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This abstract sketches a geometric framework proposed in [1] and its conse-
quences concerning the general regularity theory for optimal mappings developed
by Ma, Trudinger, Wang and Loeper, following pioneering work on special cost
functions by (at least) Caffarelli, Delanoë, Huang, Guan, Gutierrez, Oliker, Urbas,
and X-J Wang. Due to space limitations we do not attempt to cite the literature or
give much historical context, referring the reader instead to our paper, except that
we note a different approach to some of our results was discovered independently at
about the same time by Trudinger & Wang in arXiv:math/0702807. For simplicity
our assumptions here are more restrictive than required in [1].

Let M and M̄ be domains with compact closure clM ⊂ M ′ and cl M̄ ⊂ M̄ ′

in smooth manifolds M ′ and M̄ ′. Suppose M and M̄ are equipped with Borel
probability measures ρ and ρ̄, and let s ∈ C4(Ω′) be the surplus (= − transportation
cost) defined on the product space Ω′ = M ′ × M̄ ′. The optimal transportation
problem of Kantorovich is then to find the measure γ ≥ 0 on M×M̄ which achieves
the supremum

(1) −W−s(ρ, ρ̄) := max
γ∈Γ(ρ,ρ̄)

∫
M×M̄

s(x, x̄)dγ(x, x̄).

Here Γ(ρ, ρ̄) denotes the set of joint probabilities having the same left and right
marginals as ρ ⊗ ρ̄. It is not hard to check that this maximum is attained; any
maximizing measure γ ∈ Γ(ρ, ρ̄) is then called optimal. Each feasible γ ∈ Γ(ρ, ρ̄) can
be thought of as a weighted relation pairing points x distributed like ρ with points x̄

distributed like ρ̄; optimality implies this pairing also maximizes the average value
of the specified surplus s(x, x̄) for transporting each point x to its destination x̄.

The optimal transportation problem of Monge amounts to finding a Borel map
F : M −→ M̄ , and an optimal measure γ vanishing outside Graph(F ) := {(x, x̄) ∈
M×M̄ | x̄ = F (x)}. When such a map F exists, it is called an optimal map between
ρ and ρ̄; in this case, the relation γ is single-valued, so that ρ-almost every point
x has a unique partner x̄ = F (x), and optimality can be achieved in (0.1) without
subdividing the mass at such points x between different destinations. Although
Monge’s problem is more subtle to solve than Kantorovich’s, when M is a smooth
manifold and ρ vanishes on every Lipschitz submanifold of lower dimension, a twist
condition (see (A1) below) on the surplus function s(x, x̄) guarantees existence and
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uniqueness of an optimal map F , as well as uniqueness of the optimal measure γ.
One can then ask about the smoothness of the optimal map F : M −→ M̄ .

For ρ, ρ̄ smooth and bounded away from zero on their respective domains, Ma,
Trudinger & Wang gave hypotheses on Euclidean domains M,M̄ ⊂ Rn and s ∈
C4(Ω′) which ensure an affirmative answer. Their hypotheses may appear daunting,
but inspired by Loeper’s discoveries on Riemannian manifolds we recast them geo-
metrically as follows. Use local coordinates x1, . . . , xn on M ′ and x1̄, . . . , xn̄ on M̄ ′

to define an inner product d`2 := (∂2s/∂xi∂xj̄)(dxi⊗dxj̄ +dxj̄⊗dxi)/2 of indefinite
sign and a symplectic form ω := (∂2s/∂xi∂xj̄)dxi ∧ dxj̄ on the tangent bundle TΩ′

of the product space. Repeated indices are summed from 1, . . . , n or n+1, . . . , n+n̄

according to whether they are barred or unbarred. Assume these bilinear forms are
non-degenerate (A2) and n = n̄. Then d`2 defines a pseudo-Riemannian metric
on Ω′ with as many timelike as spacelike directions, i.e. signature (n, n). A vector
P ∈ T(x,x̄)Ω′ is called null if it is self-orthogonal with respect to this metric. The
canonical splitting of a vector in the tangent space T(x,x̄)Ω′ = TxM ′ ⊕ Tx̄M̄ ′ is
denoted by P = p ⊕ p̄. The metric d`2 induces a pseudo-Riemannian curvature
tensor Ri′j′k′l′ on Ω′, which we use to define sectional curvature

(2) sec(x,x̄) P ∧Q :=
2n∑

i′=1

2n∑
j′=1

2n∑
k′=1

2n∑
l′=1

Ri′j′k′l′P
i′Qj′

P k′
Ql′

in the standard way, except that we do not attempt to normalize it for fear of
dividing by zero in the case of most interest to us, namely the null vectors P = p⊕0
and Q = 0⊕ p̄ orthogonal to each other, or equivalently p⊕ p̄ null.

The surplus function s ∈ C4(Ω′) is said to be weakly regular (A3w) if d`2 is
non-degenerate and

(3) sec(x,x̄)(p⊕ 0) ∧ (0⊕ p̄) ≥ 0

for all (x, x̄) ∈ Ω′ and null-vectors p⊕ p̄ ∈ T(x,x̄)Ω′. It is said to be strictly regular
(A3s) if, in addition, equality in (0.3) implies p = 0 or p̄ = 0. This terminology
is motivated by the fact that weak regularity is known to be necessary [2] as well
as sufficient for smoothness of optimal maps between nice probability measures. A
set Λ ⊂ Ω′ is geodesically convex if every pair of points (x, x̄), (y, ȳ) ∈ Λ is linked
by a curve satisfying the geodesic equation for our pseudo-Riemannian metric. It is
vertically convex if Λ∩({x}×M̄) is geodesically convex for each x ∈ M ; horizontally
convex if Λ ∩ (M × {x̄}) is geodesically convex for each x̄ ∈ M̄ ; and bi-convex if
both hold. Our first main result is a maximum principle:

Theorem 1. Let s ∈ C4(M ′ × M̄ ′) be weakly regular. If Λ ⊂ M ′ × M̄ ′ is
open, horizontally convex and t ∈ [0, 1] −→ (x, x̄(t)) ∈ Λ is a geodesic then
∪0≤t≤1(y, x̄(t)) ⊂ Λ implies f(t, y) := s(y, x̄(t))−s(x, x̄(t)) ≤ max{f(0, y), f(1, y)}.

Idea of proof. Vanishing of f ′(t0) = 0 gives the null condition for weak regularity to
imply f ′′(t0) ≥ 0, with strict inequality in the strictly regular case. This precludes a
local maximum and is obtained using horizontal convexity to integrate the identity

2
∂4

∂r2∂t2
s(y(r), x̄(t)) = sec(y(r),x̄(t))(y′(r)⊕ 0) ∧ (0⊕ x̄′(t)) ≥ 0
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along a geodesic from (x, x̄(t0)) (where all t derivatives of f vanish) to (y, x̄(t0)). �

For Λ = M × M̄ , a version of this theorem was originally deduced [2] under
additional hypotheses by relying on a sophisticated result of Trudinger & Wang.
But our theorem requires no additional hypotheses, not even that the surplus s ∈
C4(M ′ × M̄ ′) be twisted, meaning (A1): for each ȳ, z̄ ∈ M̄ ′ the function x ∈
M ′ −→ s(x, ȳ)− s(x, z̄) has no critical points. If, in addition the reflected surplus
s∗(x̄, x) = s(x, x̄) is twisted on M̄ ′ × M ′, we say s is bi-twisted. Our theorem
combines with a subtle yet elementary argument of Loeper to yield [2] [1]:

Theorem 2. Let s ∈ C4(Ω′) be twisted and weakly regular on Ω′ = Rn ×Rn and
M × M̄ ⊂ Ω′ a bounded bi-convex domain. Suppose u ∈ C(cl M) and ū ∈ C(cl M)
are continuous functions with u(x) = maxx̄∈cl M̄ s(x, x̄) − ū(x̄) for each x ∈ cl M .
If there exist (x, x̄) ∈ M × cl M̄ such that u(z) ≥ u(x) + s(z, x̄) − s(x, x̄) for all z

close to x, then the same inequality holds for all z ∈ cl M .

For strongly regular, bi-twisted surpluses and probability densities dρ/d vol ∈
L∞(M) and d vol /dρ̄ ∈ L∞(M̄) on M×M̄ ⊂ Rn×Rn bounded and bi-convex, pow-
erful ideas of Loeper augmented by a few simplifications then yield a self-contained
proof [1] of his Hölder continuity of optimal maps: F ∈ C

1,1/ max{5,4n−1}
loc (M ; cl M̄).

A future ambition is to extend his continuity result to more general geometries
M ′ 6= Rn 6= M̄ ′. We must surrender smoothness of the cost to satisfy the twist
condition as soon as the manifold M ′ is compact. Hölder continuity results from [2]
for the restriction of s(x, x̄) = log |x− x̄| to the unit sphere M = M̄ = Sn in Rn+1,
and for the geodesic distance squared s(x, x̄) = −d2(x, x̄) on the round sphere,
are also recovered by our technique [1]. In our current work, they are extended to
Riemannian submersions of geometries like the latter; (related work is in progress
by Delanoë & Ge). We also explore products thereof.

Let us conclude by observing any s-optimal diffeomorphism F : M −→ M̄

has a graph which is spacelike with respect to d`2 and Lagrangian with respect
to ω, and conversely, using results from Trudinger & Wang, that any diffeomor-
phism between suitable domains whose graph is d`2-spacelike and ω-Lagrangian
is in fact the s-optimal map between the measures ρ := π#(vol |Graph(F )) and
ρ̄ := π̄#(vol |Graph(F )) obtained by the canonical projections through π(x, x̄) = x

and π̄(x, x̄) = x̄ of the Riemannian volume vol induced by the pseudo-metric d`2

on Graph(F ) ⊂ Ω′. This reveals an unexpected connection between optimal trans-
portation and symplectic or pseudo-Kähler geometry. There is related work of
Wolfson and of Warren in the (pseudo-) Euclidean case with s(x, x̄) = x · x̄.
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