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Abstract

Given compactly supported 0 � f; g 2 L1.Rn/, the problem of transporting a
fraction m �minfkf kL1 ; kgkL1g of the mass of f onto g as cheaply as possible
is considered, where cost per unit mass transported is given by a cost function c,
typically quadratic c.x; y/D jx� yj2=2. This question is shown to be equivalent
to a double obstacle problem for the Monge-Ampère equation, for which sufficient
conditions are given to guarantee uniqueness of the solution, such as f vanishing
on sptg in the quadratic case. The part of f to be transported increases monotoni-
cally with m, and if sptf and sptg are separated by a hyperplane H , then this part
will be separated from the balance of f by a semiconcave Lipschitz graph over the
hyperplane. If f D f�� and gD g�ƒ are bounded away from zero and infinity on
separated strictly convex domains �;ƒ� Rn, for the quadratic cost this graph is
shown to be a C 1;˛loc hypersurface in � whose normal coincides with the direction
transported; the optimal map between f and g is shown to be Hölder continuous
up to this free boundary, and to those parts of the fixed boundary @� which map to
locally convex parts of the path-connected target region.

1. Introduction

In the classical transportation problem of Monge [63] and Kantorovich [51],
one is given a distribution f .x/ of iron mines throughout the countryside, and
a distribution g.y/ of factories which require iron ore, and asked to decide which
mines should supply ore to each factory in order to minimize the total transportation
costs. Here the cost per ton of ore transported from x to y2Rn is given by a function
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which we usually take to be the distance squared c.x; y/D jx� yj2=2, while the
problem is traditionally studied under the assumption that net production balances
net consumption

(1.1)
Z

Rn
f .x/ dxD

Z
Rn
g.y/ dy<C1:

In the present work we examine the case in which the total production and con-
sumption need not agree, but ask the question: If one wishes to utilize only a
certain fraction m � min fkf k1; kgk1g of production and consumption capacity,
which mines should remain active and which factories should they supply if total
transportation costs are to be a minimum? If the mines are separated from the
factories, the unique solution turns out to be given by pair of domains U; V � Rn,
with U containing the active mines and V the active factories, together with a corre-
spondence s WU �! V mapping each active mine to the corresponding factory. The
domains depend monotonically on m, and can be characterized as the noncontact
regions in a double obstacle problem for the Monge-Ampère equation; they obey
the mass balance relation

(1.2) mD

Z
U

f .x/ dxD
Z
V

g.y/ dy;

in conjunction with the assertion that the optimal map between f C .1��V /g and
.1��U /f Cg coincides with the identity map s.x/D x outside of U [V . We go on
to specify conditions on f and g (e.g., (1.4)–(1.5) with �;ƒ�Rn strictly convex)
which are sufficient to ensure that U and V are path connected regions with C 1;˛loc
smooth free boundaries, and that s W xU �! xV is a homeomorphism (smoother on
the interior if f and g are) which remains Hölder continuous up to the free, and
part of the fixed, boundary.

Our approach relies on the duality ideas exploited by Brenier in his study [12],
[13] of the case of complete transfer mD kf k1 D kgk1, and on regularity results
developed by Caffarelli for that case [15], [16], [17], [19]. A main conclusion of
Brenier was that for distance squared c.x; y/D jx� yj2=2, the optimal correspon-
dence yD s.x/ between mines and factories could be uniquely characterized as the
gradient sDr of a convex function  W Rn �! R; cf. parallel developments in
Abdellaoui and Heinich [1], Cuesta-Albertos, Matrán, and Tuero-Dı́az [26], [27],
Cullen and Purser [28], Knott and Smith [53], [74], and Rüschendorf and Rachev
[70], and alternative approaches in Caffarelli [16], Gangbo [39], and McCann [57].
Where smooth — and indeed almost everywhere [58, Rem. 4.5] — this convex
function  must satisfy the Monge-Ampère equation

(1.3) det
h
D2ij .x/

i
D f .x/=g.r .x//:
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If, in addition, the production and consumption densities f; g � 0 are bounded
above and below on their domains �;ƒ� Rn of support

"��.x/� f .x/� "�1��.x/(1.4)

"�ƒ � g � "
�1�ƒ;(1.5)

then Caffarelli has shown the map r W� �!ƒ to be injective [17] and Hölder
continuous locally [15] provided � � Rn is bounded and ƒ is convex. Then

 2 C
kC2;ˇ
loc .�/ whenever f and g are C k;

x̌

loc smooth for ˇ 2 �0; x̌Œ and k D
0; 1; 2; : : : . Partial regularity could be extended to the boundary:  2 C 1;˛.x�/
[16] or  2 C 2;˛.x�/ [19], but only at the expense of assuming convexity and (in
the latter case) smoothness of the domain � as well as the target ƒ; cf. Delanoë
[31], Urbas [79], and Wolfson [82]. Since our partial transfer problem reduces to
mapping �Uf C .1��V /g onto g, the interior regularity results can be invoked di-
rectly provided ƒ is convex. Unfortunately, the boundary theory cannot be applied
directly since the unknown domains U �� and V �ƒ generally fail to be convex.
Our argument for extending Hölder estimates to the free boundary (and part of the
fixed one) will couple the observation that free boundary never maps to fixed bound-
ary, with a local version of Caffarelli’s method, plus certain geometrical properties,
such as an interior ball condition fx 2� j c.x; s.x0// < c.x0; s.x0//g � U which
holds for every x0 2 U , and provides a one-sided curvature bound at each point of
the free boundary �\ @U . This ball condition implies the displacement s.x/� x
is perpendicular to the free boundary, allowing us to conclude Hölder continuity
of the free normal also. This discussion is developed in Section 7, which, together
with Appendix A, contains a complete exposition of the C 1;˛.�/ regularity the-
ory (boundary and interior) when production and consumption are fixed and equal
on two given convex sets. Unfortunately, the geometry we establish for the free
boundary is not sufficient to decide whether higher regularity of the free normal
and mapping nearby might follow from higher regularity of the data f and g, as it
would for complete transfer between smooth uniformly convex domains [18]. This
question remains open in the partial transfer case.

We mention that our partial transfer problem involves augmenting the Monge-
Ampère equation (1.3) and inclusion r .x/ 2ƒ with Dirichlet free boundary data
 .x/ D jxj2=2 on �\ @U . It goes without saying that the regularity discussion
is specific to the quadratic cost c.x; y/ D jx� yj2=2. In sharp contradistinction
to the more familiar situation of complete transfer, the optimizer for the quadratic
cost in the partial transfer problem will not generally optimize the bilinear cost
Qc.x; y/D�h x; yi. This is illustrated by the following simple example, which also
indicates why new hypotheses are required to ensure uniqueness.
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Example 1.1 (Transport between concentric balls). Let f D �B1 and g D
�Bn be the characteristic functions of balls centered at the origin, with radii 1
and n respectively. If we ask to transfer mass m < kf k1 from f to g so as to
minimize the quadratic cost c.x; y/D jx� yj2=2, the solution is far from unique:
any function f1 � f � g with mass m can be transported to g1 D f1 at zero cost.
On the other hand, the bilinear cost Qc.x; y/D h x; yi is uniquely maximized when
f1 D .1��Br /f and g1 D .1��BR/g are both chosen to be hollow spheres of
mass m, and s#f1 D g1 maps monotonically outward along rays: s.x/D k.jxj/x
with k.t/� 0 and k0.t/� 0.

On the other hand, when mDminfkf k1; kgk1g then c.x; y/D jx� yj2=2 is
uniquely minimized in this example and, we expect, more generally.

Regularity results for nonquadratic costs are a very recent development even
in the context of the fixed boundary (complete transfer) problem, where Ma, Trud-
inger and Wang have identified a concavity condition on the Hessian of the cost,
which — for smooth data and suitable domain geometry — yields regularity of
the mapping [56] up to the boundary [77]. This condition is called (A3s) when it
holds uniformly, and (A3w) otherwise. Loeper showed that whenever (A3w) fails,
there are smooth data on perfectly suitable domains for which the optimal map
is discontinuous. Conversely, when (A3s) holds, he gave a direct proof of Hölder
continuity of the map s W��!ƒ, with Hölder exponent ˇD 1=.4n�1/, under very
weak hypotheses on f and g [55]. Since our quadratic cost c.x; y/D jx� yj2=2
satisfies (A3w) but not (A3s), we cannot expect the Hölder continuity established
below for partial transport to hold under general perturbations of the cost. It might
be expected to hold for (A3w) perturbations, but since the affine invariance ex-
ploited below is specific to the quadratic cost, this question presumably requires
a different approach to resolve. For (A3s) costs, Loeper’s argument offers some
hope of addressing the Hölder continuity of partial transport, a possibility currently
being investigated with A. Figalli and Y.-H. Kim [38].

Kantorovich duality is of course quite general, see e.g. Kellerer [52], Rachev
and Rüschendorf [67], or Villani [80], while unique characterizations of optimal
maps for other costs have been investigated by Ahmad [3], Ambrosio and Rigot
[6], Caffarelli [18], Gangbo and McCann [41], [42], [43], Gangbo and Świȩch
[44], McCann [60], [61], Plakhov [66], Rüschendorf and Uckelmann [10], Uck-
elmann [78] in various geometries. Monge’s cost c.x; y/ D jx � yj in particu-
lar has attracted recent attention from Ambrosio [7] and Pratelli [9], Ambrosio,
Kircheim and Pratelli [5], Caffarelli, Feldman and McCann [20], DePascale, Evans
and Pratelli [30], Feldman and McCann [37], [36], and Trudinger and Wang [76]
following the work of Evans and Gangbo [34] and Sudakov [75]. Although the
free boundary problem we pose has not been much studied, other transportation
problems in which one measure is fixed and the second is selected by a variational
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principle have been examined extensively in the context of dynamical problems
since the work of Otto [65] and Jordan, Kinderlehrer and Otto [50], see also e.g.
Agueh [2], Ambrosio, Gigli and Savare [8], Cullen and Gangbo [29], Gianazza,
Savare and Toscani [45], Savin [71]; in shape optimization since the work of
Bouchitte, Buttazzo and Seppecher [11], see also e.g. Milakis [62] and Xia [83];
and in economics since the work of Rochet and Choné [68], see also e.g. Carlier
[23], Carlier and Lachand-Robert [22], Carlier and Ekeland [21], Ekeland [33] and
Buttazzo, Pratelli and Stepanov [14]. Obstacle problems for the Monge-Ampère
equation have been considered by Chou and Wang [25], Dolbeault and Monneau
[32], Lee [54], and Savin [72]; the formulation and boundary conditions of these
single obstacle problems are quite different from the double obstacle problems
analyzed below, even though some similar issues are addressed.

To formulate our problem more precisely, fix a pair of L1.Rn/ functions
f; g � 0. Let ��.f; g/ denote the set of nonnegative Borel measures on Rn �Rn

whose left and right marginals are dominated by f .x/ dx and g.y/ dy respectively:

(1.6) ŒA�Rn��
Z
A

f .x/ dx and ŒRn �A��
Z
A

g.y/ dy

for  2��.f; g/ and every Borel setA�Rn. The cost functional to be minimized is

(1.7) C�./ WD

Z
Rn�Rn

Œc.x; y/��� d.x; y/;

with the minimum taken over all measures in ��.f; g/ of fixed mass ŒRn �Rn�
D m. For technical reasons it is easier to introduce a Lagrange multiplier � � 0
conjugate to this constraint, and take the infimum over joint measures of all masses:

(1.8) C�.f; g/ WD inf
2��.f;g/

C�./:

If the optimizer is unique, we denote it by � and its mass by m.�/ WD �ŒRn �Rn�.
It is then easily deduced that m.�/D�@C�.f; g/=@� increases continuously from
0 to min fkf k1; kgk1g as � is increased. Thus each mass m can be attained by
selecting the appropriate value of �� 0. Finally, we verify that only one measure
in ��.f; g/ with mass m is optimal, and characterize it as described.

The characterization of this optimal measure and its unicity are derived from
a maximization problem dual to (1.8) (in the sense of linear programming or Kan-
torovich [51]). In fact, we check that

(1.9) C�.f; g/D sup
u.x/Cv.y/�c.x;y/��

u;v�0

Z
Rn
u.x/f .x/ dxC

Z
Rn
v.y/g.y/ dy;

and use the optimal u and v to describe the active regions U D fx j u.x/ < 0g and
V D fy j v.y/ < 0g and support of the optimal measure  , where support refers to
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the smallest closed subset of Rn �Rn carrying the full mass of  , denoted spt  .
When c.x; y/D jx� yj2=2, the minimization problem

(1.10) inf
 .x/C�.y/�h x; yi

 .x/�.jxj2��/=2 �.y/�.jyj2��/=2

Z
Rn
 .x/f .x/ dxC

Z
Rn
�.y/g.y/ dy

is seen to be equivalent, in the sense that  .x/D .jxj2��/=2�u.x/ and �.y/D
.jyj2 � �/=2 � v.y/ optimize (1.10) precisely when .u; v/ optimize (1.9). The
difference in value between (1.10) and (1.9) is determined by the second moments
and mass of f and g. As in Brenier [12], one may restrict the minimization to
convex functions  and �, since e.g.  can always be replaced by the convex
function z .x/ D max f��.x/; .jxj2��/=2g without increasing (1.10). Here ��

denotes the Legendre-Fenchel transform

(1.11) ��.x/ WD sup
y2Rn
h x; yi ��.y/:

The optimal solutions to (1.10) and (1.8) are related by

Œf.x;r .x// j x 2 U g�D ŒRn �Rn�

D

Z
U

f .x/dx

where U D fx 2 Rn j  .x/ > .jxj2��/=2g, so the convex function  determines
both the support of  (essentially the graph of sDr ) and its left marginal f�U —
i.e., the active mines and correspondence between these mines and factories. Note
the appearance of the Dirichlet condition  .x/D .jxj2��/=2 implicitly satisfied
along the free boundary �\@U , and the condition r .x/D x implied throughout
Rn nU .

The remainder of this manuscript is organized as follows. The next section
derives a duality theory for the partial transfer problem with quite general cost func-
tions c.x; y/, giving sufficient conditions for uniqueness of the optimizer. A third
section demonstrates monotone dependence of the active domains U and V on the
amount m of mass transferred. For costs of the form c.x; y/D h.x/�h x; yiCk.y/,
a fourth section formulates a double obstacle problem for the Monge-Ampère
equation which it shows to be equivalent; the Lagrange multiplier � controlling
the optimal mass parametrizes the distance between the upper and lower obstacles.
For the quadratic cost c.x; y/D jx� yj2=2, a fifth section addresses semiconcavity
of the free boundary, when f and g are compactly supported on opposite sides
of a hyperplane. The last two sections address interior and boundary regularity
for the optimal mapping, under the assumption that f D f�� and g D g�ƒ are
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bounded away from zero and infinity (1.4)–(1.5) on separated strictly convex do-
mains �;ƒ� Rn. An appendix is included which makes the boundary regularity
analysis essentially self-contained.

2. Duality and uniqueness for partial transfer

For quite general costs, the solution to the partial mass transfer problem (1.8)
is typically (cf. [33]) derived from the solution of a complete mass transfer problem
constructed as follows: Attach an isolated point y1 to Rn, and extend the cost
function

(2.1) Oc.x; y/ WD
�
c.x; y/�� if x¤ y1 and y¤ y1
0 otherwise

and measures d�.x/ WD f .x/ dx and d�.y/ D g.y/ dy to yRn WD Rn [ f y1g by
adding a Dirac mass isolated at infinity: O�D�CkgkL1ı y1 and O�D �Ckf kL1ı y1.
The measures O� and O� now have the same total mass, and we can ask to minimize
the integral of the cost function Oc against joint measures with these marginals:

�. O�; O�/ WD

(
0� O on yRn � yRn

ˇ̌̌̌
O�ŒU �D OŒU � yRn�
O�ŒU �D OŒyRn �U �

for Borel U � yRn
)
:

A bijection between  2 ��.f; g/ and O 2 �. O�; O�/ is given by

(2.2) O D  C .f �f1/˝ ı y1C ı y1˝ .g�g1/C ŒRd �Rd �ı. y1; y1/;

where f1 � f and g1 � g represent the marginals of  2 ��.f; g/. Since the point
at infinity acts as a tariff-free reservoir (2.1), it is easy to see that the infimum (1.8)
agrees with

(2.3) inf
O2�. O�; O�/

Z
ORn
Oc.x; y/d O.x; y/;

and  optimizes (1.8) if and only if it coincides with the restriction of a minimizing
O to Rn �Rn. Under very mild assumptions, this allows us to invoke the standard
duality theory (2.10), in the form of the following lemmas and corollaries; see
e.g. [42] [52] [67] [80]. The interior ball condition (2.9) deduced for the active
domain plays a critical role in the developments which follow. Proposition 2.9
then identifies conditions (2.16) on the cost function to make the optimal transfer
unique. Injectivity of y �! rxc.x0; y/ is a familiar criterion from Gangbo [40],
Carlier [24], and Ma, Trudinger and Wang [56] for uniqueness of total transfer;
it follows from strict convexity in Caffarelli [18] and Gangbo and McCann [41].
What is new to the setting of partial transfer is the requirement that this map be
nonvanishing. For the quadratic cost c.x; y/D jx� yj2, f and g must therefore be
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disjointly supported for our uniqueness criterion to apply. Here the support sptf
of a measure shall always refer to the smallest closed set containing full mass.

Definition 2.1 (c-concavity and c-transform). A function Ou W yRn �! Œ�1;1Œ

is Oc-concave if it is not identically �1 on spt O� but satisfies
(2.4)
Ou.x/D inf

y2spt O�
Oc.x; y/� Ou Oc.y/DW Ou Oc Oc where Ou Oc.y/ WD inf

x2spt O�
Oc.x; y/� Ou.x/:

LEMMA 2.2 (Topological preliminaries). Fix 0�f; g2L1.Rn/. Then��.f;g/
is weak-� compact in the Banach space dual C1.Rn �Rn/�. If the cost

(2.5) c.x; y/� u.x/C v.y/

is continuous and dominates a sum u.x/ C v.y/ with uf 2 L1.Rn/ and vg 2
L1.Rn/, then C� W ��.f; g/ �! ��1;1� is weak-� lower semicontinuous and
well-defined.

Proof. Here C1.Rn �Rn/ denotes the continuous functions which vanish
at1 normed by the supremum norm, i.e., the closed subspace of L1.Rd �Rd /
generated by compactly supported continuous functions. The norm of a positive
measure  2 ��.f; g/ in the Banach space dual C1.Rn �Rn/� coincides with its
mass kkC�1 D ŒR

d �Rd �. Thus ��.f; g/ is bounded by min fkf kL1 ; kgkL1g,
and weak-� pre-compact by the Banach-Alaoglu theorem. Any sequence n 2
��.f; g/ has a weak-� convergent subsequence n 2 �.fn; gn/ whose marginals
fn ! f1 and gn ! g1 also converge weak-� in C1.Rn/. Now n ! 1 2

�.f1; g1/ according to [57, Prop. 9(ii)]. Since f1 � f and g1 � g we have
��.f; g/ weak-� compact.

Fixing � D 0 for the moment, we may assume u; v � 0. We also assume
both f and g have positive mass, since otherwise the lemma is trivially true. Now
extend u and v to yRn by taking Ou. y1/ D 0 D Ov. y1/ so that (2.11) holds. Since
O�Œ y1�D kgk1 in (2.2), we deduce Ou Oc � 0 from (2.4), and Ou Oc. y1/D 0 from u� 0.
Replacing Ov by Ou Oc � Ov and then Ou by Ou Oc Oc , it therefore costs no generality to assume
u� 0 is a Oc-concave function and v D Ou Oc � 0 in the hypotheses (2.5). Moreover, Ou
and Ov are infima of continuous functions (2.4), hence upper semicontinuous. The
cost function Qc.x; y/ WD Oc.x; y/� Ou.x/� Ov.y/� 0 is now bounded below, and lower
semicontinuous, so the associated integral

zC. O/ WD

Z
ORn� ORn

Qc.x; y/d O.x; y/

is well-defined and weak-� lower semicontinuous on �. O�; O�/ by a monotone con-
vergence theorem argument in which the cost Qc.x; y/ is approximated from below
by a continuous cost vanishing at1.¤ y1/. Now zC. O/ differs from C�./ by the
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finite constant

0�

Z
ORn
Ou.x/d O�.x/C

Z
ORn
Ov.y/d O�.y/ > �1

so C�./ > �1 and lower semicontinuous on ��.f; g/ for �D 0.
Applying the same lemma to both c.x; y/D˙1 shows that the mass m./ WD

ŒRd �Rd � is a weak-� continuous function on ��.f; g/. Thus weak-� lower
semicontinuity of C0./ extends equally well to C�./ D C0./ � �m./ for
�¤ 0. �

LEMMA 2.3 (Optimality criterion). Let f; g, and c satisfy the hypotheses of
Lemma 2.2. Then the infimum (2.3) is finite, attained, and there exists a Oc-concave
function Ou W yRn �! Œ�1;1Œ such that every optimal measure O 2 �. O�; O�/ satisfies

(2.6) spt O � f.x; y/ 2 yRn � yRn j Ou.x/C Ou Oc.y/D Oc.x; y/g DW @ Oc Ou:

Proof. According to Lemma 2.2, the cost function C�./ is weak-� lower
semicontinuous on the compact set ��.f; g/. Thus the infimum (1.8), or equiva-
lently (2.3), is attained in ��1; 0�; it is nonpositive since O D �˝ ı y1C ı y1˝ � is
a competitor with zero cost (2.1). For a cost Oc.x; y/� 0 on X �Y WD spt O�� spt O�,
Gangbo and McCann [42, �2] construct a single Oc-concave function Ou W X �!
Œ�1;1Œ such that

spt O � @ Oc Ou WD f.x; y/ 2X �Y j x 2 arg min
z2X
Oc.z; y/� Ou.z/g

holds simultaneously for every optimizer O 2 �. O�; O�/. Nonnegativity of Oc is used
only to ensure C�. O/ is well-defined in their proof; since we have this instead from
Lemma 2.2, their proof extends to our signed costs also. This gives the desired
identity (2.6). Since Ou is Oc-concave, Rachev and Rüschendorf [67, �3.3.5] assert
OuD Ou Oc Oc . The functions Ou and Ou Oc can be extended to all of yRn via (2.4) without
modifying their values on X �Y . �

COROLLARY 2.4 (Active versus inactive locations). Take f; g, and c as in
Lemma 2.2 and � 2 R. Suppose � 2 �.f1; g1/ minimizes (1.8). Then .x1; y1/ 2
spt � implies c.x1; y1/� �. If x0 2 spt Œf �f1� and/or y0 2 spt Œg�g1� also exist,
then c.x1; y1/�min fc.x0; y1/; c.x1; y0/g and if both exist �� c.x0; y0/. Thus U
is disjoint from spt Œf �f1�, and V is disjoint from spt Œg�g1�, where

U WD
[

.x1;y1/2spt�

fx 2 Rn j c.x; y1/ < c.x1; y1/g and(2.7)

V WD
[

.x1;y1/2spt�

fy 2 Rn j c.x1; y/ < c.x1; y1/g:
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Proof. Let O from (2.2) extend  WD �. For all .x0; y0/; .x1; y1/ 2 spt O , the
standard monotonicity inequality

(2.8) Oc.x0; y0/C Oc.x1; y1/� Oc.x0; y1/C Oc.x1; y0/

is easily deduced from (2.4) and (2.6); see e.g. [42, �2.7]. Given .x1; y1/ 2 spt  ,
we have .x0; y0/ D . y1; y1/ 2 spt O from (2.2), whence c.x1; y1/ � � from (2.8)
and (2.1). If there exists x0 2 spt Œf �f1�, then .x0; y1/ 2 spt O so taking y0 D y1
yields Oc.x1; y1/� Oc.x0; y1/ in (2.8). Similarly y0 2 spt Œg�g1� implies c.x1; y1/�
c.x1; y0/. Finally, applying (2.8) to the pair of points .x0; y1/; . y1; y0/ 2 spt O ,
yields �� c.x0; y0/.

Turning to (2.7), we see that x 2 U \ spt Œf �f1� implies the contradiction

c.x; y1/ < c.x1; y1/� �� c.x; y1/;

so U is disjoint from spt Œf � f1�. Similarly, V is disjoint from spt Œg � g1�, by
symmetry under interchange of x$ y and f $ g. �

Example 2.5 (Interior ball condition). Taking c.x; y/D jx� yjp with p > 0,
and Br.x/ WD fy 2 Rn j jx� yj< rg in the preceding corollary yields

(2.9) U D
[

.x;y/2spt�

Bjx�yj.y/ and V D
[

.x;y/2spt�

Bjx�yj.x/:

COROLLARY 2.6 (Kantorovich duality). Fix f; g and c satisfying the hypothe-
ses of Lemma 2.2 and � 2 R. Then the maximum and minimum below are attained
— by any O 2 �. O�; O�/ and . Ou; Ov/D . Ou Oc Oc ; Ou Oc/ satisfying (2.6) with Oc 2 L1.d O/:
(2.10)

max
. Ou; Ov/2L1.d O��d O�/
Ou.x/COv.y/�Oc.x;y/

Z
ORn
Ou.x/d O�.x/C

Z
ORn
Ov.y/d O�.y/D min

O2�. O�; O�/

Z
ORn� ORn

Oc.x; y/d O.x; y/:

Proof. Let Ou 2 L1.d O�/ and Ov 2 L1.d O�/ be functions satisfying

(2.11) Ou.x/C Ov.y/� Oc.x; y/:

Integrating (2.11) against any O 2 �. O�; O�/ shows the infimum dominates the supre-
mum in (2.10); we have only to exhibit a case of equality to conclude the proof.

Choose any O 2 �. O�; O�/ with Oc 2 L1.d O/ and Ou satisfying (2.4) and (2.6).
These exist by the preceding lemma, and setting Ov D Ou Oc implies (2.11). Moreover
Ou.x/C Ov.y/ D Oc.x; y/ 2 R holds throughout spt O . In particular Ou is real valued
O�-a.e., and Ov is real valued O�-a.e. Extend uf and vg 2L1.Rn/ from (2.5) to vanish
at y1. Defining Qu WD Ou�u, Qv WD Ov�vD QuQc , and Qc.x; y/D Oc.x; y/�u.x/�v.y/� 0
yields Qu.x/C Qv.y/� Qc.x; y/ with equality on spt O . In particular, Qu.x/C Qv.y/� 0 on
spt O shows Qu and Qv bounded below O� and O�-a.e., respectively. This means

R
Qud O�
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and
R
Qvd O� do not diverge to �1. Integrating (2.11) now yields

(2.12)
Z
ORn
Qu.x/d O�.x/C

Z
ORn
QuQc.y/d O�.y/D

Z
ORn� ORn

Qc.x; y/d O.x; y/ <1;

showing Qu 2 L1.d O�/ and Qv 2 L1.d O�/. Subtracting the finite integral of uf C vg
from both sides demonstrates that a finite equality in (2.10) is achieved by O and
. Ou; Ov/D . Ou Oc Oc ; Ou Oc/ 2 L

1.d O�� d O�/. �

COROLLARY 2.7 (Duality for partial-transfer). The hypotheses of Lemma 2.2
also imply
(2.13)

max
u.x/Cv.y/�c.x;y/��

u.x/;v.y/�0

Z
Rn
u.x/f .x/ dxC

Z
Rn
v.y/g.y/ dyD min

2��.f;g/

Z
Rn�Rn

.c��/ d;

and the maximum is attained by the restriction to Rd �Rd of . Ou� Ou. y1/; Ou Oc C
Ou. y1// from Lemma 2.3.

Proof. The restriction of O 2 �. O�; O�/ to Rn gives a measure in ��.f; g/
and the associated costs are the same since transportation to and from the isolated
reservoir is free (2.1). Moreover, each  2 ��.f; g/ extends uniquely to a measure
O 2 �. O�; O�/: if  has marginals f 0 � f and g0 � g, then O will have density
f � f 0 and g� g0 on Rn � f y1g and f y1g�Rn, plus an isolated atom of weight
kf 0kL1.Rn/ D kg

0kL1.Rn/ at . y1; y1/. Thus the minima in (2.10) and (2.13) coin-
cide; it remains to show the same for the maxima.

Any competitors .u; v/ in (2.13) can be extended to yRn by taking u. y1/ D
0D v. y1/; this nonpositive extension satisfies (2.11) because of (2.1). The max-
imum (2.10) over the larger class of competitors can only dominate (2.13). Con-
versely, the lemma and corollary preceding are unchanged if . Ou; Ov/ are replaced by
. OuC k; Ov� k/ for k 2 R. Since Ou. y1/ > �1 for a finite objective, we are free to
assume Ou. y1/D 0, in which case (2.1) and (2.11) imply Ov.y/� 0 throughout yRn.
At yD y1, the only constraint is that Ov. y1/� infx2 ORn �Ou.x/DW�umax, and equality
can be assumed to hold for the maximizing . Ou; Ov/. Thus

(2.14)
Z
ORn
Oud O�C

Z
ORn
Ovd O� D

Z
Rn
OvgC

Z
Rn
Ouf dx�umaxkf kL1.Rn/;

and the sum of the last two terms is not positive since umax � u. y1/� 0. Replac-
ing u by min fu; 0g pointwise always increases the objective (2.14), and makes it
easier to satisfy the constraint (2.11). Therefore we conclude umax D 0, so the
objective functionals in our two maximizations agree. Since the restriction .u; v/
of . Ou; Ov/ to Rn now satisfies the constraints of (2.13), it is clear that the latter
maximization dominates (2.10). Hence the two maximum values coincide, and
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the latter is attained by the restriction to Rd �Rd of . Ou; Ou Oc/ after normalizing
Ou. y1/D 0D Ou Oc. y1/ as described. �

To address uniqueness, mappings, and the regularity which follows, we shall
need the notion of a pushed-forward measure. Given a measure space .X; O�/ and
a measurable space Y , each measurable map s WX �! Y induces a measure s# O�

on Y , called the push-forward of O� through s, and defined by s#ŒV �D O�Œs�1.V /�
for each measurable set V � Y . If � W Y �! Œ�1;1� is measurable, it is not hard
to check

(2.15)
Z
Y

� d.s# O�/D

Z
X

�.s.x// d O�.x/;

when either integral is well-defined. As an example, the projection � WRn�Rn!Rn

given by �.x; y/ D x pushes forward  2 �. O�; O�/ to its left marginal O� D �# .
We shall use the notation dom � WD fx 2X j j�.x/j<1g, and if X D Rn then
domr� � Rn will denote the points of differentiability of �.

LEMMA 2.8 (Uniqueness of transportation). Taking f; g, and c as in Lemma
2.2, assume every Oc-concave function Ou W yRn �! Œ�1;1Œ has the property that
for f -a.e. x0 2 dom Ou n f y1g, the equation Ou.x0/C Ouc.y/D Oc.x0; y/ has at most
one solution yD s Ou.x0/ in spt O�. Then a unique measure O 2 �. O�; O�/ of finite cost
Oc 2L1.d O/ has restriction to Rn�yRn given by O1D .id�s Ou/#f with Ou a Oc-concave
function, and Ou Oc D Ou. y1/D 0 on spt Œ O� � s Ou#f �. This O uniquely minimizes (2.3).

Proof. Lemma 2.3 asserts the existence of at least one optimal measure O 2
�. O�; O�/ with (2.3) finite, and provides a Oc-concave function Ou such that all optimal
measures are supported inside @ Oc Ou. It costs no generality to assume Ou. y1/D 0. The
projection �.spt O/ under �.x; y/D x is � -compact, and since .x; y/ 2 spt O � @ Oc Ou
implies u.x/ finite, �.spt O/� dom Ou. By hypothesis, some Borel set S ��.spt O/n
f y1g containing the full mass of f , admits a map s Ou WS �! spt � such that S� yRn\
spt O DG WD f.x; s Ou.x// j x 2 Sg. Note that s Ou depends on Ou but not on O , except
possibly through the precise choice of domain S . The graph G is clearly Borel.
Since � WG �! yRn is Lipschitz and univalent, Federer [35, �2.2.10, p. 67] shows
s�1
Ou
.B/D �.G\ .Rn�B// is Borel whenever B � yRn is. The map s Ou is therefore

Borel. By [43, Lemma 2.4] we conclude that the restriction O1 WD O jRn� ORn is given
by O1D .id�s Ou/#f . Since O2 WD O� O1 is supported on f y1g� yRn, it is completely
determined by its right marginal O�2 WD O�� s Ou#f . If a second measure O 0 minimizes
(2.3), the same argument shows O 0D .id�s0

Ou
/#f Cı y1˝. O��s0

Ou#f /, where s0
Ou
D s Ou

on the intersection of their domains S \S 0. Since this intersection carries the full
mass of f , we conclude that finiteness of (2.3) implies that the optimizer O 0 D O
is unique. Finally, since .x; y/ 2 spt O2 D f y1g� spt O�2 implies Ou.x/C Ou Oc.y/D 0
with xD y1, we conclude Ou Oc.y/D�Ou. y1/D 0 throughout spt O�2.
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If any other Oc-concave function Ou0 with Ou0
Oc
D 0D Ou0. y1/ holding on spt Œ O� �

s Ou#f � induces a measure O 0 D .id� s Ou0/#f C ı y1˝ . O� � s Ou0#f / in �. O�; O�/, we
conclude O 0-a.e. .x; y/ belongs to @ Oc Ou0. Integrating the equality Ou.x/C Ou Oc.y/ D
Oc.x; y/ 2 L1.d O 0/ against O 0, we conclude (2.12) holds and is finite, as in the last
part of the proof of Corollary 2.6. Now duality shows O 0 to be optimal, hence to
coincide with the unique minimizer O in (2.10). �

The following theorem gives conditions on the cost which guarantee unique-
ness of partial transfer. These conditions suffice for the present purpose, though
we have no doubt that various refinements are possible and desirable, e.g., for
eliminating the compact support assumption from Theorem 4.3. We say a function
� W Rn �! Œ�1;1� is superdifferentiable at x0 2 Rn if there exists p 2 Rn such
that

lim sup
x!x0

�.x/� �.x0/� hp; x� x0i
jx� x0j

� 0:

Any concave function � W Rn �! Œ�1;1Œ is superdifferentiable on int Œdom ��.

PROPOSITION 2.9 (Ensuring uniqueness of partial transfer). Fix 0 � f; g 2
L1.Rn/. Assume c.x; y/ is Lipschitz and superdifferentiable on the interior of
conv Œsptf � sptg�. Suppose for f -a.e. x0 2 Rn the map

(2.16) y 2D �!rxc.x0; y/ is nonvanishing and injective

on the set D � sptg where it is well-defined. Then — with the possible exception
of the lower bounds (2.5) all hypotheses of Lemma 2.8 are satisfied.

Proof. McShane’s theorem gives a global extension of Oc.x; y/ to Rn � Rn

with Lipschitz constant L. Let Ou be a Oc-concave function. Then (2.4) expresses
Ou as the infimum of a family of Lipschitz functions of x, with jrx Oc.x; y/j � L.
According to e.g. [81, �10.26], Ou is real-valued and has the same Lipschitz con-
stant L, since the alternative Ou WD �1 is not Oc-concave. Now Ou is differentiable
f -a.e. by Rademacher’s theorem. Choose x0 2 domr Ou\ int Œconv Œsptf ��. Recall
Oc.x0; y/� Ou.x0/� Ou Oc.y/� 0 from (2.4). Suppose y0 2 spt O� produces equality. Our
nonnegative function then attains a local minimum with respect to both variables,
so 0 2 Rn is a subgradient of Oc.x; y0/� Ou.x/ at x0. Since x0 2 domr Ou, it follows
that �r Ou.x0/ is a subgradient for h.x/ WD Oc.x; y0/ at x0 ¤ y1. Now h.x/ is also
superdifferentiable, so its derivative exists and rx Oc.x0; y0/Dr Ou.x0/. If y0 D y1
we have rx Oc.x0; y0/D 0 from (2.1). Thus r Ou.x0/¤ 0 implies y0 2 sptg, in which
case the injectivity hypothesis (2.16) determines y0 2 sptg uniquely in terms of Ou
and x0. On the other hand, if r Ou.x0/D 0 we can only have y0 2 f y1gD spt O�nsptg
by the nonvanishing restriction on rxc. Either way, y0 is uniquely determined, so
the hypotheses of Lemma 2.8 are verified. �
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Example 2.10 (Square distance). Taking c.x; y/D jx� yj2=2, the condition
(2.16) for uniqueness becomes that f vanish a.e. on sptg. In particular, the mass
distributions f and g must be mutually singular. Some such condition is obviously
necessary, as the example f D g D �� with m < vol Œ�� shows. When sptf is
separated from sptg by a positive distance, (2.9) becomes an interior ball condition
for the active sets U and V . The bounds (2.5) hold whenever f and g have finite
second moments.

COROLLARY 2.11 (Lagrange multiplier for transport amount). Take f; g, and
c as in Lemma 2.3. Suppose for each � the optimizer � 2 ��.f; g/ in (1.8)
is unique. Then � �! � is a weak-� continuous curve in C1.Rn �Rn/� and
�C�.�/ is a convex differentiable function of � 2 R whose slope

�dC�.�/=d�Dm.�/ WD �ŒRd �Rd �

ranges continuously from m.�1/ D 0 to m.1/ D min fkf kL1 ; kgkL1g. Each
distinct slope m.�/ D m.�0/ corresponds to a unique measure � D �0 . The
extremal slopes are attained for finite � if c.x; y/ is bounded on sptf � sptg.

Proof. Define C�.f; g/ WD C�.�/. Let us first argue the weak-� continuity
of the curve � �! � of optimal measures. The chain of inequalities

C�.�Cı/� ım.�C ı/D C�Cı.f; g/

� C�Cı.�/D C�.f; g/� ım.�/

shows that as ı! 0, the energy C�.�Cı/ converges to its minimum value C�.f;g/.
Since our curve lies in the compact set ��.f; g/ of Lemma 2.2, every sequence
ı.n/! 0 admits a convergent subsequence �Cı.n.k//! 1. The lower semicon-
tinuity of the same lemma guarantees 1 is a minimizer, hence 1 D � by our
uniqueness hypothesis. This shows continuity of the curve of measures at � 2 R.
As remarked at the conclusion of the proof of Lemma 2.2, the mass functional
��.f; g/ �! ŒRn �Rn� is weak-� continuous, so we have continuity of m.�/ as
well.

Formulas (1.7)–(1.8) express the minimal cost as an infimum of nonincreasing
affine function C�./ of �, hence C�.f; g/ is concave nonincreasing on � 2 R.
Writing the difference quotient in two ways,

�m.�C ı/ �
C�.�Cı/�C�.f; g/� ım.�C ı/

ı

D
C�Cı.f; g/�C�.f; g/

ı

D
C�Cı.f; g/�C�Cı.�/� ım.�/

ı
� �m.�/

the limit ı! 0 shows the continuous function �m.�/ to be the slope of C�.f; g/.
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If the same slope m.�/ D m.�C ı/ is attained for two different Lagrange
multipliers �¤ �C ı, this means that the corresponding optimizers � and �Cı
have the same mass. From C�.�/ � C�.�Cı/ and C�Cı.�Cı/ � C�Cı.�/

they must also have the same cost:
R
c d� D

R
c d�Cı . But then the last two

inequalities become equalities, and the hypothesized uniqueness of minimizer for
C�.�/ implies �Cı D �.

If the function c.x; y/ is bounded, then taking � negative enough ensures
c.x; y/ � � > 0, so the infimum (1.8) is attained by � D 0. Similarly, taking
� positive enough so c.x; y/� � < 0 ensures m.�/ D min fkf k1; kgk1g: unless
equality holds in f1 � f or g1 � g, Corollary 2.4 contradicts c.x0; y0/ < �. If
c.x; y/ is unbounded, then given any " > 0, taking R > 0 sufficiently large ensures
both f and g have mass less than " outside the ball BR.0/�Rn. Taking sufficiently
extreme �, we can force c.x; y/� � to have the sign of our choice on BR.0/ �
BR.0/. A positive sign ensures m.�/ < " while a negative sign ensures m.�/C" >
min fkf k1; kgk1g. �

3. Monotone expansion of active regions

Given distributions 0� f; g 2 L1.Rn/ of compact support and a continuous
cost function c.x; y/, let � denote the minimizer of the constrained optimiza-
tion problem (1.8); clearly � minimizes transportation costs among all transfer
schemes which transport mass m.�/ D �ŒRn �Rn� from f to g. We turn now
to showing that the marginals f� � f and g� � g of � 2 �.f�; g�/ depend
monotonically on � 2 R, or equivalently (by results of the preceding section) on
the amount mDm.�/ of mass transferred.

It is convenient to address this question for discrete measures �; � � 0 on Rn,
which approximate the desired distributions in the continuum limit �! f and
� ! g. Given finite sets X � Rn and Y � Rn with cardinality P D #.X/ and
Q D #.Y /, let us therefore consider the problem of choosing M � min fP;Qg
distinct points fx1; : : : ; xM g �X and M distinct points fy1; : : : ; yM g � Y , which
minimize the sum

MX
iD1

c.xi ; yi /

among such choices. Letting �M� .�; �/� ��.�; �/ denote the set of mass M D
ŒRn �Rn� joint measures whose left and right marginals are dominated by � and
� respectively. Given

(3.1) �D
X
x2X

ıx and � D
X
y2Y

ıy;
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the problem described above is equivalent to finding an extremal measure M DPM
iD1 ı.xi ;yi / in �M� .�; �/ which minimizes C�./ among such choices. Our first

proposition asserts that the marginals of M depend monotonically on M .

PROPOSITION 3.1 (Discrete monotonicity of active region). Fix disjoint sets
X � Rn and Y � Rn of finite cardinality P D #.X/ and Q D #.Y / and the
corresponding discrete measures (3.1). For each integer M � min fP;Qg, let
�Mext denote the set of extremal measures in �M� .�; �/ which minimize C�./. Fix
M 2 �Mext and denote its marginals by �M and �M . If M < min fP;Qg there
exists MC1 2 �MC1ext with �MC1 � �M and �MC1 � �M ; similarly, if M > 0

there exists M�1 2 �M�1ext whose marginals �M�1 � �M and �M�1 � �M are
dominated by those of M .

Proof. Fix M 2 �Mext and MC1 2 �MC1ext for M <min fP;Qg. Let �M and
�M denote the left and right marginals of M , and XM WD spt�M , YM WD spt �M
and JM WD spt M their respective supports. Extremality of M in �M� .�; �/
implies M Œ.x; y/�D 1 for all .x; y/2 JM , or equivalently M D

P
.x;y/2JM ı.x;y/.

Since �Œx�D 1 for each x 2 spt�, we conclude both XM and YM have M points.
By induction on the number of points in .XM nXMC1/[ .YM nYMC1/, we

shall show it is possible to construct  0 2 �MC1ext whose marginals dominate those
of M , and  2 �Mext whose marginals are dominated by those of MC1.

If the set named above is empty, we take  D M and  0D MC1 and are done.
The inductive hypothesis asserts that  and  0 exist provided .XM nXMC1/[
.YM nYMC1/ has less than j points. Let us therefore assume that .XM nXMC1/[
.YM nYMC1/ has precisely j > 0 points.

We define a successor function � WXM[YMC1�!XMC1[YM by �.x/Dy
if .x; y/ 2 JM and �.y/D x if .x; y/ 2 JMC1. This function is well-defined since
X and Y are disjoint. It is injective and surjective, since ��1.y/ WD x if .x; y/2 JM

and ��1.x/ WD y if .x; y/ 2 JMC1 gives a well-defined inverse to � . Notice that
orbits of � partition XM [XMC1[YM [YMC1 into equivalence classes. Those
orbits which are not periodic have length less than 4M C 2, and can only start in
.XM nXMC1/[ .YMC1 nYM / and end in .XMC1 nXM /[ .YM nYMC1/.

Since j > 0, the set .XM nXMC1/[ .YM nYMC1/ is nonempty. So � has
at least one orbit which is not periodic and is distinguished by the fact that it either
starts in XM nXMC1 or ends in YM nYMC1 (or both). Notice the elements of this
(and all) orbits of � alternate between X and Y . We will separate our discussion
into two cases depending on whether the distinguished orbit consists of an even or
odd number of elements. If the distinguished orbit has 2kC 1 elements, then it
starts in XM nXMC1 and ends in XMC1 nXM , or else it starts in YMC1 nYM

and ends in YM nYMC1 — a case which can be handled similarly (by symmetry).
Assuming the former without loss of generality, the orbit consists of a sequence
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of points x1; y1; x2; y2; : : : xk; yk; xkC1, with .xi ; yi / 2 JM for 1 � i � k and
.xiC1; yi /2JMC1 for each 1� i �k. Then xkC12XMC1nXM is not represented
in M , whose optimality implies

kX
iD1

c.xi ; yi /�
kX
iD1

c.xiC1; yi /:

The reverse inequality follows from optimality of MC1 since the orbit starts with
a point x0 2XM nXMC1 not present in MC1. This shows the measures C� M

and � � MC1 defined by

C WD

kX
iD1

ı.xi ;yi / and � WD

kX
iD1

ı.xiC1;yi /

have the same right marginals and the same cost; their left marginals differ by
ıx0 � ıxkC1 — the points which appear in XM and XMC1 respectively, but not
both. Thus  WD M C � � C 2 �Mext and  0 WD MC1C C � � 2 �MC1ext .
Moreover, spt  n JMC1 has j � k points, so the inductive hypothesis yields an
element of �Mext whose marginals are dominated by those of MC1. Similarly,
JM n spt  0 has j �k points, so induction again yields an element of �MC1ext whose
marginals dominate those of M .

We turn now to the case that the distinguished orbit has an even number 2k
of elements, with k � 1 as before. In this case the orbit consists of a sequence of
points x1; y1; x2; y2; : : : xk; yk starting with x1 2 XM nXMC1 and ending with
yk 2 YM n YMC1. Here .xi ; yi / 2 JM for all 1 � i � k and .xiC1; yi / 2 JMC1

for 1� i < k, so the orbit includes one fewer couplet from JM than from JMC1.
Since #.JMC1/ > #.JM /, at least one orbit of � has more couplets from JMC1

than from JM ; it must begin in YMC1 n YM and end in XMC1 n XM , thus
consisting of a sequence of points y00; x

0
1; y10 ; : : : ; x

0
`
; y0
`
; x0
`C1

of length 2`C 2,
with .x0i ; y

0
i / 2 J

M if 1� i � `, and .x0iC1; y
0
i / 2 J

MC1 for 0� i � `. Here `� 0.
Optimality of M implies

kX
iD1

c.xi ; yi /C
X̀
iD1

c.x0i ; y
0
i /�

k�1X
iD1

c.xiC1; yi /C
X̀
iD0

c.x0iC1; y
0
i /;

while the reverse inequality follows from optimality of MC1. This shows the
measures C � M and � � MC1 defined by

C WD

kX
iD1

ı.xi ;yi /C
X̀
iD1

ı.x0
i
;y0
i
/ and � WD

k�1X
iD1

ı.xiC1;yi /C
X̀
iD0

ı.x0
iC1

;y0
i
/
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again have the same cost; their left marginals differ by ıx1 � ıx0
`C1

and their right

marginals by ıyk � ıy00
. Once again we find  WD M C � � C 2 �Mext and

 0 WD MC1CC�� 2�MC1ext . Moreover, spt  nJMC1 has j �k�` points, so
the inductive hypothesis yields an element of �Mext whose marginals are dominated
by those of MC1. Similarly, JM n spt  0 has j � k � ` points, so induction
again yields an element of �MC1ext whose marginals dominate those of M . This
establishes the proposition. �

To address densities f; g 2 L1.Rn/ with respect to Lebesgue, let �m� .f; g/�
��.f; g/ denote the joint measures  � 0 of total mass m D ŒRn �Rn� whose
marginals are dominated by f and g. We shall need to recall two elementary
lemmas from functional analysis. Let C1.Rn/ denotes the Banach space of con-
tinuous functions which tend to zero at1 equipped with the supremum norm. Its
dual C1.Rn/ consists of measures with finite total mass, normed by total variation.

LEMMA 3.2 (Compactness). Fix a sequence of joint measures

k 2 �
mk
� .�k; �k/:

Suppose the marginal bounds �k � 0 and �k � 0 converge weak-� in C1.Rn/�

to respective limits � and � as k!1. If �kŒRn�! �ŒRn� and �kŒRn�! �ŒRn�,
then a subsequence of k converges weak-� in C1.Rn �Rn/� to some limit  2
��.�; �/. Moreover, the marginals and mass of k converge weak-� to those of  .

Proof. Fix sequences k , �k! �, and �k! � satisfying the hypotheses of
the lemma. Let xRn denote the one point compactification of Rn. Let O� denote
the extension of � to xRn which vanishes on infinity, and Ok the extension of k
to xRn � xRn which vanishes on both f1g � xRn and xRn � f1g. It follows that
O�k and O�k are the marginals of Ok . Since any continuous function � 2 C.xRn/
can be decomposed as a constant plus � � �.1/ 2 C1.Rn/, we deduce O�k! O�
and O�k ! O� from the hypothesized conservation of mass �kŒRn�! �ŒRn� and
�kŒRn�! �ŒRn�.

Choose a uniform bound R for the total variation of the measures �k and �k
(and hence k). The ball of radius R in the dual space C.xRn � xRn/� is compact
by the Banach-Alaoglu theorem. The weak-� topology is metrizable on this ball,
so the sequence Ok admits a weak-� convergent subsequence. We abandon the
original sequence and denote the convergent subsequence by Ok! O . Since 1 2
C.xRn/� C.xRn � xRn/, the marginals and mass of Ok converge to those of O .

We need to check that O assigns no mass to infinity. Let � i#. O/ denote the
marginals of O , where �1.x; y/ D x and �2.x; y/ D y. Taking k ! 1 in the
hypotheses �1# . Ok/ � O�k yields �1# . O/ � O�, and �2# . O/ � O� similarly. Since
O�Œf1g�D 0D O�Œf1g�, we conclude that O vanishes on f1g� xRn and xRn � f1g.
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Weak-� convergence of k to the restriction  of O to Rn � Rn follows
from C1.Rn �Rn/� C.xRn � xRn/, as does weak-� convergence of the marginals
� i#.k/! � i ./ D � i . O/ from C1.Rn/ � C.xRn � xRn/. Thus  2 ��.�; �/ as
desired, and ŒRn �Rn�D OŒRn �Rn� is the limit of the masses of the k . �

LEMMA 3.3 (Optimality survives limits). Let �k; �k � 0 be measures which
converge weak-� to f; g 2 L1.Rn/, with �kŒRn�!kf kL1 and �kŒRn�!kgkL1
as k!1. Take ck.x; y/ continuous converging uniformly to c0 2 C1.Rn �Rn/,
and k! 0 weak-� withmk WD kŒRn�Rn��m0. If k minimizes the associated
cost function Ck0./ on �mk� .�k; �k/ for each k � 1, then 0 minimizes C00./ on
�
m0
� .f; g/.

Proof. Take k 2 �
mk
� .�k; �k/ converging weak-� to 0 and ck ! c0 2

C1.Rn �Rn/ uniformly as hypothesized. Then mk!m0 WD 0ŒRn �Rn� by the
preceding lemma. For each z 2 �m0� .f; g/ we claim C00.z/� C00.0/. We assume
f and g are nonzero since otherwise there is nothing to prove.

Define d�0.x/ WD f .x/dx and d�0.y/ WD g.y/dy and probability measures
O�k D �k=�kŒRn� and O�k D �k=�kŒRn� for each k � 0. By Brenier’s theorem [13],
there exist convex functions  k and �k WRn �! ��1;1� such that r k# O�0D O�k
and r�k# O�0 D O�k . Shifting  k by a constant depending on k allows us to extract a
subsequence which converges pointwise a.e. to a convex limit  WRn �! ��1;1�

finite at some Lebesgue point of f . It follows that r k ! r a.e. on dom .
Since r k ! 1 outside dom , tightness of the measures O�k ! O�0 implies
O�0Œdom �D 1, and r # O�0 D O�0 by Lebesgue’s dominated convergence theorem.
The convex gradient mappings of Brenier’s theorem are unique, so we conclude
r .x/ D x f -a.e. Similarly, r�k !r� D id g-a.e. for a further subsequence.
Given z 2 �m0� .f; g/, observe zk WD .r k �r�k/#.z/ belongs to �m0� .�k; �k/.
Optimality of k2�

mk
� .�k; �k/ implies Ck0.k/�.mk=m0/C

k
0.zk/ since mk�m0.

We plan to take the limit k!1.
First observe zk! z weak-�; indeed �.x; y/ bounded and continuous impliesZ

Rn�Rn
� d zk D

Z
Rn�Rn

�.r k.x/;r�k.y// d z.x; y/!
Z

Rn�Rn
� d z

as k!1 by the dominated convergence theorem. Taking � D c0 2 C1.Rn�Rn/
yields Z

Rn�Rn
c0 d.0� z/D lim

k!1

Z
Rn�Rn

c0 d.k �mk zk=m0/

D lim
k!1

Z
Rn�Rn

ck d.k �mk zk=m0/

� 0:
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Here the uniform convergence ck! c0 and a bound on the masses mk!m0 have
been used. Thus C00.0/� C00.z/ as desired. �

THEOREM 3.4 (Monotone expansion of active regions). Fix 0�f; g 2L1.Rn/
compactly supported and a continuous cost c.x; y/ on Rn �Rn. Let �mopt denote
the minimizers of C0./ among joint measures  2 �m� .f; g/ of mass m� 0. There
is a curve m 2 Œ0;min fkf kL1 ; kgkL1g� �! m 2 �mopt along which the left and
right marginals of mC" dominate those of m whenever " > 0. Moreover, each
measure  2 �mopt with C0./ <1 lies on such a curve.

Proof. Suppose z 2� Qmopt has finite cost for some Qm�mmax. We shall construct
a curve m 2 �mopt whose marginals increase with m 2 Œ0;mmax� and which passes
through z . Recall that the convex set �m� .f; g/ is weak-� compact, as a conse-
quence of Lemma 3.2. It costs no generality to assume that z is an exposed point
of �m� .f; g/: if z is not an exposed point, it can be weak-� approximated by a linear
combination of exposed points using the Krein-Milman theorem. The same linear
combination of curves through these exposed points will pass arbitrarily close to z .
Taking a subsequential limit of these curves on rational points in Œ0;mmax�, allows
the desired curve to be constructed following the procedure below. We do not claim
continuity of this curve.

Since z is an exposed point of �m� .f; g/, there exists a cost function Qc 2
C1.Rn�Rn/ tending to zero at infinity whose integral QC0./ against  2�m� .f; g/
is uniquely minimized at z . Then z also minimizes .1� t /C0C t QC0 on �m� .f; g/
uniquely. Suppose that for each t D 1=k, we can construct a curve m

k
minimizing

.1� t /C0C t QC0 on �m� .f; g/, with marginals depending monotonically on m 2
Œ0;mmax� and passing through z . Letting k!1, a weak-� subsequential limit of
these curves at Qm and the rational points of Œ0;mmax� allows the desired curve m

through z to be constructed.
From the foregoing, it costs no generality to establish the theorem assuming

that z minimizes C0./ uniquely on �m� .f; g/. Let ŒŒ��� denote the integer part of
any real number � 2 R. As in [57, Lemma 7], it is possible to find sequences

�k D
1

2k

ŒŒ2kkf k1��X
iD1

ıxk
i

and �k D
1

2k

ŒŒ2kkgk1��X
jD1

ıyk
j

of discrete measures which converge subsequentially �k ! f .x/dx and �k !
g.y/dy in the weak-� sense as k ! 1. By displacing them slightly, we may
take all points xki and ykj to be distinct for each given k. It costs no generality
to suppose that they are all contained in a bounded set � independent of k; also,
we can multiply the cost c by a cutoff function outside of x� � xU so it belongs
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to C1.Rn �Rn0). Using Proposition 3.1, we find a measure M=2
k

k
which min-

imizes C0./ on �M .�k; �k/ and whose marginals satisfy �M=2
k

k
� �

.M�1/=2k

k

and �M=2
k

k
� �

.M�1/=2k

k
inductively for each integer M 2 Œ1; 2kmmax�. Using

a diagonal process, we find a subsequence k ! 1 such that the measures m
k

converge weak-� to a limit m on each dyadic rational m DM=2j in Œ0;mmax�.
By Lemmas 3.2 and 3.3, the limit measure m 2 �mopt inherits optimality, and its
marginals are dominated by those of mC" whenever 0 < m <mC "�mmax are
dyadic rationals. If m 2 Œ0;mmax� is not a dyadic rational, we use Lemma 3.2 to
find a sequence of dyadic rationals m.i/ increasing to m, for which the measures
m.i/ converge, and define m as their weak-� limit. Again m 2 �mopt by Lemma
3.3. Since the marginals of m.i/ are dominated by those of m.i/C".i/ for ".i/� 0
dyadic, Lemma 3.2 implies the same is true in the limit ".i/! ". The theorem is
now complete since the curve m passes through � Qmopt D fzg. �

4. Monge-Ampère double obstacle problem

Given 0� f; g 2L1.Rn/ and obstacle functions h and k WRn �!R, one may
ask whether it is possible to find a convex function  WRn �! ��1;1� such that

(4.1) g.r .x// det
�
D2 .x/

�
D f .x/ on U WD fx 2 Rn j  .x/ > h.x/g:

Without boundary conditions, this problem is severely under-determined. We claim
the following auxiliary conditions on its Legendre transform  � (1.11) resolve the
degeneracy:
(4.2)

r .U /� V WD fy 2Rn j �.y/ > k.y/g and
Z
V 

g.y/ dyD
Z
U 

f .x/ dx:

As the obstacles are removed, h; k ! �1, this problem converges to the fa-
miliar Monge-Ampère second boundary value problem. To see that it remains
well-determined with obstacles present, we introduce a notion of weak-� solution
motivated by Brenier [13].

Definition 4.1 (Weak-� solutions to Monge-Ampère obstacle). Fix 0� f; g 2
L1.Rn/ and Lipschitz obstacles h and k WRn �!R. A convex function  WRn �!
��1;1� is a weak-� solution to (4.1)–(4.2) if its gradient pushes f�U forward
to g�V . In other words, each Borel test function � W Rn �! R must verify

(4.3)
Z
fxj .x/>h.x/g

�.r .x//f .x/ dxD
Z
fyj �.y/>k.y/g

�.y/g.y/ dy:

Remark 4.2 (Exchange symmetry). A convex function  is a weak-� solution
to the Monge-Ampère obstacle problem (4.1)–(4.2) if and only if its Legendre
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transform  � solves the corresponding problem with data f $ g and obstacles
h$ k interchanged: r #.f�U /D g�V implies r �# .g�V /D f�U by [57,
Rem. 16].

THEOREM 4.3 (Obstacle problem via optimal partial transfer). Fix 0� f; g 2
L1.Rn/ compactly supported and two superdifferentiable, locally Lipschitz obsta-
cles h and k W Rn �! R, with the property that f vanishes a.e. on rh�1.sptg/
and g vanishes a.e. on rk�1.sptf /. Then (4.1)–(4.2) admits a weak-� solu-
tion  . Moreover both U and r are uniquely determined up to sets of f
measure zero, and  WD .id�r /#.f�U / uniquely minimizes (1.8) for the cost
c.x; y/ WD h.x/� h x; yiC k.y/ with �D 0.

Proof. Define c.x; y/ WD h.x/� h x; yi C k.y/, and notice that the map y 2
sptg�!rxc.x0; y/Drh.x0/�y is injective and nonvanishing for x02 .domrh/n
rh�1.sptg/. It is now easy to check that all hypotheses of Proposition 2.9 are
satisfied — including the existence of integrable bounds (2.5). Thus the partial
transfer problem (1.8) has a unique solution for �D 0. Let us use this to deduce
that the weak-� solution  to the Monge-Ampère obstacle problem, if it exists, is
unique. We claim  WD .id�r /#.f�U / coincides with the minimizer  from
(2.13). Since this minimizer  2 ��.f; g/ is unique, and  2 �.f1; g1/ for some
f1 � f and g1 � g, the above claim implies f�U D f1 and g�V D g1, whence
U WD f > hg is unique up to a set where f vanishes, and r is the unique
convex gradient pushing f1 forward to g1 [57].

To see that  minimizes (1.8), start with Young’s inequality (6.2)

h x; yi �h.x/� k.y/� Œ .x/� h.x/�C Œ �.y/� k.y/�;

noting that equality holds when y D r .x/. Setting �u D Œ � h�C and �v D
Œ �� k�C yields

(4.4) �c.x; y/� �u.x/� v.y/;

and we still have equality when yD r .x/ provided x 2 U and y 2 V . Since
V has full measure for g�V Dr #.f�U /, it follows that r �1.V / has full
measure for f�U . Thus integrating  D .id�r /#.f�U / against (4.4) yieldsZ

Rn�Rn
c.x; y/d .x; y/D

Z
U \r �1.V /

c.x;r .x//f .x/ dx

D

Z
U 

u.x/f .x/ dxC
Z
V 

v.y/g.y/ dy:

Since u.x/� 0 and v.x/� 0 become equalities outside U �V , the last integrals
can be extended to all of Rn. Having found a case of equality in (2.13), we conclude
that  is the desired minimizer.
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On the other hand, to demonstrate existence of a weak-� solution to ((4.1)–
(4.2)), let us begin with a solution  2 �.f1; g1/ to the partial transfer prob-
lem (1.8) coupled with the maximimizing pair of nonnegative functions .u; v/D
. Ou� Ou. y1/; Ou Oc C Ou. y1//jRn�Rn from Corollary 2.7. The constraint

h x; yi � Œh.x/�u.x/�C Œk.y/� v.y/�

is satisfied for all x; y2Rn, with equality on spt �@ Oc Ou. Furthermore, u.f �f1/D0
and v.g � g1/D0. Define the convex function  WD .k � v/� � h� u using the
Legendre transform (1.11), and notice that  � D .k� v/�� � k� v. From (6.2)

h x; yi �  .x/C �.y/(4.5)

� Œh.x/�u.x/�C Œk.y/� v.y/�;

and equality holds on .x; y/ 2 spt  . Thus spt  � @ , which implies r #f1 D g1
and similarly r �# g1 D f1 [57, Prop. 10]. It remains to show f1 D f�U and
g1 D g�V to complete the proof of (4.3). Letting �.x; y/D x and � 0.x; y/D y,
as in (4.5) we have  .x/ � h.x/� u.x/ with equality on �.spt / and  �.y/ �
k.y/� v.y/ with equality on � 0.spt /. Thus  � h holds f1-a.e., and  � � k
holds g1-a.e., since u; v � 0. Moreover,

U WD f > hg � fx 2 Rn j u.x/ < 0g
V WD f 

� > kg � fy 2 Rn j v.y/ < 0g:

Since .f �f1/uD 0, we conclude f �f1� f�RnnU and f�U � f1� f�f �hg.
Finally we claim fx j  .x/D h.x/g is a set of f1 measure zero, so that f�U D f1.
At any point where f D hg has full Lebesgue density, we have r Drh since  
is subdifferentiable and h is assumed superdifferentiable. But this can only happen
on an f1 negligible set, since r .x/ 2 sptg1 and rh.x/ 62 sptg elsewhere. A
similar argument starting from g�V � g1 � g�f ��kg shows g�V D g1. �

Example 4.4 (Square distance). Parabolic obstacles h.x/D .jxj2��/=2 and
k.y/D .jyj2��/=2 correspond to the quadratic cost c.x; y/D jx� yj2=2��.

COROLLARY 4.5 (Quadratic obstacles). Fix h.x/D k.x/D .jxj2��/=2 and
�> 0. If a convex function  WRn �!R satisfies the constraints h� � hC�, so
will its Legendre transform. Defining noncontact sets U WD fx j h <  g, A WD
fx j  < hC�g andW WDU \A then yields U � DA andW DW � . If g
vanishes outside U and f vanishes outside A , and r #.f�W /D g�W , then
 is a weak-� solution to the Monge-Ampère obstacle problem (4.3). Moreover,
the hypotheses of Theorem 4.3 imply that at least one weak-� solution satisfies all
these additional constraints.

Proof. To begin, assume a convex function  satisfies h�  � hC�. Since
h�D hC�, taking Legendre transforms yields hC�� � � h. We also claim that
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the equations  .x/Dh.x/C� and  �.x/Dh.x/ have the same solutions x2Rn. If
either equation holds, then xDr .x/ 2 @ .x/. The case of equality in (6.2) then
yields jxj2D .x/C �.x/. Substituting  .x/D h.x/C� gives  �.x/D h.x/ and
conversely, completing the proof that A D U � . Now W D U � \U DWW �

is clear.
Assume in addition that r #.f�W /D g�W , while g vanishes outside U 

and f vanishes outside A . Then f�U D f�W and g�A D g�W , so  
verifies our definition r #.f�U / D g�U � of weak-� solution to the Monge-
Ampère obstacle problem.

To show that a solution exists satisfying these extra constraints, let z be
the weak-� solution provided by Theorem 4.3; i.e., a convex function — lower
semicontinuous after modifying its values on a negligible set — whose gradient
pushes f�U z forward to g�U z � . As before, we use the notation V WD U � for

convenience. Thus r z .x/ 2 V z \ sptg for f -a.e. x 2 U . Defining the convex

function � WDmax f z �; hg, we see �.y/� z �.y/ with equality on U� D V z . Thus

��.x/� z ��.x/D z .x/ with equality if @ z .x/ intersects V z . The latter inequality

implies U�� � U z , while the cases of equality gives �� coincident with z f -a.e.

on U z . Thus U z nU�� has f measure zero, and r�� Dr z holds f -a.e. on U z .
We conclude �� is a weak-� solution to the same Monge-Ampère obstacle problem
as z . By Remark 4.2, this is equivalent to asserting that ���Dmax f z �; hg solves
the same Monge-Ampère obstacle problem as z �. The symmetry f $ g then
shows that  WDmax f��; hg solves the same Monge-Ampère obstacle problem as
��, and hence as z . We claim that  is the desired solution.

Obviously, h �  from the definition, while  � hC� follows from � � h

via �� � h�. The corollary will be complete if we can prove that f vanishes
outside A D V and g vanishes outside U . Notice that x 62 A implies  .x/D
h.x/C� hence r .x/Drh.x/D x. Thus r coincides with the identity map on
Rn nA � U , the inclusion following from � > 0. Now ŒRn nA � n sptg carries
zero mass for g�V Dr #.f�U /, hence zero mass for f . We conclude that f
vanishes throughout Rn nA , since it vanishes on sptg by the hypotheses of the
theorem.

By symmetry r � pushes f�U \A forward to g�V , and the preceding
paragraph, applied to  � instead of  , shows g vanishes outside U DA � . Thus
r #.f�W /D g�A D g�W , concluding the proof of the corollary. �

Remark 4.6 (Points outside active region are fixed). Note h�  � hC�, or
equivalently  .x/� jxj2=2 2 Œ��=2; �=2�, forces the convex gradient r .x/D x
to coincide with the identity map for a.e. x in the closed contact set Rn nW . Thus
r #.f Cg.1��W //D f .1��W /Cg.
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5. Semiconcavity of free boundary

Let us return now to the constrained optimization problem of transporting
a fixed fraction m � minfkf kL1 ; kgkL1g of the total available mass, choosing
the locations transported and supplied so as to minimize the special cost c.x; y/ WD
jx�yj2=2. In Section 4 this was demonstrated to be equivalent to solving a Monge-
Ampère obstacle problem (4.3) with obstacle h.x/ D k.x/ WD .jxj2 � �/=2 for a
suitable Lagrange multiplier �� 0. The solution was unique if f vanishes a.e. on
sptg, and takes the form of a convex function  sandwiched between the parabolas
h� �hC�, whose gradient on the active regionW WD fh <  < hC�g pushes
f�W forward to g�W . We wish to investigate smoothness of the free boundary
of the active region, and of the map r . Our first step is to show that @W 
carries none of the mass of either f or of g, under the simplifying assumption
that a hyperplane separates sptf from sptg. Negligibility of the boundary plays a
technical role in our subsequent arguments for differentiability of  and @W , and
can be summarized philosophically by stating that almost every source and sink
must be either unambiguously active or unambiguously inactive, in the sense that
it has a whole neighborhood belonging to one of the open sets W or Rn nW .
Since an interior ball condition was derived in Corollary 2.4–Example 2.5, our
starting point will be a familiar lemma about unions of spheres — or equivalently,
suprema of half-spherical graphs.

LEMMA 5.1 (Semiconvex suprema of hemispherical graphs). Fix 0 < ı < R0.
Extend the hemispherical cap hR.X/D

p
R2� jXj2 to Rn�1 by setting hR.X/D

�1 if jXj �R. If

(5.1) u.X/D sup
.Y;�;R/2A

ŒhR.X�Y/���C;

where A�Rn�1�Œı;1��Œ0;R0� and Œ��CWDmaxf�; 0g, then u.X/Cı�3R20jXj
2=2

is convex on Rn�1.

Proof. Define

hıR.r/ WD

8<:
p
R2� r2 if r �

p

R2� ı2

R2� r
p
R2� ı2

ı
if r �

p

R2� ı2

and notice that hıR.r/Cı
�3R2r2=2 is convex on r 2R, and hıR.jXj/� hR.X/ with

equality if hıR.jXj/� ı. For �� ı we have ŒhR.X�Y/���CD ŒhıR.jX�Yj/���C.
From (5.1),

u.X/C
R20jXj

2

2ı3
D sup
.Y;�;R/2A

max

(
R20jXj

2

2ı3
;
R20jXj

2

2ı3
C hıR.jX�Yj/��

)
expresses u.X/C ı�3R20jXj

2=2 as a supremum of convex functions. �
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In the sequel, we denote the distance between two subsets U; V � Rn by

dist .U; V / WD inf
x2U;y2V

jx� yj:

PROPOSITION 5.2 (Semiconcavity of the active domain). Fix 0 � f; g 2
L1.Rn/ compactly supported, with sptf in the upper half-space H D Rn�1

C
WD

f.X; xn/ 2 Rn j xn > 0g and sptg in the lower half-space Rn nH . Let  be a
convex function satisfying the constraints h� � hC�, where h.x/D .jxj2��/=2.
If r #.f�W / D g�W on the noncontact set W WD fx 2 Rn j 0 <  � h < �g,
there is a function u W Rn�1 �! Œ0;1/ such that the domain

UC WD f.X; xn/ 2 Rn j xn < u.X/g

differs from W by a set of f measure zero. Moreover, u.X/C ı�3R2jXj2=2 is
convex on Rn�1, if jx�yj �R for all .x; y/2 sptf �sptg and ıD dist .sptg; @H/.

Proof. By Theorem 4.3 and its corollary, � WD .id � r /#.f�W / is the
unique minimizer of (1.8). Define the set U by (2.9). Then U is a union of balls
of radius at most R, centered at points yD .Y; �/ 2 sptg at least distance �� �ı
into the lower half-space. Therefore, U [ ŒRn nH� coincides with a domain UC WD
f.X; xn/ 2 Rn j xn < u.X/g, whose boundary is the graph of a function u.X/ of
the form (5.1). Lemma 5.1 asserts convexity of u.X/C ı�3R2jXj2=2.

It remains to show that UC differs from W by a set of f measure zero. From
its definition, U contains the projection �.spt �/ under �.x; y/D x of spt �. Thus
UC contains sptf�W . Since we have just shown the boundary of UC to be a
semiconvex graph, it has Hausdorff dimension n� 1 and is negligible with respect
to f . Thus UC contains the full mass of f�W . On the other hand, Corollary 2.4
asserts that U carries zero mass for f .1��W /. The same is true for UC, since
sptf lies in the upper half-space. Thus, apart from an f negligible set, UC DW 
as desired. �

6. Partial transfer regularity and free boundary

Returning to our analysis of transporting that portionm�minfkf kL1 ; kgkL1g
of the total available mass which minimizes the special cost c.x; y/ WD jx�yj2=2, we
recall its equivalence to the Monge-Ampère obstacle problem (4.3) with obstacles
h.x/D k.x/ WD .jxj2��/=2 for a suitable Lagrange multiplier � > 0. The solution
was essentially unique if f vanishes a.e. on sptg, and for some � � 0 takes the
form of a convex function  sandwiched between the parabolas h �  � hC �,
whose gradient on the active regionW WD fh <  < hC�g pushes f�W forward
to g�W . In Section 5 we saw that when a hyperplane separates sptf from sptg,
then W is semiconcave. Our goal for the next two sections will be to prove Hölder
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differentiability of  and  � on W , and of the free boundary @W itself. Differ-
entiability is deduced in the present section relying on [17]; Hölder estimates are
postponed to the next section. As a byproduct, we improve our uniqueness result
to assert that  is uniquely determined, and not merely up to additive constants or
almost everywhere; compare Corollary 6.4 to Theorem 4.3. We also deduce that
free boundary always maps to fixed boundary, and path-connectedness of the active
regions. Of course, all these results require additional convexity and boundedness
assumptions concerning the geometry of mass distributions 0� f; g 2 L1.Rn/:

Definition 6.1 (Data of convex support). The trio .f; g; h/ of functions on Rn

constitute data of convex support if h.x/D k.x/ WD .jxj2 ��/=2 for some � 2 R,
and there exist bounded, strictly convex domains �� Rn and ƒ� Rn separated
from each other by positive distance, such that 0 � f D f�� and 0 � g D g�ƒ
with logf and logg bounded away from ˙1 on the respective domains � and ƒ.

Even with such assumptions, we cannot expect the free regions W \� and
W � \ƒ to be convex. However, since r .x/ D x coincides with the identity
outside W , it was noted in Remark 4.6 that

r #.f Cg.1��W //D f .1��W /Cg:

The target measure g D g�ƒ is assumed to be bounded above and below on the
convex set ƒ, so we shall presently be able to invoke Caffarelli’s interior regularity
theory [17] to deduce local regularity on the relevant domain for the complete
transfer problem r #.f�W Cg.1��W //D g. Recall the results of that theory:

THEOREM 6.2 (Map to a convex target is locally smooth [17]). Fix f D f��
and g D g�ƒ nonnegative, where �� Rn and ƒ� Rn are open and ƒ is convex.
Here j logf j and j loggj are assumed to be bounded on � and ƒ respectively, and
to satisfy (1.1). If  W Rn �! ��1;1� is convex with gradient pushing f forward
to g, then  is C 1;˛loc .�/ smooth and strictly convex on � [17]. If f and g are
Hölder continuous where positive, Caffarelli goes on to assert  2 C 2;˛loc .�/ for
some ˛ > 0. Smoother f and g imply further regularity of u via standard elliptic
theory [46].

In the next theorem we improve this result slightly, by using strict convexity of
the domains to deduce continuity of the map up to the boundary, including the free
boundary in the partial mass transfer problem, or equivalently the Monge-Ampère
double obstacle problem. We derive differentiability of the free boundary at the
same time. As corollaries to the proof, we obtain a strengthened uniqueness result,
and observe that the free boundary of W in � is a C 1 hypersurface, along which
the transportation map displaces only in the perpendicular direction.
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Let us first recall the subdifferential of a convex function  WRn �! ��1;1�

defined by

@ WD f.x; y/ 2 Rn �Rn j  .z/�  .x/Ch y; z� xi for all z 2 Rng:

It consists of the .point, slope/ pairs which parametrize supporting hyperplanes
to graph. /. For x 2 X � Rn, we also write @ .x/ WD fy 2 Rn j .x; y/ 2 @ g
and @ .X/ WD [x2X@ .x/; thus @ .x/ D fr .x/g at a point x 2 domr of
differentiability. Any pair of points .x; y/; .x0; y0/ 2 @ satisfies the monotonicity
condition

(6.1) h x� x0; y� y0i � 0;

a relation for which we shall often have use. An important connection between  
and its Legendre transform  � (1.11) is given by Young’s inequality

(6.2)  .x/C �.y/� h x; yi;

in which equality holds if and only if .x; y/2 @ . When  is lower semicontinuous
as well as convex, then  �� D  , and .x; y/ 2 @ is equivalent to .y; x/ 2 @ �.
We use the notation int ŒX� and X to denote the interior and closure, respectively,
of a set X � Rn.

THEOREM 6.3 (Optimal homeomorphism between active regions). Fix data
of convex support .f; g; hD k/, and a weak-� solution  to the obstacle problem
(4.3). If U WD fx 2 Rn j  > hg, then some z 2 C 1.Rn/\C 1;˛loc .�\U / agrees
with  on � \ U and with h� on ƒ n U � , and r z .Rn/ D xƒ. Furthermore,
r z W �\U �! ƒ\U � is a homeomorphism, where � WD int Œsptf � and
ƒ WD int Œsptg� are the convex domains of f and g. Hölder continuity of f on �
and g on ƒ implies  2 C 2;˛loc .�\U /.

Proof. The theorem is proved in two parts. First we establish the conclusion
for a particular weak-� solution  to the double obstacle problem. Then in Corol-
lary 6.4, we deduce that no other solutions exist, concluding the theorem as stated.
Let us begin with an elementary observation:

Claim #1. Given three domains �;U;W � Rn, if �\ @U is a locally Lips-
chitz submanifold and � intersects U�W WD .U nW /[ .W nU/ in a set of zero
volume, then W \�� U .

Proof of claim. Every ball B".x/�W \� intersects U in a set of full volume,
so x 2 xU . However, x 62 @U since the Lipschitz boundary of U would divide the
ball into two subsets of positive volume one of which lies outside of U . This forces
x 2 U . End of claim.
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Now let � and ƒ� Rn denote the bounded strictly convex domains whose
closures form disjoint sets sptf and sptg, and note f .x/ dx and g.y/ dy are
mutually absolutely continuous with respect to Lebesgue on the domains � and
ƒ respectively. Use invariance of the problem under rigid motions to choose co-
ordinates so that x� and xƒ are strictly separated by the boundary of the upper
half-space H D Rn

C
WD f.X; xn/ 2 Rn j xn > 0g. Corollary 4.5 provides a weak-

� solution to the Monge-Ampère obstacle problem (4.3) satisfying the following
additional constraints: h �  � h C � and f .1 � �U � / D 0 D g.1 � �U /;
i.e., a convex function  whose gradient pushes f�W forward to g�W , where
W WD U \ U � . Remark 4.2 shows that the Legendre transform  � of  
satisfies r �# .g�W / D f�W . Notice that  �� D  since  is convex and
continuous. Proposition 5.2 provides a domain U WD f.X; xn/ j xn < u.X/g which
differs from U by a set of f measure zero. (The difference is also g negligible,
since U � Rn nH contains sptg.) Moreover, semiconvexity of u guarantees @U
is a Lipschitz graph over @H and hence has measure zero. Since f is mutually
continuous with respect to Lebesgue on �, we conclude that U \� � U \�
from Claim #1. Similarly, there exists a semiconvex function v W @H �! R such
that V WD f.X; xn/ j xn > v.X/g differs from U � by a set of f Cg measure zero,
with @V having zero volume and U � \ƒ� V \ƒ.

By Remark 4.6, we have h �  � � hC � with r �.y/ D y a.e. outside
W � DW , so r �# .f .1��U /Cg�V /D f also. This represents transportation
by convex gradient to a density f D f�� bounded away from zero and infinity
on the (strictly) convex domain �. The source measure f .1� �U /C g�V has
density bounded away from zero and infinity on the domain .V \ƒ/[ .� n xU/,
and this domain has full mass since @U is a set of zero volume. The interior results
of Caffarelli [17, our Theorem 6.2] then assert that  � is C 1;˛loc smooth and strictly
convex on V \ƒ, with  � 2C 2;˛loc .ƒ\V / if f and g are Hölder continuous on �
and on ƒ. Since  �.y/D .jyj2��/=2 outside U � , strict convexity of  � extends
to the full domain ƒ. We claim that

(6.3) z WD �� where �.y/D
�
 �.y/ if y 2 xƒ
C1 otherwise

is the desired extension of  . Notice that y 2 @��.x/ implies y 2 xƒ from the
equality cases in Young’s inequality (6.2). Thus �� is globally Lipschitz, since
@��.Rn/� xƒ and ƒ is bounded. We assert that �� 2 C 1.Rn/. If not, there must
be a point x 62 domr��. Then strict convexity of � fails on a segment in @��.x/
passing through the interior of the strictly convex domain ƒ. This contradicts the
strict convexity asserted above, establishing continuous differentiability globally:
�� 2 C 1.Rn/.

It remains to show that  D �� throughout �. Notice that �.y/� �.y/ with
equality on xƒ. Thus ��.x/�  .x/ with equality if @ .x/ intersects xƒ, again from
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the cases of equality in (6.2). From r #.f�U C g.1��V //D g in Remark 4.6
we have r .x/ 2 xƒ a.e. on .U \�/ [ .ƒ n xV /, hence everywhere since both
convex functions are continuous. Note that  D hC� on Rn n xV from the same
remark. We also conclude that r W U \� �! xƒ extends to a continuous map
from U \� into V \ƒ; it cannot take values outside xV since f does not vanish
on U and r #.f�U /D g�V is supported on xV .

Claim #2. The free boundary @U \� is contained in the graph of a C 1

function over @H . The direction r z .x/� x transported gives the inward normal
to U at any point x 2�\ @U .

Proof of claim. Notice the C 1 function h� z increases with xn in the upper
half-space. Indeed @.h� z /=@xn > 0 throughout H , since rh.x/ D x 2 H and
r z .x/ 2 xƒ lie on opposite sides of the hyperplane xn D 0. Thus the zero set
ZC WD fx 2H j h.x/D z .x/g is contained in the graph of a C 1 function xnD Qu.X/
over @H , by the implicit function theorem. Moreover, ZC\�D�\ @U , since
 � z becomes an equality on the closure of U \�� U \�. This proves the
first part of the claim. Since z �h vanishes along the free boundary x 2�\ @U ,
its gradient r z .x/� x must be orthogonal to @U ; this gradient is nonvanishing
as noted and must be directed towards U since z �h > 0 inside U \�. End of
claim.

Now that �\@U is C 1 smooth, Claim #1 yields U \�DU \�. Since �
is open, we may henceforth write�\@U and�\@U interchangeably. To see U\
�DintŒ U\� � as in Remark 6.6, observe that U\��f.X; xn/ 2� j xn � u.X/g;
whence

int Œ U \� � � f.X; xn/ 2� j xn < u.X/g D U \�:

The reverse inclusion is obvious.
On the other hand, Remark 4.6 also asserts that the gradient of  pushes

f�U C g.1 � �V / forward to a measure g�V with convex support. Applying
the same arguments again, Caffarelli asserts that  2 C 1;˛loc .� \ U / is strictly
convex, with  2 C 2;˛loc .�\U / if the data are Hölder. The exchange symmetry
f $ g then shows that @V \ƒ is a continuously differentiable graph over @H and
V \ƒ D U � \ƒ. Likewise r � W V \ƒ �! U \� extends to a continuous
map from V \ƒ into U \�. Finally, r � is one-to-one by strict convexity, hence
invariance of domain [64] shows r �.V \ƒ/ is an open subset of U and of x�.
Since � is convex and U is semiconcave, we conclude that r �.V \ƒ/�U \�.
By exchange symmetry, it must also be true that r .U \�/� V \ƒ.

Now, for each x 2 U \� and y 2 V \ƒ the equality conditions in Young’s
inequality (6.2) imply r �.r .x// D x and r .r �.y// D y. Thus r W
U \� �! V \ƒ is a homeomorphism with inverse map r �. Since both maps
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extend continuously to the boundary, their extensions give a homeomorphism r z 
between U \� and V \ƒ. Recalling @ z .Rn/� xƒ with z D hC�D h� onƒnV
(hence on ƒ nU �) , rh�.y/D y makes it clear that r z .Rn/D xƒ.

The conclusions of the proposition have now been established for the special
weak-� solution provided by Corollary 4.5. We show that they extend to all weak-�
solutions in the following corollary, which will be derived from the results proved
so far. �

COROLLARY 6.4 (Uniqueness, not just a.e.). Given data .f; g; hD k/ of con-
vex support, any two weak-� solutions  and � to the obstacle problem (4.3) satisfy
�\U D�\U� , where U WD fx 2 Rn j  .x/ > h.x/g and�D int Œsptf �. More-
over,  �� is constant on�\U , and the constant vanishes unless transportation
is complete (1.1) and both obstacles fail to bind: ��U andƒWDint Œsptg��U � .

Proof. Let  be the weak-� solution for which the conclusions of the proposi-
tion were derived above, and � any other solution to the Monge-Ampère obstacle
problem r�#.f�U� /D g�U�� . The uniqueness assertion of Theorem 4.3 claims
that r� differs from r and U� differs from U only on a set of f measure
zero. Since f is mutually continuous with respect to Lebesgue measure on �,
and � \ @U is C 1, we conclude that � \ U� � U from claims #1–2 of the
preceding proof. On each connected component Ui of �\U , we have  � �
constant since their gradients agree a.e. If�\@Ui is nonempty for every connected
component, then  .x/D h.x/ at some x 2�\ @Ui . Now, every neighborhood of
x intersects U� , so �.x/� h.x/. But strict equality would force x 2�\U� � U 
contradicting x 2 @Ui . Since  � � is constant on one side of the C 1 curve @Ui
and vanishes at x, continuity implies that the constant is zero. (If x 62 int Œdom��,
then � D C1 in a half-space on the other side of the curve @Ui , forcing U to
approach x from both sides of @Ui and contradicting Proposition 5.2.) Thus � D 
on �\U D [iUi and hence on the subset �\U� . The definition of U then
forces �\U� D�\U .

It remains to consider the possibility � \ @Ui empty for some i . In that
case Ui contains the connected set �, since its construction ensures that Ui is not
disjoint from � unless � \ U is empty, in which case the corollary is trivial:
 D � D h on �. Therefore, assume that  and � differ by a constant on �� Ui .
Symmetry under the interchange f $ g implies either U � �ƒ — in which case
kf kL1 D kgkL1 and transportation is complete — or else  � D �� on U � \
ƒ as above. In the latter case, choose any point x 2 � � Ui ; then r�.x/ D
r .x/D y 2ƒ by Theorem 6.3 and the equality  .x/D h x; yi � �.y/D �.x/
forces  D � throughout � to conclude the argument. On the other hand, if
transportation is complete, it remains to show��U� . If not, take x2�nU� . There
r .x/Dr�.x/Drh.x/D x 62ƒ, contradicting the proposition and concluding
the corollary. �
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Remark 6.5 (Map is continuous and normal to free boundary). If a hyperplane
@H separates sptf from sptg strictly, the free boundary @U \� is contained in
the graph of a C 1 function over @H . Moreover, r z .x/�x gives the inward normal
to U at x 2�\ @U . This is Claim #2 of Theorem 6.3’s proof.

Remark 6.6 (Homeomorphism of active interiors). From the end of the pre-
ceding proof, it is also worth noting that U \� D int

�
U \�

�
, and r W

U \� �! U � \V is a homeomorphism.

COROLLARY 6.7 (Path-connectedness of active region). If z , U , �, and ƒ
are as in Theorem 6.3, then �\U is path connected.

Proof. Fix x0; x1 2�\U and consider the segment xt WD .1� t /x0C tx1
joining them. Let �t 0; t 00Œ be a maximal subinterval of Œ0; 1� corresponding to a piece
of the segment Œx0; x1� not contained in �\U , if any such piece exists. We shall
prove the corollary by constructing a path connecting xt 0 to xt 00 in �\U for each
such maximal open subinterval. Since the entire segment Œx0; x1� lies in the strictly
convex set �, both xt 0 and xt 00 lie on the free boundary �\ @U . We will prove
that the segment ys WD .1� s/r z .xt 0/C sr z .xt 00/ parametrized by s 2 Œ0; 1� lies
in ƒ\U � . Then the homeomorphism r z of the theorem gives the desired path
t 2 Œt 0; t 00� �!r z �1.y.t�t 0/=.t 00�t 0// in �\U linking xt 0 to xt 00 .

Let zs WD .1 � s/xt 0 C sxt 00 reparametrize the segment Œxt 0 ; xt 00 �. At the
endpoints s D 0; 1, we have .zs; ys/ in the support of the optimal joint mea-
sure � WD .id�r z /#.f�U /, hence jzs � ysj2=2 � � from Corollary 2.4 (and
Theorem 4.3). The same inequality holds on the interior s 2 �0; 1Œ of the segments
due to convexity of the cost. There zs 2�nU by construction. Since we are deal-
ing with data .f; g; h/ of convex support, ys 2ƒnU � would force jx�yj2=2� �
in a whole neighborhood of .zs; ys/ by Corollary 2.4, producing the contradiction
jzs �ysj2=2 > �. We can only conclude that ys 2ƒ\U � for all s 2 Œ0; 1�, which
completes the corollary. �

LEMMA 6.8 (Ball condition; free boundary never maps to free boundary).
Take z , U , �, and ƒ as in Theorem 6.3. If x 2 U \� and y WD r z .x/ then
� \ Bjx�yj.y/ � U . Likewise ƒ \ Bjx�yj.x/ � U � . If x 2 � \ @U then
y 62ƒ\ @U � .

Proof. Recall that  is a weak-� solution to the Monge-Ampère double obsta-
cle problem with data .f; g; hD k/ of convex support. Thus  WD .id�r /#.f�U /
is the measure minimizing (1.8) according to Theorem 4.3. The continuous depen-
dence of yDr z .x/ on x2U \� proved in Theorem 6.3 combines with positivity
of f on the domain U \� to yield .x; y/ 2 spt  . Thus the ball Bjx�yj.x/ is
disjoint from spt Œg.1��V /�Dƒ nV , according to Example 2.5; here V WD U � .
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We conclude that ƒ\Bjx�yj.x/ is contained in V , and �\Bjx�yj.y/�U follows
from the usual exchange symmetry f $ g.

For the second part of the lemma, we shall assume x 2 � \ @U and y 2
ƒ\ @V to derive a contradiction. The free boundary ƒ\ @V is C 1 by Remark 6.5,
and y� x is a positive multiple of the outward normal vector OnV .y/ to the active
region V at y. Now xr WD xC r OnV .y/ parametrizes the line segment from x to y.
Setting yr WDr z .xr/ we have�\Bjxr�yr j.yr/�U for each r � 0 small enough
that xr 2U \�. Since r D 0 is certainly small enough and B".x0/�� for some
"> 0, we conclude r D " is also small enough because x" 2�\Bjx0�y0j.y0/�U .
On the other hand, monotonicity of r z implies that 0 � h x" � x0; y" � y0i D
"h OnV .y0/; y" � y0i. Now x" lies on the line segment joining x0 to y0, and y"¤
y0 because r z is a homeomorphism of U \� onto V \ƒ. In the half-space
fy 2 Rn j h OnV .y0/; y� y0i � 0g containing y" ¤ y0, we see that y0 is the point
closest to x". Thus y0 2 Bjx"�y"j.x"/. Any point Qy 2 ƒ\ V sufficiently close to
y0 must also belong to ƒ\Bjx"�y"j.x"/� V . But this contradicts y0 2ƒ\ @V as
desired. �

COROLLARY 6.9 (Inactive region maps to target boundary). Take z , U , �,
and ƒ as in Theorem 6.3. If z 2� n�\U then r z .z/ 2 @ƒ.

Proof. Theorem 6.3 asserts that r z .Rn/D xƒ, with r z .y/D y on ƒ nU �
and r z W�\U �! ƒ\U � a homeomorphism. If the corollary failed to be
true, some z 2� n�\U would map to y WD r z .z/ 2ƒ. We consider the three
possibilities (i) y2ƒnU � , (ii) y2ƒ\U � , and (iii) y2ƒ\@U � , one at a time.
In case (i) convexity of z implies that r z is constant on the line segment �z; yŒ,
which cannot happen since r z is the identity map in a neighborhood of y. In case
(ii), yDr z .x/ for some x 2�\U ; again r z would be constant on the segment
�z; xŒ, which contradicts r z being a homeomorphism near x. Finally, in case (iii),
yDr z .x/ for some x on the boundary of �\U , and x 62�\ @U by Lemma
6.8 and exchange symmetry x$ y. Then �\Br.x/� U for r > 0 sufficiently
small, and r z would be constant on the segment �z; xŒ. Strict convexity of� forces
this segment into � hence into U , contradicting that r z is a homeomorphism
on �\U . The only conclusion can be that the corollary is true: r z .z/ 2 @ƒ. �

7. Bi-Hölder estimates for maps and free normals

To quantify continuous differentiability of the potential  and the free bound-
ary through Hölder derivative estimates, we exploit the renormalization methods
developed by Caffarelli to treat boundary regularity for data of convex support in
the complete transfer case mD kf kL1 D kgkL1 [16] [19]. However, even for data
of convex support, we cannot expect the free regions U \� and U � \ƒ to
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be convex, which means that new arguments are needed to localize the situation
before this method applies. In Caffarelli’s approach, convexity of the domain and
range play different roles. Domain convexity is used locally, to ensures the Monge-
Ampère measure has a doubling property, while convexity of the range is used
globally, to ensure all Aleksandrov mass is accounted for, so in the entire space the
Monge-Ampère measure has no singular part. In the discussion below, convexity of
ƒ proves to be sufficient for the latter purpose. By localizing the former property,
we shall be able to quantify strict convexity of  up to the fixed boundary @�,
and to any parts of the free boundary which happen to be convex locally. Now
recall Lemma 6.8, which states that free boundary never maps to free boundary;
in other words, the free boundary of U � \ƒ is parametrized by part of the fixed
boundary of U \�. Thus showing  is p-uniformly convex (7.13) away from
the free boundary of U \� implies that r � is Hölder continuous up to the free
boundary @U � \ƒ, where it gives the inward normal nU � .y/ D r 

�.y/� y.
The usual exchange symmetry f $ g implies that r too is Hölder continuous up
to the free boundary of its domain U \�, and bi-Hölder up to those parts of the
fixed boundary @� which map to points where the target set U � \ƒ is convex.

To make this result precise, it is useful to distinguish certain types of boundary
points. A domain U � Rn is called locally convex at x 2 Rn if U \BR.x/ is a
convex set for some ball of radius R > 0 around x. The nonconvex part of the free
boundary is then a closed set denoted by

(7.1) @ncU WD fx 2�\U j�\U fails to be locally convex at xg:

We have not been able to quantify uniform convexity of the solution  at such
points. Also, we are not able to rule out the possibility of a tangential intersection
of the free with the fixed boundary, nor to prove Hölder continuity of the map
or free normal at such intersections. Since they are distinguished by method, we
denote these nontransverse intersection points by

(7.2) @nt� WD fx 2 @�\�\ @U j h r z .x/� x; zi � 0 for all z 2�g:

Here z is the extension of  from Theorem 6.3. Notice that when @� is differ-
entiable at x 2 @nt�, then r z .x/� x gives the outward normal to � by (7.2); it
gives the inward normal to U by Remark 6.5. We define the nonconvex points
@ncU � and nontransverse intersections @ntƒ in the target domain analogously.

Let us briefly review Caffarelli’s method, which develops dramatically from
ideas going back to Aleksandrov [4]. Given a convex function  W�! ��1;1�,
we associate to it a measure M on Rn — called the Monge-Ampère measure —
given by

(7.3) M .B/ WD vol Œ@ .B/�
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for every Borel set B � Rn. If  is smooth and strictly convex, then

M .B/D

Z
B

det
�
D2 .x/

�
dx;

which motivates the name, but M is a Radon measure on the interior of dom WD

f <C1g in any case; see e.g. Gutiérrez [47] or McCann [58, Lemma 4.1].

Definition 7.1 (Universal constant). In this paper, a universal constant refers
to one which depends only on dimension n, and klog.f .x/=g.y//kL1.��ƒ/.

This unorthodox terminology is employed to highlight independence of such
constants on choice of solution  , data f and g, or domains �;ƒ� Rn, except
through

(7.4) � log ı0 WD k log.f .x/=g.y//kL1.��ƒ/:

When f and g are both characteristic functions, then ı0 D 1; if they are merely
continuous on there respective domains, ı0 is the lesser of inf� f= supƒ g and
infƒ g= sup� f .

LEMMA 7.2 (Mass lives in active domain and inactive target). Fix data of
convex support .f; g; hD k/, and a weak-� solution  to the obstacle problem (4.3).
Set U WD fx 2 Rn j  > hg. The extension z 2 C 1.Rn/ of  from U \� to Rn

given by Theorem 6.3 has a Monge-Ampère measure absolutely continuous with
respect to Lebesgue, and whose Radon-Nikodym derivative dM z =dvol satisfies

(7.5) �ƒnU � C ı0��\U � dM z =dvol � �ƒnU � C
1

ı0
��\U 

for the universal constant ı0 > 0 of (7.4).

Proof. Theorem 6.3 extends the homeomorphism r z W�\U �!ƒ\U �

to the identity map on ƒ nU � , with r z .Rn/D xƒ and

r z #.f�U Cg.1��U � //D g:

Since @ z .Rn/ � xƒ we have M z .B/ D �Œ@ z .B/� with � D vol jƒ. This means
M z Dr�#� is the push-forward of � through the gradient of the Legendre trans-

form � of z [58, Lemma 4.1]. From

k
1

g
k
�1
L1.ƒ/� �g� kgkL1.ƒ/�;

k
1

f
k
�1
L1.�/�� �f � kf kL1.�/��
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we find

kgk�1L1.ƒ/r�#g � r�#�

DM � k1=gkL1.ƒ/r�#g;

whence r�#g D f�U C g.1� �U � / implies that (7.5), but with the universal
constant ı0 multiplying both terms on the left and dividing both terms on the right.
Since r�.y/Dy onƒnU � , we conclude that the coefficients multiplying �ƒnU �
are unnecessary. �

Definition 7.3 (Convex bodies and homothety). A bounded convex set Z �Rn

with nonempty interior is called a convex body. The barycenter z of Z always
refers to its center of mass with respect to Lebesgue volume. For t > 0, t �Z WD
.1� t /zC tZ D fx 2 Rn j x� zD t .y� z/ for some y 2Zg denotes the dilation of
Z by a factor of t around its center of mass z.

Definition 7.4 (Affine doubling). A Borel measure � on Rn doubles affinely
on X � Rn if there exists ı > 0 such that each point x 2 X has a neighborhood
Nx � Rn on which � is a Radon measure, and each convex body Z � Nx with
barycenter in X satisfies �Œ1

2
�Z�� ı2�ŒZ�. We call ı the doubling constant of �

on X , and Nx the doubling neighborhood of � around x.

LEMMA 7.5 (MA Measure doubles away from nonconvexities). Fix data of
convex support .f; g; hD k/, and a weak-� solution  to the obstacle problem (4.3).
The extension z 2 C 1.Rn/ of  in Theorem 6.3 has a Monge-Ampère measure
M z which doubles affinely on �\U n @ncU with U WD fx 2 Rn j  > hg and

@ncU as in (7.1). The doubling constant ı D 2�n=2ı0 from (7.4) is universal,
while any ball Nx D BR.x/, whose intersection with .� \ U / [ .ƒ n U �/ is
convex, forms a doubling neighborhood around x.

Proof. For x 2 X WD�\U n @ncU there exists R > 0 small enough that
BR.x/ is disjoint from ƒ n U � and the intersection W D � \ U \ BR.x/ is
convex. For any convex body Z � BR.x/ we therefore have

ı0vol ŒW \Z��M z ŒZ�(7.6)

�
1

ı0
vol ŒW \Z�(7.7)

from (7.5). Now the remainder of the argument follows [19, Lemma 2.3]. Indeed,
suppose the barycenter z of Z lies in X , a fortiori in W , and let zD 0 without loss
of generality. Define the (not necessarily convex) cone K WD f�x 2Rn j � > 0; x 2
W \@Œ1

2
�Z�gwith vertex at zD0. Convexity ofW andZ impliesK\ 1

2
�Z�W \ 1

2
�Z

whereas W \ .Z n 1
2
�Z/�K\ .Z n 1

2
�Z/. These two inclusions combine with (7.7)
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and (7.6) to imply the doubling property

ı0M z ŒZ� � vol ŒW \ 1
2
�Z�C vol ŒK \ .Z n 1

2
�Z/�

D vol ŒW \ 1
2
�Z�C .2n� 1/vol ŒK \ 1

2
�Z�

� 2nvol ŒW \ 1
2
�Z�

�
2n

ı0
M z Œ

1
2
�Z�

of M z on X . �

As a final ingredient before the method applies, we must be able to isolate the
behavior of convex function z near any locally convex point z 2�\U n @ncU 
by choosing a centered affine section

(7.8) Z".z/DZ
z 
" .z/ WD fx 2 Rn j z .x/ < "C z .z/Ch v"; x� zig:

Here " > 0, and v" 2Rn is chosen to ensure that z is the barycenter of the bounded
set Z".z/; such a choice is unique according to Theorems A.7–A.8; see also [16]

[19]. The superscript z in Z
z 
" .z/ is often omitted, and used only to clarify ambi-

guities when several convex functions are being discussed.
The basic result we will use to quantify strict convexity is a local version of

Caffarelli’s fundamental lemma [16, Lemma 4] [18, Lemma 2.2], adapted to the
situation at hand. For completeness, we recall the proof; the figures from [18] may
be helpful. An alternate approach to Caffarelli’s result may be found in Gutiérrez
and Huang [48].

LEMMA 7.6 (Geometric decay of sections). Given 0� t < Nt � 1 and ı > 0,
there exists s0.t; Nt / 2 �0; 1Œ (depending only on t; Nt ; ı, and dimension n), such that
whenever Z".x/ is a fixed section centered at x 2 X WD sptM of a convex func-
tion  W Rn �! ��1;1� whose Monge-Ampère measure satisfies the doubling
condition

(7.9) M Œ
1
2
�Zs".z/�� ı2M ŒZs".z/�

for all s 2 Œ0; 1� and all z in the convex set X \Z".x/, then z 2X \ t �Z".x/ implies
Zs".z/� Nt �Z".x/ for all s � s0.t; Nt /.

Proof. Fix 0 � t < 1 and ı > 0. It suffices to show there exist s0.t/ > 0 and
t0 < 1, both depending only on n, ı and t , such that: whenever a convex function
 WRn �! ��1;1� admits a section Z".x/ centered at x2X WD sptM such that
X \Z".x/ is convex, and the doubling condition (7.9) holds for all s 2 Œ0; 1� and
z 2X \Z".x/, then z 2X \ t �Z".x/ implies Zs".z/� t0 �Z".x/ for all s � s0.t/.
Once this intermediate claim is proved, we see convexity of X \Zs".x0/ follows
from that of X \Z".x/ for any new center x0 2X \ t �Z".x/ and height s" with



710 LUIS A. CAFFARELLI and ROBERT J. MCCANN

s � s0.t/, as does the doubling property (7.9) for all z 2 X \Zs".x0/. Thus the
intermediate claim implies Zs2".x0/ � t0 � Zs".x0/, and similarly, Zsk".x0/ �
t0 �Zsk�1".x0/� tk�10 �Zs".x0/ for each integer k � 1 by induction. Since t0 < 1,
the sections Zsk".x0/ shrink to their common center x0 2 t �Z".x/, so for any Nt > t
taking k D k.t; Nt / large enough ensures tk�10 �Zs".x0/� Nt �Z".x/. Then choosing
s0.t; Nt / WD s0.t/

k.t;Nt/ completes the lemma. We can take k.t; Nt / to depend on t; Nt
and t0, but not on the geometry of the sections, by using affine invariance of the
geometry and Lemma A.3 to assume Z DZ".x/ has center of mass at the origin,
and B1.0/ � Z � Bn3=2.0/ without loss of generality. This yields k.t; Nt / via an
upper bound on the distance separating tZ from Rn n .t0Z/, and a lower bound on
the distance separating tZ from Rn n .NtZ/.

The intermediate claim will be argued by contradiction. If it fails to be true,
then for some fixed ı > 0 and t 2 Œ0; 1Œ, there is a fortiori a sequence of convex
functions  k W Rn �! ��1;1�, and centered affine sections Z".k/.0/ with Xk \
Z".k/.0/ convex, on which the doubling condition (7.9) is satisfied with Xk WD
spt M k , and points zk 2Xk\ t �Z".k/.0/ such that Z".k/=k.zk/ is not contained in
.1�1=k/ �Z".k/.0/. Since the hypothesis and conclusion of the lemma are invariant
under pre-composition of  k with an affine function, and post-multiplication of
 k by a positive scalar, it costs no loss of generality to assume the normalizations
B1.0/ � Z".k/.0/ � Bn3=2.0/ for each k, and M k ŒZ".k/.0/� D 1. Furthermore,
subtracting an affine function allows us to assume that Z".k/.0/D fx j  k.x/ < 0g.

Using Blaschke’s theorem together with Lemma A.4, we extract a limiting
convex function  1 W Rn �! ��1;1� from a subsequence, and a section S1 D
fx j  1 < 0g containing B1.0/ and contained in Bn3=2.0/, with center of mass
at the origin. We have  1.0/ D limk!1 ".k/ bounded above and below by
constants depending only on n and ı > 0, while Lemma A.1 implies that  1
vanishes uniformly as the boundary of S1 is approached from the interior. Now
the height of the sections Z".k/=k.zk/ tends to zero like 1=k. Since these sections
extend beyond .1� 1=k/ �Z".k/.0/ from their centers in tZ".k/.0/, the graph of
 1 must coincide with an affine function L1 on a set K which extends from
z1 2 tZ1 to y1 2 @Z1, where z1 and y1 are subsequential limits of the zk and
points yk 2Z".k/=k.zk/\@.1�1=k/ �Z".k/.0/ respectively. Since the sections are
roughly balanced around their barycenters zk , there is also a point Qy1 2K with
z1 D a Qy1C .1� a/y1 and a�1 2 Œ1Cn�3=2; n3=2C 1�.

Now pick a point x1 which minimizes  1 on K,

(7.10)  .x1/Dmin
x2K

 1.x/ < 0;

and which is extremal in the convex set K \ fx j  .x/D  .x1/g of such mini-
mizers. It follows that x1 2Z1 from (7.10) and is extremal in the graph of  1.
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Corollary A.2 then implies that x1 lies in X1 WD spt M 1 . Since M 1 coincides
with the weak-� limit of the Monge-Ampère measures M k as in Gutiérrez [47],
we can find xk 2Xk \Z".k/.0/ converging to x1. We also note that

(7.11)  .x1/� .1C h/ 1.z1/� �h

for some h > 0 depending on 1� t , which keeps x1 and z1 separated.
Fix �; � > 0 small, to be specified later, independent of k. Consider the

affine sections Z�".k/.wk/D fx j  k � Lkg centered at the convex combination
wk D .1� �/xk C �zk . Their centers wk lie near xk since � is small, belong to
the convex set Xk \Z".k/.0/, and approach w1 D .1� �/x1C �z1 as k!1.
Thus maxx2Z�".k/.wk/.Lk � k/.x/ remains comparable to � as k!1, accord-
ing to Lemma A.4. Consider the segment Ik D Œpk;qk� obtained by intersect-
ing Z�".k/.wk/ with the line through zk and xk . Assume  k.pk/ �  k.qk/, so
that pk denotes the upper and qk the lower end of this segment. The segment
must be roughly balanced around the section’s center of mass wk D akpk C
.1� ak/qk , with a�1

k
2 Œ1C n�3=2; n3=2C 1�. Extracting subsequences as usual,

the limit k !1 yields a segment I � D Œp� ;q� �, possibly (semi)infinite, with
w1 D a1p� C .1 � a1/q� , and an affine function L� D limk Lk such that
 1 <L

� <  1CC� on I � \Z1 and

(7.12) .L� � 1/.w1/� �

as � ! 0. Observe that for � > 0 small, the lower endpoint q� must lie in Z1.
Indeed,  k differs from Lk by a quantity of order � along Ik ; if I crosses Z1 com-
pletely then L� must be nonnegative along I , and  1 > �C� , which contradicts
(7.11) when � is small, since x1 2 I in this case. Since Ik is roughly balanced, p�
remains bounded, but can be outside Z1. Also, .L� � 1/..1� t /w1C tq� /�
C.1� t /1=n� tends to zero as t ! 1, according to Lemma A.1.

We claim that q� ! x1 as � # 0, and p� 2K for small enough � > 0. Let
q0 and p0 denote accumulation points of q� and of p� in this limit. Clearly the
interior of the segment Œq0;p0� around w1, where  1 is affine, cannot contain the
extremal point x1. Since I � D Œq� ;p� � and Œx1; z1� are collinear and parallel,
q0 2 Œx1;w1�. For � > 0 sufficiently small, rough balancing of I � around w1 D
.1��/x1C�z1 then forces the upper end p� 2 Œw1; z1� when � is small. In that
case p� 2K and L� DL1D 1 agree at p� . Furthermore, q� 62 Œx1; z1�, since
otherwise I � � K would force L� D L1 D  1 and violate (7.12). Therefore
x1 D q0 D lim�#0 q� . Since the difference L� �L1 � 0 dwindles to zero along
the segment I � , as we move from q� through x1 and then z1 to p� , we find

.L� � 1/.x1/D .L� �L1/.x1/
� .L� �L1/.w1/D .L� � 1/.w1/� �:
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On the other hand, x1 D .1� t /w1C tq� with t D t .�/! 1 as � ! 0. Thus

.L� � 1/.x1/� C.1� t .�//1=n� D o.�/;

a contradiction which completes the proof. �

COROLLARY 7.7. Under the hypotheses of Lemma 7.6, we find Zsk".x/ �
Ntk �Z".x/ for all s < s0.0; Nt /, Nt 2 �0; 1Œ, and integers k � 0.

Note that we can recover the central results of the preceding section directly
from the conclusions of these lemmas in the complete transfer case mD kf k1 D
kgk1, thereby avoiding the main argument of [17].

COROLLARY 7.8 (Complete transfer injects). Fix data .f; g; h/ of convex sup-
port �D int Œsptf � and ƒD int Œsptg�. If  is a weak-� solution to the obstacle
problem (4.1) with � � U WD fx j  > hg and ƒ � U � , then  W � �! R is
strictly convex.

Proof. Let z W Rn �! R extend  from � to all of Rn, with @ z .Rn/ � xƒ.
To produce a contradiction, suppose z is affine along a segment containing z0 2�
in its relative interior. The Monge-Ampère measure M z is doubling on �, with
doubling neighborhood Rn, by the conclusion of Lemma 7.5. Thus Lemma 7.6
applies to the section Z".z0/ centered at z0 for each " > 0. The section Z".z0/
contains a segment Œz�1; z1� around z0 D .zC1C z�1/=2 along which z is affine.
Choosing Nt 2�0; 1Œ small enough, ensures z˙1 62 Nt �Z".z0/. Thus s� s0.0; Nt / from the
preceding lemma yields z˙1 62Zs".z0/. But then the affine function L W Rn �! R
defining Zs".z0/ WD fx j  < Lg must be less than the affine restriction of z to the
entire segment Œz�1; z1�, contradicting z0 2Zs".z0/. We conclude strict convexity
of z on �. �

This fundamental lemma will shortly be used to show that solutions to our
Monge-Ampère obstacle problem are p-uniformly convex, up to the fixed bound-
ary.

Definition 7.9 (p-uniform convexity). Fix p � 2 and a domain � � Rn. A
locally Lipschitz function  W� �! R, is p-uniformly convex on � if there exists
k <1 such that all points of differentiability x; x0 2�\ domr satisfy

(7.13) h r .x/�r .x0/; x� x0i � k1�pjx� x0jp:

Since p-uniform convexity quantifies injectivity of the map yDr .x/, the
following standard result provides the desired modulus of continuity for the inverse
map xDr �1.y/.

Remark 7.10 (Hölder inverse map). If a convex function  WRn �! ��1;1�

is p-uniformly convex on the domain � � dom for some p � 2, its Legendre
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transform  � 2C 1;˛.��/ has a Hölder continuous gradient on ��D @ .�/, with
Hölder exponent ˛ D 1=.p� 1/ and Hölder constant k given by (7.13).

To prove our main theorem, one more lemma is required, asserting that the
lowest sections converge to a point fzg D lim"!0Z".z/ in Hausdorff distance.

LEMMA 7.11 (Uniform localization). Fix data .f; g; hD k/ of convex support
� WD int Œsptf � andƒ WD int Œsptg�. Let z 2C 1.Rn/ be the differentiable extension
from Theorem 6.3 of a weak-� solution  to the obstacle problem (4.1). Define its
centered affine sections Z".z/ as in (7.8). Set U WD fx 2 Rn j  > hg. For R > 0
taking "0 > 0 small enough implies that Z"0.z/� BR.z/ for all z 2�\U such
that BR.z/ contains no preimages Xnt WD �\U \r z �1.@ntƒ/ of tangential
intersections of free with fixed boundary (7.2).

Proof. To produce a contradiction, suppose that for some R > 0 there exists
a sequence zk 2 �\U , with BR.zk/ disjoint from Xnt and ".k/ ! 0, such
that Z".k/.zk/ 6� BR.zk/. Extracting a subsequence if necessary yields a limit
zk! z1 with the open ball BR.z1/ still disjoint from Xnt . Translating all of the
data by r z .z1/, it costs no generality to assume r z .z1/D 0, so that z achieves
its minimum value at z1. Since r z .Rn/ D xƒ is bounded in Theorem 6.3, and
each section (7.8) is bounded, the slope v".k/.zk/ of the affine function defining
Z".k/.zk/ must lie in ƒ. Extracting another subsequence ensures that these slopes
converge to a limit v".k/.zk/! v1 2 xƒ, while the sections Z".k/.zk/ converge
locally in Hausdorff distance to a closed convex set Z1 � Rn (by the Blaschke
selection theorem [73]). Define Zmin D arg min z WD fx 2 Rn j z .x/D z .z1/g.

Claim #1. Z1 � Zmin, and contains a segment L of length 2R=˛ centered
at z1.

Proof of claim. Setting Z0 WD fx j z .x/� z .z1/Ch v1; x� z1ig and tak-
ing the limit k!1 in the definition (7.8) of the k-th section yields Z1 � Z0.
Since centered affine sections are convex bodies, John’s Lemma A.3 implies that
z1 � x=˛ 2 Z1 if z1C x 2 Z1. Now z .x/ � z .z1/ implies that Z0 lies on
one side 0� h v1; x� z1i of a hyperplane through z1 unless v1 D 0. In either
case Z1 �Z0 — being roughly balanced around z1 — lies in z1Cfv1g?, the
subspace orthogonal to v1. The inequality z .x/ � z .z1/ becomes an equality
on Z0\ z1Cfv1g?, thus Z1 �Z0\ z1Cfv1g? �Zmin as desired. Finally,
since the convex set Z1 6� BR.z1/, it must contain a segment of length 2R=˛
centered at z1. End of claim.

Clearly r z .x/ D 0 throughout the set Zmin where z is minimized. Theo-
rem 6.3 asserts that r z W�\U �!ƒ\U � is homeomorphic, so Zmin cannot
intersect the active domain except at the single point z1. Thus z1 must lie on
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the boundary of �\U , with the rest of the segment L (and indeed all of Zmin)
outside it. We shall need to locate the exposed points of the closed convex set Zmin.
Recall a point p 2Zmin is exposed if some hyperplane touches Zmin only at p.

Claim #2. The exposed points ofZmin lie in the support of the Monge-Ampère
measure M z .

Proof of claim. Let p be an exposed point of Zmin. Then some affine function
A.x/D h On; x�pi takes negative values on Zmin n fpg. Given r > 0, we claim that
ı > 0 sufficiently small ensures that the convex section

(7.14) Sı WD fx 2 Rn j z .x/ < z .p/C ıA.x/C ı2g

lies in Br.p/. If not, there exists a positive sequence ı.j /! 0 with xj 2 Sı.j / n
Br.p/. Since Sı.j / forms a convex neighborhood of p, it costs no generality to
take xj 2 @Br.p/, whence a subsequence — also denoted xj — converges to some
x1 2 Br.p/. Taking a limit in the equality (7.14) which defines xj 2 Sı.j / shows
z .x1/� z .p/. Thus x1 2Zmin\@Br.p/ and A.x1/ < 0. Taking j large enough
yields A.xj / <A.x1/=2< 0 and ı.j / <�A.x1/=2. Inequality (7.14) then asserts
z .xj / < z .p/, contradicting p 2Zmin. The only logical escape is Sı � Br.p/ for
ı sufficiently small. Corollary A.2 shows M z ŒSı � > 0. Since Br.p/ can be taken
arbitrarily small, we conclude p 2 spt M z as desired. End of claim.

Claim #2 combines with (7.5) to show all exposed points of Zmin lie in
�\U or ƒ\U � . The segment L of Claim #1 shows the sole point z1 2
Zmin \ �\U cannot be exposed in Zmin, so all exposed points of Zmin are
contained in the compact convex set xƒ. Being limits of exposed points, the ex-
treme points of Zmin also lie in xƒ according to Straszewicz’ theorem [69, �18.6].
Here extreme means that p 2Zmin cannot be expressed as a convex combination
p D .1 � �/p0 C �p1 of points p0;p1 2 Zmin with � 2 �0; 1Œ unless p0 D p1.
Similarly, a direction q in the recession cone rcŒZmin� WD lim�#0 �Zmin is extreme
if qD .1��/q0C�q1 with � 2 �0; 1Œ forces q0 to be nonnegative scalar multiple
of q1 or vice versa.

A variation of Minkowski’s theorem given by Rockafellar [69, �18.5] as-
serts that any closed convex set which does not contain a full line, can be ex-
pressed as the convex hull of its extreme points plus its extreme directions: Zmin D

conv ext ŒZmin�C rcŒZmin�. Note that Zmin does not contain a full line, since this
would limit the dimension of f z � <1g to n� 1, violating r z .Rn/D xƒ. Thus
z1D pCq where p 2 xƒ and q 2 rc.Zmin/. Observe that q¤ 0 since z1 2� lies a
positive distance from xƒ by hypothesis. Thus Zmin contains a half-line in direction
q; let us choose coordinates in which q parallels, say, the negative xn-axis. Gra-
dient monotonicity then forces @ z =@xn � 0 throughout Rn, so that xƒDr z .Rn/
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must lie in the upper half-space xn � 0. Thus ƒ has OnV .0/ D �en as an outer
normal at r z .z1/ D 0 2 ƒ\U � . Two cases remain to be considered: either
(a) r z .z1/D 0 lies on the free boundary ƒ\ @U � , (b) or not. We address the
second case first.

Case (b): 0 62 ƒ\ @U � (not a free boundary point). In this case there is a
small ball Bı.0/ which does not intersect the free boundary ƒ\ @U � . For any
y 2 ƒ \ Bı.0/, the segment joining 0 to y will lie in the nonempty convex set
ƒ\Bı.0/�ƒ\U �. For � 2 �0; 1Œ, monotonicity then yields

�h r z �1.�y/�p; y� 0i � 0;

from which we recover h z1 � p; yi � 0 in the limit � # 0. Since q D z1 � p
parallels the negative xn-axis, this contradicts the fact that y 2ƒ� fxn > 0g lies
in the upper half-space.

Case (a): 0 2ƒ\ @U � (at the intersection of the fixed with the free bound-
ary). Since z1 62 Xnt , (7.2) asserts that z1 D z1 �r .z1/ is not an outward
normal to ƒ at 0. It follows that the intersection ƒ\Bjz1j.z1/ is nonempty; it
is manifestly convex, and contained in ƒ\U � according to Lemma 6.8. For a
line segment joining 0 to y 2ƒ\Bjz1j.z1/, the argument of case (b) now yields
the same contradiction. The conclusion must be that for "0 > 0 small enough,
Z"0.z/� BR.z/ as desired. �

Remark 7.12. If @ntƒ is empty, the constant "0. ;R/ of the preceding lemma
can be shown to depend on  only through the coarse geometrical parameters
of the problem: The distance separating the convex domains � and ƒ and their
inner and outer radii, the universal constant ı0 of (7.4), and the minimal angle
separating the free inward normal from the fixed outward normal among points
of intersection @ƒ\ƒ\ @U � between the target’s fixed and the free boundaries.
This is established by repeating the proof given above, for any sequence of data
.fk; gk; h/ and solutions  k sharing the same coarse parameters, thus permitting
extraction of a subsequential limit.

THEOREM 7.13 (p-uniform convexity along convex boundaries). Fix data
.f; g; h/ of convex support � WD int Œsptf � and ƒ WD int Œsptg�. For a weak-�
solution  to the obstacle problem (4.1), let U D fx 2 Rn j  > hg. Given R > 0
and x 2�\U ,  will be p-uniformly convex (see (7.16)) on�\U \Br=2.x/ if
B2R.x/ is disjoint from ƒ[Xnt and has convex intersection with �\U , where
"0 D "0. ;R/, Xnt , and r D ˇ"0n=2=Rn�1 are from Lemmas 7.11 and A.5. The
convexity exponent p D log s0.0; Nt /= log Nt from Lemma 7.6 is universal, as is the
constant k times ."0=Rp/1=.p�1/.
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Proof. Fix R > 0, and x 2 �\U such that B2R.x/ is disjoint from ƒ[

Xnt and has convex intersection with �\U . Extend  to z 2 C 1.Rn/ as in
Theorem 6.3. According to Lemma 7.5, the Monge-Ampère measure M z has a
doubling neighborhood BR.z/ around each z 2�\U \BR.x/, where it doubles
affinely with a universal constant. Set X D sptM z D �\U [ƒ nU � , from
Lemma 7.2. Since � \ U \ B2R.x/ is hypothesized to be convex, so is X \
BR.z/D�\U \BR.z/.

Choose "0 > 0 and r D ˇ"0n=2=Rn�1 from Lemmas 7.11 and A.5 to ensure
Br.z/�Z"0.z/ and Zs"0.z/� BR.z/ for all z 2X \BR.x/ and s 2 �0; 1�. Since
BR.z/ is an affine doubling neighborhood for M z around z 2X \BR.x/, and the
sets X\Zs"0.z/ are all convex, we are in a position to apply Lemma 7.6. As in [18,
Cor. 2.3], our first goal is to deduce the following expression of strict convexity.

Claim #1. Fix t 2 �0; 1Œ so that t=.1� t /� n3=2 DW ˛ and the corresponding
s0.t; 1/ from Lemma 7.6; here ˛ denotes F. John’s (universal) balancing constant
(Lemma A.3). Every " 2 �0; "0�, z0 2X \BR.x/ and z1 2X \ @Z".z0/ satisfy

(7.15)  .z1/�  .z0/Chr .z0/; z1� z0iC "s0.t; 1/=t:

Proof of claim. Translating the data .f; g/, it costs no loss of generality to
assume r .z0/D 0. Now zt WD .1� t /z0C tz1 2 t �Z".z0/, where t=.1� t /� ˛
is still fixed as above. Thus Zs0".zt / � Z".z0/ by Lemma 7.6 (and A.8), with
s0 D s0.t; 1/. In particular, z1 2 @Z".z0/ cannot be an interior point of Zs0".zt /;
nor can z0, for our choice of t would then force z1 also to be an interior point (since
the affine section Zs0".zt / D f < Lg is roughly balanced around its center zt ).
If L.y/ is the affine function defining this section, we know that L.z0/ �  .z0/
and L.z1/ �  .z1/, but L.zt / D  .zt /C s0" �  .z0/C s0" since r .z0/ D 0.
Along the segment joining z0 to zt , the slope of L is at least s0"=jzt � z0j; by the
time it reaches z1, this linear function will have attained a value L.z1/� L.zt / +
jz1� zt js0"=jzt � z0j: The desired estimate follows:

 .z1/� L.z1/� L.zt /C s0"
1� t

t
�  .z0/C s0"=t:

End of claim.

Our next claim completes the proof of the theorem:

Claim #2. Given Nt 2�0; 1Œ, take s0.0; Nt / from Lemma 7.6. Then every z0; z1 2
X \Br=2.x/ satisfy
(7.16)

h r .z1/�r .z0/; z1� z0i � "0
s0..˛

�1C 1/�1; 1/

.˛�1C 1/�1

�
Nt jz1� z0j

R

� log s0.0;Nt/
log Nt

:
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Proof of claim. Given z0; z1 2X \Br=2.x/, we have z1 2 Br.z0/�Z"0.z0/.
We assume z1 ¤ z0, since otherwise there is nothing to prove. The centered affine
sections Z"0.z0/ vary continuously with "0, and they tend to z0 in the limit "0! 0,
according to Lemmas 7.11 and A.8. Thus there exists some " � "0 such that
z1 2 @Z".z0/. Summing  .z0/�  .z1/Chr .z1/; z0� z1i with the conclusion
(7.15) of Claim #1 yields

(7.17) h r .z1/�r .z0/; z1� z0i � "s0.t; 1/=t;

with t D .˛�1 C 1/�1. It remains to show that " dominates a certain power of
jz0� z1j.

Recall that s � s0.0; Nt /k implies Zs"0.z0/ � Ntk �Z"0.z0/ for all k 2 N from
Corollary 7.7. Set s D "="0, and let k � 0 be the integer satisfying log s

log s0.0;Nt/
2

Œk; kC 1Œ. Then s � s0.0; Nt /k and, since z1 2 @Zs"0.z0/� Ntk �Z"0.z/, we find

jz1� z0j � Nt
log s

log s0.0;Nt/
�1 max

z2@Z"0 .z0/
jz� z0j � s

log Nt
log s0.0;Nt/R=Nt :

Recalling s D "="0, this combines with (7.17) to complete claim (7.16) and the
theorem. End of Claim. �

Hölder continuity of the map r z up to the free boundary �\ @U follows
from Remark 7.10. By exchange symmetry f .x/$ g.y/, it is equivalent to show
Hölder continuity of the inverse map r � up to ƒ\@U � ; in fact we show Hölder
continuity of r � globally, away from the image r z .@ncU / of any nonconvex-
ities on the first free boundary, and from any points @ntƒ where the second free
and fixed boundaries intersect tangentially.

COROLLARY 7.14 (Hölder continuous map up to free boundary). Fix data
.f; g; h D k/ of convex support � D int Œsptf � and ƒ D int Œsptg�. Set U WD
fx 2 Rn j  > hg, where  is a weak-� solution to the obstacle problem (4.1). Then
the Legendre transform of  is Hölder differentiable  � 2 C 1;˛loc

�
ƒ\U � nF

�
away from F D @ 

�
@ncU 

�
[@ntƒ�Rn nƒ, with ˛D 1=.p�1/ universal from

Theorem 7.13.

Proof. Let z 2C 1.Rn/ extend  as in Theorem 6.3, so that r z W�\U �!
ƒ\U � is a homeomorphism. Any y 2 ƒ\U � n F is the image y D r z .x/
of some x 2 �\U which lies in a ball B2R.x/ whose intersection with the
active domain � \ U is convex. Taking R > 0 smaller if necessary ensures
B2R.x/ disjoint from Xnt WD�\U \r z 

�1.@ntƒ/. Theorem 7.13 provides a
neighborhood X WDBr=2.x/\�\U on whose interior  is p-uniformly convex,
with p universal. Thus the gradient of  � is Hölder continuous with exponent
˛ D 1=.p� 1/, on the interior (hence on the closure) of the neighborhood r z .X/
of y relatively open in ƒ\U � , according to Remark 7.10. �
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A final corollary shows that the normal to the free boundary is Hölder contin-
uous in the interior of � — and up to those points of @� where the fixed and free
boundaries intersect transversally, and which do not map to non-locally-convex
intersection points @ƒ\ @ncU � of the target’s fixed and free boundaries.

COROLLARY 7.15 (Hölder continuity of free boundary normal). Fix data
.f; g; hD k/ of convex support�D int Œsptf � andƒD int Œsptg�. Let z 2C 1.Rn/
from Theorem 6.3 extend a weak-� solution  to the obstacle problem (4.1), and
set U Dfx j  > hg. Then the normal nU .x/D x�r z .x/ to the free boundary is

Hölder continuous: OnU WDnU =jnU j 2C
1;˛
loc

�
�\ @U 

�
\C

1;˛
loc

�
�\ @U nE

�
where E WD r z �1

�
@ƒ\ @ncU �

�
[ @nt� is defined by (7.1)–(7.2).

Proof. From Corollary 7.14 and the exchange symmetry f .x/$ g.y/, we
infer the gradient of z is Hölder continuous on compact subsets of �\ @U dis-
joint from @nt�[r z 

�1
�
@ncU �

�
. According to Lemma 6.8, �\@U is disjoint

from r z �1
�
ƒ\ @U �

�
; similarly �\ @U is disjoint from r z �1

�
ƒ\ @U �

�
.

Since @ncU � �ƒ\ @U � we conclude that the map r z is Hölder continuous on
the free boundary outside of E. The outer normal nU .x/D x�r z .x/ to the free
domain was identified in Remark 6.5; it is nonvanishing by the positive separation
hypothesized for � and ƒ. Thus the corollary is established. �

Appendix A. Background estimates for centered sections
This appendix is devoted to recalling and refining some central aspects of Caf-

farelli’s C 1;˛ regularity theory for the Monge-Ampère equation [16]. In particular
we show that the centered affine section (7.8) of height " above any point .x;  .x//
in the graph of a convex function is uniquely defined and depends continuously on
" provided x 2 int Œdom �. The central estimates concerning such sections are also
recalled. We use !n D jSn�1j to denote the (n� 1)-dimensional area of the unit
sphere in Rn.

LEMMA A.1 (Aleksandrov estimate and lower barrier). If  WRn! ��1;1�

is convex, lower semicontinuous, and x 2Z WD f < 0g � BR.0/, then

(A.1)  .x/� �
�

M .Z/
n.2R/n�1

!n�1
dist @Z.x/

�1=n
:

Proof. Compare  with a cone v with vertex at .x;  .x// sharing the same
zero set @Z. Then

@ .Z/� @v.x/� B�v.z/
2R

.0/[
�
� .x/

dist @Z.x/
Oe
�
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for some unit vector Oe 2 Rn. Since the last set contains a right circular cone of
volume .Base/.height/=n we estimate

M .Z/� vol Œ@v.x/��
!n�1

n

�
� .x/
2R

�n�1 �
� .x/

dist @Z.x/

�
to conclude the proof. �

COROLLARY A.2 (Bounded sections have positive MA mass). Let  WRn �!
��1;1� be proper and convex, with S WD fx j  .x/ < h v; xiC "g bounded and
nonempty for some v 2 Rn and " 2 R. Then M .S/ > 0.

Proof. Let z 2 S and apply the lemma to the convex function z .x/ WD  .x/�
h v; xi� ", so M DM z and Z D S . Since z .z/ < 0 we conclude M .Z/ > 0 in
(A.1). �

The next lemma is a version of a theorem by Fritz John [49], adapted to
ellipsoids with fixed center of mass. The sharp constant ˛ D n3=2 for this version
may be found in Gutiérrez [47], where much of this theory is described.

LEMMA A.3 (Normalization of convex bodies [16, Lemma 2]). There is a
universal constant ˛ � n, such that each bounded convex domain � � Rn with
barycenter at the origin contains an ellipsoid E ��, also centered at the origin,
whose dilation by ˛ D n3=2 encloses �� ˛�E.

LEMMA A.4 (Doubling property implies upper barrier). Suppose  W Rn �!
��1;1� convex, lower semicontinuous, attains its minimum value at y. If Z WD
f < 0g is a bounded set with positive volume and 0 as its barycenter, then 1 �
 .y/= .0/ � ˛ C 1 where ˛ D ˛.n/ is the balancing constant of Lemma A.3.
Moreover, the doubling condition (A.3) on the Monge-Ampère measure M pro-
vides ı > 0 for which

(A.2) c � vol .Z/M .Z/=j .y/jn � C=ı2

where the constants c D !n�1!n=.n2n�1˛/ and C D ˛nC2c depend on dimension
only.

Proof. Since both conclusions are invariant under  7!  ıT , when T .x/ is
an affine unit-determinant transformation, Lemma A.3 allows us to assume

B˛r.0/�Z � B˛2r.0/

for some r > 0 without loss of generality. The estimate dist .Z=˛2;Rn nZ/ �
.˛� 1/r then yields jr .x/j � j .y/j=.˛� 1/r for all x 2Z=˛2. Thus

M 

�
Z=˛2

�
�

!n

.˛� 1/n
j .y/jn

rn
:
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On the other hand, the preceding lemma yields

M .Z/�
!n�1

n2n�1
j .y/jn

Rn�1dist @Z.y/

with RD ˛2r . If for some " > 0 we have the doubling property

(A.3)
!nı

2

.˛� 1/n
M .Z/�

!n�1

n.2˛2/n�1
M .Z=˛

2/

then "r � dist @Z.y/ � ˛2r and hence j .y/j � rM .Z/
1=n as desired. In fact,

(A.2) holds with c D !n�1!n=.n2n�1˛/ and C D ˛nC2c. Since Z is star-shaped
around y, expressing 0D .1� t /xC ty as a convex combination of y and a boundary
point x2@Z yields .0/�0Ct .y/. Now jxj�˛r but jyj�˛2r yields .1�t /=t �
˛, hence t�1 � ˛C 1. Since  .y/ is a minimum, we have 1�  .y/= .0/� t�1

as desired. �

The preceding lemma asserts not only that the maximum height of a convex
function over any affine section is comparable to its height at the barycenter, but
that, as for a parabola, the section volume corresponds to the n

2
th power of this

height, provided only that the Monge-Ampère measure of the section is comparable
to its volume, and doubles affinely around its barycenter. Since the two latter prop-
erties can be deduced when  satisfies a Monge-Ampère equation with appropriate
right-hand side, this already hints at a regularity theory. The next lemma refines
this observation to show that a sequence of sections at any given height cannot
become arbitrarily thin, unless they simultaneously become arbitrarily long. At a
given height, bounded sections therefore have bounded eccentricity.

LEMMA A.5 (Sections degenerate doubly or not at all). Fix "0 > 0 and a
proper convex function  W Rn �! ��1;1�. Suppose v 2 Rn yields a section
Z D Z"0.z/ D fx 2 Rn j  .x/ <  .z/Ch v; x� ziC "0g with barycenter at z 2
int Œdom �. If vol ŒZ�� ı0M ŒZ� for some ı0 > 0, then there is a (universal) con-
stant ˇ WD .cı0/1=2=.!n˛n/ such that Z"0.z/� BR.z/ implies Bˇ"0n=2R1�n.z/�
Z"0.z/.

Proof. Without loss of generality set z D 0 so that Z D Z"0.0/ is a section
of the convex function  with height "0 > 0 over its barycenter 0 2 int Œdom �.
Since the height of the section is at least "0, from vol ŒZ� � ı0M ŒZ� and (A.2)
we recover

(A.4) c"0
n < vol ŒZ�2=ı0I

for this lower bound we do not need the doubling condition (A.3), as evidenced by
the absence of ı. According to (John’s) Lemma A.3, there is an ellipsoid centered
at the origin with E �Z � ˛E. The principle axes of this ellipsoid have lengths
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a1 � a2 � � � � � an �R if Z �BR.0/, so the volume of Z � ˛E can be estimated
by

vol ŒZ�� !na1Rn�1˛n:

Combined with (A.4) this yields the desired bound a1 �
p
.cı0"0n/=.!n˛

nRn�1/

D ˇ"0
n=2=Rn�1. �

It is not hard to rule out the possibility of a sequence of centered sections
becoming doubly infinite using the following remark. Some of the work concerning
Hölder estimates will be devoted to ruling out limiting sections which contain only
a half-line.

Remark A.6. The subgradient image @ .Rn/ of a convex function  has an
empty interior if and only if the graph of  contains a straight line, or equivalently,
if and only if  .x1; : : : ; xn/ is independent of x1 in some orthogonal basis for Rn.

Let us finally recall the basic existence result concerning centered affine sec-
tions [16, Lemma 1], [19, Th. 2.2]. We prove uniqueness of these sections and
their continuous dependence on height afterwards.

THEOREM A.7 (Centered sections of a convex function). Let  W Rn �!
Œ0;1� be a nonnegative convex function, continuous at  .0/ < 1

2
and with @ .Rn/

having nonempty interior. For some affine function L.x/D 1Ch v; xi the section
ZL WD fx 2 Rn j  .x/ < L.x/g is bounded, convex, and has zero as its barycenter.

Proof. First assume  is smooth and strictly convex with quadratic growth
(A.5) as jxj !C1. Then ZL is a bounded nonempty convex domain with a first
moment vector

zL WD
Z
ZL

x dvol .x/

equal to its volume times its barycenter. We claim that for a suitable choice of
v2Rn, the first moment jzLj achieves its minimum value among all affine functions
L.x/D 1Ch v; xi. This follows by continuity and compactness once the following
claim is established.

Claim #1. The moment jzLj grows without bound as the slope jvj!1 grows.

Proof of claim. It costs no generality to suppose vD .�; 0; : : : ; 0/ parallels
the positive x1-axis. Decompose ZLDZCL [Z

�
L into Z˙L D f.x1; : : : ; xn/ 2ZL j

˙x1 > 0g. The quadratic growth assumptions assert that

(A.5)
2jxj2

R2
� 1�  .x/�

1

2

�
jxj2

r2
C 1

�
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for some 0 < r < R <1, whence Z�L � BR.0/\fx j x1 ��1=�g since  is also
nonnegative. Thus

(A.6)
Z
Z�L

x1 dvol .z/� �
Rn�1

�2
:

On the other hand, the convex set ZCL includes the n�1 dimensional ball Bn�1r .0/
in the hyperplane x1D 0, as well as the point .2�r2; 0; : : : ; 0/ on the x1-axis. Thus
ZCL contains a right circular cone along the x1-axis with a cylinder of diameter r
and height �r2 inside it. It is easy to estimate

(A.7)
Z
Z
C

L

x1 dvol .z/�
�2r4

2
!n�1

�r
2

�n�1
:

Summing (A.6)–(A.7) shows that jzLj diverges with �!1. End of claim.

Claim #2. The lemma is true for  smooth and strictly convex satisfying (A.5).

Proof of claim. A sequence vk 2 Rn minimizing jzLk j is bounded according
to Claim #1, so a subsequence converges to a limit vk.i/! v1 for which jzL1 j is
a minimum. We need only show that zL1 D 0. It costs no generality to assume that
zL1 D .��; 0; : : : ; 0/ with � � 0. Consider the dependence of the first moment
zL D .z1."/; : : : ; zn."// on vD v1C ."; 0; : : : ; 0/. If the derivatives existed and
z01.0/ > 0, minimality of jzL1 j would imply

(A.8) 0D
d

d"

ˇ̌̌̌
"D0

jzLj2

2
D

nX
jD1

zj .0/z
0
j .0/D��z

0
1.0/

forcing � D 0 as desired. Below we shall argue the same conclusion without
addressing existence of the derivatives.

Set Z˙."/ D f.x1; : : : ; xn/ 2 ZL j ˙x1 > 0g. Now Z˙."/ is a monotone
sequence of bounded convex sets, whose union ZL D f.x1; : : : ; xn/ j z .x/ < "x1g
is conveniently expressed in terms of z .x/ WD  .x/�L1.x/. By smoothness and
strict convexity, r z .x/ is bounded away from zero and infinity in a neigborhood
of the compact set @ZL1 . Thus vol ŒZL�ZL1 ��Kj"j for some large constant K
and " small enough. This shows jzj ."/j2 DO."2/ for j ¤ 1. On the other hand, it
is clear that z1."/��� for " > 0, since ZC.0/�ZC."/ and Z�."/�Z�.0/. To
quantify this inequality, observe that any maximal interval f.x1;X/ j a.X/ < x1 <
b.X/g inZC.0/ for fixed X2Rn�1 lies in an interval f.x1;X/ ja.X/<x1<b.X/C
"k.X/g �ZC."/ which is strictly longer since r z .x/ is nonvanishing on @ZC.0/.
Thus z1."/ � ��C "k for some k > 0, whence jz."/j2 D �2 � 2�k"CO."2/.
Minimality of jz.0/j2 establishes the claim �D 0. End of claim.
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A series of approximations will show that a general convex function  W
Rn �! Œ0;1� can be approximated by one which is smooth, strictly convex,
and has quadratic growth (A.5). Indeed, let �0 denote the interior of dom WD

fx 2j u.x/ <1g and define

 1" .x/ WDmax f .x/;
"1=2

dist Rnn�0.x/
g

as a maximum of two convex functions [59, Lemma 4.2], so that its rate of diver-
gence is known at @�0. Fix a subdomain �" WD fx 2 B1=".0/ j dist Rnn�0.x/ > "g
bounded and convex, and define  2" .x/ as a supremum of supporting hyperplanes

 2" .x/D sup fh v; x� ziC 1" .z/ j z 2�"; v 2 @ 
1
" .z/g

to be the smallest convex extension of  1" .x/ from �" to Rn. Then  2" is globally
Lipschitz and converges uniformly to  on compact subsets of �0. Strict convexity,
smoothness, and quadratic growth are ensured by adding a parabola  3" D 

2
" .x/C

"jxj2; and convolving with a standard mollifier  "D 3" ��", neither of which spoils
the uniform convergence to  on compact subsets of �0. Divergence outside �0
is addressed by the next statement.

Claim #3. For " > 0 small, if jxj< 3
4
"�1 but x 62�0 then  ".x/� 1

2
"�1=2.

Proof of claim. We shall rather prove  2" .x0/� "�1=2 on the part of B1=".0/
lying outside the convex set �0. The claim then follows since  2" is nonnegative
in �0 and our mollifier �" is spherically symmetric.

Take 0 < " < 1=2 small enough that  2" .0/ < 1=2 and �" contains the origin.
Then some z" 2 @�" lies on the segment joining 0 to x0 2 B1=".0/ n�0. Since
dist Rnn�0.z"/D " one finds that y" 2 @ 2" .z"/ satisfies

 2" .x/� h y"; x� z"iC 2" .z"/(A.9)

� h y"; x� z"iC
1

"1=2

for all x 2 Rn. Taking x D 0 in (A.9) shows h y"; z"i > 0. Since z" is a positive
fraction of x0, the desired inequality  2" .x0/� "�1=2 follows by setting xD x0 in
(A.9). End of claim.

Now  "! uniformly on compact subsets of Rnn@�0. Claim #2 provides a
convex section Z" WD fx j  " � L"g with barycenter at the origin. F. John’s lemma
(Lemma A.3) yields a centered ellipsoid E" �Z" � ˛�E".

Claim # 4. @E" remains bounded away from the origin and1 as "! 0, and
the slope of L" remains bounded.
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Proof of claim. Since  .x/ is continuous at  .0/ < 1=2, for some small fixed
r > 0, taking " small enough ensures  ".x/ < 1=2 for all jxj< ˛r . Now L".x/D
1C h v"; xi, so at least half of the ball B˛r.0/ is contained in Z" � ˛ �E". This
shows that @E" remains outside Br.0/ to prove the first half of the claim. Now
Br.0/�Z", which incidentally implies jv"j � 1=r since  " � 0.

On the other hand, if the longest axis of E" grows without bound we derive
a contradiction as follows. For some subsequence ".k/! 0 we have a convergent
sequence of unit vectors Ouk ! Oe1 without loss of generality, such that ˙2k Ouk 2
E".k/ while h Ouk; Oe1i � 1� .r=k/2. Since Br.0/ � E".k/ it follows that ˙k Oe1 2
E".k/ �Z".k/. This means that

0�  ".k/.˙k Oe1/� 1˙ kh v".k/; Oe1i:

Thus jh v".k/; Oe1ij � 1=k which in turn implies 0 �  ".k/.˙k Oe1/ � 2. Since
 "!  in �0 and grows large outside �0, convexity implies 0�  .x/� 2 along
the entire x1-axis. But the only bounded convex function is a constant: the graph
of  would contain a line, contradicting Remark A.6 to establish the claim. End
of claim.

Using the preceding claim, the Blaschke selection theorem yields a subse-
quence ".k/! 0 and a bounded convex domain Z0 �Rn such that Z".k/!Z0 in
Hausdorff distance while L".k/!L0 converges to an affine function L0.x/D 1C
h v; xi. Clearly Z0, like Z".k/, has barycenter at the origin since convergence takes
place in a bounded set and vol ŒZ".k/�Z0�! 0. Setting Z D fx 2�0 j  < L0g
and Z0 D fx 2 Rn j  � L0g, one verifies that Z �Z0 �Z0 from the convergence
 "!  and Z0 � xZ because  .0/ < L0.0/. Since the distinction Z0 nZ � @Z is
negligible, the proof is complete. �

LEMMA A.8 (Centered sections are unique). Fix a convex function  WRn �!
��1;1� for which @ .Rn/ has nonempty interior. If 0 2 int Œdom �, then the
section Z".0/ WD fx 2 Rn j  .x/ <  .0/Ch v"; xiC "g with center of mass at
the origin has an interior uniquely determined by " > 0. Metrized by Hausdorff
distance, the section Z".0/ varies continuously with " > 0. The slope v" is also
continuous and uniquely determined by " > 0, except when vol Œdom nZ".0/�D 0.

Proof. Let p 2 @ .0/. Replacing  by z .x/D  .x/� .0/� hp; xi shows
that it costs no generality to assume that  .x/ �  .0/ D 0 is nonnegative. The-
orem A.7 then implies the existence of at least one v" for which Z" D Z".0/ is
bounded and has zero as its barycenter. To derive a contradiction, suppose that
for some " > 0 there are two distinct solutions, v" ¤ Qv, corresponding to bounded
sections Z" and zZ both having height " over their common center of mass. In some
coordinate system Qv� v" D �en with � > 0, so that QL.x/ D "C h Qv; xi satisfies
xn. QL.x/�L".x//>0. Thus the parts zZ˙ WD zZ\H˙ of zZ WDfx j  < QLgwhich lie
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in the upper and lower half-spaces H˙ WD fx j ˙xn > 0g satisfy reverse inclusions
zZ��Z�" andZC" � zZ

C with respect to the corresponding parts ofZ˙" WDZ"\H˙.
Moreover, the inclusions are generally strict: Both Z" and zZ contain a neighbor-
hood of the origin, and any boundary point x 2HC\@Z"\ int Œdom � will have a
neighborhood contained in zZ. Then it follows that at least one of the inequalitiesZ

Z˙"

xndvol .x/�
Z
zZ˙
xndvol .x/

is strict, violating the hypothesis that both Z" and zZ share the same center of
mass. This contradiction implies Qv D v". The only other possibility is that both
.HC \ dom / nZC" and .H� \ dom / n zZ� have zero volume, in which case
the inclusions above imply that the interiors of the convex sets Z" � dom and
zZ � dom coincide.

Let us now show continuous dependence of the section Z" on " > 0; again
by replacing  by "�1 it suffices to show continuity near " D 1. Choose any
sequence limk!1 "k D 1. We claim that the corresponding sections Zk DZ"k .0/
are bounded independently of k. Otherwise there is an unbounded sequence of
points ˛xk 2Zk whose reflections �xk also lie in Zk , since centered sections are
roughly balanced. This implies

0�  .˙xk/� "k˙h vk; xki � 2"k

where vk WD v"k . A subsequential limit forces  .�Ox1/� 2 for all � 2R along the
line Ox1 D limk!1 xk=jxkj. In this case the graph of  must contain a full line,
contradicting the hypothesis that @ .Rn/ has nonempty interior.

Having shown that Zk � BR.0/ for some R <1, let us also observe that
the section boundaries also remain bounded away from the origin. Indeed, taking
r > 0 small enough implies  .x/ < 1=2 on the ball of radius ˛r around zero.
Extracting a further subsequence ensures 1=2 < "k < 2 for all k, so the half of
B˛r.0/ on the positive side of the hyperplane h vk; xi D 0 will be contained in Zk .
Since Zk is roughly balanced, this implies Br.0/ � Zk for all k. From this fact
we conclude that jvkj � 2=r , so a subsequential limit vk! v1 exists. We claim
that the corresponding sections Zk converge to Z1 WD fx j  .x/� 1Ch v1; xig
in Hausdorff distance or — what is equivalent for convex bodies — the sense that
the volume of the symmetric difference vol ŒZ1�Zk�! 0. This is a consequence
of Lesbegue’s dominated convergence theorem applied on the ball BR.0/: since
the equality defining Z1 is strict both inside Z1 and outside the closure of its
complement, it is not hard to show that �Z1 D limk!1 �Zk .x/ pointwise for all
x 62 @Z1. Lebesgue’s dominated convergence theorem also shows that the center of
mass of Z1 must vanish, so the uniqueness established above implies @Z1D @Z1
as desired. This forces v1 D v1 unless vol Œdom nZ".0/�D 0. �
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