wonder what the geometric meaning of the (G3) condition is. In this section, we are going to show the

geometric re-expression of condition (G3).

(G3) For any x̄ = (x,w) with w > 0, assume ∂2
t Ḡ(x̄, ȳt) ≥ 0, whenever there exists x̄0 = (x0, 1) such

that ∂2
tDx̄Ḡ(x̄0, ȳt) = 0.

For the pseudo-Riemannian metric tensor g defined in (7.2.2) and any two tangent vectors P,Q ∈
TΞ0

M , define the unnormalized sectional curvature at the point Ξ0 ∈M as

sec
(M,g)
Ξ0

P ∧Q := Rijkl(Ξ0) · P i · P l ·Qj ·Qk, (7.4.1)

where R is the curvature tensor shown in (7.2.12).

The following theorem describes equivalent expressions of the (G3) condition. Part (i) and (iii) are

taken from Theorem 6.1.1. While keeping the ordering number of statements from Chapter 6 (Theorem

6.1.1 and Corollary 6.2.2), part (v) is a variation of (iii) by rewriting (G3) condition with the notion of

the additional variable, and part (vi) is the non-negative sectional curvature condition on the manifold

M defined in Section 7.2.

Theorem 7.4.1. Assume (G0)-(G2) and (G4)-(G8). If, in addition, G ∈ C4(cl(X × Y × Z)), then the

following statements are equivalent:
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(i) (G3).

(iii) For any given curve xs ∈ X connecting x0 and x1, any (y0, z0), (y1, z1) ∈ cl(Y × Z), we have

∂2

∂s2

(
1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)∣∣∣∣∣
s=s0

≤ 0, (7.4.2)

whenever t ∈ [0, 1] 7−→ (Gx, G)(xs0 , yt, zt) forms an affinely parametrized line segment for some

s0 ∈ [0, 1].

(v) Let s ∈ [0, 1] 7−→ ws ∈ (0,∞) , for any given curve xs ∈ X connecting x0 and x1, any ȳ0, ȳ1 ∈
cl(Y × Z), we have

∂4

∂s2∂t2

∣∣∣∣∣
s=s0

Ḡ(x̄s, ȳt) ≥ 0, (7.4.3)

whenever t ∈ [0, 1] 7−→ (x̄s0 , ȳt) forms a G-segment for some s0 ∈ [0, 1].

(vi) For any vectors P = p ⊕ 0, Q = 0 ⊕ q ∈ R2n+2, where p, q, 0 ∈ Rn+1 and ⊕ represents the direct

sum, and Ξ∅ = (x∅, w∅, ȳ∅) ∈M with w∅ ∈ (0,∞), the sectional curvature satisfies

sec
(M,g)
Ξ∅

P ∧Q ≥ 0. (7.4.4)

Proof. (i) and (iii) are equivalent from Theorem 6.1.1. Only need to show the equivalences of (iii) and

(v), (v) and (vi).

(iii)⇒ (v). Let x0, x1 be any two points on X, (y0, z0), (y1, z1) be any two points on cl(Y × Z), ws

be any curve on (0,∞), xs ∈ X be any curve connecting x0 and x1, and (yt, zt) ∈ cl(Y ×Z) be any curve

connecting (y0, z0) and (y1, z1). Suppose there exists s0 ∈ [0, 1], such that t ∈ [0, 1] 7−→ (x̄s0 , ȳt) forms a

G-segment. Then from (7.3.4), we know t ∈ [0, 1] 7−→ (Gx, G)(xs0 , yt, zt) forms an affinely parametrized

line segment, i.e.,

0 =
∂2

∂t2
Gx(xs0 , yt, zt), (7.4.5)

0 =
∂2

∂t2
G(xs0 , yt, zt). (7.4.6)

Therefore, one has

0 ≥ ∂2

∂s2

(
1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)∣∣∣∣∣
s=s0

(7.4.7)

=
1

Gz(xs0 , yt, zt)

∂4

∂s2∂t2

∣∣∣∣∣
s=s0

G(xs, yt, zt) +
∂2

∂s2

∣∣∣∣∣
s=s0

1

Gz
(xs, yt, zt) ·

∂2

∂t2
G(xs0 , yt, zt) (7.4.8)

+ 2
∂

∂s

∣∣∣∣∣
s=s0

1

Gz(xs, yt, zt)
· ∂

2

∂t2
Gx(xs0 , yt, zt) · ẋs

∣∣∣∣∣
s=s0

(7.4.9)

=
1

Gz(xs0 , yt, zt)

∂4

∂s2∂t2

∣∣∣∣∣
s=s0

G(xs, yt, zt). (7.4.10)



Chapter 7. Geometric re-expression of condition (G3) 52

Notice that Gz < 0 because of condition (G4). Thus, the above inequality is equivalent to

∂4

∂s2∂t2

∣∣∣∣∣
s=s0

G(xs, yt, zt) ≥ 0. (7.4.11)

On the other hand, for the same curves described above, since Ḡ(x̄s, ȳt) = Ḡ(xs, ws, yt, zt) = wsG(xs, yt, zt),

applying (7.4.5) and (7.4.6), one has

∂

∂s
Ḡ(x̄s, ȳt) = ẇsG(xs, yt, zt) + ws

∂

∂s
G(xs, yt, zt) (7.4.12)

∂2

∂s2
Ḡ(x̄s, ȳt) = ẅsG(xs, yt, zt) + 2ẇs

∂

∂s
G(xs, yt, zt) + ws

∂2

∂s2
G(xs, yt, zt) (7.4.13)

∂4

∂s2∂t2

∣∣∣∣∣
s=s0

Ḡ(x̄s, ȳt) = ẅs0
∂2

∂t2
G(xs0 , yt, zt) + 2ẇs0 ẋs0

∂2

∂t2
Gx(xs0 , yt, zt) + ws0

∂4

∂s2∂t2

∣∣∣∣∣
s=s0

G(xs, yt, zt)

(7.4.14)

= ws0
∂4

∂s2∂t2

∣∣∣∣∣
s=s0

G(xs, yt, zt). (7.4.15)

Since ws0 is positive, the equation (7.4.11) is equivalent to

∂4

∂s2∂t2

∣∣∣∣∣
s=s0

Ḡ(x̄s, ȳt) ≥ 0. (7.4.16)

(v) ⇒ (iii). Let x0, x1 be any two points on X, (y0, z0), (y1, z1) be any two points on cl(Y × Z),

xs ∈ X be any curve connecting x0 and x1, and (yt, zt) ∈ cl(Y × Z) be any curve connecting (y0, z0)

and (y1, z1), satisfying that t ∈ [0, 1] 7−→ (Gx, G)(xs0 , yt, zt) forms an affinely parametrized line segment.

Let ws ≡ 1, for all s =∈ [0, 1]. Then, by definition, t ∈ [0, 1] 7−→ (x̄s0 , ȳt) forms a G-segment. From (v),

one has

∂4

∂s2∂t2

∣∣∣∣∣
s=s0

Ḡ(x̄s, ȳt) ≥ 0. (7.4.17)

By the similar computations as in the first part and Gz < 0 because of condition (G4), one has

∂2

∂s2

(
1

Gz(xs, yt, zt)

∂2

∂t2
G(xs, yt, zt)

)∣∣∣∣∣
s=s0

=
1

Gz(xs0 , yt, zt)

∂4

∂s2∂t2

∣∣∣∣∣
s=s0

G(xs, yt, zt) (7.4.18)

=
1

Gz(xs0 , yt, zt)

∂4

∂s2∂t2

∣∣∣∣∣
s=s0

Ḡ(x̄s, ȳt) ≤ 0. (7.4.19)

(v) ⇒ (vi). Let x̄s be any curve on X × (0,∞) with x̄s|s=0 = (x∅, w∅) and ˙̄xs|s=0 = p, ȳt be any

curve on cl(Y × Z), satisfying ȳt|t=0 = ȳ∅, ˙̄yt|t=0 = q and the following equation

∂2
tDx̄Ḡ(x̄0, ȳt) = 0. (7.4.20)
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That is, the curve t ∈ [0, 1] 7−→ (x̄0, ȳt) forms a G-segment. Thus by (v) we know

∂4

∂s2∂t2

∣∣∣∣∣
s=0

Ḡ(x̄s, ȳt) ≥ 0. (7.4.21)

On the other hand, from (7.4.20) we know

Ḡi,j(x̄0, ȳt) · ¨̄yjt + Ḡi,kl(x̄0, ȳt) · ˙̄ykt · ˙̄ylt = 0. (7.4.22)

This implies

¨̄yjt = −Ḡi,j(x̄0, ȳt) · Ḡi,kl(x̄0, ȳt) · ˙̄ykt · ˙̄ylt. (7.4.23)

Thus

∂4

∂s2∂t2
Ḡ(x̄s, ȳt)

∣∣∣∣∣
s=0

(7.4.24)

=
∂2

∂t2
[Ḡi,(x̄s, ȳt) · ¨̄xis + Ḡil,(x̄s, ȳt) · ˙̄xis · ˙̄xls]

∣∣∣∣∣
s=0

(7.4.25)

=
∂2

∂t2
Ḡil,(x̄0, ȳt) · ˙̄xi0 · ˙̄xl0 (7.4.26)

= Ḡil,j(x̄0, ȳt) · ˙̄xi0 · ˙̄xl0 · ¨̄y
j
t + Ḡil,jk(x̄0, ȳt) · ˙̄xi0 · ˙̄xl0 · ˙̄yjt · ˙̄ykt (7.4.27)

= [−Ḡil,α(x̄0, ȳt) · Ḡβ,α(x̄0, ȳt) · Ḡβ,jk(x̄0, ȳt) + Ḡil,jk(x̄0, ȳt)] · ˙̄xi0 · ˙̄xl0 · ˙̄yjt · ˙̄ykt , (7.4.28)

where i, l, j, k, α, β = 1, 2, ..., n+ 1.

Denote Ξt := (x̄0, ȳt). Since P = ˙̄x0 ⊕ 0, one can rewrite (7.4.28) as

n+1∑
i,l=1

2n+2∑
j,k=n+2

n+1∑
α,β=1

[−Ḡil,α(Ξt) · Ḡβ,α(Ξt) · Ḡβ,j̄k̄(Ξt) + Ḡil,j̄k̄(Ξt)] · P i · P l · Ξ̇jt · Ξ̇kt (7.4.29)

=

n+1∑
i,l=1

2n+2∑
j,k=n+2

Rijkl(Ξt) · P i · P l · Ξ̇jt · Ξ̇kt (7.4.30)

=

2n+2∑
i,l,j,k=1

Rijkl(Ξt) · P i · P l · Ξ̇jt · Ξ̇kt (7.4.31)

= sec
(M,g)
Ξt

P ∧ Ξ̇t. (7.4.32)

Therefore, equation (7.4.21) implies

sec
(M,g)
Ξt

P ∧ Ξ̇t ≥ 0. (7.4.33)

In particular, for t = 0, since Q = Ξ̇0 ∈ R2n+2,

sec
(M,g)
Ξ0

P ∧Q ≥ 0. (7.4.34)
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(vi)⇒ (v). Let x0, x1 be any two points on X, (y0, z0), (y1, z1) be any two points on cl(Y × Z), ws

be any curve on (0,∞), xs ∈ X be any curve connecting x0 and x1, and (yt, zt) ∈ cl(Y × Z) be any

curve connecting (y0, z0) and (y1, z1). Suppose there exists s0 ∈ [0, 1], such that t ∈ [0, 1] 7−→ (x̄s0 , ȳt)

forms a G-segment. Then from (7.3.4), we know

Ḡi,j(x̄s0 , ȳt) · ¨̄y
j
t + Ḡi,kl(x̄s0 , ȳt) · ˙̄ykt · ˙̄ylt = 0. (7.4.35)

¨̄yjt = −Ḡi,j(x̄s0 , ȳt) · Ḡi,kl(x̄s0 , ȳt) · ˙̄ykt · ˙̄ylt. (7.4.36)

Denote Ξt := (x̄s0 , ȳt). For any fixed t0 ∈ [0, 1], let P = ˙̄xs0 ⊕ 0, Q = Ξ̇t0 = 0⊕ ˙̄yt0 ∈ R2n+2. Thus

from part (vi),

sec
(M,g)
Ξt0

P ∧Q ≥ 0. (7.4.37)

On the other hand, with similar calculations as above, one has

∂4

∂s2∂t2
Ḡ(x̄s, ȳt)

∣∣∣∣∣
s=s0,t=t0

(7.4.38)

= [−Ḡil,α(x̄s0 , ȳt0) · Ḡβ,α(x̄s0 , ȳt0) · Ḡβ,jk(x̄s0 , ȳt0) + Ḡil,jk(x̄s0 , ȳt0)] · ˙̄xis0 · ˙̄xls0 · ˙̄yjt0 · ˙̄ykt0 (7.4.39)

= sec
(M,g)
Ξt0

P ∧Q. (7.4.40)

Therefore, (7.4.3) holds for all t ∈ [0, 1].

Remark 7.4.2. Strict inequality versions of (v) and (vi) in Theorem 7.4.1 are equivalent to strict inequality

of (iii), and thus condition (G3)u.
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Examples

8.1 Several examples for the quasilinear case with explicit so-

lutions

In 2011, Figalli-Kim-McCann [11] provided a non-negative curvature condition (B3) which is equivalent

to the convexity of the domain of the objective ΠΠΠ or the domain of L defined below, under some

other constraints. One may wonder the question whether this curvature condition (B3) is necessary for

uniqueness of the optimizer as well.

According to Loeper [20], for c = d2, where d is a Riemannian distance, (B3) is satisfied only if

the Riemannian sectional curvature is non-negative. This section shows a negative answer to the above

question, via uniqueness examples on the hyperbolic spaces with constant negative curvatures, where

(B3) is violated.

Let D be a disk with a small radius r̄ on Hn(n ≥ 2), and consider spaces X = Y = D, utility

G(x, y, z) = − 1
2d

2
H(x, y)− z, and profit π(x, y, z) = z (i.e., π(x, y, z) = z − a(y) with a ≡ 0), where

dH(x, y) = R cosh−1

(
x0y0 − x1y1 − · · · − xnyn

R2

)
= R cosh−1

[
cosh

r

R
cosh

s

R
− sinh

r

R
sinh

s

R
M
]
,

M =

n−1∑
i=1

cos θi cosϕi

i−1∏
j=1

sin θj sinϕj

+

n−1∏
j=1

sin θj sinϕj ,

here x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ D,

x0 = R cosh
r

R
, xi = R sinh

r

R
cos θiΠ

i−1
j=1 sin θj , for all i = 1, 2, ..., n− 1, xn = R sinh

r

R
Πn−1
j=1 sin θj ;

y0 = R cosh
s

R
, yi = R sinh

s

R
cosϕiΠ

i−1
j=1 sinϕj , for all i = 1, 2, ..., n− 1, yn = R sinh

s

R
Πn−1
j=1 sinϕj .

(8.1.1)

Here
∏

means the product notation. In order to distinguish it from the profit functional ΠΠΠ, equi-

valently, in this section, we minimize L := −ΠΠΠ. Let µ be the uniform measure on this hyperbolic disk

D. The participation constraint is u∅(x) = − 1
2d

2
H(x, y∅), where y∅ = (R, 0, 0, ..., 0) ∈ D is the outside

option with a fixed price z∅ = 0.
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Thus, the monopolist problem becomes

max
u≥u∅

u is G-convex

ΠΠΠ(u) = max
u≥u∅

u is G-convex

∫
X

π(x, ȳG(x, u(x), Du(x)))dµ(x) (8.1.2)

= max
u≥u∅

u is G-convex

∫
X

−1

2
d2
H(x, yG(x, u(x), Du(x)))− u(x)dµ(x). (8.1.3)

= − min
u≥u∅

u is G-convex

∫
X

1

2
d2
H(x, yG(x, u(x), Du(x))) + u(x)dµ(x). (8.1.4)

(P5) = − min
u≥u∅

u is G-convex

L(u). (8.1.5)

Lemma 8.1.1. Let x(t) be any curve on D, with |ẋ(t0)| = 1, and y be any point on D. Suppose

DtdH(x(t), y)|t=t0 exists, then |DtdH(x(t), y)|t=t0 | ≤ 1.

Proof. By the triangle inequality, we have

|DtdH(x(t), y)|t=t0 | =
∣∣∣∣ lim
t→t0

dH(x(t), y)− dH(x(t0), y)

t− t0

∣∣∣∣ = lim
t→t0

∣∣∣∣dH(x(t), y)− dH(x(t0), y)

t− t0

∣∣∣∣
≤ lim
t→t+0

dH(x(t), x(t0))

t− t0
= |ẋ(t0)| = 1.

Corollary 8.1.2. Since
∣∣∣∂x(r,θ1,...,θn−1)

∂r

∣∣∣ = lim
s→0

d(x(r,θ1,...,θn−1),x(r+s,θ1,...,θn−1))
s = lim

s→0

s
s = 1, by Lemma

(8.1.1), we have |DrdH(x(r, θ1, ..., θn−1), y)| ≤ 1, for all x, y ∈ D.

The following theorem shows a unique solution ū, with the explicit formula, to the principal-agent

problem, on a negative curvature space D. Its proof has three parts. In step 1, we first derive ū as a

local minimizer among the class of C1 radially symmetric functions which are bounded below by the

reservation utility, using the Calculus of Variations, then show it is also the unique global minimizer in

this class. Then in step 2, we prove by definition ū is G-convex. In step 3, we show that ū is also a

minimizer among all the G-convex functions. Moreover, the minimizer is unique.

Theorem 8.1.3. The program (P5) has a unique minimizer on D. And

argmin
u≥− 1

2 r
2

u is radially symmetric
u∈C1(D)

L(u) = argmin
u≥− 1

2 r
2

u is radially symmetric
u is G-convex

L(u) = argmin
u≥u∅

u is G-convex

L(u) =: ū(r)

where

ū(r) =



−1

2
r2, 0 ≤ r ≤ r̃;∫ r

r̃

sinh1−n
(
t

R

)∫ t

0

sinhn−1
( σ
R

)
dσdt

−
∫ r̄

0

sinhn−1
( σ
R

)
dσ

∫ r

r̃

sinh1−n
(
t

R

)
dt− 1

2
(r̃)2,

r̃ < r ≤ r̄.
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Here r̃ satisfies ∫ r̃

r̄

sinhn−1
( σ
R

)
dσ + r̃ sinhn−1

(
r̃

R

)
= 0.

Proof. Step 1: Firstly, find the minimizer of L(u) for all u satisfying u(r) ≥ −1
2r

2 and u is radi-

ally symmetric. Assume ū ∈ C2 piecewisely on D is such a minimizer. For each agent x, ū(x) =

sup
y
− 1

2d
2
H(x, y)− v(y), one can find the optimal yG(x, ū(x), Dū(x)) via

Drū(x) = Dr

(
−1

2
d2
H(x, yG(x, ū(x), Dū(x)))

)
,

Dθi ū(x) = Dθi

(
−1

2
d2
H(x, yG(x, ū(x), Dū(x)))

)
.

(8.1.6)

From the above equations, we can see that yG(x, ū(x), Dū(x)) could be uniquely determined by x and

Dū(x). In this section, we use yG(x,Dū(x)) to denote yG(x, ū(x), Dū(x)).

Since ū is radially symmetric, thus Dθi ū(x) = 0, for all i = 1, 2, ..., n − 1, and Drū(x) = ū′(r).

From (8.1.6), one can derive θi = ϕi, for all i = 1, 2, ..., n − 1, and dH(x, yG(x,Dū(x))) = |r − s|,
DrdH(x, yG(x,Dū(x))) =

sin r−s
R

| sin r−s
R |

= sign(r − s), for x, yG(x,Dū(x)) ∈ D with polar coordinates intro-

duced in (8.1.1).

Again from (8.1.6), ū′(r) + |r − s| · sign(r − s) = 0 implies s = r + ū′(r), and (ū′(r))2 = (s −
r)2 = d2

H(x, yG(x,Dū(x))). Notice here magnitude of yG(x,Dū(x)) should be non-negative, so we have

constraint r + ū′(r) ≥ 0, which will be used later.

After calculating yG(x,Dū(x)), one can compute

L(ū) =

∫
D

1

2
d2
H(x, yG(x,Dū(x))) + ū(x)dµ(x)

=

∫ r̄

0

∫ π

0

· · ·
∫ π

0

∫ 2π

0

[
(ū′(r))2

2
+ ū(r)

]
Rn−1

(
sinh

r

R

)n−1

(sin θ1)n−2 · · · (sin θn−2)dθn−1 · · · dθ1dr

=C0

∫ r̄

0

[
(ū′(r))2

2
+ ū(r)

](
sinh

r

R

)n−1

dr.

Here C0 =
∫ π

0
· · ·
∫ π

0

∫ 2π

0
Rn−1(sin θ1)n−2 · · · (sin θn−2)dθn−1 · · · dθ1 is a positive constant.

Since ū(r) ≥ − 1
2r

2, let A ∈ [0, r̄], such that A× [0, π]n−2× [0, 2π] =
{

(r, θ1, ..., θn−1) | ū(r) = − 1
2r

2
}

.

Define B = [0, r̄] \A, so ū(r) > − 1
2r

2 on B.

Denote U1 =
{
w ∈ C1(D) | w is radially symmetric and w = 0 on A× [0, π]n−2 × [0, 2π]

}
. Since ū

is a minimizer of L(u), for any w ∈ U1, one has

0 =
∂L(ū+ εw)

∂ε

∣∣∣∣
ε=0

= C0

∫
B

[ū′(r)w′(r) + w(r)]
(

sinh
r

R

)n−1

dr

= C0

∫
B

w

[(
sinh

r

R

)n−1

− ū′′(r)
(

sinh
r

R

)n−1

− n− 1

R
ū′(r)

(
sinh

r

R

)n−2

cosh
r

R

]
dr

+ C0ū
′(r)w(r)

(
sinh

r

R

)n−1
∣∣∣∣
∂B

.

By the fundamental lemma of the Calculus of Variations, and the inequality we derived from non-
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negativity of the magnitude of yG(x,Dū(x)), we have following constraints for ū:

(ODE)


r + ū′(r) ≥ 0, (1) on B;

ū′′(r) + n−1
R · ū′(r)(coth r

R )− 1 = 0, (2) on B \ ∂B;

w(r)ū′(r)(sinh r
R )n−1|∂B = 0, (3) for all w ∈ U1.

The equation (ODE)(2) implies, for all r ∈ B,

ū(r) =

∫ r

0

(
sinh

t

R

)1−n ∫ t

0

(
sinh

σ

R

)n−1

dσdt+ C1

∫ r

0

(
sinh

t

R

)1−n

dt+ C2.

Taking the derivatives of ū,

ū′(r) =
(

sinh
r

R

)1−n
[∫ r

0

(
sinh

σ

R

)n−1

dσ + C1

]
,

ū′′(r) = 1− n− 1

R
·

cosh r
R

sinhn( rR )

[∫ r

0

(
sinh

σ

R

)n−1

dσ + C1

]
.

Consider the sign of C1, there are two cases:

1. If C1 ≥ 0, then ū′(r) ≥ 0, which implies ū(r) is increasing on B.

2. If C1 < 0, then ū′′(r) ≥ 1− n−1
R · cosh r

R

sinhn( rR )

∫ r
0

(sinh σ
R )n−1dσ. Define

h1(r) :=
R sinhn( rR )

(n− 1) cosh( rR )
−
∫ r

0

(
sinh

σ

R

)n−1

dσ.

Then h1(0) = 0, h′1(r) =
sinhn−1( rR )

(n−1) cosh2( rR )
≥ 0, for all r ∈ [0, r̄]. Thus, h1(r) ≥ 0, for all r ∈ [0, r̄],

which implies, u′′(r) ≥ 0, i.e., ū is convex on B.

In either case, A is path-connected, since one cannot join two points on u0(r) = − 1
2r

2 by either

increasing or convex curve above the graph of u0.

Assume A = [α1, α2] 6= [0, r̄]. For the relative position of A and B, considering A ∪B = [0, r̄], there

are three cases:

1. If α1 > 0, α2 < r̄, assume B = B1 ∪ B2 with B1 = [0, α1) and B2 = (α2, r̄]. Let ū′(r) =

(sinh r
R )1−n[

∫ r
0

(sinh σ
R )n−1dσ + C10

] on B1 and ū′(r) = (sinh r
R )1−n[

∫ r
0

(sinh σ
R )n−1dσ + C1r̄ ] on

B2. Then by (ODE)(3), one has ū′(r)(sinh r
R )n−1|r̄r=0 = 0, i.e. [

∫ r̄
0

(sinh σ
R )n−1dσ+C1r̄ ]−C10 = 0,

which implies

C1r̄ = C10
−
∫ r̄

0

(
sinh

σ

R

)n−1

dσ. (8.1.7)

Since ū(r) ≥ u0(r) on B1 with equality holds at r = α1, we know ū could not be increasing on B1.

Therefore, by the above discussion, we know C10
< 0 and C1r̄ < 0 by (8.1.7). Thus ū is convex

on B. In particular, ū is convex and decreasing on B1. Let ũ = ū on A ∪ B2, and ũ = u0 on B1.

Then for any r ∈ B1, ũ(r)− ū(r) ≤ 0 and 0 ≥ ũ′(r) > u′0(α1) ≥ ū′(α1) ≥ ū′(r). Thus,

L(ũ)− L(ū) = C0

∫ α1

0

{[
(ũ′(r))2

2
− (ū′(r))2

2

]
+ [ũ− ū(r)]

}(
sinh

r

R

)n−1

dr < 0. (8.1.8)
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Therefore, this case is reduced to the following one where α1 = 0.

2. If α1 = 0, α2 6= r̄, then by (ODE)(3), one has ū′(r)(sinh r
R )n−1|r=r̄ = 0, which implies ū′(r̄) = 0.

Thus, C1 = −
∫ r̄

0
(sinh σ

R )n−1dσ. In this case, ū is convex and decreasing on B.

3. If α1 6= 0, α2 = r̄, then by (ODE)(3), one has ū′(r)(sinh r
R )n−1|r=0 = 0. That is,[∫ r

0

(
sinh

σ

R

)n−1

dσ + C1

]∣∣∣∣
r=0

= 0,

which implies C1 = 0. In this case, ū is increasing on B. Notice that ū(r) ≥ −1
2r

2 with equality

holds at r = α1, a contradiction.

Summing up all the possible cases above, we know there exist α ∈ [0, r̄], such that A = [0, α],

B = (α, r̄]. By (ODE)(1), we have for any r on B,∫ r

r̄

sinhn−1
( σ
R

)
dσ + r sinhn−1

( r
R

)
≥ 0.

Define

h2(r) =

∫ r

r̄

sinhn−1
( σ
R

)
dσ + r sinhn−1

( r
R

)
.

Then

h′2(r) = 2 sinhn−1
( r
R

)
+ (n− 1) sinhn−2

( r
R

)(
cosh

r

R

) r

R
> 0.

Thus h2 is strictly increasing. Notice that h2(r̄) > 0, and h2(0) < 0. Thus there is a unique solution of

h2(r) = 0 in [0, r̄], denote it r̃. Then (ODE)(1) implies, α ≥ r̃, where r̃ satisfies∫ r̃

r̄

sinhn−1
( σ
R

)
dσ + r̃ sinhn−1

(
r̃

R

)
= 0. (8.1.9)

Since ū is continuous, at r = α, one have

−1

2
α2 =

∫ α

0

(
sinh

t

R

)1−n ∫ t

0

(
sinh

σ

R

)n−1

dσdt−
∫ r̄

0

(
sinh

σ

R

)n−1

dσ

∫ α

0

(
sinh

t

R

)1−n

dt+ C2.

This implies

C2 = −1

2
α2 −

∫ α

0

(
sinh

t

R

)1−n ∫ t

0

(
sinh

σ

R

)n−1

dσdt+

∫ r̄

0

(
sinh

σ

R

)n−1

dσ

∫ α

0

(
sinh

t

R

)1−n

dt.

For any given α ∈ [r̃, r̄], denote

ūα(r) =



−1

2
r2, 0 ≤ r ≤ α;∫ r

α

(sinh
t

R
)1−n

∫ t

0

(sinh
σ

R
)n−1dσdt

−
∫ r̄

0

(sinh
σ

R
)n−1dσ

∫ r

α

(sinh
t

R
)1−ndt− 1

2
α2,

α < r ≤ r̄.

Define h3(α) = L(ūα) for all α ∈ [r̃, r̄].
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Then

h′3(α) =
C0

2
sinh1−n

(α
R

)[
α sinhn−1

(α
R

)
−
∫ r̄

α

sinhn−1
( σ
R

)
dσ

]2

≥ 0

for all α ∈ [r̃, r̄].

Define h4(α) := α sinhn−1( αR )−
∫ r̄
α

sinhn−1( σR )dσ for all α ∈ [r̃, r̄].

Then

h′4(α) = 2 sinhn−1
(α
R

)
+
n− 1

R
α sinhn−2

(α
R

)
cosh

(α
R

)
> 0

on [r̃, r̄] and h4(r̃) = 0, which implies h4(α) > 0, for α ∈ (r̃, r̄].

Thus, h′3(α) > 0, for all α ∈ (r̃, r̄], which implies

min
α∈[r̃,r̄]

L(ūα) = min
α∈[r̃,r̄]

h3(α) = h3(r̃) = L(ūr̃).

Therefore, ū(r) = ūr̃(r). And

ū(r) =



−1

2
r2 , 0 ≤ r ≤ r̃;∫ r

r̃

sinh1−n
(
t

R

)∫ t

0

sinhn−1
( σ
R

)
dσdt

−
∫ r̄

0

sinhn−1
( σ
R

)
dσ

∫ r

r̃

sinh1−n
(
t

R

)
dt− 1

2
(r̃)2

, r̃ < r ≤ r̄.

ū′(r) =


−r , 0 ≤ r ≤ r̃;

sinh1−n
( r
R

)∫ r

r̄

sinhn−1
( σ
R

)
dσ , r̃ < r ≤ r̄.

ū′′(r) =


−1 , 0 ≤ r ≤ r̃;

1−
(n− 1) cosh

(
r
R

) ∫ r
r̄

sinhn−1
(
σ
R

)
dσ

R sinhn
(
r
R

) , r̃ < r ≤ r̄.

Since ∂−ū
′(r̃) = ∂+ū

′(r̃) = −r̃, thus ū′(r̃) exists, and ū′(r̃) = −r̃.

We now show the above ū(r) is indeed the (global) minimizer, i.e.,

ū(r) = argmin
u≥− 1

2 r
2

u is radially symmetric
u∈C1(D)

L(u).

Denote U2 =
{
w ∈ C1(D) | w is symmetric and w ≥ 0 on A× [0, π]n−2 × [0, 2π]

}
. For any w ∈ U2,

L(ū+ w)− L(ū)

= C0

∫ r̄

0

[
1

2
(ū′(r) + w′(r))2 − 1

2
(ū′(r))2 + w

]
sinhn−1

( r
R

)
dr

(8.1.10)

Drop a non-negative term with integrand 1
2 (w′(r))2, plug in ū′ on A × [0, π]n−2 × [0, 2π] and use the
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integrate by parts formula, one has

(8.1.10) ≥ C0

∫ r̄

0

[ū′(r)w′(r) + w] sinhn−1
( r
R

)
dr.

= C0

∫ r̃

0

[−rw′(r) + w] sinhn−1
( r
R

)
dr + C0

∫ r̄

r̃

[ū′(r)w′(r) + w] sinhn−1
( r
R

)
dr

= C0

∫ r̃

0

w

[
2 sinhn−1

( r
R

)
+
n− 1

R
r sinhn−2

( r
R

)
cosh

( r
R

)]
dr − C0rw(r) sinhn−1

( r
R

)∣∣∣r̃
0

+ C0

∫ r̄

r̃

w

[
(1− ū′′(r)) sinhn−1

( r
R

)
− n− 1

R
ū′(r) sinhn−2

( r
R

)
cosh

( r
R

)]
dr

+ C0ū
′(r)w(r) sinhn−1

( r
R

)∣∣∣r̄
r̃

By equation (ODE)(2), the term

C0

∫ r̄

r̃

w

[
(1− ū′′(r)) sinhn−1

( r
R

)
− n− 1

R
ū′(r) sinhn−2

( r
R

)
cosh

( r
R

)]
dr

vanishes. Drop the term with non-negative integrand

C0

∫ r̃

0

w

[
2 sinhn−1

( r
R

)
+
n− 1

R
r sinhn−2

( r
R

)
cosh

( r
R

)]
dr.

Thus,

(8.1.10) ≥ −C0rw(r) sinhn−1
( r
R

)∣∣∣r̃
0

+ C0ū
′(r)w(r) sinhn−1

( r
R

)∣∣∣r̄
r̃

= 0.

The last equality holds because ū′(r̃) = −r̃ and ū′(r̄) = 0.

In addition, if L(ū+w)−L(ū) = 0, from above inequalities and since w ∈ C1, we have w′(r) = 0 on

D, i.e., w = C3, for some non-negative constant C3. Then

0 = L(ū+ w)− L(ū) ≥ C0

∫ r̄

0

[ū′(r)w′(r) + w] sinhn−1
( r
R

)
dr = C0C3

∫ r̄

0

sinhn−1
( r
R

)
dr ≥ 0.

Since both C0 and
∫ r̄

0
sinhn−1( rR )dr are positive, we have C3 = 0, i.e. w ≡ 0 on D. Therefore, ū is the

unique minimizer.

Step 2: To check that ū(x) is G-convex, it is equivalent to prove ū(x) is b-convex in the sense of [11],

or equivalently −ū(x) is (−b)-concave in the sense of Definition 5.3.1, where b(x, y) := − 1
2d

2
H(x, y).

That is, we need to show ū(x) = −((−ū)(−b)∗)(−b)(x), for all x ∈ D. Denote ψ(y) = −(−ū)(−b)∗(y), and

φ(x) = −(−ψ)(−b)(x). Then it is equivalent to show ū(x) = φ(x), where

φ(x) = sup
y
b(x, y)− ψ(y),

and ψ(y) = sup
x
b(x, y)− ū(x).
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By definition, we have

ψ(y) = sup
x
−1

2
d2
H(x, y)− ū(x)

From equation (8.1.1), we know that |M | ≤ 1 and M = 1 holds when θi = ϕi for each i = 1, 2, ..., n− 1.

Thus,

ψ(y) = sup
r
−1

2
(r − s)2 − ū(r)

For each s ∈ [0, r̄], define hs5(r) := − 1
2 (r − s)2 − ū(r). Then

(hs5)′(r) =


s , 0 ≤ r ≤ r̃;

s− r − sinh1−n
( r
R

)∫ r

r̄

sinhn−1
( σ
R

)
dσ , r̃ < r ≤ r̄.

(hs5)′′(r) =

{
0 , 0 ≤ r ≤ r̃;

−1− ū′′(r) < −1 , r̃ < r ≤ r̄.

Thus, hs5(r) is concave on [0, r̄] and strictly concave on [r̃, r̄]. Since ū′ is continuous, thus (hs5)′(r) is

continuous. Notice (hs5)′(r̃) = s > 0 and (hs5)′(r̄) < 0. Therefore, for each s ∈ [0, r̄], (hs5)′(β) = 0 has

exactly one solution on [0, r̄], which is located on [r̃, r̄] and takes the maximum value of hs5.

Let h6(s) be the unique solution of (hs5)′(β) = 0, for all s ∈ [0, r̄].

Then h6(s) ∈ [r̃, r̄], and h6(0) = r̃, h6(r̄) = r̄.

Since (hs5)′(s) > 0 = (hs5)′(h6(s)) and (hs5)′ is strictly decreasing on [r̃, r̄], we have h6(s) > s.

For any 0 ≤ s1 < s2 ≤ r̄, (hs25 )′(h6(s2)) = 0 = (hs15 )′(h6(s1)) < (hs25 )′(h6(s1)), thus h6(s1) < h6(s2),

i.e., h6 is strictly increasing. By the Implicit Function Theorem, one has h6 ∈ C1. Thus, h′6 > 0. Here,

denote

ū(r) =

u1(r) , 0 ≤ r ≤ r̃;

u2(r) , r̃ < r ≤ r̄.

Then ψ(y) = sup
r
hs5(r) = hs5(h6(s)) = − 1

2 (h6(s)− s)2 − u2(h6(s)).

φ(x) = sup
y
−1

2
d2
H(x, y)− ψ(y)

= sup
s
−1

2
(r − s)2 +

1

2
(h6(s)− s)2 + u2(h6(s))

For each r ∈ [0, r̄], define hr7(s) := − 1
2 (r − s)2 + 1

2 (h6(s)− s)2 + u2(h6(s)). Then

(hr7)′(s) = r − h6(s),

(hr7)′′(s) = −(h6)′(s) < 0.

Plugging in s = 0, r̄, we have (hr7)′(0) = r − r̃, (hr7)′(r̄) = r − r̄ ≤ 0. Therefore,

1. For r ∈ [0, r̃], (hr7)′(s) < (hr7)′(0) ≤ 0, then we have φ(x) = sup
s

(hr7)(s) = (hr7)(0) = − 1
2r

2 = u1(r);

2. For r ∈ [r̃, r̄], since (hr7)′(0) ≥ 0, (hr7)′(r̄) ≤ 0, then we have φ(x) = sup
s

(hr7)(s) = (hr7)((h−1
6 )(r)) =

u2(r).
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Thus, φ(x) = ū(x), which implies ū is G-convex. So,

ū(r) = argmin
u≥− 1

2 r
2

u is radially symmetric
u is G-convex

L(u).

Step 3: We are going to show

ū = argmin
u≥u∅

u is G-convex

L(u).

Suppose u is any G-convex function (not necessarily radially symmetric), then there exists a function

v, such that u(x) = max
y

b(x, y)− v(y). Thus,

Dru(x) = Drb(x, yG(x,Du(x))) = −dH(x, yG(x,Du(x))) ·DrdH(x, yG(x,Du(x))),

where yG(x,Du(x)) = argmax
y

b(x, y)− v(y). By Corollary (8.1.2), we have

−b(x, yG(x,Du(x))) =
1

2
d2
H(x, yG(x,Du(x))) =

|Dru(x)|2

2|DrdH(x, yG(x,Du(x)))|2
≥ |Dru(x)|2

2
. (8.1.11)

Denote U3 =
{
w : D → R | ū+ w is G-convex, and w ≥ 0 on A× [0, π]n−2 × [0, 2π]

}
. For any w ∈ U3,

we have

L(ū+ w)− L(ū)

=

∫
D

[−b(x, yG(x,Dū(x) +Dw(x))) + b(x, yG(x,Dū(x))) + w(x)] dµ(x).
(8.1.12)

Similar to (8.1.11), one has

−b(x, yG(x,Dū(x) +Dw(x))) ≥ 1

2
|Drū+Drw|2

and b(x, yG(x,Dū(x))) = −1

2
|ū′(r)|2.

Thus,

(8.1.12) ≥
∫
D

[
1

2
|Drū+Drw|2 −

1

2
|ū′(r)|2 + w(x)

]
dµ(x).

Simplify the right hand side, drop a non-negative term with integrand 1
2 |Drw|2 and change to polar

coordinates, then plug in ū′ on A× [0, π]n−2 × [0, 2π] and B × [0, π]n−2 × [0, 2π], separately. Denote

dΘ = Rn−1 sinn−2 θ1 sinn−3 θ2 · · · sin θn−2dθ1dθ2 · · · dθn−1.

Thus

(8.1.12) ≥
∫
D

[ū′(r) ·Drw + w]Rn−1 sinhn−1
( r
R

)
sinn−2 θ1 sinn−3 θ2 · · · sin θn−2drdθ1dθ2 · · · dθn−1
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=

∫
A×[0,π]n−2×[0,2π]

[
−r · sinhn−1

( r
R

)
·Drw + w · sinhn−1

( r
R

)]
drdΘ

+

∫
B×[0,π]n−2×[0,2π]

[∫ r

r̄

sinhn−1

(
t

R

)
dt ·Drw + w · sinhn−1

( r
R

)]
drdΘ.

Use the integration by parts formula, then drop the term with non-negative integrand∫
[0,π]n−2×[0,2π]

∫ r̃

0

w

[
2 sinhn−1

( r
R

)
+
n− 1

R
r sinhn−2

( r
R

)
cosh

( r
R

)]
drdΘ.

Thus,

(8.1.12) ≥
∫

[0,π]n−2×[0,2π]

{∫ r̃

0

w

[
2 sinhn−1

( r
R

)
+
n− 1

R
r sinhn−2

( r
R

)
cosh

( r
R

)]
dr

−
[
r sinhn−1

( r
R

)
· w
]∣∣∣r̃
r=0

}
dΘ

+

∫
[0,π]n−2×[0,2π]

[∫ r

r̄

sinhn−1

(
t

R

)
dt · w

]∣∣∣∣r̄
r=r̃

dΘ

≥
∫

[0,π]n−2×[0,2π]

[
−r̃ sinhn−1

(
r̃

R

)
−
∫ r̃

r̄

sinhn−1

(
t

R

)
dt

]
· w(r̃, θ1, ..., θn−1)dΘ

= 0.

The last integral equals to 0 by the definition of r̃. Therefore, L(ū+w) ≥ L(ū) for any w ∈ U3. For any

G-convex u ≥ u∅, u− ū ∈ U3. So

ū ∈ argmin
u≥u∅

u is G-convex

L(u).

If, in addition, L(ū+w)−L(ū) = 0, then the above inequalities must be equalities. Thus Drw(x) = 0,

for almost every x ∈ D. Since both ū+w and ū are G-convex, w ∈ C1,1, thus Drw(x) ≡ 0, for all x ∈ D.

So, one can write w(x) = w(θ1, ..., θn−1). Since for x ∈ A× [0, π]n−1 × [0, 2π], w(x) ≥ 0, we have w ≥ 0

on D. Then from the above inequalities, we get

0 = L(ū+ w)− L(ū) ≥
∫
D
w(x)Rn−1 sinhn−1(

r

R
) sinn−2 θ1 · · · sin θn−2drdθ1 · · · dθn−1 ≥ 0

Thus w(x)Rn−1 sinhn−1( rR ) sinn−2 θ1 · · · sin θn−2 = 0, for almost every x ∈ D. This implies w ≡ 0 on D.

So ū is the unique minimizer, i.e.

ū = argmin
u≥u∅

u is G-convex

L(u).

Remark 8.1.4. We also have uniqueness results with different explicit solutions on Sn and Rn, where

the uniqueness is also ensured by Figalli-Kim-McCann[11]. Moreover, the solutions on Sn, Hn converge

to those on Rn, as curvatures go to 0.
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The unique minimizer of the principal-agent problem on Rn is given by

ūRn(r) =


−1

2
r2 , 0 ≤ r ≤ r̃Rn ;

(r̄)n

n(n− 2)
r2−n +

r2

2n
− (r̄)2

2(n− 2)(n+ 1)
2−n
n

, r̃Rn < r ≤ r̄.

Here r̃Rn = r̄

(n+1)
1
n

.

Moreover, the unique minimizer on Sn is given by

ūSn(r) =



−1

2
r2 , 0 ≤ r ≤ r̃Sn ;∫ r

r̃Sn

sin1−n
(
t

R

)∫ t

0

sinn−1
( σ
R

)
dσdt

−
∫ r̄

0

sinn−1
( σ
R

)
dσ

∫ r

r̃Sn

sin1−n
(
t

R

)
dt− (r̃Sn)2

2

, r̃Sn < r ≤ r̄.

Here r̃Sn satisfies ∫ r̃Sn

r̄

sinn−1
( σ
R

)
dσ + r̃Sn sinn−1

(
r̃Sn

R

)
= 0.

The proofs are similar to that of Theorem 8.1.3.
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8.2 Convexity results on several examples for the non-quasilinear

case

We close with several examples, which are established by computing two derivatives of π(x, yt, zt) along

an arbitrary G-segment t ∈ [0, 1] 7−→ (x, yt, zt). These computations are tedious but straightforward.

For specific non-quasilinear agent preferences, we use the explicit expression in Lemma 5.2.8 for the

desired second derivative to establish the following examples, which assume the principal is indifferent

to whom she transacts business with and that her preferences depend linearly on payments. These

examples give conditions under which the principal’s program inherits concavity or convexity from the

agents’ price sensitivity. Although the resulting conditions appear complicated, they illustrate the subtle

interplay between the preferences of the agent and the principal for products in the first example, and

between the preferences of the agents for products as opposed to prices in the second.

Example 8.2.1 (Nonlinear yet homogeneous sensitivity of agents to prices). Take π(x, y, z) = z−a(y),

G(x, y, z) = b(x, y)− f(z), satisfying (G0)-(G6), G ∈ C3(cl(X × Y × Z)), π ∈ C2(cl(X × Y × Z)), and

assume z̄ < +∞.

1. If f(z) is convex [respectively concave] in cl(Z), then ΠΠΠ(u) is concave [respectively convex] for all

µ� Lm if and only if there exists ε ≥ 0 such that each (x, y, z) ∈ X × Y × Z and ξ ∈ Rn satisfy

±

{
akj(y)− b,kj(x, y)

f ′(z)
+
(b,l(x, y)

f ′(z)
− al(y)

)
bi,l(x, y)bi,kj(x, y)

}
ξkξj ≥ ε | ξ |2 . (8.2.1)

2. In addition, ΠΠΠ(u) is uniformly concave [respectively uniformly convex] on W 1,2(X, dµ) uniformly

for all µ� Lm if and only if ±f ′′ > 0 and (8.2.1) holds with ε > 0.

Proof. From Lemma 5.2.8, ΠΠΠ(u) is concave for all µ � Lm if and only if (π,k̄j̄ − π,l̄Ḡ
ī,l̄Ḡī,k̄j̄)

∣∣
x0=−1

is non-positive definite, and uniformly concave uniformly for all µ � Lm if and only if this matrix is

uniform negative definite.

In this example, we have π(x, y, z) = z − a(y), Ḡ(x, x0, y, z) = x0G(x, y, z) = x0(b(x, y) − f(z)).

Thus,

π,k̄j̄ =

(
−akj 0

0 0

)
, π,l̄ = (−al, 1), Ḡī,l̄

∣∣
x0=−1

=

(
−bi,l 0

b,l −f ′(z)

)
.

By (G4), f ′(z) > 0 for all z ∈ cl(Z). By (G6), since Ḡī,l̄
∣∣
x0=−1

has the full rank, the matrix (bi,l)

also has its full rank. Taking bi,l as its left inverse, we have

Ḡī,l̄
∣∣∣
x0=−1

=

(
−bi,l 0

− b,lb
i,l

f ′(z)
1

−f ′(z)

)
, Ḡī,k̄j̄

∣∣
x0=−1

=

(
−bi,kj̄ 0

b,kj̄ (−f ′(z))j̄

)
.

Therefore, (
π,k̄j̄ − π,l̄Ḡī,l̄Ḡī,k̄j̄

)∣∣∣
x0=−1
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=

(
−akj 0

0 0

)
−
(

(−albi,l +
b,l
f ′(z)b

i,l)bi,kj̄ −
b,kj̄
f ′(z) ,

(f ′(z))j̄
f ′(z)

)
= −

(
akj + (−al +

b,l
f ′(z) )bi,lbi,kj − b,kj

f ′(z) 0

0 f ′′(z)
f ′(z)

)
.

Since (G4) and f is convex, we have f ′(z) > 0 and f ′′(z) ≥ 0, for all z ∈ cl(Z). Thus, π,k̄j̄−π,l̄Ḡī,l̄Ḡī,k̄j̄
is non-positive definite if and only if akj + (−al + b,l

f ′(z) )bi,lbi,kj − b,kj
f ′(z) is non-negative definite, i.e., there

exist ε ≥ 0 such that each (x, y, z) ∈ X × Y × Z and ξ ∈ Rn satisfy{
akj(y)− b,kj(x, y)

f ′(z)
+
(b,l(x, y)

f ′(z)
− al(y)

)
bi,l(x, y)bi,kj(x, y)

}
ξkξj ≥ ε | ξ |2 .

In addition, π,k̄j̄ − π,l̄Ḡī,l̄Ḡī,k̄j̄ is uniform negative definite if and only if f ′′ > 0 and ε > 0, which

is equivalent to that ΠΠΠ(u) is uniformly concave uniformly for all µ � Lm. Similarly, one can show

equivalent conditions for ΠΠΠ(u) being convex or uniformly convex.

Although the next two examples are not completely general, they have the following economic inter-

pretation. The same selling price impacts utility differently for different types of agents. In other words,

it models the situation where agents have different sensitivities to the same price. In Example 8.2.2,

the principal’s utility is linear and depends exclusively on her revenue, which is a simple special case of

Example 8.2.3.

Example 8.2.2 (Inhomogeneous sensitivity of agents to prices, zero cost). Take π(x, y, z) = z, G(x, y, z)

= b(x, y)− f(x, z), satisfying (G0)-(G6), G ∈ C3(cl(X × Y × Z)), π ∈ C2(cl(X × Y × Z)), and assume

z̄ < +∞. Suppose Dx,yb(x, y) has full rank for each (x, y) ∈ X × Y , and denote its left inverse bi,l(x, y).

1. If (x, y, z) 7−→ h(x, y, z) := f(x, z) − b,l(x, y)bi,l(x, y)fi,(x, z) is strictly increasing and convex

[respectively concave] with respect to z, then ΠΠΠ(u) is concave [respectively convex] for all µ� Lm if and

only if there exists ε ≥ 0 such that each (x, y) ∈ X × Y and ξ ∈ Rn satisfy

±
{
− b,kj(x, y) + b,l(x, y)bi,l(x, y)bi,kj(x, y)

}
ξkξj ≥ ε | ξ |2 . (8.2.2)

2. In addition, ΠΠΠ(u) is uniformly concave [respectively uniformly convex] on W 1,2(X, dµ) uniformly

for all µ� Lm if and only if ±hzz > 0 and (8.2.2) holds with ε > 0.

Example 8.2.3 (Inhomogeneous sensitivity of agents to prices). Take π(x, y, z) = z−a(y), G(x, y, z) =

b(x, y) − f(x, z), satisfying (G0)-(G6), G ∈ C3(cl(X × Y × Z)), π ∈ C2(cl(X × Y × Z)), and assume

z̄ < +∞. Suppose Dx,yb(x, y) has full rank for each (x, y) ∈ X × Y , and 1− (fz)
−1b,βb

α,βfα,z 6= 0, for

all (x, y, z) ∈ X × Y × Z.

1. If (x, y, z) 7−→ h(x, y, z) := alb
i,lfi,zz+

(aβb
α,βfα,z−1)(b,lb

i,lfi,zz−fzz)
fz−b,βbα,βfα,z ≥ 0 [≤ 0] , then ΠΠΠ(u) is concave

[respectively convex] for all µ� Lm if and only if there exists ε ≥ 0 such that each (x, y, z) ∈ X×Y ×Z
and ξ ∈ Rn satisfy

±

{
akj − albi,lbi,kj +

1− aβbα,βfα,z
1− (fz)−1b,βbα,βfα,z

(
− b,kj

fz
+
b,l
fz
bi,lbi,kj

)}
ξkξj ≥ ε | ξ |2 . (8.2.3)
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2. If in addition, ΠΠΠ(u) is uniformly concave [respectively uniformly convex] on W 1,2(X, dµ) uniformly

for all µ� Lm if and only if ±h > 0 and (8.2.3) holds with ε > 0.

Proof. Similar to the proof of Example 8.2.1, ΠΠΠ(u) is concave for all µ � Lm if and only if (π,k̄j̄ −
π,l̄Ḡ

ī,l̄Ḡī,k̄j̄) is non-positive definite, and uniformly concave uniformly for all µ� Lm if and only if this

tensor is uniform negative definite.

Since Dx,yb(x, y) has full rank for each (x, y) ∈ X × Y , and for all (x, y, z) ∈ X × Y × Z, 1 −
(fz)

−1b,βb
α,βfα,z 6= 0, for π(x, y, z) = z − a(y), Ḡ(x, x0, y, z) = x0(b(x, y)− f(x, z)), we have

− (π,k̄j̄ − π,l̄Ḡī,l̄Ḡī,k̄j̄)

=


akj − albi,lbi,kj +

(aβb
α,βfα,z − 1)(b,kj − b,lbi,lbi,kj)

fz − b,βbα,βfα,z
0

0 h(x, y, z)

 ,

where h(x, y, z) = alb
i,lfi,zz +

(aβb
α,βfα,z−1)(b,lb

i,lfi,zz−fzz)
fz−b,βbα,βfα,z . Since h(x, y, z) ≥ 0, then (π,k̄j̄ −π,l̄Ḡī,l̄Ḡī,k̄j̄)

is non-positive definite if and only if there exist ε ≥ 0 such that each (x, y, z) ∈ X × Y × Z and ξ ∈ Rn

satisfy {
akj − albi,lbi,kj +

(aβb
α,βfα,z − 1)(b,kj − b,lbi,lbi,kj)

fz − b,βbα,βfα,z

}
ξkξj ≥ ε | ξ |2 .

In addition, ΠΠΠ(u) is uniformly concave uniformly for all µ� Lm if and only if h > 0 and ε > 0.

Example 8.2.4 asserts the concavity of monopolist’s maximization in the zero-sum setting, where

the agent’s utilities are relatively general but the principal’s profit is extremely special. Also, more

non-quasilinear examples could be discovered by applying Lemma 5.2.8.

Example 8.2.4 (Zero sum transactions). Take π(x, y, z) = −G(x, y, z), satisfying (G0)-(G5) and µ �
Lm, which means the monopolist’s profit in each transaction coincides exactly with the agent’s loss.

From (4.2.1), since G is linear on G-segments, we know ΠΠΠ(u) is linear.
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