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Abstract

The complete spectrum is determined for the operator H = −mρm−1�+x ·∇
on the Sobolev space W 1,2

ρ (Rn) formed by closing the smooth functions of com-
pact support with respect to the norm ‖�‖2

W
1,2
ρ (Rn)

:= ∫
Rn |∇�|2ρ dx. Here the

Barenblatt profile ρ is the stationary attractor of the rescaled diffusion equation
∂u
∂t

= �(um)+div(xu) in the fast, supercritical regimem ∈ ]n−2
n
, 1[. Form � n

n+2 ,
the same diffusion dynamics represent the steepest descent down an entropy E(u)
on probability measures with respect to the Wasserstein distance d2. Formally, the
operator H = HessρE is the Hessian of this entropy at its minimum ρ, so the spec-
tral gap H � α := 2 −n(1−m) found below suggests the sharp rate of asymptotic
convergence:

lim
t→∞

log d2(u(t), ρ)

t
� −α < 0

from any centered initial data 0 � u(0, x) ∈ L1(Rn) with second moments. This
bound improves various results in the literature, and suggests the conjecture that the
self-similar solution u(t, x) = R(t)−nρ(x/R(t)) is always slowest to converge.
The higher eigenfunctions – which are polynomials with hypergeometric radial
parts – and the presence of continuous spectrum yield additional insight into the
relations between symmetries of Rn and the flow. Thus the rate of convergence
can be improved if we are willing to replace the distance to ρ with the distance
to its nearest mass-preserving dilation (or still better, affine image). The strange
numerology of the spectrum is explained in terms of the number of moments of ρ.
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1. Introduction

This manuscript concerns the long-time behavior of solutions v(τ, y) � 0 on
[0,∞[ × Rn to the fast diffusion equation

∂v

∂τ
= (vm) (1.1)

with supercritical nonlinearity m ∈ ]n−2
n
, 1[. The same equation goes by different

names and models different phenomena according to the degree of the nonlinearity:
whenm > 1 it is called the porous medium equation and models a process in which
the speed of diffusion mvm−1 increases with the concentration (or temperature),
v, such as thermal conductivity in a hot plasma [46] or fluid penetrating a rock [8,
28]; whenm = 1 it is the ordinary heat equation, in which the speed of diffusion is
constant; whenm < 1 it is called the fast diffusion (or singular diffusion) equation,
since the speed of diffusion diverges as v vanishes.

For suitable initial data 0 � v(0, y) ∈ L1(Rn), unique solutions exist for
all time in the case 0 < m < 1, and become positive everywhere immediately.
Indeed, Herrero & Pierre [22] have shown existence and uniqueness for strong
solutions and any 0 < m < 1 with merely L1

loc initial data. Furthermore, L1 ini-
tial data remain in L1 under the evolution; for the critical and supercritical case
1 − 2

n
� m < 1, their mass is actually preserved. For subcritical nonlinearities,

0 < m < 1 − 2
n

, low concentrations diffuse so quickly that a flux at infinity causes
extinction in finite time; see Bénilan & Crandall [6, Proposition 10].

Supercritical diffusion will be our exclusive concern hereafter: for such nonlin-
earities, Friedman & Kamin [19] (see Vázquez [41] for further references and a
useful review) showed that all solutions become small over time, acquiring a charac-
teristic shape known as the Barenblatt profile (1.4) as they dwindle away to nothing;
this profile is Gaussian for the heat equationm = 1. The question addressed below
is the precise rate of convergence to this characteristic profile. This rate is often
measured inL1(Rn), since the higher normsLp with p > 1 capture only the rate of
disappearance. For all m > n−1

n
with m > 1

3 , a uniform and global-in-time lower
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bound on theL1 rate was derived simultaneously and independently by Dolbeault

& del Pino [17] and Otto [31], and, form > 1, by Carrillo & Toscani [10]. In
a certain sense, their bound is sharp, though we shall presently see how to improve
it. In the very fast regime,m ∈ ]n−2

n
, n−1

n
[, rates were completely unknown until a

preprint by Carrillo, Lederman, Markowich & Toscani [14] used a nonlinear
methodology to provide eigenvalue lower bounds for the spectral gap in a linear-
ized problem. Below we shall find the complete spectrum for the linearized problem
(though linearized in rather different variables than those chosen by Carrillo et al.),
thus giving the sharp rates of asymptotic convergence to the Barenblatt profile – an
improvement on known bounds. Also, the complete spectrum and eigenfunctions
provide much information not only about the slowest mode to converge, but the
geometry of all other modes as well; in particular, we glimpse the role played by the
affine symmetries of Rn – dilations, translations, rotations, shears – in determining
the solutions of (1.1). For m < 1 the appearance of continuous spectrum limits
improvement in rate of convergence that may be achieved by quotienting out such
symmetries; this is in sharp contradistinction to the casem = 1 of the heat equation,
whose asymptotics to all orders are well known. It is also quite different from the
porous medium equation m � 1, where asymptotics to all orders were established
by Angenent [3] in one dimension n = 1, following the spectral calculation
of Zel’dovich & Barenblatt [44]. The chief delicacy in that calculation is the
free boundary associated with compactly supported solutions; in the fast-diffusion
regime the analogous difficulty is the finite number of moments possessed by the
Barenblatt profile. Indeed, we shall see the mysterious numerology associated with
different values of m can be explained in terms of the precise number of moments
p = 2(1 − m)−1 − n. Although our analysis of the spectral problem is rigorous,
we caution the reader that the linearization of (1.1) is a formal calculation, so that
– as in Carrillo, Lederman, Markowich and Toscani – any conclusions about the
nonlinear evolution must be treated as conjectures which, though formally justified,
are not rigorously established here. See however, the nonlinear results of Carrillo

& Vázquez [11] described in the epilog below.
Let us note that for the critical exponent m = n−2

n
with n � 3, the Bare-

nblatt profile continues to exist as a solution, but does not have finite mass any
more. The asymptotics in this case have been studied by Galaktionov, Pele-

tier & Vázquez [20]. The subcritical case – although not discussed here – is
also of interest: the exponent p = 1 − n

2 of del Pino & Saez arises in differen-
tial geometry [34], where (1.1) gives the evolution of the conformally flat metric
ds2 = v4/(n+2)∑n

i=1 dx
2
i under scalar curvature (or Yamabe) flow; the Ricci flow

analog is discussed by Vázquez, Esteban & Rodriguez in the critical planar
case n = 2 [42]. The equation has also been used (but with n = 1 and m < 0) for
modelling avalanches in sandpiles by Carlson, Chayes, Grannan & Swindle

[9] and Chayes, Osher & Ralston [15].

1.1. Sharp rates of contraction via time-dependent rescaling of space

To quantify the foregoing discussion, we make the customary change of vari-
ables,
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u(t, x) = entv

(
eαt − 1

α
, etx

)

,

v(τ, y) = 1

(1 + ατ)n/α
u

(
1

α
log(1 + ατ),

y

(1 + ατ)1/α

)

, (1.2)

where α := 2 − n(1 − m); this corresponds to a logarithmic rescaling of time,
coupled with a time-dependent contraction of space chosen at rate 1/α just large
enough to prevent the mass of u from spreading out very much. The new density
u(t, x) satisfies the confined fast diffusion equation

∂u

∂t
= �(um)+ div(xu) (1.3)

if and only if v(τ, y) satisfies the original equation (1.1), with the same initial
condition u(0, x) = v(0, x). The advantage of this reformulation is that it shifts
the fixed point of the dynamics from infinity to a finite-mass Barenblatt profile
u(t, x) = u∞(x) = ρ(|x|) about which the evolution can be linearized. This
profile possesses moments up to but excluding order

p := 2

1 −m
− n ;

it is given explicitly by

ρ(r) :=
(

r2 + C

p + n− 2

)−(p+n)/2
with C > 0 chosen so

∫

Rn
ρ(r) dx = 1,

(1.4)

i.e.,

Cp := πn (p + n− 2)p+n
(
�(

p
2 )

�(
p+n

2 )

)2

. (1.5)

Here r = |x| and�(z) is Euler’s Gamma function (5.1). Notice that the supercritical
range of fast diffusion exponents m ∈ ]n−2

n
, 1[ corresponds to a range of maximal

moments p ∈ ]0,∞[. In the critical case p = 0, ρ has infinite mass and cannot be
normalized. For the linear heat equation, ρ(r) = (2π)−n/2e−r2/2 has moments of
all orders, so p = +∞. We shall often find it convenient to work with p rather than
m = 1 − 2

p+n . We also tacitly assume n � 2 throughout the manuscript, except for
passages where the case n = 1 is explicitly addressed.

We now indicate some of the rates of convergence obtained by Carrillo &
Toscani, Dolbeault & del Pino, and Otto for m ∈ [n−1

n
,∞[, or equivalently

|p| � n [10, 17, 31]. Following Otto [31], we state these in terms of theWasserstein
metric d2 defined in (2.3): the confined evolution (1.3) acts as a global contraction
on the space of probability measures with finite second moments. Moreover, this
contraction has a uniform rate independent of m: any two solutions u(t) and ũ(t)
satisfy

d2(u(t), ũ(t)) � e−t d2(u(0), ũ(0)), |p| � n, (p �∈ [0, 2]). (1.6)
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(Actually, Otto assumed ũ(t, x) = ρ(x), a restriction lifted in Carrillo, McCann

& Villani [12], and independently in forthcoming work by Lytchak, Sturm &
von Renesse [25].) This rate is sharp in the sense that it is attained for the Barenblatt
solution ũ(t, x) = ρ(x) and its translates u(t, x) = ρ(x − e−tz0). Although Dol-
beault and del Pino use more traditional quantities like entropy orL1 norm – instead
of Wasserstein distance – to measure the deviation of u(t) from ρ, their results are
morally equivalent to Otto’s (and can be deduced from his); again the rates they
obtain are saturated by convergence of the translates u(t, x) = ρ(x − e−tz0) to
ρ. There is now a rapidly emerging literature exploring the relationships between
these various notions of convergence, summarized in Villani’s book and references
there [43]; since in many cases of interest it is well understood how to deduce rates
of convergence in a strong norm (such as L1) from a weak metric (such as d2),
we shall not pursue alternative notions of convergence any further. Let us mention
however that the restriction on nonlinearities p � n turns out to reflect the presence
of a phase transition at p = n from a translation-governed to a dilation-governed
regime; this corresponds to a level crossing in the eigenvalue (3.7) found below;
cf. Figs. 1–3 and our announcement [16]. Notice that the significance of transla-
tions can be explained as an artifact of the rescaling (1.2). The original fast diffusion
equation (1.1) is translation invariant, so the effects of translation can be accounted
for in the rescaled evolution, and it costs no generality to assume v(0, x) = u(0, x)
to have its center of mass at the origin a priori. This will eventually permit us to
improve the asymptotic rate of convergence – at least formally – from unity to

lim
t→∞

log d2(u(t), ρ)

t
� − 2p

p + n
= −2 + n(1 −m) = −α, 2 < p � ∞,

(1.7)

at the same time extending the range of allowable nonlinearities into the dilation-
governed (very fast) regime p < n.

1.2. Source-type solutions, faster diffusions, and linearization

To provide motivation for the preceding formula, we start by observing that
for very fast diffusion, p ∈ ]0, n[, the nonlinear evolution is no longer a global
contraction, so we cannot hope to derive estimates like (1.6). The reason is simple.
Consider the source-type solutions

uR(t)(x) := R(t)−nρ (x/R(t)) (1.8)

of Zel’dovich & Kompaneets [45], Barenblatt [5], and Pattle [33]. These
are given by dilations of the Barenblatt profile whose radius

R(t) := (1 − e−αt )1/α, α = 2p/(p + n), (1.9)

increases from zero to one over time. Although R(t) is eventually concave, its ini-
tial convexity depends on the size of α relative to 1. Thus for very fast diffusion,
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p < n, R(t) is convex for small t , and the distance between two source solutions
started at slightly different times 0 and δ � 1,

d2(uR(t+δ), uR(t)) = |R(t + δ)− R(t)|
√∫

Rn
x2ρ(x)dnx ,

will increase before it decreases. Worse yet, taking δ → +∞, R(t + δ) → 1 and
u1 = ρ in the same example shows d2(uR(t), ρ) � e−λtd2(uR(0), ρ) cannot hold
unless λ � 0; otherwise dR/dt |t=0+ = 0 produces the contradiction:

0 = d

dt

∣
∣
∣
∣
t=0+

d2(uR(t), ρ) � −λ d2(uR(0), ρ).

So relinquishing hope for a global estimate, we settle for asymptotic convergence
in the long-time limit. Notice that the dilating source-type solution u(t) = uR(t)
shows the rate constant given by (1.7) is the best possible, which is why we call
this range of parameters a dilation-governed regime.

To study long-time asymptotics, it is natural to linearize problem (1.3) around
its attracting fixed point u(∞, x) = ρ(|x|). This strategy was recently explored by
Carrillo, Lederman, Markowich & Toscani [14], who used it to derive a linear
evolution equation, which they then analyzed directly via entropy methods and a
nonlinear analog of the Bakry & Emery semigroup approach [4]. Their results,
although stated in terms of decay of entropy rather than Wasserstein distance, trans-
late to

lim
t→∞

log d2(u(t), ρ)

t
� − p

p + n
= n(1 −m)

2
− 1 = −α

2
, 0 < p � ∞,

(1.10)

formally. In case the decay starts from spherically symmetric initial conditions
u(0, x) = u0(|x|), they improve this rate to

lim
t→∞

log d2(u(t), ρ)

t
� −p + 1

p + n
= (n− 1)(1 −m)

2
− 1 , 0 < p � ∞.

(1.11)

In Fig. 1, both bounds are compared with the sharp spectral gap that we find.
Although neither one of these rates is as sharp as (1.7), it is startling to see them
asserted in the near-critical range of diffusion parameters 0 < p � 2. Here the
Barenblatt profile no longer has second moments, so both the Wasserstein distance
(2.3) and entropy (2.2) diverge. However, developing an idea used by Lederman

& Markowich [24] to relax the restriction p > 2, Carrillo et al. assert that the
problem can be renormalized by carefully subtracting infinities, provided the tails
of u(0, x) are sufficiently similar to those of the Barenblatt profile; this renormal-
ization is further exploited in the nonlinear context by Carrillo & Vázquez [11].
Since the same procedure applies in our case, the spectral analysis carried out in
the sections below leads us to conjecture

lim
t→∞

log d2(u(t), ρ)

t
� − (

p
2 + 1)2

p + n
, 0 < p � 2, (1.12)
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dashed: lower bounds
by Carrillo et. al. [14]

m

λ
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1- -----2
n+2
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n

1

Fig. 1. The spectral gap �0(m) from (3.7) as a function of m; phase transitions at p = 2;
and from dilation- to translation-governed dynamics at p = n, compared with bounds by
Carrillo et al. [14]. Dimension n = 5 was chosen for this precise graph.

and furthermore that this estimate is sharp among solutions u(t)which start with the
same tail behavior as ρ – meaning similar enough for d2(u(0), ρ) < +∞ in (2.3).
(Neither spherical symmetry nor fixed center of mass is assumed in this conjecture;
indeed, for p � 1 the center of mass will not be well defined.) However, the sharp
rate is not much more satisfactory than the bounds (1.10), (1.11) for the following
reason. In the range 0 < p � 2, the restriction d(u(0), ρ) < +∞ – like Carrillo
et al.’s assumption about the tails of u(0) – becomes an unrealistically severe con-
straint on the initial data. Indeed, both predict rates (1.11), (1.12), faster than (1.7)
because the source type solution is no longer allowed to compete: its tail mass is so
spread out that d2(uR(t), ρ) = +∞. We therefore advance a more interesting con-
jecture concerning dilation-persistence: namely, that the source solution (1.8) will
continue to be slowest to converge once the right class of competitors and measure
of convergence have been identified for 0 < p � 2. (For a framework in which to
explore this dilation-persistence conjecture and more supporting evidence, see the
manuscript of Carrillo & Vázquez [11] discussed in Section 1.3.)

Since our analysis yields the complete spectrum – and not just the ground state
– it is possible to get better rates of convergence by identifying and quotienting out
the slow modes. For large p, the slowest modes turn out to correspond to transla-
tions, dilations, and affine symmetries of Rn; (as Figs. 2 and 3 below show, there
are level crossings at smaller values ofp). For each invertible n×nmatrix A, define
the affine image A#ρ of ρ by

A#ρ(x) = ρ(A−1x)

| det(A)| . (1.13)
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Fig. 2. The spectrum in dimension n = 5 as a function of nonlinearity m.

For a dilation A = R I with R > 0 we write R#ρ instead of (R I)#ρ. Then our
formal asymptotics yield

lim
t→∞ inf

R>0

log d2(u(t), R#ρ)

t
�






−(p2 + 1)2/(p + n) if p ∈ ]2, 6],
−4(p − 2)/(p + n) if p ∈ [6, n+ 4],
−2 if p ∈ [n+ 4,∞],

(1.14)

and, quotienting over all nonsingular transformations A, the improvement

lim
t→∞ inf

det A�=0

log d2(u(t),A#ρ)

t
� −(3p + n− 4)/(p + n) if p � n+ 4.

(1.15)

This rate could be improved still further if we were willing to quotient out over
larger (but still finite-dimensional) families M of configurations around the Bare-
nblatt profile ρ, obtained by extending affine maps to a larger family of nonlinear
maps A : Rn −→ Rn in (1.13). However, the presence of a continuous spectrum
in our problem imposes a limit on these improvements:
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Fig. 3. The spectrum in dimension n = 5 as a function of number p of moments.

lim
t→∞ inf

ũ∈M
log d2(u(t), ũ)

t
� −(p

2
+ 1)2/(p + n) for p ∈ ]2,∞[ (1.16)

is the best possible estimate which can hold for generic initial data in (2.1), if M
is finite dimensional. This limit on the rate of convergence grows like the num-
ber of moments p of ρ. This is quite different from the heat equation, where we
get asymptotics to all orders by Fourier transform, or the central-limit theorem,
where we have the Edgeworth expansion and analogous Berry-Esseen results [18].
It is precisely the divergence of the bound (1.16) as p → ∞ – equivalent to the
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rapid decay of ρ – which permits asymptotics to all orders in these problems, and
the porous medium regime p < −n = −1 [3, 44]. For the asymptotic expansion
expected in the present context, see (3.6).

Let us now turn to the linearization procedure which yields these results.

1.3. Epilog

Before this manuscript was completed, we learned of a parallel investigation into
the long-time asymptotics of fast diffusion by Carrillo & Vázquez [11]. Their
work complements ours nicely in many respects. Let ṽ(τ, y) denote the spreading
source-type solution (1.8), re-expressed in the original variables (1.2). When τ0 can
be chosen so that the variance of v0 − ṽ(τ0) is finite, Carrillo and Vázquez establish
the global bound

‖v(τ)− ṽ(τ + τ0)‖L1(Rn) � C(v0)

τ 1/2 0 < p � +∞. (1.17)

Note that this choice of τ0 becomes crucial if p � 2. Measured in Wasserstein
distance between rescaled solutions, this corresponds to the rate of convergence
(1.10) anticipated by Carrillo et al. [14]. Our spectral gap calculation suggests
that if v0 is centered or p � n, the exponent can be improved by a factor of two.
Supporting this guess, Carrillo and Vázquez establish the sharp rate of convergence

‖v(τ)− ṽ(τ + τ0)‖L1(Rn) � C(v0)

τ
0 < p � +∞ (1.18)

under the additional assumption of spherical symmetry v0(y) = v0(|y|). In the
radial case, this resolves our dilation-persistence conjecture. Thus their results apply
to the nonlinear problem over the full range of parameters p > 0, but do not yield
the sharp rate of convergence except for radial initial data v0. Our results, although
limited to the linearized problem and p > 2, give higher asymptotics as well as
sharp decay rates. Both manuscripts elucidate the nature of the phase-transition
which occurs at p = n from a dilation-governed to a translation-governed regime.

2. Gradient flows and Hessian with respect to Wasserstein distance

2.1. Relevant facts from Otto’s formal manifold approach

The starting points for our analysis are two of Otto’s profound insights [31]:

(i) the space of Borel probability densities u with finite second moments

M2(Rn) :=
{

0 � u ∈ L1(Rn)

∣
∣
∣
∣

∫

Rn
u(x) dx = 1

and
∫

Rn
x2u(x) dx < +∞

} (2.1)

has the formal structure of an infinite dimensional Riemannian manifold, on
which the Wasserstein metric d2(u, v) gives the geodesic distance between u
and v;
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(ii) the nonlinear diffusion (1.1) amounts to nothing more than steepest descent
of the Lyapunov functional ‖v‖mLm(Rn)/(m − 1) on this manifold. Equiva-
lently, the confined diffusion equation (1.3) amounts to steepest descent of
the entropy

E(u) = −p + n

2

∫

Rn
[u(x)− 2

p+n − 1]u(x) dx + 1

2

∫

Rn
x2u(x) dx (2.2)

introduced earlier by Newman [29] and Ralston [37]. The shift −1 in
(2.2) has been chosen so the first integral tends to Boltzmann’s entropy
‖u log u‖L1(Rn) as |p| → ∞ (i.e., m → 1).

For p > 2, E(u) is finite-valued on M2(Rn). The only term that needs dis-
cussion is

∫
Rn u(x)

m dx. Recalling m = 1 − 2
p+n < 1, it can be estimated by

means of Hölder’s inequality, in terms of
∫
u(x)(1 + x2) dx. This is definitely not

the case for p � 2: here, the Barenblatt profile ρ has E(ρ) = −∞, with ρm and
x2ρ having the same divergence near infinity, but the negative coefficient of

∫
ρm

dominant. Nevertheless, directional derivatives of E in directions that correspond
to compactly supported functions� can be defined for anym < 1, because in their
definition, the integrals vanish outside the support of�, and the uncontrollable tail
behavior for p � 2 does no harm. (Alternately, with hindsight our calculation for
p � 2 is justified more satisfactorily using the idea of Lederman & Markowich

[24] as in Carrillo & Vázquez [11, (3.4)], where an L1
loc(R

n) \ L1(Rn) count-
erterm was introduced into the integrand (2.2); see also [16]. Depending only on x

but not u, this counterterm makes the integrand positive for all u, thus raising the
minimum energy to Enew(ρ) := 0 without changing the derivatives of E(u).)

However, for p > 2, the Barenblatt profile ρ is the unique minimizer of (even
the unrenormalized) energy E(u). This is most easily seen using the norm topol-
ogy and linear structure which M2(Rn) inherits as a subset of the Banach space
L1(Rn, (1 + x2) dx). With respect to this linear structure, E is strictly convex and
ρ is a critical point, i.e., d

dε
E(ρ + εϕ)|ε=0 = 0 if

∫
ϕ = 0. The same holds for

p � 2, in the Euler equation sense, i.e., vanishing directional derivative in a dense
set of directions in function space, namely the smooth functions C∞

c (R
n) of com-

pact support. Since the dynamics (1.3) are the gradient flow of the entropy E(ρ)
with respect to the Wasserstein distance, we propose to compute the spectrum of
the Hessian HessρE on the tangent space to M2(Rn) at the fixed point ρ. Since ρ
is a minimum, this Hessian is a symmetric non-negative operator; any spectral gap
HessρE � �0 > 0 implies rapid convergence of nearby trajectories to ρ under the
dynamics with exponential rate constant�0 – as measured in the ambient distance
d2 on the manifold M2(Rn). Of course, the topology induced by the Wasserstein
metric d2 is a weak one: d2(uk, u) → 0 if and only if uk dx ⇀ udx againstCc(Rn)

test functions and
∫

x2uk(x) dx → ∫
x2u(x) dx; however, as mentioned above,

effective techniques have emerged for converting rates of convergence from d2 to
‖ · ‖L1 in situations akin to the present setting [31, 32, 13, 43], so we do not address
this point further here.

We shall compute HessρE using Otto’s Riemannian calculus [31, Section 4.4].
Although this is in principle equivalent to linearizing equation (1.3) as per Car-

rillo et al. [14], it has the advantage that the local metric prescribed by Otto on
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the tangent space to M2(Rn) clearly identifies the Hilbert space on which HessρE
should act – a crucial ingredient in determining the spectrum. To our knowledge
this work represents the first spectral analysis attempted in the framework of Otto’s
calculus, i.e., in the framework of Wasserstein distance.

Recall that the Wasserstein distance between two probability densities u, v ∈
M2(Rn) is given by

d2(u, v)
2 := inf

γ∈�(u,v)

∫

Rn×Rn
|x − y|2 dγ (x, y). (2.3)

Here the infimum is computed over the space �(u, v) of non-negative measures γ
on Rn × Rn having marginals u and v: i.e.,

∫

Rn×Rn

f (x) dγ (x, y) =
∫

Rn

f (x) u(x)dx ,

∫

Rn×Rn

g(y) dγ (x, y) =
∫

Rn

g(y) v(y)dy

for all smooth test functions f, g ∈ C∞
c (R

n) of compact support. It is well known
that d2 gives a metric on M2(Rn) and the infimum is assumed in this case [21].
Moreover, definition (2.3) extends unambiguously to arbitrary non-negative dis-
tributions u and v on Rn (in the sense of Schwartz), whether or not they have
densities, second moments, or finite mass – only then d2(u, v) may or may not
be finite. Finiteness of d2(u(0), ρ) is the natural tail condition under which we
conjectured (1.12). (However, for near-critical diffusion, p � 2, the hypothesis
introduced by Carrillo and Vázquez to derive (1.17) is more appropriate.)

A basic ingredient in Otto’s calculus is the identification of the tangent space
TuM at u ∈ M2(Rn) as the Sobolev space TuM = W

1,2
u (Rn) ⊂ W

1,2
loc (R

n) of
weakly differentiable functions [31, (9)]

W 1,2
u (Rn) :=

{

� : Rn −→ R

∣
∣
∣
∣

∫

Rn
|∇�|2u(x) dx < ∞

}/

{‖ · ‖ = 0}; (2.4)

the last symbol indicates that any two functions are identified with each other if
their difference is constant a.e. The inner product on W 1,2

u (Rn) is given by

‖�‖2
W

1,2
u (Rn)

:= 〈�;�〉
W

1,2
u (Rn) :=

∫

Rn
|∇�|2u(x) dx, (2.5)

which makes W 1,2
u (Rn) a Hilbert space, or pre-Hilbert, if we restrict ourselves

to compactly supported �. Indeed, at the Barenblatt profile u = ρ, Corollary 14
eventually asserts that W 1,2

ρ (Rn) can also be realized as the closure of the smooth
functions C∞

c (R
n) of compact support with respect to the norm (2.5).

The exponential map fromW
1,2
u (Rn) to M2(Rn) gives a local coordinate chart

on M2(Rn) equivalent to specifying the geodesics passing through u. Given a
tangent vector � ∈ W

1,2
u (Rn), the geodesic through u in direction � is a path

us = expu s� = [id + s∇�]#u in M2(Rn) defined by gradually displacing the
mass of u in the direction given by the initial vector field ∇�. More precisely, for
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each s ∈ R, the mass is pushed forward through the map Fs(x) = x + s∇�(x) of
Rn, which is a diffeomorphism for small s and smooth �; this means

∫

Rn
f (y)us(y) dy :=

∫

Rn
f (x + s∇�(x))u(x) dx (2.6)

for every smooth test function f ∈ C∞
c (R

n). Not having specified the topology
or differentiable structure on M2(Rn), the Hessian HessρE will be defined as a
quadratic form in terms of second derivatives of the entropy along minimizing
geodesic segments [31, (83)–(85)]. As a second derivative in a functional analytic
sense however, it is only formal:

HessuE(�,�) := d2E(us)

ds2

∣
∣
∣
∣
s=0

= ‖�‖2
W

1,2
u (Rn)

+
∫

Rn

{

|Hess�(x)|22 − 2(��(x))2

p + n

}

u
1− 2

p+n (x) dx. (2.7)

Here |Hess�|2 is the Hilbert-Schmidt norm of the matrix of second partials ∂i∂j�;
for any square matrix A, |A|22 := ∑

ij |Aij |2 = trace ATA. With compactly sup-
ported smooth �, (2.7) holds for every u ∈ M2(Rn), and any m < 1.

Our task is to prove the existence of a spectral gap: namely the estimate
HessρE(�,�) � �0 ‖�‖2

W
1,2
ρ (Rn)

, for some �0 > 0 and all � ∈ W 1,2
ρ (Rn).

That the sharp constant �0 is given by (3.7) is the first rigorous result that we
claim. In fact, we shall give the complete spectral analysis of the displacement
Hessian Hessρ(�,�) = 〈�; H�〉

W
1,2
ρ (Rn), viewed as an (unbounded) self-adjoint

operator in W 1,2
ρ (Rn). The remarkable fact that H turns out to be a simple differ-

ential operator of second order is the key to our description of the spectrum. In the
absence of special algebraic structure, based on a straightforward application of the
Euler equations and Lagrange multipliers, we would have an eigenvalue problem
of the type H4� = λH2�, with differential operators H4 and H2 of orders 4 and
2 respectively, so H might be expected to be second-order pseudodifferential (as
would actually happen for the similar problem at a non-critical point u �= ρ on
M2(Rn)).

2.2. The displacement Hessian as an operator

From the defining equation, it is not evident that the Hessian is non-negative,
much less non-degenerate. Only for p � n does the Cauchy-Schwarz inequality

�� = trace[Hess�] �
√
n |Hess�|2

control the sign of the integrand (2.7). In this case we may take �0 = 1; in-
deed, HessρE(�,�) � ‖�‖2

W
1,2
ρ (Rn)

independently of our special choice of the

Barenblatt profile ρ, and the nonlinear contraction rate (1.6) follows from uniform
geodesic convexity of the entropy. This is the essence of Otto’s argument; the geo-
desic convexity ofE(ρ) had already been established under the name displacement
convexity by McCann [27]. For faster diffusions p < n, the integrand (2.7) can
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take negative values. As it involves second derivatives it seems quite surprising that
it should be controlled by a norm ‖�‖

W
1,2
ρ (Rn) involving only first derivatives of�.

This fact is intimately linked to the very special form of the Barenblatt profile ρ,
as we shall see in the next proposition and its corollary. There the correspondence
between the operator H := −mρm−1� + x · ∇ on W 1,2

ρ (Rn) and the quadratic
form HessρE is established. We begin by recalling a simple lemma.

Lemma 1 (Bochner identity). Any � ∈ C3(Rn) satisfies

|Hess�|22 = 1
2�(|∇�|2)− ∇� · ∇(��). (2.8)

Proof. We have

(∂i∂j�)(∂i∂j�) = ∂i

{
(∂j�)(∂i∂j�)

}
− (∂j�)(∂j��)

= ∂i∂i

{1

2
|∇�|2

}
− ∇� · ∇(��). ��

Proposition 2 (Displacement Hessian operator). Let m > 0. For any distribution
u ∈ Lmloc(R

n)∩L1
loc(R

n) and any smooth, compactly supported test function� on
Rn, the formal Hessian, defined in (2.7) can be written as

Hessu(�,�) = ‖�‖2
W

1,2
u (Rn)

+
∫

Rn
um
{
|Hess�|22 − (1 −m)(��)2

}
dx

= 〈�; H�〉
W

1,2
u (Rn) + 1

2

∫

Rn

{
�um + div(xu)

}
|∇�|2 dx (2.9)

with the operator H : � �→ (−mum−1�+ x · ∇)�. In particular, if u is the Bare-
nblatt profile ρ, then H� = −mρm−2 div(ρ∇�), and the last integrand vanishes
in (2.9).

Proof. Using Bochner’s formula (2.8) and integrating by parts, we calculate, ini-
tially under the assumption u ∈ C2(Rn):

−1

2

∫ (
�um + div(xu)

)
|∇�|2 +

∫
um
{
|Hess�|22 − (1 −m)(��)2

}

= −1

2

∫
div(xu)|∇�|2 +

∫
um
{
−∇� · ∇(��)− (1 −m)(��)2

}

= 1

2

∫
ux · ∇(|∇�|2)−

∫
um∇� · ∇(��)

−(1 −m)

∫
um
(

div(∇� ��)− ∇� · ∇(��)
)

=
∫
u∇� · (Hess�)x −m

∫
um∇� · ∇(��)

+(1 −m)

∫
(∇um)·(∇�)��

=
∫
u∇� · ∇(x · ∇� −�)−m

∫
u∇� · ∇(um−1��)

= 〈�; (H − 1)�〉
W

1,2
u (Rn) ,
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hence (2.9), as desired, for smoothu. In the second-last line, we have made use of the
identity (1 −m)∇um = −mu∇um−1. Having estimated (2.9) for u ∈ C2, we now
approximate, for u ∈ L1

loc∩Lmloc andm < 1, the function um ∈ L1/m
loc ∩L1

loc = L
1/m
loc

by C2 functions wk , using standard density arguments in Lp spaces; the w1/m
k are

also in C2 and approximate u. The distributional interpretation of (2.9) follows
immediately; (m � 1 would be even simpler, because it would not require passing
to um to avoid the exotic spaces L<1).

The following formulas for ρ follow right from the definition:

∂r(ρ(r)
m) = −rρ(r) , ∂rρ(r) = − r

m
ρ(r)2−m. (2.10)

They imply immediately

�ρm + div(xρ) = r1−n∂r(rn−1∂rρ
m)+ nρ + r∂rρ = 0 . ��

A simple integration by parts shows positivity of this displacement Hessian:

Corollary 3 (Positivity and symmetry). For any smooth, compactly supported test
functions � and � on Rn,

Hessρ(�,�) = 〈�; H�〉
W

1,2
ρ (Rn) = m

∫

Rn
ρm−2 div[ρ∇�] div[ρ∇�] dx.

(2.11)

Proof. Express 〈�; H�〉
W

1,2
ρ (Rn) by using H� = −mρm−2 div[ρ∇�] in (2.5).

��

3. Overview of spectral results

In this section, we describe the spectral properties found below for the operator
H = −mρm−1� + x · ∇ corresponding to the Hessian (with respect to the Was-
serstein metric) of the energy E(u) at the minimizing Barenblatt profile u = ρ.
This Hessian represents a positive-definite self-adjoint unbounded operator on the
Hilbert space W 1,2

ρ (Rn) with scalar product (2.5). The analysis is carried out by
first noting that H commutes with the total angular momentum operator −�Sn−1 ,
and then finding the spectrum of the radial problem one spherical harmonic at a
time. We continue to assume n � 2 tacitly, except where the contrary is stated; see
Section 4.8 for the case n = 1.

For � = 0, 1, 2, . . . , let H� denote the restriction of H to the eigenspace of
−�Sn−1 corresponding to eigenvalue L2 = �(�+ n− 2). Our conclusions are the
following: for 1− 2

n
< m < 1, the spectrum σ(H�) = σcont(H�)∪σp(H� ) consists

of a disjoint union of a (non-empty) continuous part, together with at most finitely
many eigenvalues

σ(H�) = [λcont
� ,∞[ ∪ {λ�0, λ�1, . . . , λ�K} \ {0}. (3.1)
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The main feature of this spectrum (see Fig. 2) is that all eigenvalues are given by
linear functions ofmwhich interpolate between λ�k|m=1 = �+ 2k > 0 and a point
of tangency with the threshold of the continuous spectrum

λcont
� = L2 + (

p
2 + 1)2

p + n
(3.2)

= 1

2(1 −m)
+ 1 −m

2

(n

2
+ �− 1

)2 − n

2
+ 1.

This tangency can only occur at p = 2� − 2 + 4k, after which the eigenvalue
dissolves into the continuous spectrum and is lost for all smaller values ofm. Thus
the numberK+ min{�, 1} (if any) of eigenvalues is determined by the largest inte-
ger K � 0 satisfying � + 2K − 1 < p/2 = (1 − m)−1 − n/2. The eigenvalues
themselves are given by

λ�k := �+2k−2k(k+�+n/2−1)(1−m) for k = 0, 1, . . . , K,

= L2 +(p2 + 1)2−(p2 + 1−�−2k)2

p+n , k ∈ Z ∩ [0, 1+p/2−�
2 [, (3.3)

except thatλ00 = 0 is not an eigenvalue. For any value ofp > 0, they are ordered by

� = λ�0 < λ�1 < λ�2 < · · · < λ�K < λcont
� < λcont

�+1 . (3.4)

If no eigenvalues are present (p � 2� − 2 or m � 1 − 2
n+2�−2 ) we still have

� � λcont
� < λcont

�+1 (with equality where λ�0 disappears into the continuous spec-
trum). Notice that the continuum threshold diverges λcont

� → +∞ as m → 1−,
while the spectrum degenerates to the positive integers. This comes as no sur-
prise, since our Hessian converges to the Ornstein-Uhlenbeck generator H =
−�+ x · ∇, well known to be conjugate via similarity transformation to the har-
monic oscillator Hamiltonian −� + x2/4 (= ρ

1/2∞ Hρ−1/2∞ + n/2). The Gaussian
ρ∞ = (2π)−n/2 exp(−r2/2) is the limit of the Barenblatt profile as p → ∞.

Except for recovering the limit m = 1, it is more convenient to visualize the
spectrum of the operator (p + n)H as a function of p ∈ ]0,+∞[, where it corre-
sponds to a sequence of half-lines and parabolas; see Fig. 3. Indeed the continuous
thresholds (3.2) become a sequence of congruent parabolas assuming their mini-
mum values L2 = �(� + n − 2) at p = −2. The eigenvalues, now linear in p,
become a sequence of semi-infinite rays with positive integer slopes, increasing
from a point of tangency with the parabola y(p) = (p + n)λcont

� to p = +∞. Each
such line corresponds to an eigenvalue family if and only if its slope is an integer
�+ 2k (k = 0, 1, 2, . . . ) sharing the parity (even or oddness) of �.

The corresponding eigenfunctions are almost as easy to describe. Each eigen-
value λ�k has the same degeneracy (4.4) for H� as L2 = �(� + n − 2) has for
−�Sn−1 . The corresponding eigenfunctions H��kµ = λ�k��kµ are polynomials of
degree � + 2k. Since ρ has fewer than p moments, it is clear why the restriction
�+2k < 1+p/2 gives the square integrability (2.5) required for��kµ ∈ W 1,2

ρ (Rn).
The non-integrability for larger values of k hints that continuous spectrum should
be anticipated. Quite explicitly,
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��kµ(x) = ψ�k(|x|) Y�µ
(

x

|x|
)

,
�, k = 0, 1, 2, . . .

0 < �+ 2k < 1 + p/2

where Y�µ is a spherical harmonic −�Sn−1Y�µ = �(�+ n− 2)Y�µ and

ψ�k(r) = r� 2F1

(
k + �− 1 − p/2, −k

�+ n/2
; −r2

C

)

(3.5)

is a hypergeometric function (5.3). Since −k is an integer, the hypergeometric series
2F1(z) terminates at the (k + 1)-th term, forming a polynomial of degree k. The
constant C comes from the normalization of the Barenblatt profile (1.4), (1.5).

Recalling from (2.6) that the Wasserstein geodesics expρ s� ∈ M2(Rn) are
given by displacing the mass of ρ inertially along the vector field ∇�(x) gives an
interpretation to these eigenfunctions. When �+ 2k � 2 the eigenfunction��kµ is
quadratic, so the map Fs(x) = x + s∇�(x) is affine. Thus ∇�011 = −2px/(Cn)

generates dilations; ∇�10µ = êµ generates coordinate translations µ = 1, . . . , n;
and ∇�20µ = A(µ)x with symmetric, trace-free matrices A(µ), generate the
remaining

((
n
2

) + n − 1
)
-dimensional symmetric space of affine images of ρ, in

other words, the group of affine transformations of Rn, modulo the group of rota-
tions (symmetries of ρ); cf. [27, Example 1.7]. For �+ 2k > 2, the transformation
Fs(x) of ρ is no longer affine, but – apart from this fact – not much more difficult
to understand. Thus as t → ∞ we may conjecture an asymptotic expansion for
ut = expρ �(t, x) given by polynomials in t depending only on the initial data:

∥
∥
∥
∥
∥
�(t, x)−

∑

ι

(
cι0(u0)�

ι0(x)+ tcι1(u0)�
ι1(x)+ · · ·

)
exp[−ι · λt]

∥
∥
∥
∥
∥

= O(e−t (λcont
0 −ε)) (3.6)

for any ε > 0. Here, the sum runs over all nonzero multi-indices ι = (ι�kµ), such
that ι · λ := ∑

ι�kµλ�k < λcont
0 , and the polynomial coefficients �ιj (x) depend

only onm, n, and ι; if ι has length 1 (i.e., represents an eigenvalue), then�ι0(x) is
the corresponding eigenfunction. The polynomials in t should reduce to constants
in the absence of resonances. The question of resonances is discussed by Ange-

nent [3], who corrected a formal expansion of Zel’dovich & Barenblatt [44]
to establish rigorous asymptotics in the one-dimensional porous medium equation
(n = 1, m � 1). Since there is no continuous spectrum in that setting, he derives
an asymptotic expansion to all orders in place of the finite sum (3.6). It is worth
pointing out that the eigenvalues found by these authors coincide with the extension
(4.41) of our spectral lines {λ0k, λ1,k−1}k�1 to the region p < −n, i.e., m � 1.

Here the offset L2 = 0 between odd and even spherical harmonics vanishes, so
there are no eigenvalue crossings in this regime (4.41).

On the other hand, for multidimensional fast diffusion (n � 2, p > 0) our
analysis shows H � �0 > 0 is strictly positive for p � 0, with a spectral gap given
by �0 = min{λcont

0 , λ01, λ10}, or explicitly
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�0 =





λcont
0 = (

p
2 + 1)2/(p + n) if p ∈ [0, 2],

λ01 = 2p/(p + n) (dilation-governed) if p ∈ [2, n],
λ10 = 1 (translation-governed) if p ∈ [n,∞].

(3.7)

The eigenvalues λ01 and λ10 correspond to dilations and translations of ρ, and
therefore come with multiplicities 1 and n respectively.

The next spectral level �1 = min{λcont
0 ,max{1, λ01}} of the overall Hamil-

tonian H is not terribly interesting, since it also corresponds to dilation or trans-
lation, depending on which side of the level crossing we are at. Notice that the
spectral multiplicity #(�0) :=dim Ker(H − �0) and #(�1) belong to {0, 1, n},
while their sum lies in #(�1) + #(�0) ∈ {0, 1, n + 1}. The third spectral level
�2 = min{λcont

0 , λ02, λ20}, however, is more interesting, since it governs the rate
of convergence of “shape” (1.14) to the submanifold consisting of translations and
dilations of the self-similar profile ρ. Its explicit value is given by

�2 =





λcont
0 if p ∈ ]0, 6],
λ02 = 4(p − 2)/(p + n) if p ∈ [6, n+ 4],
λ20 = 2 (affinely-governed) if p ∈ [n+ 4,∞].

(3.8)

Note that although λ11 might have contributed to �2 according the ordering (3.4),
its contribution is in fact precluded by the remarkable intersection which occurs at
p = n+ 4j − 4 for each integer j of the j + 1 spectral lines

λ0,j = λ1,j−1 = λ2,j−2 = · · · = λj,0 = j ;
(part of the strange numerology of the spectrum). Of course, at this multiple inter-
section point, λ11 still contributes positively to the multiplicity #(�2). Finally,
convergence (1.15) to affine images of ρ is controlled by

�3 =
{
λcont

0 if p ∈ ]0, 4 + 2
√
n− 1]

λ11 = (3p + n− 4)/(p + n) if p ∈ [4 + 2
√
n− 1,∞] (3.9)

in the latter range. Comparison with (3.7), (3.9) yields (1.7) and (1.12), (1.15); the
presence of the continuous spectrum above λcont

0 implies the limitation (1.16).

4. The Spectrum

This section derives the exact spectrum of the operator H := −mρm−1�+x ·∇
described above. The spectrum is found by solving the partial differential equation
(H − λI)� = � and then checking whether the resolvent operator (λI − H)−1

defines a bounded transformation on W 1,2
ρ (Rn). This is accomplished by separa-

tion of variables into angular and radial parts. It is good fortune that the radial
part of the problem reduces to a hypergeometric equation whose solutions are well
known in special function theory, permitting a complete determination of σ(H).
The precise form (1.4) of the Barenblatt profile ρ accounts for this happy out-
come: singularities of the radial equation can occur only at r2 = 0 (the coordinate
singularity), r2 = −C (singularity of ρ), and r2 = ∞. The issue is whether all
of these singularities are regular singularities in the sense of the Fuchsian theory
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(see, e.g., Poole [36]). Any linear ordinary differential equation with only three
regular singularities can be transformed into a hypergeometric differential equa-
tion.

The spectrum is real by the self-adjointness of H established in the next lemma:

Lemma 4 (Essentially self-adjoint). The operator H� := −mρm−2 div[ρ∇�] is
essentially self-adjoint on C∞

c (R
n) ⊂ W 1,2

ρ (Rn); i.e., its closure is self-adjoint,
and forms the only self-adjoint extension of H. The domain of self-adjointness is
precisely

D(H) =
{

� ∈ W 3,2
loc ∩W 1,2

ρ (Rn)

∣
∣
∣
∣ ρ

m−2 div[ρ∇�] ∈ W 1,2
ρ (Rn)

}

. (4.1)

It should be stressed that self-adjointness refers to the scalar product inW 1,2
ρ (Rn),

not in L2.

Proof. From the theory of unbounded operators, recall: (i) any symmetric operator
densely defined on a Hilbert space H is closable – meaning the closure of its graph
in H ⊕ H is again the graph of a symmetric linear operator; (ii) any self-adjoint
operator has a closed graph [39, Sections 13.9, 13.20]. Corollaries 3 and 14 show
that H restricted to C∞

c (R
n) is symmetric and densely defined on the Hilbert space

W 1,2
ρ (Rn), so let us denote the closure of this operator by H̄. LettingX be the space

in (4.1), a routine approximation argument yields that the domain of H̄ containsX.
We show the restriction H̃ := H̄|X is a self-adjoint operator by proving H̃∗ ⊂ H̃.
The obvious chain of reverse inclusions H̃ ⊂ H̄ ⊂ H̄∗ ⊂ H̃∗ then completes the
proof that H̄ = H̃ is self-adjoint; also, any other self-adjoint extension of H would
be sandwiched between H̄ and H̄∗ in this chain, and hence coincide with H̄.

The desired inclusion requires us to show that if � ∈ W 1,2
ρ (Rn) is in the

domain of H̃∗ – i.e., if there exists a � ∈ W 1,2
ρ (Rn) such that 〈�; H̃�〉

W
1,2
ρ (Rn) =

〈�;�〉
W

1,2
ρ (Rn) for all � ∈ X – then � ∈ X. Restricting to test functions � ∈

C∞
c (R

n), the equation 〈�; H̃�〉
W

1,2
ρ (Rn) = 〈�;�〉

W
1,2
ρ (Rn) means

�ρ(−mρm−2�ρ�−�) = 0 (4.2)

in the sense of distributions, where �ρ� := div(ρ∇�). Fix a smooth, bounded
domain � ⊂⊂ Rn, and consider the restriction of the operator �ρ to the Sobolev
space W̊ 1,2(�) := C∞

c (�) of weakly differentiable functions with zero boundary
trace. Soft functional analysis asserts that

�ρ : W̊ 1,2(�) → W̊ 1,2(�)∗ =: W−1,2(�)

is an isomorphism, and moreover, all distributions χ which are ρ-harmonic (i.e.,
�ρχ = 0) are actually smooth functions; see Rudin [39, Section 8.12], with his L

our ρ−1�ρ = �+ ∇ρ
ρ

· ∇. These two facts permit us to conclude from (4.2) that

mρm−2 div(ρ∇�) ∈ W
1,2
loc , because � ∈ W

1,2
loc , and then from elliptic regularity

that � ∈ W 3,2
loc . We now claim
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Lemma 5. If�ρχ = 0 with�ρ = ρ�+(∇ρ)·∇ andχ = �+mρm−2�ρ� ∈ C∞
and �,� ∈ W 1,2

ρ (Rn), then χ is constant.

This lemma immediately implies that

mρm−2�ρ� = χ −� ∈ W 1,2
ρ (Rn),

hence� ∈ X, which concludes Lemma 4, apart from the proof of Lemma 5, which
is postponed to Section 4.7 below. ��

A description of the null space of ρ−1�ρ = � + ∇ρ
ρ

· ∇ in weighted Sobo-
lev spaces, based merely on qualitative properties like smoothness and asymptotic

behavior of ∇ρ
ρ

near infinity is rather subtle, if not impossible: see the discus-
sion in Nirenberg & Walker [30]. Our example just barely fails the assumptions
of their Theorem 4.1, which would ascertain a finite-dimensional null space, if it
were applicable. Their Section 5 indicates the sharpness of their assumptions, even
though their counterexample, based on an example by Pliś [35], does not explicitly
rule out stronger results for second order. Our argument to prove Lemma 5 says
essentially that 0 is not an eigenvalue, and is based on explicit solutions of the
eigenvalue problem in terms of the hypergeometric functions which follow. The
proof is therefore deferred to Section 4.7. Essentially, the radial symmetry of the
potential permits us to treat the problem as one-dimensional.

We will henceforth use the unaccented H for the operator on its domain of
self-adjointness (4.1).

4.1. Separation of variables in spherical coordinates

Transforming x ∈ Rn into spherical coordinates (r,ω) ∈ [0,∞[ × Sn−1 given
by (r,ω) = (|x|, x/|x|), we recall that the Barenblatt profile ρ(x) = ρ(r) is a
function of the radius only. The Laplacian is given by the familiar expression

�Rn = ∂2

∂r2 + n− 1

r

∂

∂r
+ �Sn−1

r2 , (4.3)

where �Sn−1 is the Laplace-Beltrami or angular momentum operator on the unit
sphere. From the formula H = −mρm−1�+x ·∇ it is now clear that the operators
H and �Sn−1 commute, hence can be simultaneously diagonalized.

Let us therefore recall the spectrum of the Laplace-Beltrami operator �Sn−1

(see Berger, Gauduchon & Mazet [7, pp. 159–163]). Its eigenvalues are �(�+
n− 2) =: L2 , and their respective multiplicities M� are

M� = (n+ �− 3)! (n+ 2�− 2)

�! (n− 2)! . (4.4)

(This is understood as M� = 1, if � = 0, or if � = n = 1). Our choice of notation
L2 is motivated by the fact that these eigenvalues are the quantum analog for the
magnitude squared of the angular momentum vector. So we have

−�Sn−1Y�µ = L2 Y�µ,
� = 0, 1, 2, . . .
µ = 1, 2, . . . ,M�.

(4.5)
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The eigenfunctions Y�µ are the spherical harmonics Y�µ : Sn−1 −→ R, which
form a complete orthonormal basis (4.8) for L2(Sn−1, dω); they are restrictions
of the homogeneous harmonic polynomials of degree � to the unit sphere. (Our
enumeration of spherical harmonics by µ is different from the one used for n = 3
in quantum mechanics, but as explicit formulas for the Y�µ do not play a role here,
no confusion should arise.)

The next proposition gives the decomposition of our Hilbert space W 1,2
ρ (Rn)

into angular momentum eigenspaces, and a formula for the restriction H� of H:

Proposition 6 (Restriction to angular momentum eigenspaces). Defining W 1,2
� by

(4.12), (4.14) yields a Hilbert space isomorphismW 1,2
ρ (Rn) = ∞⊕

�=0

M�⊕
µ=1

W
1,2
� given

by

�(rω) =
∞∑

�=0

M�∑

µ=1

f�µ(r)Y�µ(ω) (4.6)

for f�µ ∈ W 1,2
� . Furthermore, (4.15) and (4.16) define a non-negative self-adjoint

operator H� such that H� = ∑∞
�=0

∑M�

µ=1(H� f�µ)Y�µ.

Proof. First fix � ∈ W 1,2
ρ (Rn) ∩ C∞(Rn \ {0}), and define the corresponding

Fourier components f�µ ∈ C∞(]0,∞[) by

f�µ(r) :=
∫

Sn−1
�(rω)Y�µ(ω) dω , f ′

�µ(r) =
∫

Sn−1
(ω · ∇�)(rω)Y�µ(ω) dω .

(4.7)

The spectral decomposition for�Sn−1 onL2(Sn−1, dω) using an orthonormal basis
of spherical harmonics

∫

Sn−1
Y�µ(ω)Y�̃µ̃(ω) dω = δ

��̃
δµµ̃, (4.8)

yields (4.6), and similarly

∂�

∂r
(rω) =

∑

�

∑

µ

f ′
�µ(r)Y�µ(ω) , (4.9)

∇Sn−1�(rω) =
∑

�

∑

µ

f�µ(r)∇Sn−1Y�µ(ω) . (4.10)

In each case the convergence takes place in L2(Sn−1, dω), and convergence of
(4.10) was deduced from (4.6) using finiteness of

∫

Sn−1
|∇Sn−1�(rω)|2 dω = −

∫

Sn−1
��Sn−1� dω =

∑

�

∑

µ

L2 |f�µ(r)|2

(4.11)
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and the following useful variant of the orthonormality relations:
∫

Sn−1
∇Sn−1Y�µ(ω) · ∇Sn−1Y�̃µ̃(ω) dω = L2 δ

��̃
δµµ̃ .

Combining ∇Rn = ∂/∂r + ∇Sn−1/r with (4.9) and (4.11) yields

∫

Sn−1
|∇Rn�(rω)|2 dω =

∞∑

�=0

M�∑

µ=1

(

f ′
�µ(r)

2 + L2 f�µ(r)
2

r2

)

.

Integrating against ρrn−1 defines

‖f ‖2
W

1,2
�

:=
∫ ∞

0

(
f ′(r)2 + L2

r2 f (r)
2
)
ρ(r)rn−1 dr (4.12)

= ‖f Y�µ‖2
W

1,2
ρ (Rn)

and gives the desired isometry

‖�‖2
W

1,2
ρ (Rn)

=
∑

�

∑

µ

∥
∥f�µ

∥
∥2
W

1,2
�

; (4.13)

the exchange of limits implicit in the last formula is legitimized by finiteness of the
left-hand side. We are therefore naturally led to the Sobolev spaces

W
1,2
� :=

{
f : ]0,∞[ −→ R

∣
∣
∣ ‖f ‖

W
1,2
�
< ∞

}/

{‖ · ‖ = 0} , (4.14)

where /{‖ · ‖ = 0} applies to � = 0 (i.e., L2 = 0) only, dividing out constants.
Now C∞(Rn) ∩W 1,2

ρ (Rn) is dense in W 1,2
ρ (Rn), by a standard mollification

argument exploiting the tail behavior of ρ, given in the proof of Corollary 14. Thus

we have shown thatW 1,2
ρ (Rn) embeds isometrically into

∞⊕
�=1

M�⊕
µ=1

W
1,2
� . To show this

isometry is onto, use a new sequence {f�µ} ∈ ∞⊕
�=1

M�⊕
µ=1

W
1,2
� with only finitely many

non-zero entries f�µ ∈ C∞(]0,∞[) to define� ∈ C∞(Rn \ {0}) via the finite sum
(4.6); then (4.9)–(4.13) follow immediately and imply � ∈ W 1,2

ρ (Rn) and hence
(4.7). Such sequences form a dense subset of the latter space, thus completing the
proof.

A straightforward calculation for H := −mρm−1�+ x · ∇, using (4.3)–(4.5),
shows:

If �(rω) := f (r) Y�µ(ω) , then (H�)(rω) = (H� f )(r) Y�µ(ω)

with

(H� f )(r) := −mρm−1
(

f ′′(r)+ n− 1

r
f ′(r)− L2

r2 f (r)

)

+ rf ′(r). (4.15)
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The operator H� is defined on the projection of the domain of H (4.1) onto the ei-
genspace with eigenvalue L2 . More precisely, f ∈ D(H� ) ⇐⇒ f Y�µ ∈ D(H),
independent of the choice of µ; namely

D(H� ) =
{

f ∈ W 3,2
loc ([0,∞[, rn−1 dr) ∩W 1,2

�

∣
∣
∣
∣ H� f ∈ W 1,2

�

}

. (4.16)

��
Remark 7. A similar but simpler proof shows (4.6) also yields the Hilbert space
isomorphism

L2
(

Rn,
ρ(x) dx

|x|2 + δn,2

)

= ∞⊕
�=0

M�⊕
µ=1

L2
(

]0,∞[, ρ(r)r
n−1dr

r2 + δn,2

)

. n � 2. (4.17)

The proposition makes clear that finding the spectrum of H is equivalent to
finding the spectrum of H� for each � = 0, 1, 2, . . . , which requires analyzing the
radial ordinary differential equation. This will be accomplished in several steps.

4.2. Radial eigenvalue problem solved in hypergeometric functions

To find the spectrum of the self-adjoint operator H� on its domain D(H� ) ⊂
W

1,2
� (]0,∞[), we need to know for which λ ∈ R the resolvent (λI − H� )

−1 is
bounded. This means understanding the solutions of the ordinary differential equa-
tion (H� − λ)f = g ∈ W

1,2
� . In this section we solve the eigenvalue problem

H� ψ = λψ , whose eigenfunctions turn out to be hypergeometric functions in
W

1,2
� . This study gives also a heuristic basis for our understanding of the remaining

spectrum.
Explicitly, the equation H� ψ = λψ takes the form

ψ ′′(r)+
(
n− 1

r
− (p + n)r

r2 + C

)

ψ ′(r)+
(
λ(p + n)

r2 + C
− L2

r2

)

ψ(r) = 0, (4.18)

according to (1.4) and (4.15). The key to our analysis is the following proposition.
It relies on results and notation from the theory of special functions summarized in
Appendix 5. To sketch the subsequent logic briefly (neglecting some technicalities
for n = 2 that will be taken care of below), there are two linearly independent solu-
tions to (4.18) among the hypergeometric functions. Only one of these is analytic
at the origin: it has the form (3.5) with k = k(λ) the lesser root of

L2 +
(p

2
+ 1

)2 −
(p

2
+ 1 − �− 2k

)2 = (p + n)λ;
the other solution has a singularity at r = 0 which prevents it from belonging to
W

1,2
� . Whether or not the remaining solution lies in W 1,2

� depends on its growth
at infinity; it grows too quickly unless k is a non-negative integer – a necessary
and sufficient condition for the hypergeometric series (5.3) to terminate, forming
a polynomial ψ = ψ�k of degree 2k + �. Since the Barenblatt profile has up to p
moments, this polynomial belongs to W 1,2

� if and only if 2k + � < p/2 + 1. More
precisely:



Jochen Denzler & Robert J. McCann

Proposition 8 (Hypergeometric radial solutions). Let 2F1 be the Gauss hypergeo-
metric function defined by (5.3), and

T := L2 + (p/2 + 1)2 − λ(p + n) .

If n is odd, the linear second-order equation (4.18) admits two linearly independent
solutions, analytic on r ∈ ]0,∞[:

ψ1(r) := r� 2F1

(
1
2 (�− p

2 − 1 ± √
T )

n
2 + �

; −r2

C

)

, (4.19)

ψ2(r) := r2−n−�
2F1

(
1
2 (1 − n− �− p

2 ± √
T )

2 − n
2 − �

; −r2

C

)

. (4.20)

If n is even, ψ1 continues to be a solution, but ψ2 is ill defined, except for n = 2,
� = 0, in which case ψ2 = ψ1. In either of these two cases, a linearly inde-
pendent solution ψ̂2 exists whose asymptotic behavior is ψ̂2(r) ∼ ψ1(r) log r +
γ r2−n−�(1 + O(r2)) as r → 0+, with a nonvanishing constant γ . The O(r2)

correction is analytic near 0.
Unless T is a perfect square, an alternate solution basis is given by

ψ̃1(r) := r1+p/2+√
T

2F1

(
−[p4 + n

4 +
√
T

2 ± ( �2 + n
4 − 1

2 )]
1 − √

T
; −C

r2

)

, (4.21)

ψ̃2(r) := r1+p/2−√
T

2F1

(
−[p4 + n

4 −
√
T

2 ± ( �2 + n
4 − 1

2 )]
1 + √

T
; −C

r2

)

. (4.22)

If T = 0, then ψ̃1 = ψ̃2; if T > 0 is a perfect square, then ψ̃1 is ill-defined. In
both cases, a solution ψ̌1, linearly independent of ψ̃2, replaces ψ̃1, and satisfies

ψ̌1(r) ∼ ψ̃2(r) log r+γ r1+p/2+√
T (1+O(r−2))as r → +∞, with a nonvanishing

constant γ . The O(r−2) correction is analytic at r = ∞.
Unless T is a perfect square, ψ1 can be expressed in the form

ψ1(r) = c+ψ̃1(r)

�
(

1
2 (�− p

2 − 1 + √
T )
) + c−ψ̃2(r)

�
(

1
2 (�− p

2 − 1 − √
T )
) , (4.23)

c± = C(�−
p
2 −1∓√

T )/2
�
(
n
2 + �

)
�(±√

T )

�
(

1
2 (n+ �+ p

2 + 1 ± √
T )
) ∈ R.

Proof. The differential equation (4.18) is of Fuchsian type: its coefficients are
rational functions and the only singularities are regular, and they occur at the
four points 0,±i√C,∞. By introducing a new variable r = −r2/C, the singu-
lar points are brought to the standard positions 0, 1,∞. Any second-order equation
with only three regular singularities can be reduced to the Gaussian hypergeometric
type. The relevant theory can be found, e.g., in Poole [36]. A power-series ansatz
ψ(r) = rα

∑∞
i=0 air

2i , a0 �= 0, in even powers of r leads to the characteristic
equation for α, namely: α(α+ n− 2) = �(�+ n− 2). So either α1 = 2 − n− � or
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α2 = �. In contrast, for the standard hypergeometric equation, one of the character-

istic exponents at 0 vanishes. This is why (e.g.) the substitutionψ(r) = (−r)
�
2 f (r)

leads to the hypergeometric equation (5.4),

r(1 − r)f ′′(r)+ (c − (a + b + 1)r)f ′(r)− abf (r) = 0 (4.24)

with

a, b =
�− p/2 − 1 ±

√
�(�+ n− 2)+ (

p
2 + 1)2 − λ(p + n)

2
, (4.25)

c = n

2
+ � . (4.26)

If n is odd, then c is not a positive integer, and, comparing (4.24) with (5.4), (5.5),
we verify the claimed solutions (4.19), (4.20). Notice that if we had chosen the
other characteristic exponent for our transformation, the definition of T would be
unchanged and the two solutions would merely have been interchanged.

For even n, the basis of solutions can be found in [1, (15.5.16–17) or (15.5.18–
19)]. For ψ̂2, we have merely quoted the behavior near 0 from that source, because
later, both ψ2 and ψ̂2 will be discarded for the spectral problem.

The set of alternate solutions (4.21), (4.22) follows from [1, (15.5.7–8)], or
from applying the connection formula (5.7) to ψ1 and ψ2. For ψ1 and our choice
of a, b, c, this specializes to (4.23). The solution ψ̌1 that can replace ψ̃1 when T
is a perfect square can be obtained like ψ̂2 was obtained, using the self-transfor-
mation of the hypergeometric equation mentioned in the appendix. This proves the
proposition. ��

We shall see in a moment that the “nuisance cases” requiring ψ̂2 instead of ψ2,
or ψ̌1 instead of ψ̃1, do not affect the spectral properties: For a solution of (4.18) to
have the integrability properties (4.12) required for W 1,2

� locally near 0, it must be
a multiple of ψ1; and for a solution to have the corresponding integrability prop-
erties near ∞, it must be a multiple of ψ̃2, and with this information, the spectral
condition can be deduced from (4.23).

4.3. The point spectrum

We now begin to confirm assertions made in Section 3 above, by determining
the point spectrum and eigenfunctions of H� . The calculation will give enough
insight to guess the continuous spectrum as well – a guess which will be verified
subsequently.

Corollary 9 (Radial eigenfunctions and eigenvalues). The eigenvalue problem
H� ψ = λψ has a solution in D(H� ) ⊂ W

1,2
� if and only if λ = λ�k is given

by (3.3), with � � 0, (�, k) �= (0, 0). The corresponding eigenfunction ψ = ψ�k is
unique and given by (3.5); the hypergeometric series reduces to a Jacobi polyno-
mial in the eigenvalue case.



Jochen Denzler & Robert J. McCann

Proof. Suppose ψ ∈ D(H� ) is an eigenfunction, H� ψ = λψ in W 1,2
� ; then by

the standard bootstrapping, the eigenvalue equation holds classically, and in this
case we may express ψ(r) = c1ψ1(r) + c2ψ2(r) (or ψ̂2) as a linear combination
of the two solutions from Proposition 8. For n > 1 odd, ψ2 �∈ W 1,2

� , because near
zero, |ψ ′

2|2ρrn−1 ∼ const r1−n−2� is not integrable. For n even, the same argument

applies to ψ̂2 instead of ψ2. In either case, any solution to (4.18) lying inW 1,2
� can

only be a multiple of ψ1; thus c2 = 0 and the subsequent reasoning does not need
to distinguish the parity of n any more.

We now assume, for the time being, that T is not a perfect square. The connec-
tion formula (4.23) gives the behavior ofψ1 near ∞. Its growth determines whether
ψ1 is actually an eigenfunction. For T > 0, the dominant contribution comes from
the first term in (4.23), i.e., from ψ̃1, unless the coefficient of this term happens to
vanish. But ψ̃1 /∈ W

1,2
� since |ψ̃ ′

1|2 ∼ constrp+2
√
T and ρrn−1 fails to have p-th

moments. Essentially the same reasoning applies even if T > 0 is a perfect square.
In this case, the right-hand side of (4.23) must be replaced by its limit, as T tends
to the desired value. This limit exists, because the left-hand side is analytic in the
parameters. Single terms in the power series defining 2F1 in ψ̃1 diverge as the Poch-
hammer symbol (1 −√

T )k in the denominator starts including a factor 0, and also
the coefficient c− of ψ̃2 diverges. These divergences cancel termwise, by combining
like powers. The leading terms of c+ψ̃1(r)/�(

1
2 (�− p

2 − 1 + √
T )) (their number

being
√
T ) do not contribute divergences and are not paired with like terms from

ψ̃2. The first of them determines the asymptotic behavior as r → ∞. Therefore,
whether T is a perfect square or not, the vanishing of 1/�( 1

2 (�− p
2 −1+√

T )) due
to a pole of the � function, is a necessary condition for an eigenvalue contributed
by T > 0. Note that c+ does not vanish, since �(z) has no zeros and its poles occur
precisely at the non-positive integers; cf. (5.1).

Thus we need a = 1
2 (� − p

2 − 1 + √
T ) = −k ∈ Z for some integer k � 0

to have a T > 0 eigenvalue. But this number is exactly the a from (4.25). These
cases lead indeed to eigenvalues: The series (5.3) for 2F1 in (4.19) terminates at
the k-th term, so ψ1(r) is a polynomial of degree � + 2k. As r → ∞, we have
const|ψ ′

1|2 ∼ rp−2
√
T ∼ const|ψ1|2/r2; again ρrn−1 has up to p moments so

both integrals converge in (4.12). (Near zero, ψ1 is analytic and ρrn−1|ψ1|2/r2 ∼
constr2�+n−3 is also integrable if � � 1, as required). Thus ψ1 lies in the Hilbert
space W 1,2

� , and indeed in D(H� ). We see λ = λ�k by comparing (3.3) with the
explicit form of T given in the proposition. Comparing (3.5) with (4.19) we also
read off ψ/c1 = ψ1 = ψ�k . Apart from its normalization and domain, ψ coincides
with the Jacobi polynomial r�P (2�+n−2,−2−p−n)/2

k (1 + 2r2/C) of [1, (15.4.6)].
Note that λ00 is not an eigenvalue, because the corresponding ψ00 is a constant
function, i.e., vanishes in the quotient space W 1,2

�=0 according to (4.14).
Finally for T < 0, both terms in (4.23) contribute equally to the growth of

ψ1, with an oscillatory coefficient whose amplitude grows like r1+p/2, thus we get
logarithmic divergence of the integral

∫∞ |ψ ′
1|2ρrn−1 dr . So no eigenfunctions

arise for T < 0, although we will see later that this case contributes the continuous
spectrum. The same reasoning applies to the case T = 0, again by a limit argument,
and the corollary is complete. ��
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We recapitulate the last part of the proof for future reference: when T � 0,
the asymptotic behavior (4.21)–(4.23) of ψ1 makes the integrals of ρψ ′2

1 r
n−1 and

ρψ2
1 r
n−3 defining ‖ψ1‖W 1,2

�
just barely divergent (logarithmically) at +∞. The

corresponding values of λ should therefore belong to the continuous spectrum.
Indeed, condition T � 0 is equivalent to λ � λcont

� , with λcont
� given by (3.2).

4.4. Continuous spectrum

Next we have to prove that, in the case T � 0, we have indeed a continuous
spectrum, i.e., that there exists a sequence of approximate eigenfunctionsfk ∈ W 1,2

�

such that ‖(H� − λ)fk‖2
1/‖fk‖2

1 → 0, but no genuine eigenfunction.

Proposition 10 (Continuous spectrum). The continuous spectrum of the operator
H� on D(H� ) ⊂ W

1,2
� from (4.15) includes the interval [λcont

� ,+∞[ of (3.2).

Proof. Assume λ � λcont
� . We claim that λ belongs to the spectrum of H� on

D(H� ) ⊂ W
1,2
� but is not an eigenvalue. The latter is clear from Corollary 9 and

the ordering λ�k < λcont
� of (3.2), (3.3). To see that the inverse of H� −λI fails to be

bounded, we construct a sequence of approximate eigenfunctions fk ∈ D(H� ) ⊂
W

1,2
� such that ‖(H� − λ)fk‖W 1,2

�
/ ‖fk‖W 1,2

�
→ 0. This construction begins with

the solution ψ1 to H� ψ1 = λψ1 which was analytic at the origin in Proposition 8.
Since λ � λcont

� implies we are in the case T � 0 of that proposition, we know
‖ψ1‖2

W
1,2
�

diverges (logarithmically as r → +∞). The approximate eigenfunctions

are fashioned from ψ1 by means of a cutoff function η:

η ∈ C∞
0 [0, 2[ , η ≡ 1 on [0, 1] , ηk(r) := η(r/k) , fk := ψ1ηk. (4.27)

Clearly fk ∈ C∞
c ([0,∞[) ⊂ D(H� ). Moreover, the i-th derivative η(i) = diη/dri

satisfies the usual decay estimates:
∥
∥
∥η(i)k

∥
∥
∥
L∞ = O(k−i ) as k → +∞,

sup
k

η
(i)
k (r) = O(r−i ) as r → +∞.

We may neglect the case T = 0 now, because the spectrum is closed. Therefore,
recalling mρm−1 = (r2 + C)/(p + n) from (1.4), and the asymptotics ψ1 =
O(r1+p/2), ψ ′

1 = O(rp/2) and ψ ′′
1 = O(rp/2−1) from (4.21)–(4.23), we compute

H� fk = (H� ψ1)ηk + ρm−1O
(|ψ ′

1η
′
k| + |ψ1η

′′
k | + |ψ1η

′
k/r|

)+O
(|ψ1η

′
k|
)
r

= (H� ψ1)ηk +O(r1+p/2),
(H� fk)

′ = (H� ψ1)
′ηk +O

(|ψ ′
1η

′
k| + |ψ1η

′′
k | + |ψ1η

′
k/r|

)
r

+ρm−1O(|ψ ′′
1 η

′
k| + |ψ ′

1η
′′
k | + |ψ1η

′′′
k |

+|ψ1η
′
k/r

2| + |ψ ′
1η

′
k/r| + |ψ1η

′′
k /r|)

= (H� ψ1)
′ηk +O(rp/2)
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as r → +∞. Using (H� − λ)ψ1 = 0 pointwise in (4.12) yields

‖(H� − λ)fk‖2
W

1,2
�

=
∫ ∞

0

{

[(H� fk − λψ1ηk)
′]2 + L2

r2 (H� fk − λψ1ηk)
2
}

ρrn−1 dr

=
∫ 2k

k

{

[O(rp/2)− λψ1η
′
k]2 + O(r1+p/2)2

r2

}

O

(
rn−1

rp+n

)

dr

=
∫ 2k

k

O
(
r−1

)
dr = O(1)

as k → +∞. On the other hand, Lebesgue’s monotone-convergence theorem gives

〈fk; fk〉W 1,2
�

�
∫ k

0
ρ

(

f ′
k

2 + L2

r2 f
2
k

)

rn−1 dr → ‖ψ1‖2
W

1,2
�

= +∞

from (4.27). This shows the inverse of H� − λI on W 1,2
� cannot be bounded, con-

cluding the proof that λ ∈ σ(H� ). ��
We still need to show that there is no further continuous spectrum; this is accom-

plished in Section 4.6 by showing that for T > 0 not in the eigenvalue case, λ
belongs to the resolvent set. Before beginning that task, we must devote a section
to developing the auxiliary inequalities that will be required.

4.5. Weighted Poincaré inequalities and Sobolev spaces

The quotient (4.14) in the definition of W 1,2
� applies to the case L2 = 0 only,

where constant functions are to be removed. Even in this case, we will need to con-
trol infc

∫ |f (r)−c)|2ρ(r)rn−1 dr/(r2 + 1n�2) in terms of ‖f ‖2
W

1,2
�

to deduce the

density of C∞
c (R

n) inW 1,2
ρ (Rn) and establish the resolvent set of H� . This control

is obtained as a consequence of the following Hardy / Poincaré type inequality, with
weight function sin2 x vanishing quadratically at both ends of its domain [0, π ].
Lemma 11 (Hardy/Poincaré inequality with doubly degenerate weight). The
embedding W 1,2

sin2 x
[0, π ] ⊂ L2[0, π ]/{const} is continuous: i.e., any function g :

[0, π ] −→ R satisfies

inf
c

∫ π

0
|g(x)− c|2 dx � π2

∫ π

0
sin2 x |g′(x)|2 dx. (4.28)

Proof. We first show the estimate for trigonometric cosine polynomials g(x) =∑2N
k=1 ak cos kx. It costs no generality to discard the constant terma0 and choose c =

a0 = 0 in (4.28). Let the space of these polynomials be called F2N = Fe
2N ⊕ Fo

2N ,
where the superscripts refer to even and odd Fourier indices k respectively. In the
odd subspace, g(π2 + x) = −g(π2 − x), so g(π2 ) = 0 and

∫ π/2

0
g2 dx =

[
xg2

]π/2

0
−
∫ π/2

0
x 2gg′ dx � 2

((∫ π/2

0
g2 dx

)∫ π/2

0
x2g′2 dx

)1/2

.
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This one-liner yields a variant of the classical Hardy inequality:
∫ π/2

0
g(x)2 dx � 4

∫ π/2

0
x2g′(x)2 dx.

Now 2x � π sin(x) on the interval ]0, π/2[, and symmetry around π/2 gives the
desired result (4.28) for odd trigonometric polynomials g ∈ Fo

2N .
To complete the lemma, we now show that the inequality for odd polynomials

implies the inequality for all polynomials g ∈ Fe
2N . Using relations like

∫ π

0
sin(jx) sin(kx) cos(2x) dx = π

4
[δj,k+2+δj,k−2−δj,2−k−δj,−2−k], j, k ∈ Z,

with Kronecker’s symbol δj,k ∈ {0, 1} and g′(x) = −∑2N
k=1 kak sin kx, we evalu-

ate

4

π

∫ π

0
g′(x)2 sin2 x dx

= 2

π

∫ π

0
g′(x)2(1 − cos(2x)) dx

=
∞∑

k=1

kak

2
[2kak − (k + 2)ak+2 − (k − 2)ak−2 + (2 − k)a2−k].

Thus

inf

{∫ π

0
g′(x)2 sin2 x dx

∣
∣
∣
∣

∫ π

0
g(x)2 dx = 1 , g ∈ Fe

2N or Fo
2N

}

is the lowest eigenvalue of a symmetric tridiagonal matrix A
e or A

o respectively:

A
o = 1

2












3
2 − 1·3

2

− 1·3
2 32 − 3·5

2

− 3·5
2 52 − 5·7

2

− 5·7
2 72 . . .

. . .
. . .












, A
e = 1

2












22 − 2·4
2

− 2·4
2 42 − 4·6

2

− 4·6
2 62 − 6·8

2

− 6·8
2 82 . . .

. . .
. . .












(no misprint: the (k, k) = (1, 1) term in A
o is special). Now B := A

e − A
o =

{bjk}∞j,k=1 gives a positive-definite form: indeed bTB b = ∑N−1
j=1

4j+1
2 (bj+1 −

bj )
2 + 4N+1

2 b2
N . Therefore, the lowest eigenvalue comes from the odd subspace

Fo
2N , and we have proved the lemma for cosine polynomials.

It suffices to prove the lemma for g ∈ C∞[0, π ], by virtue of this space being
dense in the weighted Sobolev spaceW 1,2

sin2 x
[0, π ] (see Kufner [23, Theorem 7.2]).

Such g still extends to a piecewiseC1, 2π -periodic, even function, so that its Fourier
partial sums gN satisfy g′

N → g′ and gN → g in (unweighted) L2. The inequality
(4.28) survives this limit. This ends the proof of the lemma. ��

The indicator function 1n�2 in the denominator below ensures summability of
the weight in the proposition for all dimensions n � 1.
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Proposition 12 (Weighted Poincaré inequality). Fix p > 0, n � 1, and let ρ be the
corresponding Barenblatt profile (1.4). Each function f ∈ W 1,2

loc (R
n) satisfies

inf
c

∫ ∞

0

|f (r)− c|2
r2 + 1n�2

ρ(r)rn−1 dr � C(p, n)

∫ ∞

0
|f ′(r)|2ρ(r)rn−1 dr (4.29)

with the indicator function 1n�2 ∈ {0, 1} vanishing unless n � 2. Thus there is a
continuous embedding

W
1,2
�=0 ↪→ L2

(

R+, ρ(r)r
n−1 dr

r2 + 1n�2

)

/{const}.

Proof. Fix f ∈ D′(]0,∞[). The same proof works whether or not f is a smooth
function, provided all objects are interpreted distributionally using C∞

c (]0,∞[)
test functions.

Note that for any finite measure dµ – unless the infimum is infinite – we have

inf
c

∫
|f (r)− c|2 dµ(r) =

∫
|f (r)|2 dµ(r)−

(∫
f (r) dµ(r)

)2/∫
dµ(r) ;

then the infimum is attained at the average value c = ∫
f (r) dµ(r)/

∫
dµ(r), and

it costs no generality to assume that
∫
f dµ = 0 and set c = 0. If the infimum

is infinite, it is also attained trivially at c = 0. Assuming n � 3 for the moment,
employ the transformation x(r) = ∫ r

0 ρ(s)s
n−3 ds, and call its inverse r = σ(x).

Note that x∞ := limr→∞ x(r) is finite. For g(x) := f (σ(x)) our claim (4.29)
becomes

∫ x∞

0
g(x)2 dx =

∫ ∞

0
f (r)2ρ(r)rn−3 dr

� C(p, n)

∫ ∞

0
f ′(r)2ρ(r)rn−1 dr

= C(p, n)

∫ x∞

0
g′(x)2 σ(x)

2

σ ′(x)2
dx. (4.30)

From the asymptotic behavior of x = σ−1(r) and its derivative as r → 0 and +∞,
we see (by continuity of the weights on x ∈ [x, x∞]) that C(p, n) large enough
implies

π2

C(p, n)

sin2(xπ/x∞)
(π/x∞)2

� σ 2(x)

σ ′(x)2
∼
{
c1x

2 as x → 0+,
c2(x∞ − x)2 as x → x−∞.

(4.31)

Here c1 = (n−2)2 and c2 = (p+2)2. At this point, a trivial length scaling reduces
the assertion (4.30) of the proposition to Lemma 11.

For n � 2, we must use a modified coordinate transformation, to avoid diver-
gence at 0. Namely, we take x(r) = ∫ r

0 ρ(s)s
n−1/(s2 + 1) ds. The claim then

transforms to
∫ x∞

0
g(x)2 dx � C(p, n)

∫ x∞

0
g′(x)2 1 + σ(x)2

σ ′(x)2
dx.
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and for n = 1, 2, we have 1+σ 2

σ ′2 = (1+r2)|x′(r)|2 ∼ nρ(0)xn−1 as x → 0. Except
for this modification, (4.31) carries over and the proposition follows. ��
Corollary 13 (Sobolev space embedding). For n � 2, p > 0 and ρ as above, the
embeddings

W 1,2
ρ (Rn) ↪→ L2

(

Rn,
ρ(x)dx

|x|2 + 1n�2

)

/{const} ↪→ L2(Rn, ρ2−m dx)/{const}

are continuous:

inf
c

∫

Rn
|�(x)− c|2 ρ(x)

|x|2 + 1n�2
dx � max{C(p, n), 1}

∫

Rn
|∇�(x)|2ρ(x) dx.

(4.32)

Proof. Proposition 6 and Remark 7 show that (4.32) follows from the analogous

embeddings W 1,2
� ↪→ L2

(

R+, ρ(r)r
n−1 dr

r2+1n�2

)

provided the embedding constant is

uniform in � ∈ N. For � = 0, this embedding is given by Proposition 12. For � �= 0,
the embeddings (without the infc or 1n�2) follow trivially from (4.12):

∫ ∞

0

|f (r)|2
r2 ρ(r)rn−1 dr � 1

L2
‖f ‖2

W
1,2
�

� ‖f ‖2
W

1,2
�

. (4.33)

This establishes (4.32). Continuity of the second embeddingL2
(

Rn,
ρ(x)dx

|x|2+δn,2
)
↪→

L2(Rn, ρ2−m dx) follows immediately from ρ(x)m−1/const = |x|2 + C. ��
Note the relation between this Sobolev embedding corollary and the Poincaré

inequality discussed by Carrillo et al. for� = vρm−2 [14, (2.20)]. The result can
also be used to deduce the density of compactly supported functions in W 1,2

ρ (Rn).
In fact, since the Sobolev space (2.4) is defined modulo constants, functions with
compact support in Rn \ {0} should be enough. However we need only the weaker
assertion:

Corollary 14 (Density of smooth functions with compact support). The functions
C∞
c (R

n) form a dense subset of the Sobolev space W 1,2
ρ (Rn).

Proof. Let us first verify the density of smooth functions C∞(Rn). Given � ∈
W

1,2
loc (R

n), with
∫ |∇�|2ρ dx < ∞, define �ε := � ∗ σε ∈ C∞(Rn) by convo-

lution with a smooth mollifier σε(x) = ε−nσ (x/ε) supported in the unit ball: 0 �
σ � χBn1 (0)

. Jensen’s inequality yields the pointwise relation |∇�ε|2 � |∇�|2∗σε,
which, integrated with Fubini’s theorem, leads to

∫

|x|>R
|∇�ε(x)|2ρ(x) dx �

∫

|y|>R−ε
|∇�(y)|2ρε(y) dy. (4.34)

The estimate ρε(rω) � ρ(ω[r − ε]+) and tail behavior of the Barenblatt profile
(1.4) show that ρε(x)/ρ(x) � 1+O(ε) as ε → 0; here the error term is uniformly
bounded when x → ∞. Thus takingR large enough makes (4.34) uniformly small
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for all ε ∈ [0, 1]. A standard argument (see, e.g., Adams [2]) gives �ε −→ �

strongly in W 1,2(BnR(0)), and, since the truncation error (4.34) is small, in the
desired space W 1,2

ρ (Rn).
The corollary will be completed by showing that any smooth � ∈ C∞ ∩

W 1,2
ρ (Rn) can be approximated by one with compact support. Introduce a cutoff

function η ∈ C∞
c (R

n) such that χBn1 (0) � η � χBn2 (0)
, and define �R(x) :=

�(x)ηR(x) using ηR(x) := η(x/R). Then ∇�R − ∇� = (ηR − 1)∇� +
R−1�∇η(x/R) implies

1

2

∫

Rn

|∇�R − ∇�|2ρ dx �
∫

|x|>R
|∇�|2ρ dx + ‖∇η‖L∞(Rn)

∫

R<|x|<2R

4�2

|x|2 ρ dx.

(4.35)

Now � ∈ L2
(

Rn, ρ(x) dx/(|x|2 + 1n�2)
)

by Corollary 13, so taking R large

enough makes both terms in (4.35) small. Thus ‖�R −�‖
W

1,2
ρ (Rn) → 0 as R →

∞, concluding the corollary. ��
Remark 15. In the abstract, we announced W 1,2

ρ (Rn) as closure of C∞
c (R

n) with
respect to the norm ‖·‖

W
1,2
ρ (Rn). Precisely speaking, this involves, next to the above

corollary, also the statement that for any Cauchy sequence �j , in C∞
c (R

n) there
is a sequence of constants cj and a function � ∈ W

1,2
loc (R

n), such that a sub-
sequence �j − cj converges to � pointwise a.e., and in L2

loc, and such that∥
∥�j −�

∥
∥
W

1,2
ρ (Rn) → 0. The proof uses a similar cutoff argument; the constants cj

can be taken as the average of�j over, say, the unit ball, and the Poincaré inequality
over an arbitrary ball |x| < R together with a diagonal sequence argument must
be used to construct the function � first.

4.6. The resolvent set

To complete our description of the spectrum of H� , we need to prove that each
λ < λcont

� which is not an eigenvalue λ �= λ�k is in fact in the resolvent set. This is
the content of the next theorem. Its proof goes by first solving the inhomogeneous
differential equation (H� − λ)f = g ∈ W 1,2

� , and then checking that the solution

gives a bounded operator taking g �→ (H� − λ)−1g = f ∈ W 1,2
� .

Theorem 16 (Spectrum). Let H� be the self-adjoint operator (4.15), on its domain
(4.16). Its spectrum σ(H� ) is given by (3.1)–(3.3).

Proof. Fix 0 � � ∈ Z and assume λ < λcont
� is not an eigenvalue. Variation of

parameters yields a solution f for (H� −λ)f = g ∈ W 1,2
� ; in terms of the functions

ψ1 and ψ̃2 introduced at (4.19) and (4.22), this solution is given by

f (r) = ψ̃2(r)

∫ r

0
ḡ(s)ψ1(s)ρ(s) s

n−1ds + ψ1(r)

∫ ∞

r

ḡ(s)ψ̃2(s)ρ(s) s
n−1ds,

f ′(r) = ψ̃ ′
2(r)

∫ r

0
ḡ(s)ψ1(s)ρ(s) s

n−1ds + ψ ′
1(r)

∫ ∞

r

ḡ(s)ψ̃2(s)ρ(s) s
n−1ds,

(4.36)
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where ḡ(s) = g(s)ρ(s)1−m/γ and γ := msn−1ρ(s)[ψ̃2(s)ψ
′
1(s)− ψ̃ ′

2(s)ψ1(s)] is
a nonvanishing constant whose precise value is not relevant here.

If this solution is well defined and indeed in W 1,2
� (and we will show it is),

then it is clearly the unique solution in this space, since λ is assumed not to be an
eigenvalue. Note that in the case � = 0, the spaceW 1,2

� is a quotient space modulo
constants; equation (4.36) is compatible with this, even though it is not manifest
in the formula. For a constant function g, (4.36) will be seen to yield the constant
solution f .

We estimate f , assuming p > 0. This will in particular guarantee the conver-
gence of the integrals in (4.36).

Indeed, Proposition 8 and the analyticity of 2F1(z) near 2F1(0) = 1 imply

ψ1(r) = O(r�) as r → 0, |ψ1(r)| � O(r1+p/2+√
T ) as r → +∞;

|ψ̃2(r)| � O(r2−n−�) as r → 0, ψ̃2(r) = O(r1+p/2−√
T ) as r → +∞;

(4.37)

with T > 0 since λ < λcont
� .

Let us first deal with the case � � 1; the modifications for � = 0 will be discussed
afterwards. With the norm (4.12) in mind, we distribute an extra factor s/s when
using the Hölder inequality in the spacesLq(R+, dµ), dµ(s) := ρ(s)sn−1 ds, with
1/q + 1/q ′ = 1. Ultimately q = q ′ = 2, but first we need the extra flexibility. We
do assume q, q ′ to be sufficiently close to 2, depending on T > 0. From (4.37)
and ḡ(s)/const = g(s)/(s2 + C), we estimate vanishing and growth rates for the
variable coefficients in (4.36):
∣
∣
∣
∣

∫ r

0
ḡψ1ρs

n−1 ds

∣
∣
∣
∣ �

(∫ r

0
|ḡs|qρsn−1 ds

)1/q (∫ r

0
|ψ1/s|q ′

ρsn−1 ds

)1/q ′

�
∥
∥
∥
∥
∥

g

s + C
s

∥
∥
∥
∥
∥
Lq(dµ)

×
{
O(r�−1+n/q ′

) as r → 0

O(rp/2−p/q ′+√
T ) as r → ∞ ,

∣
∣
∣
∣

∫ ∞

r

ḡψ̃2ρs
n−1 ds

∣
∣
∣
∣ �

(∫ ∞

r

|ḡs|qρsn−1 ds

)1/q (∫ ∞

r

∣
∣
∣ψ̃2/s

∣
∣
∣
q ′
ρsn−1 ds

)1/q ′

�
∥
∥
∥
∥
∥

g

s + C
s

∥
∥
∥
∥
∥
Lq(dµ)

×
{
O(r1−�−n/q) as r → 0

O(rp/2−p/q ′−√
T ) as r → ∞ .

(4.38)

In these estimates, we have assumed that q, q ′ are sufficiently close to 2 such that
p/2 −p/q ′ +√

T > 0 and p/2 −p/q ′ −√
T < 0. Otherwise the first term would

be only O(1) as r → ∞, and the second term would diverge at ∞. Similarly, we
have made use of � � 1 to ensure 1 − �− n/q < 0 and �− 1 + n/q ′ > 0. (Note,
for later use, that these inequalities are also justified for � = 0 if n � 3.)

The estimates (4.38), with q = q ′ = 2, show already that f , f ′ are well defined
(and smooth) on ]0,∞[ by (4.36), because (4.12) controls ‖g/s‖L2(dµ) by ‖g‖

W
1,2
�

.

We also conclude immediately that
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|f (r)/r| � const‖g/s‖Lq(dµ) ×
{
r−n/q as r → 0
rp/q as r → ∞ .

For any q, in particular q = 2, these estimates just barely fail to control
‖f/r‖Lq(dµ). However, they show that our solution operator g/r �→ f/r is of
weak type (q, q) for every q ( ≈ 2 such that the estimates hold). The Marcinkiewicz
interpolation theorem then bounds ‖f/r‖L2(dµ) in terms of ‖g/r‖L2(dµ). For the
definition of “weak type” and the Marcinkiewicz interpolation theorem, the reader
may consult, e.g., Malý & Ziemer [26, pp. 51–53]. The very same argument holds
for f ′ instead of f/r . We have shown that, for � �= 0, and λ as specified, the
resolvent is a continuous operator from W

1,2
� into itself.

For n � 3 and � = 0, the estimates (4.38) can also be used with Marcinkiewicz
to estimate ‖f ′‖L2(dµ) in terms of ‖g/r‖L2(dµ). The latter is finite by (4.29), since
c/r ∈ L2(dµ). Let us now argue the case for n = 2, � = 0, where a few modifica-
tions must be made. To begin with, the asymptotic behavior (4.37) of ψ̃2 near zero
is altered, according to Proposition 8:

ψ1(r) = O(1), ψ̃2(r) = O(log r)
ψ ′

1(r) = O(r), ψ̃ ′
2(r) = O(r−1)

as r → 0, (n = 2). (4.39)

Even though the asymptotics of ψ1 have not changed, the first estimate in (4.38)
is no longer good enough for varying q around 2. However, if, instead of s/s, we
distribute

√
s2 + 1/

√
s2 + 1, we gain one power of r near zero:

∣
∣
∣
∣

∫ r

0
ḡψ1ρsds

∣
∣
∣
∣ �

∥
∥
∥ḡ
√
s2 + 1

∥
∥
∥
Lq(dµ)

O(r2/q ′
) � const

∥
∥
∥
∥

g√
s2 + 1

∥
∥
∥
∥
Lq(dµ)

r2/q ′

as r → 0. Here ‖g/√s2 + 1‖L2(dµ) is finite according to (4.29), since c/
√
s2 + 1

belongs to L2(dµ). The estimate as r → ∞ is not affected, nor need it change.
The asymptotics (4.39) for ψ̃2 are worse however, so redoing the second growth

estimate in (4.38) (distributing s/s, but estimating ḡ(s) in terms of g/
√
s2 + 1)

yields:
∣
∣
∣
∣

∫ ∞

r

ḡψ̃2ρsds

∣
∣
∣
∣ �

∥
∥
∥
∥

g√
s2 + 1

∥
∥
∥
∥
Lq(dµ)

O(1 + r1−2/q | log r|) as r → 0.

(4.40)

In any case, for q ≈ 2 the bound (4.40) grows slower than 1/r and hence, being
multiplied by the cofactor ψ ′

1(r) = O(r), does not contribute to the growth of
f ′(r) near zero. Indeed, estimating (4.36) using (4.39), (4.40) and the unchanged
asymptotics at r = ∞ yields

|f ′(r)| � const

∥
∥
∥
∥

g√
s2 + 1

∥
∥
∥
∥
Lq(dµ)

×
{
r−1+2/q as r → 0
rp/q as r → ∞ .

Now |f ′|q is integrable at the origin, and Marcinkiewicz bounds ‖f ′‖L2(dµ) =
‖f ‖

W
1,2
�=0

in terms of ‖g/√s2 + 1‖L2(dµ).
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For all dimensions n � 2, and � = 0, we have shown f ∈ W 1,2
�=0. If g happens

to be constant, then f must also be a constant, since the equation (H� − λ)ψ = g

admits a constant solution, and has a unique solution ψ ∈ W
1,2
�=0. Thus formula

(4.36) respects the quotient-space structure, and we may immediately improve our

estimate of ‖f ′‖L2(dµ) = ‖f ‖
W

1,2
�=0

via ‖g/
√
s2 + 1n�2‖L2(dµ), to an estimate in

terms of infc ‖(g − c)/
√
s2 + 1n�2‖L2(dµ). This latter is controlled by ‖g‖

W
1,2
�

according to Proposition 12.
We have therefore seen that

∥
∥(H� − λ)−1g

∥
∥
W

1,2
�

= ‖f ‖
W

1,2
�

� const ‖g‖
W

1,2
�

with the constant depending on λ and � but not g. This estimate holds for those λ
satisfying T > 0 which are not among the eigenvalues λ�k specified in (3.3).

This shows that λ is in the resolvent set. Since the eigenvalues (3.3) were estab-
lished in Corollary 9, while λ � λcont

� lies in the continuous spectrum according to
Proposition 10, this establishes the theorem and completes our rigorous analysis of
the spectrum. ��

4.7. Proof of Lemma 5

For the proof of Lemma 5 we let η := χ�µ, ϕ := ��µ, ξ := ��µ, as defined
in (4.6), (4.7). In doing so, note that (4.6) holds for each r and is not depen-
dent on the asymptotic behavior implied by the radial spaces used there. Note
that η ∈ C∞[0,∞[, and that η(0) = 0 if � �= 0. In deviation from the rest of
the paper, here we will use H� as the differential expression (4.15), not with the
specific domain (4.16). From −mρm−2�ρχ = 0, we get H� η = 0, and from
χ = � + mρm−2�ρ�, we get η = ξ − H� ϕ. We also get ϕ, ξ ∈ W

1,2
� and

ϕ ∈ W 3,2
loc .

We note that H� η = 0 and η ∈ C∞[0,∞[ imply that η is a multiple of ψ1;
use equation (4.19) with λ := 0 for this. In the case � = 0, this means that η is
a constant. We are left with showing that, for � �= 0, it follows η ≡ 0. We will
do this by concluding from the asymptotic behavior of η (or ψ1) as r → ∞ to an
asymptotic behavior of ϕ, based on H� ϕ = ξ − η = ξ − aψ1 and (4.36) above. It
will turn out that, unless a = 0, the asymptotic behavior of ϕ is incompatible with
ϕ ∈ W 1,2

� . So a = 0 and hence η ≡ 0.
Let us analyze the asymptotic behavior as r → ∞ of a solution ϕ to H� ϕ =

ξ − aψ1, ϕ(0) = 0 in the case � �= 0, λ = 0. We must show ϕ ∈ W 1,2
� �⇒ a = 0.

We have already seen that λ = 0 is in the resolvent set, and the estimates give us
a ϕ̃ ∈ W

1,2
� such that H� ϕ̃ = ξ . That leaves us with solving H� ϕ0 = aψ1 for

ϕ̃−ϕ =: ϕ0 ∈ W 1,2
� . All solutions to this equation are given by a modified version

of (4.36), namely

ϕ0(r) = a

γ

(

ψ̃2(r)

∫ r

0
ρ2−m(s)ψ2

1 (s) s
n−1ds

−ψ1(r)

∫ r

0
ρ2−m(s)ψ1(s)ψ̃2(s) s

n−1ds

)

+ c1ψ1 + c2ψ2.

We need c2 = 0 to have ϕ0 square integrable (with respect to rn−1ρ dr) at 0. From
(4.19), (4.21)–(4.23), (4.37), we get the respective asymptotics of the three terms
as r → ∞:
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ψ̃2(r)
∫ r

0 ρ
2−m(s)ψ2

1 (s) s
n−1ds ∼ r1+ p

2 +√
T ,

ψ1(r) ∼ r1+ p
2 +√

T ,

ψ1(r)
∫ r

0 ρ
2−m(s)ψ1(s)ψ̃2(s) s

n−1ds ∼ r1+ p
2 +√

T log r.

The last term is the dominant one; unless a = 0, this behavior is incompatible with
ϕ0 ∈ W

1,2
� , because it makes

∫∞
ϕ2

0(r)r
−2ρ(r) rn−1 dr ∼ ∫∞

r2
√
T−1(log r)2 dr

divergent. This concludes the proof of Lemma 5. ��

4.8. Modifications for one dimension (n = 1)

We have assumed n � 2 so far. However, the formulas obtained apply to the
simpler case n = 1 as well, with a few obvious changes.

We do not have a spherical Laplacian on S0, but the operator H commutes
with the parity operator P defined by (Pf )(x) = f (−x), and we can identify the
restriction of H to even functions with � = 0, and the restriction to odd functions
with � = 1. Higher values of � do not occur, so L2 := 0.

The operators H, H�=0 and H�=1 all have the same differential expression,
but operate in the full, the even, and the odd space respectively. (We may write x
instead of r .) Formulas (4.19) and (4.20) in Proposition 8 remain valid, however
we have ψ1|�=0 = ψ2|�=1 and ψ2|�=0 = ψ1|�=1. With either �, we must discard
ψ2 for parity reasons. The formulas for the eigenvalues λ�k and for the threshold
λcont
� defined by T = 0 remain intact, as well as the reasoning in Section 4.3 and

4.4. However, it becomes convenient for n = 1 to merge the point spectra (3.3) for
� = 0 and � = 1 by setting 2k = κ for � = 0, and 2k + 1 = κ for � = 1. The
continuous thresholds (3.2) coincide anyway: λcont

�=0 = λcont
�=1, so we have a complete

absense of eigenvalue crossings. Indeed, for n = 1:

λκ = κ − κ(κ − 1)

2
(1 −m) = κ − κ(κ − 1)

p + 1
, κ ∈ Z ∩ [1, 1 + p/2[,

λcont = 1

2(1 −m)
+ 1 −m

8
+ 1

2
= (

p
2 + 1)2

p + 1
.

(4.41)

Extrapolating these eigenvalues to the regimem � 1 yields the spectrum discovered
by Zel’dovich & Barenblatt [44] and Angenent [3] for the porous medium
equation in one dimension. The continued absence of level crossings among the
extrapolated eigenvalues explains why phase transitions were never observed in
these one dimensional studies. Indeed, the dynamics remain translation-governed
in the entire supercritical regimem � −1, because the phase transition atp = n = 1
is suppressed: dilations cease to be a d2 small perturbation at p = 2, where the
eigenvalue λκ=2 = λ01 dissolves into the continuous spectrum.

The resolvent estimate in Section 4.6 requires a re-counting of exponents as
in the case n = 2, simplified by the fact that both ψ1(r) and ψ̃2(r) are analytic
at r = 0; this yields an estimate of ‖f ′‖L2(dµ) in terms of ‖g/√r2 + 1‖L2(dµ).
Proposition 12 extends to n = 1. However, for � = 1, we cannot get rid of the
constants, but still need an analogous estimate, namely
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∫ ∞

0

|f (r)|2
r2 + 1

ρ(r) dr � C(p)

∫ ∞

0
|f ′(r)|2ρ(r) dr (4.42)

provided f (0) = 0. This is proved like the Hardy inequality, by integration by
parts: Let h(r) := − r2+1

ρ(r)

∫∞
r

ρ(s)

s2+1
ds. Then

∫ ∞

0
f (r)2

ρ(r)

r2 + 1
dr

= −
∫ ∞

0
2f (r)f ′(r)h(r) ρ(r)

r2 + 1
dr

� 2

(∫ ∞

0
f (r)2

ρ(r)

r2 + 1
dr

)1/2 (∫ ∞

0
f ′(r)2 h(r)

2

r2 + 1
ρ(r) dr

)1/2

.

Since h(r)2

r2+1
is bounded above on [0,∞[, the desired inequality (4.42) follows.

4.9. Form domain and sharp spectral-gap inequality

According to Corollary 3, H is a positive, symmetric operator on C∞
c (R

n).
Its form domain Q(H) is defined as the closure of C∞

c (R
n) with respect to the

norm Hessρ(�,�) + ‖�‖2
W

1,2
ρ (Rn)

. Thanks to Lemma 4, there is a unique self-

adjoint extension of H, which must therefore coincide with the Friedrich’s exten-
sion described, e.g., in Riesz & Sz-Nagy [38, VIII Section 124]. In particular, it
follows that the form domain Q(H) contains the domain D(H) of the extended
operator, and that this extension does not change the lower bound of the quadratic
form, i.e., the spectral gap inf{Hessρ(�,�) | ‖�‖2

W
1,2
ρ (Rn)

= 1}. We have cal-

culated the spectrum of H to lie in [�0,∞), the sharp threshold �0 > 0 being
given by (3.7). By the spectral theorem, this spectral gap implies the Poincaré type
inequality:

‖�‖2
W

1,2
ρ (Rn)

:=
∫

Rn
|∇�|2ρ dx

� m

�0

∫

Rn
(div[ρ∇�]/ρ)2 ρm dx = 1

�0
Hessρ(�,�) (4.43)

for all p > 0 and � ∈ W 1,2
ρ (Rn). Apart from constants, this equality is saturated

only by linear functions of x in the translation-governed regime p > n, and only by
multiples of the quadratic function �(x) = |x|2 in the dilation-governed regime
p ∈ ]2, n[. (Recall Fig. 1.) It is not saturated but remains sharp in the near-critical
regime p ∈ ]0, 2[, except that when n = 1 it is saturated by linear functions of x

for all p > 0. Together with Theorem 16, this completes the proof of all results
announced in our earlier note [16].

It is worthwhile to have a direct characterization of the form domain. Our final
lemma will showQ(H) to consist of thoseW 2,2

loc (R
n) functions lying in the Sobolev

space
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W 2,2
ρ (Rn) :=

{

� : Rn −→ R

∣
∣
∣
∣ ‖�‖

W
2,2
ρ (Rn) < ∞

}/
{‖ · ‖ = 0}, (4.44)

‖�‖2
W

2,2
ρ (Rn)

:=
∫

Rn

{
(1 + |x|2)|Hess�|22 + |∇�|2

}
ρ dx. (4.45)

Lemma 17 (Form domain). The norms Hessρ(�,�)+‖�‖2
W

1,2
ρ (Rn)

, Hessρ(�,�),

and ‖�‖2
W

2,2
ρ (Rn)

all induce the same topology on C∞
c (R

n).

Proof. The first two norms are equivalent because of the spectral gap (4.43):

Hessρ(�,�) � Hessρ(�,�)+ ‖�‖2
W

1,2
ρ (Rn)

� (1 + 1/�0)Hessρ(�,�).

To see the last two are equivalent, recall (2.9):

Hessρ(�,�) � ‖�‖2
W

1,2
ρ (Rn)

+
∫

Rn
ρm−1|Hess�|22 ρ dx (4.46)

= Hessρ(�,�)+ (1 −m) ‖��‖2
L2(Rn,ρmdx) .

The right-hand side of (4.46) gives a norm easily seen to be equivalent to (4.45),
in view of (1.4): constρm−1 = |x|2 + C. To conclude the lemma, it remains only
to bound ‖��‖2

L2(Rn,ρmdx) above by Hessρ(�,�). Introducing the differential
operator

A� := div[ρ∇�]/ρ = �� − ρ1−m

m
x · ∇�, (4.47)

(2.10) and (2.11) imply

m ‖A�‖2
L2(Rn,ρmdx) = Hessρ(�,�). (4.48)

Also, (4.47) gives

‖�� − A�‖2
L2(Rn,ρmdx) � 1

m2

∫

Rn
ρmρ1−2m|x|2|∇�|2ρ dx

� const

m2

∫

Rn
|∇�|2ρ dx, (4.49)

since |x|2ρ1−m(x) is bounded. Combining (4.48), (4.49) with (4.43) yields

1

2
‖��‖2

L2(Rn,ρmdx) � ‖A�‖2
L2(Rn,ρmdx) + ‖�� − A�‖2

L2(Rn,ρmdx)

� 1

m

(

1 + const

m�0

)

Hessρ(�,�),

to give the desired bound on (4.46) and complete the lemma. ��
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Remark 18 (L2 embedding). Corollary 13 shows that the norms ‖�‖2
W

1,2
ρ (Rn)

and

‖�‖2
W

1,2
ρ (Rn)

+ ‖�‖2
L2(Rn,ρdx/(|x|2+1))

induce the same topology on the codimen-

sion-one subspace {1}⊥ orthogonal to the constant functions in the space
L2
(
Rn, ρ dx/(|x|2 + 1)

)
. ThusW 1,2

ρ (Rn) andW 2,2
ρ (Rn) are continuously embed-

ded in {1}⊥. One power of |x| enters the weight at +∞ for each derivative of � in
these norms and (4.45).

5. Special functions: notation and background lore

This appendix collects the few facts about special functions which prove rele-
vant to our investigation. For the Gamma function �(z) and hypergeometric func-
tions 2F1(a, b, c; z)we refer to Abramowitz & Stegun [1] or Stalker [40]. For
a discussion of spherical harmonics Y�µ(ω) see Berger, Gauduchon & Mazet

[7].
Let � : C −→ C ∪ {∞} be defined by the Newman-Weierstrass product [40,

(1.3.6)]

�(z) := e−γ z

z

∞∏

k=1

(
1 − z

k

)−1
ez/k (5.1)

with γ = lim
k→∞(1 + 1

2 + · · ·+ 1
k

− log k); it gives the meromorphic continuation of

�(z) =
∫ ∞

0
tz−1e−t dt (5.2)

from z ∈ ]0,∞[ to the complex plane C [40, (1.1.18)]. The product representation
shows that�(z) does not vanish, its poles are all simple, and their locations coincide
with the non-positive integers. The integral representation shows �(1) = 1 and the
functional equation �(z+ 1) = z�(z) is satisfied.

For fixed a, b, c ∈ C the Pochhammer symbol (a)k := (a)(a+ 1) · · · (a+ k−
1) = �(a + k)/�(a) may be used to define the hypergeometric series

2F1

(
a, b

c
; z
)

:= 1 +
∞∑

k=1

(a)k(b)k

(c)k(1)k
zk = F(z) (5.3)

(provided c is not an integer � 0) within its radius of convergence |z| < 1. As is
well known, the hypergeometric function arising by analytic continuation from the
series (5.3) solves the following differential equation of Fuchsian type [40, (1.6.19)]
or [1, (15.5.1)]:

z(1 − z)
d2F

dz2 + (c − (a + b + 1)z)
dF

dz
− abF = 0, (5.4)

away from z = 0, 1,∞. A second linearly independent solution is

z1−c
2F1

(
a − c + 1, b − c + 1

2 − c
; z
)

, (5.5)

unless c is a positive integer.
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In the nongeneric cases, when c is a positive integer, certain linear combina-
tions of solutions for nonsingular c have a limit as c approaches the singular value,
and this limit will actually be a derivative with respect to c. The actual formulas,
involving logarithmic terms, can be found in [1] and need not be repeated here.

The analytic continuation of hypergeometric series can be effected by means of
certain integral formulas. One of them (valid for real parameters a and c > b > 0)
is [40, (1.6.22)]

2F1

(
a, b

c
; z
)

:= �(c)

�(b)�(c − b)

∫ ∞

0
tb−1(1 + t)a−c(1 + t − tz)−adt (5.6)

(for real parameters a and c > b > 0). In particular, it gives the analytic contin-
uation to −∞ < z < 1. This and similar integral representations can be used to
show certain connection formulas, due to Thomé 1879 (see Stalker’s footnote
[40, p. 48]). The following is germane to (4.21)–(4.23) (see [40, (1.6.39)] or [1,
(15.3.7)]):

2F1

(
a, b

c
; z
)

= �(c)�(b − a)

�(b)�(c − a)
(−z)−a2F1

(
a, 1 − c + a

1 − b + a
; 1

z

)

+ �(c)�(a − b)

�(a)�(c − b)
(−z)−b2F1

(
b, 1 − c + b

1 − a + b
; 1

z

)

.

(5.7)

The singular points 0, 1 and ∞ of the hypergeometric equation can be treated on
the same footing, and the permutation group on these three points, represented as
a group of Möbius transformations in C ∪ {∞}, induces corresponding self-trans-
formations of equation (5.4). For instance, the substitution F(z) = z−aG(z−1),
z−1 = w, transforms (5.4) into the same equation for G(w), but with different
parameters a, b, c, namely a, 1 − c+ a, 1 − b+ a respectively. This sheds light on
(5.7), and permits us to reduce the discussion of nongeneric cases for (5.4) at ∞
(namely when a − b is an integer) to the nongeneric cases at 0 (namely when c is
an integer).
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