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Abstract

The complete spectrum is determined for the operator H = —mp” 'A+x -V
on the Sobolev space W;’z(R”) formed by closing the smooth functions of com-

pact support with respect to the norm ||"I'”%4/112(Rn) = -/R" IVW|2p dx. Here the
Barenblatt profile p is the stationary attractopr of the rescaled diffusion equation
%—’; = A(u™)+div(xu) in the fast, supercritical regime m € ]",1;2, 1[.Form 2 n”ﬁ,
the same diffusion dynamics represent the steepest descent down an entropy E ()
on probability measures with respect to the Wasserstein distance d. Formally, the
operator H = Hess,, E is the Hessian of this entropy at its minimum p, so the spec-
tral gap H = « := 2 — n(1 — m) found below suggests the sharp rate of asymptotic
convergence:
. logdy(u(t), p)
lim —————~ < —«

t—00 t

<0

from any centered initial data 0 < u(0, x) € L' (R") with second moments. This
bound improves various results in the literature, and suggests the conjecture that the
self-similar solution u(t,x) = R()™"p(x/R(t)) is always slowest to converge.
The higher eigenfunctions — which are polynomials with hypergeometric radial
parts — and the presence of continuous spectrum yield additional insight into the
relations between symmetries of R"” and the flow. Thus the rate of convergence
can be improved if we are willing to replace the distance to p with the distance
to its nearest mass-preserving dilation (or still better, affine image). The strange
numerology of the spectrum is explained in terms of the number of moments of p.
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1. Introduction

This manuscript concerns the long-time behavior of solutions v(z, y) = 0 on
[0, oo x R” to the fast diffusion equation

il = (") (1.1

at
with supercritical nonlinearity m € ]%, 1[. The same equation goes by different
names and models different phenomena according to the degree of the nonlinearity:
whenm > 1itis called the porous medium equation and models a process in which
the speed of diffusion mv™~! increases with the concentration (or temperature),
v, such as thermal conductivity in a hot plasma [46] or fluid penetrating a rock [8,
28]; when m = 1 it is the ordinary heat equation, in which the speed of diffusion is
constant; when m < 1 it is called the fast diffusion (or singular diffusion) equation,
since the speed of diffusion diverges as v vanishes.

For suitable initial data 0 < v(0, y) € L'(R"), unique solutions exist for
all time in the case 0 < m < 1, and become positive everywhere immediately.
Indeed, HERRERO & PIERRE [22] have shown existence and uniqueness for strong
solutions and any 0 < m < 1 with merely LllOC initial data. Furthermore, L' ini-
tial data remain in L! under the evolution; for the critical and supercritical case
1— % < m < 1, their mass is actually preserved. For subcritical nonlinearities,

O<m<1-— %, low concentrations diffuse so quickly that a flux at infinity causes
extinction in finite time; see BENILAN & CRANDALL [6, Proposition 10].
Supercritical diffusion will be our exclusive concern hereafter: for such nonlin-
earities, FRIEDMAN & KAMIN [19] (see VAZQUEZ [41] for further references and a
useful review) showed that all solutions become small over time, acquiring a charac-
teristic shape known as the Barenblatt profile (1.4) as they dwindle away to nothing;
this profile is Gaussian for the heat equation m = 1. The question addressed below
is the precise rate of convergence to this characteristic profile. This rate is often
measured in L' (R"), since the higher norms L? with p > 1 capture only the rate of

disappearance. For all m > "n;l with m > % a uniform and global-in-time lower
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bound on the L! rate was derived simultaneously and independently by DOLBEAULT
& DEL PINO [17] and OTTO [31], and, for m > 1, by CARRILLO & TOSCANI [10]. In
a certain sense, their bound is sharp, though we shall presently see how to improve
it. In the very fast regime, m € ]”n;z, "n;l[, rates were completely unknown until a
preprint by CARRILLO, LEDERMAN, MARKOWICH & TOSCANI [14] used a nonlinear
methodology to provide eigenvalue lower bounds for the spectral gap in a linear-
ized problem. Below we shall find the complete spectrum for the linearized problem
(though linearized in rather different variables than those chosen by Carrillo et al.),
thus giving the sharp rates of asymptotic convergence to the Barenblatt profile — an
improvement on known bounds. Also, the complete spectrum and eigenfunctions
provide much information not only about the slowest mode to converge, but the
geometry of all other modes as well; in particular, we glimpse the role played by the
affine symmetries of R” — dilations, translations, rotations, shears — in determining
the solutions of (1.1). For m < 1 the appearance of continuous spectrum limits
improvement in rate of convergence that may be achieved by quotienting out such
symmetries; this is in sharp contradistinction to the case m = 1 of the heat equation,
whose asymptotics to all orders are well known. It is also quite different from the
porous medium equation m = 1, where asymptotics to all orders were established
by ANGENENT [3] in one dimension n = 1, following the spectral calculation
of ZEL’DOVICH & BARENBLATT [44]. The chief delicacy in that calculation is the
free boundary associated with compactly supported solutions; in the fast-diffusion
regime the analogous difficulty is the finite number of moments possessed by the
Barenblatt profile. Indeed, we shall see the mysterious numerology associated with
different values of m can be explained in terms of the precise number of moments
p = 2(1 —m)~" — n. Although our analysis of the spectral problem is rigorous,
we caution the reader that the linearization of (1.1) is a formal calculation, so that
— as in Carrillo, Lederman, Markowich and Toscani — any conclusions about the
nonlinear evolution must be treated as conjectures which, though formally justified,
are not rigorously established here. See however, the nonlinear results of CARRILLO
& VAzQUEZ [11] described in the epilog below.

Let us note that for the critical exponent m = "T_z with n 2 3, the Bare-
nblatt profile continues to exist as a solution, but does not have finite mass any
more. The asymptotics in this case have been studied by GALAKTIONOV, PELE-
TIER & VAZQUEZ [20]. The subcritical case — although not discussed here — is
also of interest: the exponent p = 1 — 5 of DEL PINO & SAEZ arises in differen-
tial geometry [34], where (1.1) gives the evolution of the conformally flat metric
ds? = ¥+ 3 dx? under scalar curvature (or Yamabe) flow; the Ricci flow
analog is discussed by VAZQUEZ, ESTEBAN & RODRIGUEZ in the critical planar
case n = 2 [42]. The equation has also been used (but with n = 1 and m < 0) for
modelling avalanches in sandpiles by CARLSON, CHAYES, GRANNAN & SWINDLE
[9] and CHAYES, OSHER & RALSTON [15].

1.1. Sharp rates of contraction via time-dependent rescaling of space

To quantify the foregoing discussion, we make the customary change of vari-
ables,
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e —1
’ex 9

u(t,x) =e"v

1 1 y
,y) = — u | —log(1 y—————— |, 1.2
v(T, y) a —i—af)"/“u(a og(l +at) a —i—Ot‘L’)l/a) (1.2)
where o := 2 — n(1 — m); this corresponds to a logarithmic rescaling of time,

coupled with a time-dependent contraction of space chosen at rate 1/« just large
enough to prevent the mass of u from spreading out very much. The new density
u(t, x) satisfies the confined fast diffusion equation

u m .

i A™) + div(xu) (1.3)
if and only if v(z, y) satisfies the original equation (1.1), with the same initial
condition #(0, x) = v(0, x). The advantage of this reformulation is that it shifts
the fixed point of the dynamics from infinity to a finite-mass Barenblatt profile
u(t,x) = us(x) = p(]x|) about which the evolution can be linearized. This
profile possesses moments up to but excluding order

it is given explicitly by

24+ C —(p+n)/2
p(r) = (ﬁ) with C > 0 chosen so / p(r)dx =1,
P n — n

(1.4)

ie.,

2
ré
CP:=a"(p+n—-2)"" (—2,1 ) . (1.5)
L)

Herer = |x| and I'(z) is Euler’s Gamma function (5.1). Notice that the supercritical
range of fast diffusion exponents m € ]”n;z, 1[ corresponds to a range of maximal
moments p € ]0, oo[. In the critical case p = 0, p has infinite mass and cannot be
normalized. For the linear heat equation, p(r) = (27)™"/ 2=7%/2 has moments of
all orders, so p = +00. We shall often find it convenient to work with p rather than
m=1-— p_z‘_n . We also tacitly assume n = 2 throughout the manuscript, except for
passages where the case n = 1 is explicitly addressed.

We now indicate some of the rates of convergence obtained by CARRILLO &
TOSCANI, DOLBEAULT & DEL PINO, and OTTO for m € [”n;l, ool, or equivalently
|p| = n[10,17,31]. Following OTTO [31], we state these in terms of the Wasserstein
metric dp defined in (2.3): the confined evolution (1.3) acts as a global contraction
on the space of probability measures with finite second moments. Moreover, this
contraction has a uniform rate independent of m: any two solutions u () and u(t)
satisfy

da(u(t),@(1) = e”'do(u(0), @(0)), [pl=n, (p £1I0,2]). (1.6)
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(Actually, Otto assumed it (¢, x) = p(x), arestriction lifted in CARRILLO, MCCANN
& VILLANI [12], and independently in forthcoming work by LYTCHAK, STURM &
VON RENESSE [25].) This rate is sharp in the sense that it is attained for the Barenblatt
solution 7 (¢, x) = p(x) and its translates u(z, x) = p(x — e 'zg). Although Dol-
beault and del Pino use more traditional quantities like entropy or L' norm — instead
of Wasserstein distance — to measure the deviation of u(¢) from p, their results are
morally equivalent to Otto’s (and can be deduced from his); again the rates they
obtain are saturated by convergence of the translates u(¢, x) = p(x — e 'zp) to
p. There is now a rapidly emerging literature exploring the relationships between
these various notions of convergence, summarized in Villani’s book and references
there [43]; since in many cases of interest it is well understood how to deduce rates
of convergence in a strong norm (such as LY from a weak metric (such as d),
we shall not pursue alternative notions of convergence any further. Let us mention
however that the restriction on nonlinearities p = n turns out to reflect the presence
of a phase transition at p = n from a translation-governed to a dilation-governed
regime; this corresponds to a level crossing in the eigenvalue (3.7) found below;
cf. Figs. 1-3 and our announcement [16]. Notice that the significance of transla-
tions can be explained as an artifact of the rescaling (1.2). The original fast diffusion
equation (1.1) is translation invariant, so the effects of translation can be accounted
for in the rescaled evolution, and it costs no generality to assume v(0, x) = u(0, x)
to have its center of mass at the origin a priori. This will eventually permit us to
improve the asymptotic rate of convergence — at least formally — from unity to

. logdy(u(n),p) - 2p
m >~ —

i <

=-24nl-m)=—-a, 2<p< oo,
Jim ; Py ( )= —« p=

(1.7)

at the same time extending the range of allowable nonlinearities into the dilation-
governed (very fast) regime p < n.

1.2. Source-type solutions, faster diffusions, and linearization

To provide motivation for the preceding formula, we start by observing that
for very fast diffusion, p € ]0, n[, the nonlinear evolution is no longer a global
contraction, so we cannot hope to derive estimates like (1.6). The reason is simple.
Consider the source-type solutions

ur@ (x) == R0 ™" p (x/R(1)) (1.8)

of ZEL'DOVICH & KOMPANEETS [45], BARENBLATT [5], and PATTLE [33]. These
are given by dilations of the Barenblatt profile whose radius

R(t):=(1—e ) a=2p/(p+n), (1.9)

increases from zero to one over time. Although R(¢) is eventually concave, its ini-
tial convexity depends on the size of « relative to 1. Thus for very fast diffusion,
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p < n, R(t) is convex for small ¢, and the distance between two source solutions
started at slightly different times 0 and § < 1,

day(UR(+5), UR(r)) = |R(t +8) — R(I)I‘//R x2p(x)d"x |

will increase before it decreases. Worse yet, taking § — +o00, R(t +§) — 1 and
u; = p in the same example shows da(ug(r), p) < e Md, (4 R(0), p) cannot hold
unless A < 0; otherwise d R/dt|;—¢+ = 0 produces the contradiction:

d
0=— dr(ur@y, p) £ —Ada(upr), P)-

dt =0t
So relinquishing hope for a global estimate, we settle for asymptotic convergence
in the long-time limit. Notice that the dilating source-type solution u(t) = ug()
shows the rate constant given by (1.7) is the best possible, which is why we call
this range of parameters a dilation-governed regime.

To study long-time asymptotics, it is natural to linearize problem (1.3) around
its attracting fixed point u (oo, x) = p(|x]|). This strategy was recently explored by
CARRILLO, LEDERMAN, MARKOWICH & TOSCANI [14], who used it to derive a linear
evolution equation, which they then analyzed directly via entropy methods and a
nonlinear analog of the BAKRY & EMERY semigroup approach [4]. Their results,
although stated in terms of decay of entropy rather than Wasserstein distance, trans-
late to
g u@.p) . p _n(—m)

li <
t—00 t p+n 2

o
l=—2, 0<p=<oo,
) <p=x
(1.10)

formally. In case the decay starts from spherically symmetric initial conditions
u(0, x) = ug(|x|), they improve this rate to

. logdr(u(@®),p) . p+1 (=D -—m)

m p— e —

li < = 1, 0<p<oo.
t—00 t p+n 2

(1.11)

In Fig. 1, both bounds are compared with the sharp spectral gap that we find.
Although neither one of these rates is as sharp as (1.7), it is startling to see them
asserted in the near-critical range of diffusion parameters 0 < p < 2. Here the
Barenblatt profile no longer has second moments, so both the Wasserstein distance
(2.3) and entropy (2.2) diverge. However, developing an idea used by LEDERMAN
& MARKOWICH [24] to relax the restriction p > 2, Carrillo et al. assert that the
problem can be renormalized by carefully subtracting infinities, provided the tails
of u(0, x) are sufficiently similar to those of the Barenblatt profile; this renormal-
ization is further exploited in the nonlinear context by CARRILLO & VAZQUEZ [11].
Since the same procedure applies in our case, the spectral analysis carried out in
the sections below leads us to conjecture
L logdou), p) (54D’

i

s 0 <2, 1.12
t—00 t - p—|—n =P= ( )
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Ay =1

dashed: lower bounds
by Carrillo et. al. [14]

Fig. 1. The spectral gap Ag(m) from (3.7) as a function of m; phase transitions at p = 2;
and from dilation- to translation-governed dynamics at p = n, compared with bounds by
CARRILLO et al. [14]. Dimension n = 5 was chosen for this precise graph.

and furthermore that this estimate is sharp among solutions u(¢) which start with the
same tail behavior as p — meaning similar enough for d> (#(0), p) < 400 in (2.3).
(Neither spherical symmetry nor fixed center of mass is assumed in this conjecture;
indeed, for p < 1 the center of mass will not be well defined.) However, the sharp
rate is not much more satisfactory than the bounds (1.10), (1.11) for the following
reason. In the range 0 < p < 2, the restriction d(u(0), p) < 400 — like Carrillo
et al.’s assumption about the tails of u(0) — becomes an unrealistically severe con-
straint on the initial data. Indeed, both predict rates (1.11), (1.12), faster than (1.7)
because the source type solution is no longer allowed to compete: its tail mass is so
spread out that d (i g(s), p) = +00. We therefore advance a more interesting con-
jecture concerning dilation-persistence: namely, that the source solution (1.8) will
continue to be slowest to converge once the right class of competitors and measure
of convergence have been identified for 0 < p < 2. (For a framework in which to
explore this dilation-persistence conjecture and more supporting evidence, see the
manuscript of CARRILLO & VAZQUEZ [11] discussed in Section 1.3.)

Since our analysis yields the complete spectrum — and not just the ground state
— it is possible to get better rates of convergence by identifying and quotienting out
the slow modes. For large p, the slowest modes turn out to correspond to transla-
tions, dilations, and affine symmetries of R"; (as Figs. 2 and 3 below show, there
are level crossings at smaller values of p). For each invertible n x n matrix A, define
the affine image Agp of p by

p(A™1x)

Ayp(x) = mo

(1.13)
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cont cont
A £ x

cont
> 8

7

) ,

(( 1-2 1- 2 I-

Fig. 2. The spectrum in dimension n = 5 as a function of nonlinearity m.

For a dilation A = RI with R > 0 we write Ryp instead of (RI)#p. Then our
formal asymptotics yield

—(5+ D%/ (p+n)if pe12,6],

—4(p—-2)/(p+n)if pe[6,n+4],

-2 if p € [n + 4, o],
(1.14)

logdy(u(t), Ryp) _

lim inf
t—>0o0 R>0 t

and, quotienting over all nonsingular transformations A, the improvement

logd 1), A .
lim inf ERUWAP) 3w ptn) i pEn4d
1—00 det A#0 t

(1.15)

This rate could be improved still further if we were willing to quotient out over
larger (but still finite-dimensional) families M of configurations around the Bare-
nblatt profile p, obtained by extending affine maps to a larger family of nonlinear
maps A : R” — R” in (1.13). However, the presence of a continuous spectrum
in our problem imposes a limit on these improvements:
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-------------- 7(n+5)

cont
A

T n+d T 48 T n+l2

Fig. 3. The spectrum in dimension n = 5 as a function of number p of moments.

.. logdy(u(t), i)
lim inf ———=

>0 geM t

< —(§ +1%/(p+n) for pel2,ool (1.16)

is the best possible estimate which can hold for generic initial data in (2.1), if M
is finite dimensional. This limit on the rate of convergence grows like the num-
ber of moments p of p. This is quite different from the heat equation, where we
get asymptotics to all orders by Fourier transform, or the central-limit theorem,
where we have the Edgeworth expansion and analogous Berry-Esseen results [18].
It is precisely the divergence of the bound (1.16) as p — 0o — equivalent to the
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rapid decay of p — which permits asymptotics to all orders in these problems, and
the porous medium regime p < —n = —1 [3, 44]. For the asymptotic expansion
expected in the present context, see (3.6).

Let us now turn to the linearization procedure which yields these results.

1.3. Epilog

Before this manuscript was completed, we learned of a parallel investigation into
the long-time asymptotics of fast diffusion by CARRILLO & VAZQUEZ [11]. Their
work complements ours nicely in many respects. Let v(z, y) denote the spreading
source-type solution (1.8), re-expressed in the original variables (1.2). When 7¢ can
be chosen so that the variance of vg — v(7p) is finite, Carrillo and Vazquez establish
the global bound

. C(vo)
[v() = D(t + 1)l 11 Ry = ~i 0 < p < +oo. (1.17)

Note that this choice of 7y becomes crucial if p < 2. Measured in Wasserstein
distance between rescaled solutions, this corresponds to the rate of convergence
(1.10) anticipated by CARRILLO et al. [14]. Our spectral gap calculation suggests
that if vg is centered or p < n, the exponent can be improved by a factor of two.
Supporting this guess, Carrillo and Vazquez establish the sharp rate of convergence

- C(v
lv(r) = 5(z + 7)1 jey < (IO) 0<p<+oo (LI

under the additional assumption of spherical symmetry vo(y) = vo(|yl|). In the
radial case, this resolves our dilation-persistence conjecture. Thus their results apply
to the nonlinear problem over the full range of parameters p > 0, but do not yield
the sharp rate of convergence except for radial initial data vg. Our results, although
limited to the linearized problem and p > 2, give higher asymptotics as well as
sharp decay rates. Both manuscripts elucidate the nature of the phase-transition
which occurs at p = n from a dilation-governed to a translation-governed regime.

2. Gradient flows and Hessian with respect to Wasserstein distance

2.1. Relevant facts from Otto’s formal manifold approach

The starting points for our analysis are two of Otto’s profound insights [31]:

(i) the space of Borel probability densities u with finite second moments

/ ux)dx =1
Rf’l

and / xzu(x)dx <+oo}

Mo (RY) = {o <uelL'RY

2.1

has the formal structure of an infinite dimensional Riemannian manifold, on
which the Wasserstein metric d (1, v) gives the geodesic distance between u
and v;
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(i1) the nonlinear diffusion (1.1) amounts to nothing more than steepest descent
of the Lyapunov functional ||v||7., (R")/ (m — 1) on this manifold. Equiva-
lently, the confined diffusion equation (1.3) amounts to steepest descent of
the entropy

E(u) = _M/ [M(x)_l% - 1]u(x)dx+l/ x2u(x)dx (2.2)
2 R” 2 R”

introduced earlier by NEWMAN [29] and RALSTON [37]. The shift —1 in
(2.2) has been chosen so the first integral tends to Boltzmann’s entropy
lulogull1 gy as [p| — oo (ie., m — 1).

For p > 2, E(u) is finite-valued on M7 (R™). The only term that needs dis-

cussion is fR,l u(x)™dx. Recalling m = 1 — ﬁ < 1, it can be estimated by

means of Holder’s inequality, in terms of f u(x)(1+ x?) dx. This is definitely not
the case for p < 2: here, the Barenblatt profile p has E(p) = —oo, with p™ and
x2p having the same divergence near infinity, but the negative coefficient of o™
dominant. Nevertheless, directional derivatives of E in directions that correspond
to compactly supported functions W can be defined for any m < 1, because in their
definition, the integrals vanish outside the support of W, and the uncontrollable tail
behavior for p < 2 does no harm. (Alternately, with hindsight our calculation for
p < 2 is justified more satisfactorily using the idea of LEDERMAN & MARKOWICH
[24] as in CARRILLO & VAZQUEZ [11, (3.4)], where an L] _(R") \ L!(R") count-
erterm was introduced into the integrand (2.2); see also [16]. Depending only on x
but not u, this counterterm makes the integrand positive for all u, thus raising the
minimum energy to Epnew(p) := 0 without changing the derivatives of E (u).)

However, for p > 2, the Barenblatt profile p is the unique minimizer of (even
the unrenormalized) energy E (u). This is most easily seen using the norm topol-
ogy and linear structure which M (R") inherits as a subset of the Banach space
L'(R", (1 +x?) dx). With respect to this linear structure, E is strictly convex and
p is a critical point, i.e., j—sE(,o + e9)|e=o = 0 if f ¢ = 0. The same holds for
p < 2, in the Euler equation sense, i.e., vanishing directional derivative in a dense
set of directions in function space, namely the smooth functions C°(R") of com-
pact support. Since the dynamics (1.3) are the gradient flow of the entropy E (p)
with respect to the Wasserstein distance, we propose to compute the spectrum of
the Hessian Hess, E on the tangent space to M>(R") at the fixed point p. Since p
is a minimum, this Hessian is a symmetric non-negative operator; any spectral gap
Hess, E = Ao > 0 implies rapid convergence of nearby trajectories to p under the
dynamics with exponential rate constant A — as measured in the ambient distance
d> on the manifold M, (R"). Of course, the topology induced by the Wasserstein
metric dp is a weak one: dp (uy, u) — Oif and only if uy dx — u dx against C.(R")
test functions and f x2uy x)dx — f x2u(x) dx; however, as mentioned above,
effective techniques have emerged for converting rates of convergence from d» to
|- lz1 in situations akin to the present setting [31, 32, 13, 43], so we do not address
this point further here.

We shall compute Hess, E using Otto’s Riemannian calculus [31, Section 4.4].
Although this is in principle equivalent to linearizing equation (1.3) as per CAR-
RILLO et al. [14], it has the advantage that the local metric prescribed by Otto on
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the tangent space to M (R") clearly identifies the Hilbert space on which Hess, E
should act — a crucial ingredient in determining the spectrum. To our knowledge
this work represents the first spectral analysis attempted in the framework of Otto’s
calculus, i.e., in the framework of Wasserstein distance.

Recall that the Wasserstein distance between two probability densities u, v €
M>(R"™) is given by

(v = inf / x — yPdy(x. ). 23)
yel(u,v) JRr xR

Here the infimum is computed over the space I'(u, v) of non-negative measures y
on R” x R" having marginals « and v: i.e.,

/f(x)dy(x,y)=/f(x)u(x)dx, /g(y)dy(x,y) =/g(y)v(y)dy

R” xR" R” R xR" R”

for all smooth test functions f, g € CZ°(R") of compact support. It is well known
that dy gives a metric on M3 (R") and the infimum is assumed in this case [21].
Moreover, definition (2.3) extends unambiguously to arbitrary non-negative dis-
tributions # and v on R” (in the sense of Schwartz), whether or not they have
densities, second moments, or finite mass — only then d>(u, v) may or may not
be finite. Finiteness of d(1(0), p) is the natural tail condition under which we
conjectured (1.12). (However, for near-critical diffusion, p < 2, the hypothesis
introduced by Carrillo and Vazquez to derive (1.17) is more appropriate.)

A basic ingredient in Otto’s calculus is the identification of the tangent space
T,M at u € M>(R") as the Sobolev space T, M = Wul’z(R") C WIO’CZ(R") of
weakly differentiable functions [31, (9)]

WlLA(R") = {\IJ:R” — R ‘/R VW |2u(x)dx < oo}/{” =0} (24)

the last symbol indicates that any two functions are identified with each other if
their difference is constant a.e. The inner product on Wul ’2(R") is given by

19112 gy = O ¥ 12y = fR IV Pu() dx, 2.5)

®R")

which makes Wu1 ’Z(R”) a Hilbert space, or pre-Hilbert, if we restrict ourselves
to compactly supported W. Indeed, at the Barenblatt profile u = p, Corollary 14
eventually asserts that W/}*Q(R") can also be realized as the closure of the smooth
functions C2°(R") of compact support with respect to the norm (2.5).

The exponential map from Wul’z(R”) to M (R") gives a local coordinate chart
on M;(R") equivalent to specifying the geodesics passing through u. Given a
tangent vector ¥ € WMI‘Z(R"), the geodesic through u in direction W is a path
us = exp, sV = [id + sVW]gu in M, (R") defined by gradually displacing the
mass of u in the direction given by the initial vector field V\W. More precisely, for
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each s € R, the mass is pushed forward through the map F;(x) = x + sV W (x) of
R", which is a diffeomorphism for small s and smooth W; this means

/Rn FWus(y)dy = /Rn fx+ sV (x)u(x)dx (2.6)

for every smooth test function f € CZ°(R"). Not having specified the topology
or differentiable structure on M (R"), the Hessian Hess, E will be defined as a
quadratic form in terms of second derivatives of the entropy along minimizing
geodesic segments [31, (83)—(85)]. As a second derivative in a functional analytic
sense however, it is only formal:

d*E (us)

_ 2
- |

w2 RY
2(AW (x))?
p+n

Hess, E(V, V) =

s=0

2
+/ {|Hessxp(x)|§ - } u T () dx. (2.7)
Rn
Here [HessW |5 is the Hilbert-Schmidt norm of the matrix of second partials 9;9; ¥;
for any square matrix A, |A|% = j |A;j |> = trace ATA. With compactly sup-
ported smooth W, (2.7) holds for every u € M;(R"), and any m < 1.
Our task is to prove the existence of a spectral gap: namely the estimate

Hess, E(W, W) = Ag ”w”%v,}z(Rn)’ for some Ag > O and all ¥ € W;Q(Rn).

That the sharp constant A is given by (3.7) is the first rigorous result that we

claim. In fact, we shall give the complete spectral analysis of the displacement

Hessian Hess, (W, V) = (V; HY) 1.2 (R’ viewed as an (unbounded) self-adjoint
P

operator in W;’Z(R”). The remarkable fact that H turns out to be a simple differ-
ential operator of second order is the key to our description of the spectrum. In the
absence of special algebraic structure, based on a straightforward application of the
Euler equations and Lagrange multipliers, we would have an eigenvalue problem
of the type H4W = L H, W, with differential operators H4 and H; of orders 4 and
2 respectively, so H might be expected to be second-order pseudodifferential (as
would actually happen for the similar problem at a non-critical point # # p on

Mo (R™)).

2.2. The displacement Hessian as an operator

From the defining equation, it is not evident that the Hessian is non-negative,
much less non-degenerate. Only for p = n does the Cauchy-Schwarz inequality

AW = trace[HessW] < /n |Hess\W|»

control the sign of the integrand (2.7). In this case we may take A9 = 1; in-

deed, Hess, E(V, V) = ||\IJ||€VI_2(RH) independently of our special choice of the
P

Barenblatt profile p, and the nonlinear contraction rate (1.6) follows from uniform
geodesic convexity of the entropy. This is the essence of Otto’s argument; the geo-
desic convexity of E (p) had already been established under the name displacement
convexity by MCCANN [27]. For faster diffusions p < n, the integrand (2.7) can



JOCHEN DENZLER & ROBERT J. MCCANN

take negative values. As it involves second derivatives it seems quite surprising that

it should be controlled by a norm ||/ || w2 Rn) involving only first derivatives of W.
P

This fact is intimately linked to the very special form of the Barenblatt profile p,
as we shall see in the next proposition and its corollary. There the correspondence
between the operator H := —mp™ 'A + x -V on W;’Z(R”) and the quadratic
form Hess,, E is established. We begin by recalling a simple lemma.

Lemma 1 (Bochner identity). Any W € C3(R") satisfies
HessW[3 = LA(VW?) — VU - V(AW). (2.8)
Proof. We have
(0;0;¥)(0;0;¥) = a,-[(a,-\p)(a,-aj\y)} — (0;¥)(0;AW)
- aiai{%w\mz} —VU.V(AY). O

Proposition 2 (Displacement Hessian operator). Let m > 0. For any distribution

uell (RN LlloC (R™) and any smooth, compactly supported test function ¥ on

R", the formal Hessian, defined in (2.7) can be written as
Hess, (¥, &) = ||\y|| 2gm F f um{|Hess\p|§ —(1- m)(A\IJ)Z} dx
Rn
1 . 2
— (W;HW)WMIJ(R") n EfRn{Aum +d1v(xu)}|V\IJ| dx (2.9)
with the operator H : W > (—mu~'A + x - V)W. In particular, if u is the Bare-

nblatt profile p, then HY = —mp™ =2 div(pV V), and the last integrand vanishes
in (2.9).

Proof. Using Bochner’s formula (2.8) and integrating by parts, we calculate, ini-
tially under the assumption u € C Z(R"):

—%/(Aum +div(xu)>|V\Il|2+/um[|Hess\Dl%— (1 —m)(A\I')z}
- —%/div(xu)lV\Illz—i-/um{—V‘l"V(A‘l’)—(l —m)(A‘V)z}
= %/ux~V(|V\IJ|2)—/umV\I/~V(A\I/)

—(1—m) / um(diV(V\IJ AW) — V. V(A\IJ))
=/uV\D~(Hess\D)x —mfumV‘I’-V(A‘I’)

+( —m)/(Vum)'(V‘l’)A‘I/
=/uV\IJ~V(x-VW—W)—mquW-V(um_lAW)

= <\IJ; (H 1)"II> 12 Rn) ’
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hence (2.9), as desired, for smooth u. In the second-last line, we have made use of the
identity (1 — m)Vu™ = —muVu™"!. Having estimated (2.9) for u € C2, we now
approximate, foru € Ll NLJ" andm < 1, the functionu™ € Lllo/cmﬂLllOC = Lllo/cm
by C? functions wy, using standard density arguments in L? spaces; the w,i/ ™ are
also in C? and approximate u. The distributional interpretation of (2.9) follows
immediately; (m = 1 would be even simpler, because it would not require passing
to u™ to avoid the exotic spaces L<!).
The following formulas for p follow right from the definition:

r _
I (p(r)™) = —rp(r), dhp(r)= —Zp(r)2 " (2.10)
They imply immediately
AP 4+ div(xp) = r' 0. ("o p™) +np +rd,p=0. O

A simple integration by parts shows positivity of this displacement Hessian:

Corollary 3 (Positivity and symmetry). For any smooth, compactly supported test
functions ® and ¥ on R",

Hess, (&, V) = (®; HY) 12, = m "2 div[pV @] div[p VW] dx.
» W/J (R") R?
Q.11

Proof. Express (©; HV)
O

wi2 ey bY using HY = —mp"~2div[pV W] in (2.5).

3. Overview of spectral results

In this section, we describe the spectral properties found below for the operator
H = —mp™ 'A + x - V corresponding to the Hessian (with respect to the Was-
serstein metric) of the energy E(u) at the minimizing Barenblatt profile u = p.
This Hessian represents a positive-definite self-adjoint unbounded operator on the
Hilbert space Wg’2(R") with scalar product (2.5). The analysis is carried out by
first noting that H commutes with the total angular momentum operator —A gu-1,
and then finding the spectrum of the radial problem one spherical harmonic at a
time. We continue to assume n = 2 tacitly, except where the contrary is stated; see
Section 4.8 for the case n = 1.

For ¢ = 0,1,2,..., let Hy denote the restriction of H to the eigenspace of
—Agu-1 corresponding to eigenvalue L? = £(¢ + n — 2). Our conclusions are the
following: for 1 — % < m < 1, the spectrum o (Hy) = ocont(He) Uop(Hy ) consists
of a disjoint union of a (non-empty) continuous part, together with at most finitely
many eigenvalues

o (Hy) = [2", 0ol U {Ae0, Aets - - » Aex )\ {O). (3.1
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The main feature of this spectrum (see Fig. 2) is that all eigenvalues are given by
linear functions of m which interpolate between A |,,=1 = £ + 2k > 0 and a point
of tangency with the threshold of the continuous spectrum

L? + (5 +1)?
p+n

S +l_m(”+e 1)2 "1
T 2(1—m) 2 \2 2

Ao = (3.2)

This tangency can only occur at p = 2¢ — 2 + 4k, after which the eigenvalue
dissolves into the continuous spectrum and is lost for all smaller values of m. Thus
the number K 4+ min{¢, 1} (if any) of eigenvalues is determined by the largest inte-
ger K > 0 satisfying £ +2K — 1 < p/2 = (1 — m)~! — n/2. The eigenvalues
themselves are given by

Aok o= 0+2k—2k(k+Ee+n/2—1)(1—m) fork=0,1,... K,
L2 +(5 + )= (5§ +1-t-2k)?
- e

, keZno, 227 (33)

exceptthat Agp = 01is not an eigenvalue. For any value of p > 0, they are ordered by
C=Aoo < Apl < App < -+ < Mg <)»20m <)‘2Tlt' 34

If no eigenvalues are present (p < 26 —2orm < 1 — M%) we still have

S AP < X%‘j:‘lt (with equality where A¢g disappears into the continuous spec-
trum). Notice that the continuum threshold diverges Azom — +ooasm — 17,
while the spectrum degenerates to the positive integers. This comes as no sur-
prise, since our Hessian converges to the Ornstein-Uhlenbeck generator H =
—A + x - 'V, well known to be conjugate via similarity transformation to the har-
monic oscillator Hamiltonian —A + x?2 /4 (= péézH,o;ol/ 2 + n/2). The Gaussian
Poo = (27)~"/2 exp(—r2/2) is the limit of the Barenblatt profile as p — oo.

Except for recovering the limit m = 1, it is more convenient to visualize the
spectrum of the operator (p + n)H as a function of p € ]0, +oo[, where it corre-
sponds to a sequence of half-lines and parabolas; see Fig. 3. Indeed the continuous
thresholds (3.2) become a sequence of congruent parabolas assuming their mini-
mum values L? = £l 4+ n — 2) at p = —2. The eigenvalues, now linear in p,
become a sequence of semi-infinite rays with positive integer slopes, increasing
from a point of tangency with the parabola y(p) = (p +n)A$™ to p = +-o00. Each
such line corresponds to an eigenvalue family if and only if its slope is an integer
{42k (k=0,1,2,...) sharing the parity (even or oddness) of €.

The corresponding eigenfunctions are almost as easy to describe. Each eigen-
value Ag; has the same degeneracy (4.4) for H, as L? = ¢ +n — 2) has for
—Agn-1. The corresponding eigenfunctions HW,, = Agr We, are polynomials of
degree £ 4 2k. Since p has fewer than p moments, it is clear why the restriction
£+2k < 14 p/2 gives the square integrability (2.5) required for Wy, € Wg’Z(R”).
The non-integrability for larger values of k hints that continuous spectrum should
be anticipated. Quite explicitly,
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6k=0,1,2,...
Wik (x) = wkqxnm(l |) 0<ti2k <140/

where Yy, is a spherical harmonic —Agu-1Y¢, = £(£ +n —2)Y,, and

)
k+e—1—p/2, —k r) 35

Y (r) =r 2F1< (402 O
is a hypergeometric function (5.3). Since —k is an integer, the hypergeometric series
2 F1(z) terminates at the (k + 1)-th term, forming a polynomial of degree k. The
constant C comes from the normalization of the Barenblatt profile (1.4), (1.5).
Recalling from (2.6) that the Wasserstein geodesics exp, s\ € M»(R") are
given by displacing the mass of p inertially along the vector field VW (x) gives an
interpretation to these eigenfunctions. When £ + 2k < 2 the eigenfunction Wy, is
quadratic, so the map Fy(x) = x +sVW¥(x) is afﬁne Thus VWy1; = —2px/(Cn)
generates dilations; VWjo,, = €, generates coordinate translations p = 1, 1
and VW, = A(u)x with symmetric, trace-free matrices A(u), generate the
remaining ((g) +n— 1)-dimensional symmetric space of affine images of p, in
other words, the group of affine transformations of R", modulo the group of rota-
tions (symmetries of p); cf. [27, Example 1.7]. For £ + 2k > 2, the transformation
Fg(x) of p is no longer affine, but — apart from this fact — not much more difficult
to understand. Thus as ¢t — oo we may conjecture an asymptotic expansion for
ur = exp, W(z, x) given by polynomials in # depending only on the initial data:

Wit x) = 3 (o)) + ren o)W () + - ) expl—e - A1)
[4

— 000" (3.6)

for any ¢ > 0. Here, the sum runs over all nonzero multi-indices ¢t = (t¢xy), such
that ¢ - A := D tppprex < Agont, and the polynomial coefficients W/ (x) depend
only on m, n, and ¢; if ¢ has length 1 (i.e., represents an eigenvalue), then \IJLO(x) is
the corresponding eigenfunction. The polynomials in ¢ should reduce to constants
in the absence of resonances. The question of resonances is discussed by ANGE-
NENT [3], who corrected a formal expansion of ZEL'DOVICH & BARENBLATT [44]
to establish rigorous asymptotics in the one-dimensional porous medium equation
(n = 1, m = 1). Since there is no continuous spectrum in that setting, he derives
an asymptotic expansion to all orders in place of the finite sum (3.6). It is worth
pointing out that the eigenvalues found by these authors coincide with the extension
(4.41) of our spectral lines {Aox, A1 k—1};>; to the region p < —n, ie., m = 1.
Here the offset L2 = 0 between odd and even spherical harmonics vanishes, so
there are no eigenvalue crossings in this regime (4.41).

On the other hand, for multidimensional fast diffusion (n = 2, p > 0) our
analysis shows H 2 A > 0 is strictly positive for p = 0, with a spectral gap given
by Ao = min{A{"™, Ao1, A1o}, or explicitly
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MM = (5 + D (p+n) if p €10, 2],
Ao= 14 ro1 =2p/(p+n) (dilation-governed) if p € [2,n], (3.7)
Ao =1 (translation-governed) if p € [n, oo].

The eigenvalues Ag; and Ajp correspond to dilations and translations of p, and
therefore come with multiplicities 1 and n respectively.

The next spectral level A} = min{kg‘)“t, max{1, Ag1}} of the overall Hamil-
tonian H is not terribly interesting, since it also corresponds to dilation or trans-
lation, depending on which side of the level crossing we are at. Notice that the
spectral multiplicity #(Ag) :=dim Ker(H — Ag) and #(A1) belong to {0, 1, n},
while their sum lies in #(A1) + #(Ag) € {0, 1,n + 1}. The third spectral level
Ay = min{)\g""t, Ao2, A20}, however, is more interesting, since it governs the rate
of convergence of “shape” (1.14) to the submanifold consisting of translations and
dilations of the self-similar profile p. Its explicit value is given by

gont if p €10, 6],
A= rpp=4(p—2)/(p+n) if pel6,n+4], (3.8)
hao =2 (affinely-governed) if p € [n + 4, o<].

Note that although A1 might have contributed to A according the ordering (3.4),
its contribution is in fact precluded by the remarkable intersection which occurs at
p =n +4j — 4 for each integer j of the j + 1 spectral lines

Aj =M j 1=k jo2=-=Ajo=J;

(part of the strange numerology of the spectrum). Of course, at this multiple inter-
section point, A1y still contributes positively to the multiplicity #(A»). Finally,
convergence (1.15) to affine images of p is controlled by
A" if pe]0,4+2+/n—1]
A3 = . (3.9)
Mi=Q0Cp+n—-4)/(p+n)if pe[d+2J/n—1,00]
in the latter range. Comparison with (3.7), (3.9) yields (1.7) and (1.12), (1.15); the
presence of the continuous spectrum above Ai°™ implies the limitation (1.16).

4. The Spectrum

This section derives the exact spectrum of the operator H := —mp” " 'A+x-V
described above. The spectrum is found by solving the partial differential equation
(H — A)W = @ and then checking whether the resolvent operator (AI — H)~!
defines a bounded transformation on WK}'Z(R"). This is accomplished by separa-
tion of variables into angular and radial parts. It is good fortune that the radial
part of the problem reduces to a hypergeometric equation whose solutions are well
known in special function theory, permitting a complete determination of o (H).
The precise form (1.4) of the Barenblatt profile p accounts for this happy out-
come: singularities of the radial equation can occur only at 7> = 0 (the coordinate
singularity), 7> = —C (singularity of p), and r> = oco. The issue is whether all
of these singularities are regular singularities in the sense of the Fuchsian theory
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(see, e.g., POOLE [36]). Any linear ordinary differential equation with only three
regular singularities can be transformed into a hypergeometric differential equa-
tion.

The spectrum is real by the self-adjointness of H established in the next lemma:

Lemma 4 (Essentially self-adjoint). The operator HV := —m,o’"_2 div[pVV¥] is
essentially self-adjoint on C2°(R") C WA’Z(R”); i.e., its closure is self-adjoint,
and forms the only self-adjoint extension of H. The domain of self-adjointness is
precisely

D(H) = {qz e Wl NWI2R™) | p" 2 div[pV W] € W;’Z(R”)} . @

It should be stressed that self-adjointness refers to the scalar product in WA’Z(R”),
not in L?.

Proof. From the theory of unbounded operators, recall: (i) any symmetric operator
densely defined on a Hilbert space H is closable — meaning the closure of its graph
in H @ 'H is again the graph of a symmetric linear operator; (ii) any self-adjoint
operator has a closed graph [39, Sections 13.9, 13.20]. Corollaries 3 and 14 show
that H restricted to CS°(R") is symmetric and densely defined on the Hilbert space
W1 2(R™), so let us denote the closure of this operator by H. Letting X be the space

in (4 1), a routine approximation argument yields that the domain of H contains X.
We show the restriction H := H|y is a self-adjoint operator by proving H* C H.
The obvious chain of reverse inclusions H ¢ H ¢ H* ¢ H* then completes the
proof that H=His self-adjoint; also, any other self-adjoint extension of H would
be sandwiched between H and H* in this chain, and hence coincide with H.

The desired inclusion requires us to show that if ® € W1 2(R") is in the

domain of H* — i.e., if there exists a & W1 2(R™) such that (<I> H\IJ)

2R T
(E; W)y, 2Ry forall W € X —then ® € X . Restricting to test functlons v e
C°°(R") the equation (®; HWY) Wil R = (B ‘I’>W,§’2(Rn) means
Ap(=mp" 2N, d —E) =0 4.2)

in the sense of distributions, where A,E := div(pV E). Fix a smooth, bounded
domain  CC R”, and consider the restriction of the operator A, to the Sobolev
space Wl’z(Q) = C2°(Q2) of weakly differentiable functions with zero boundary
trace. Soft functional analysis asserts that

Ay WHE(Q) > WHA@ = w2 (Q)
is an isomorphism, and moreover, all distributions x which are p-harmonic (i.e.,
A, x = 0) are actually smooth functions; see RUDIN [39, Section 8.12], with his L
our ,o_1 Ay =A+ V" - V. These two facts permit us to conclude from (4.2) that

P 2d1v(,oVCD) € WIOL,
that [ONS W2 We now claim

loc

—~

because E € wl

loc , and then from elliptic regularity
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Lemma 5. [fA,x = OwithA, = pA+(Vp)-Vand x = E+mp™ 2A,® € C®
and ®, E € Wg’z(R”), then x is constant.

This lemma immediately implies that
mp" 2A, 0 = x — B e WIHRY,

hence ® € X, which concludes Lemma 4, apart from the proof of Lemma 5, which
is postponed to Section 4.7 below. O

A description of the null space of p~'A o = A+ Vo vin weighted Sobo-
lev spaces, based merely on qualitative properties like smoothness and asymptotic

behavior of % near infinity is rather subtle, if not impossible: see the discus-
sion in NIRENBERG & WALKER [30]. Our example just barely fails the assumptions
of their Theorem 4.1, which would ascertain a finite-dimensional null space, if it
were applicable. Their Section 5 indicates the sharpness of their assumptions, even
though their counterexample, based on an example by PLIS [35], does not explicitly
rule out stronger results for second order. Our argument to prove Lemma 5 says
essentially that O is not an eigenvalue, and is based on explicit solutions of the
eigenvalue problem in terms of the hypergeometric functions which follow. The
proof is therefore deferred to Section 4.7. Essentially, the radial symmetry of the
potential permits us to treat the problem as one-dimensional.

We will henceforth use the unaccented H for the operator on its domain of
self-adjointness (4.1).

4.1. Separation of variables in spherical coordinates

Transforming x € R” into spherical coordinates (r, @) € [0, oo[ x S"~! given
by (r, @) = (|x|, x/|x]), we recall that the Barenblatt profile p(x) = p(r) is a
function of the radius only. The Laplacian is given by the familiar expression

3?2 n—13 Ago

ARn = — + —— , 4.3
R ar? r or r2 (4.3)
where Agu-1 is the Laplace-Beltrami or angular momentum operator on the unit
sphere. From the formula H = —mp™ ' A +x - V it is now clear that the operators

H and Ag.-1 commute, hence can be simultaneously diagonalized.

Let us therefore recall the spectrum of the Laplace-Beltrami operator Agu-1
(see BERGER, GAUDUCHON & MAZET [7, pp. 159-163]). Its eigenvalues are £(£ +
n —2) =: L?, and their respective multiplicities M, are

_ (n+ =3 (n+20-2)
B ' (n —2)!
(This is understood as My, = 1, if £ = 0, orif £ = n = 1). Our choice of notation

L? is motivated by the fact that these eigenvalues are the quantum analog for the
magnitude squared of the angular momentum vector. So we have

£=0,1,2,...
uw=172...,M,.

) 4.4)

—Agn 1Yy = L Yy, (4.5)
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The eigenfunctions Yy, are the spherical harmonics Yy, : S§"-1 — R, which
form a complete orthonormal basis (4.8) for L2(S" !, dw); they are restrictions
of the homogeneous harmonic polynomials of degree £ to the unit sphere. (Our
enumeration of spherical harmonics by u is different from the one used forn = 3
in quantum mechanics, but as explicit formulas for the Yy, do not play a role here,
no confusion should arise.)

The next proposition gives the decomposition of our Hilbert space W;’Z(R”)
into angular momentum eigenspaces, and a formula for the restriction H, of H:

Proposition 6 (Restriction to angular momentum eigenspaces). Deﬁning Wzl’2 by

(4.12), (4.14) yields a Hilbert space isomorphism Wl 2(R") = 69 69 W given
£=0 p=1

by

oo My
Vo) =YY fuur) Yo (@) (4.6)

£=0 u=1

for fou € Wl 2. Furthermore, (4.15) and (4.16) define a non-negative self-adjoint
operator Hy such that HY =) 72 Z 1(He fep)Yep.

Proof. First fix ¥ € WA’Z(R”) N C®(R" \ {0}), and define the corresponding
Fourier components fy, € C*(]0, oo[) by

feu(r) == /Sn_l V(rw)Ye, (@) do, féu(r) = /Sn_l(w VU (re)Ye, () do .
4.7)

The spectral decomposition for Ags-1 on L*(S"~!, dw) using an orthonormal basis
of spherical harmonics

/Sn—l Ygu(w)Ygﬂ(w) do = 8,70 uins 4.8)

yields (4.6), and similarly

W
5 @) = Z Z Fl ()Y (@) (4.9)
Vo1 V(re) = Zngu(r)VSn Yeu (@) . (4.10)

In each case the convergence takes place in L>(S"~!, dw), and convergence of
(4.10) was deduced from (4.6) using finiteness of

/Sil |Vsn71\lf(rw)|2dw=—/s71WASnflqldw:ZZLﬂfgu(rﬂz
L ou
4.11)
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and the following useful variant of the orthonormality relations:
/ Vi1 Yo (@)« Vit Vi (@) do = L?8,78,7 -
Sn=

Combining Vgr = 9/0r + Vg1 /r with (4.9) and (4.11) yields

Sl Fon(r)?
VeV (ro) > do = ) () 4+ L2 )
[ veveordo =33 (5,02 + 12 2
=0 u=1
Integrating against pr"~! defines
2 OO L2 2 1
102 = fo (f’(r) + 5 F@) o dr *.12)
14
= 1Yz g

and gives the desired isometry

2(Rn) ZZ ”fmﬂwlz, (4.13)

the exchange of limits implicit in the last formula is legitimized by finiteness of the
left-hand side. We are therefore naturally led to the Sobolev spaces

W= 110,000 — R | 17100 < oo}/{u =01 @4

where /{|| - || = O} applies to £ = 0 (i.e., L? =0) only, dividing out constants.
Now C*(R™ N W;*Z(R”) is dense in W;’Z(R”), by a standard mollification
argument exploiting the tail behavior of p, given in the proof of Corollary 14. Thus

we have shown that W1 2(R") embeds isometrically into EB EB W 2 To show this
£=1 p=1

. . oo M, . .
isometry is onto, use a new sequence {fy,} € & @ sz 2 with only finitely many
=1 p=1

non-zero entries fy,, € C*°(]0, oo[) to define ¥ € C*°(R" \ {0}) via the finite sum
(4.6); then (4.9)—(4.13) follow immediately and imply ¥ € W)-?(R") and hence
(4.7). Such sequences form a dense subset of the latter space, thus completing the
proof.

A straightforward calculation for H := —mp” ' A 4+ x - V, using (4.3)-(4.5),
shows:

fY(rw) = f(r) You(w) , then (HY)(rw) = (H, f)(r) Yo ()

with

L2
He )H(r) == — <f”( )+ - f( r)— — s f(r)> +rf'(r). (4.15)
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The operator Hy is defined on the projection of the domain of H (4.1) onto the ei-
genspace with eigenvalue L? . More precisely, f € D(H;) <= f Y, n € D(H),
independent of the choice of 1; namely

D(H) = {f € W2([0, oo, " "Ldryn w2

H f € Wel’z}. (4.16)
O

Remark 7. A similar but simpler proof shows (4.6) also yields the Hilbert space
isomorphism

o(x)dx > o My 2( ,o(r)r"‘%ir)
LR, =) =& & L*(10,00, —5——— ). n22. (417
< |12+ 8.2 =0 pu=1 ] [ r2+68n2 nz2 @17

The proposition makes clear that finding the spectrum of H is equivalent to
finding the spectrum of Hy foreach £ =0, 1, 2, ..., which requires analyzing the
radial ordinary differential equation. This will be accomplished in several steps.

4.2. Radial eigenvalue problem solved in hypergeometric functions

To find the spectrum of the self-adjoint operator H, on its domain D(H;) C
Wzl’z(]O, oo[), we need to know for which A € R the resolvent (AI — Hy, )’] is
bounded. This means understanding the solutions of the ordinary differential equa-
tion H, — L) f =g € Wzl 2 In this section we solve the eigenvalue problem
H; ¥ = Ay, whose eigenfunctions turn out to be hypergeometric functions in
Wzl’z. This study gives also a heuristic basis for our understanding of the remaining
spectrum.

Explicitly, the equation Hy ¥ = Ay takes the form

-1 A L2
v (r) + (n P (fiinc)r) V') + (% - r_2) Y(r) =0, (4.18)

according to (1.4) and (4.15). The key to our analysis is the following proposition.
It relies on results and notation from the theory of special functions summarized in
Appendix 5. To sketch the subsequent logic briefly (neglecting some technicalities
for n = 2 that will be taken care of below), there are two linearly independent solu-
tions to (4.18) among the hypergeometric functions. Only one of these is analytic
at the origin: it has the form (3.5) with k = k() the lesser root of

L? +(§+1)2— (§+1—e—2k)2=(p+n)x;
the other solution has a singularity at » = 0 which prevents it from belonging to
Wzl’z. Whether or not the remaining solution lies in Wel’2 depends on its growth
at infinity; it grows too quickly unless k is a non-negative integer — a necessary
and sufficient condition for the hypergeometric series (5.3) to terminate, forming
a polynomial ¥ = ¢ of degree 2k + £. Since the Barenblatt profile has up to p
moments, this polynomial belongs to Wel 2 if and only if 2k + ¢ < p/2 + 1. More
precisely:
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Proposition 8 (Hypergeometric radial solutions). Let 2 F'1 be the Gauss hypergeo-
metric function defined by (5.3), and
T:=L>+(p/2+1)>—A(p+n).

Ifnis odd, the linear second-order equation (4.18) admits two linearly independent
solutions, analytic on r € 10, oo[:

Leg—2 —r?
i) = 1t oF (2“ ’ HZJE;%), (4.19)
2
1 2
() = P (7(1 —n—t —fi@; %) (4.20)
2

If n is even, Y| continues to be a solution, but vry is ill defined, except forn = 2,
¢ = 0, in which case Yp = V1. In either of these two cases, a linearly inde-
pendent solution 1/}2 exists whose asymptotic behavior is 1/}2(r) ~ Y1(r)logr +
yrz_”_g(l + 00 asr — 0+, with a nonvanishing constant y. The O(rz)
correction is analytic near 0.

Unless T is a perfect square, an alternate solution basis is given by

- [pan  NT Lty 1
1//1(7') :=r1+p/2+ﬁ2F1( [4+4+ ) :|:(2+4 2)];_%>’ (421)

1-JT
- _fPon _NT ot n_ 1
T (r) = pl4p/2-VT 2F1( [54‘4 5 = (5 +14+j)_]];_r£2>, 4.22)

IfT =0, then Y1y = Vo, if T > 0 is a perfect square, then Y, is ill-defined. In
both cases, a solution 1}1, linearly independent of Vry, replaces V1, and satisfies
V1(r) ~ Yo (r) log r—i—yr”p/z*ﬁ(l +0@(r~ %)) asr — +oo, withanonvanishing
constant y. The O(r~?) correction is analytic at r = oo.

Unless T is a perfect square, 1 can be expressed in the form

e (r) N c_Y(r)
r(3e-5-1+vD) r(be-4-1-vD)
r(g +£>F(j:ﬁ)

F(%(n+z+§+1i«/7))

Y1(r) =

. (4.23)

cy = C(f—§—1¥ﬁ)/2 cR.

Proof. The differential equation (4.18) is of Fuchsian type: its coefficients are
rational functions and the only singularities are regular, and they occur at the
four points 0, +i/C, co. By introducing a new variable R = —r2 /C, the singu-
lar points are brought to the standard positions 0, 1, co. Any second-order equation
with only three regular singularities can be reduced to the Gaussian hypergeometric
type. The relevant theory can be found, e.g., in POOLE [36]. A power-series ansatz
vr) =r® Z?io air®, ag # 0, in even powers of r leads to the characteristic
equation for o, namely: (o +n —2) = £(£ +n —2). Soeitheray =2 —n — £ or
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oy = £.In contrast, for the standard hypergeometric equation, one of the character-

istic exponents at 0 vanishes. This is why (e.g.) the substitution ¥ (r) = (—R) 3 f®
leads to the hypergeometric equation (5.4),

R(1 —R) f"R) + (c — (@a+ b+ DR) f'(R) —abf(R) =0 (4.24)

with

E—p/Z—1:|:\/€(€+n—2)+(§+1)2—A(p+n)
ab = . . (4.25)

+e. (4.26)

n
c= —
2
If n is odd, then c is not a positive integer, and, comparing (4.24) with (5.4), (5.5),
we verify the claimed solutions (4.19), (4.20). Notice that if we had chosen the
other characteristic exponent for our transformation, the definition of 7" would be
unchanged and the two solutions would merely have been interchanged.

For even n, the basis of solutions can be found in [1, (15.5.16—17) or (15.5.18—
19)]. For 1/}2, we have merely quoted the behavior near 0 from that source, because
later, both v, and 1}2 will be discarded for the spectral problem.

The set of alternate solutions (4.21), (4.22) follows from [1, (15.5.7-8)], or
from applying the connection formula (5.7) to ¥; and . For ¥r; and our choice
of a, b, c, this specializes to (4.23). The solution 1}1 that can replace 1}1 when T
is a perfect square can be obtained like 1/}2 was obtained, using the self-transfor-
mation of the hypergeometric equation mentioned in the appendix. This proves the
proposition. O

We shall see in a moment that the “nuisance cases” requiring 1/}2 instead of ¥,
or 1}1 instead of V1, do not affect the spectral properties: For a solution of (4.18) to
have the integrability properties (4.12) required for W(1 2 locally near 0, it must be
a multiple of ¥; and for a solution to have the corresponding integrability prop-
erties near oo, it must be a multiple of 1}2, and with this information, the spectral
condition can be deduced from (4.23).

4.3. The point spectrum

We now begin to confirm assertions made in Section 3 above, by determining
the point spectrum and eigenfunctions of Hy . The calculation will give enough
insight to guess the continuous spectrum as well — a guess which will be verified
subsequently.

Corollary 9 (Radial eigenfunctions and eigenvalues). The eigenvalue problem
H; v = Ay has a solution in D(H;) C Wel’2 if and only if A = g is given
by (3.3), with £ 2 0, (£, k) # (0, 0). The corresponding eigenfunction V¥ = Yy is
unique and given by (3.5); the hypergeometric series reduces to a Jacobi polyno-
mial in the eigenvalue case.
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Proof. Suppose v € D(H) is an eigenfunction, H, ¢ = Ay in WZI’Z; then by
the standard bootstrapping, the eigenvalue equation holds classically, and in this
case we may express ¥ (r) = c1¥1(r) + ca¥2(r) (or @@2) as a linear combination
of the two solutions from Proposition 8. Forn > 1 odd, ¥, ¢ Wel’z, because near

Zero, |1p§ |2 ,or”_1 ~ const r17"2¢ is not integrable. For n even, the same argument

applies to V> instead of v». In either case, any solution to (4.18) lying in Wel’2 can
only be a multiple of 11; thus ¢; = 0 and the subsequent reasoning does not need
to distinguish the parity of n any more.

We now assume, for the time being, that T is not a perfect square. The connec-
tion formula (4.23) gives the behavior of y; near co. Its growth determines whether
Y1 is actually an eigenfunction. For T > 0, the dominant contribution comes from
the first term in (4.23), i.e., from V1, unless the coefficient of this term happens to
vanish. But ¥ ¢ Wzl’2 since |&[|2 ~ constrP+2¥T and or" ! fails to have p-th
moments. Essentially the same reasoning applies even if T > 0 is a perfect square.
In this case, the right-hand side of (4.23) must be replaced by its limit, as 7 tends
to the desired value. This limit exists, because the left-hand side is analytic in the
parameters. Single terms in the power series defining » F in v diverge as the Poch-
hammer symbol (1 — +/T ) in the denominator starts including a factor 0, and also
the coefficient c_ of 1, diverges. These divergences cancel termwise, by combining
like powers. The leading terms of ¢4 V1 (r)/ T'(3 (¢ — & — 1 4+ +/T)) (their number

being +/T) do not contribute divergences and are not paired with like terms from
V. The first of them determines the asymptotic behavior as » — oo. Therefore,
whether T is a perfect square or not, the vanishingof 1/ T’ (% - % —14+/T)) due
to a pole of the I" function, is a necessary condition for an eigenvalue contributed
by T > 0. Note that ¢4 does not vanish, since I'(z) has no zeros and its poles occur
precisely at the non-positive integers; cf. (5.1).

Thus we need a = %(E — g —14+JT) =k € Z for some integer k = 0
to have a T > 0 eigenvalue. But this number is exactly the a from (4.25). These
cases lead indeed to eigenvalues: The series (5.3) for 2 F7 in (4.19) terminates at
the k-th term, so 1 (r) is a polynomial of degree £ + 2k. As r — o0, we have
const|1ﬂi|2 ~ P 2T const|y1|2/r?; again pr"~! has up to p moments so
both integrals converge in (4.12). (Near zero, ¥ is analytic and or™ Ny |2/r? ~
constr2¢+"=3 is also integrable if £ > 1, as required). Thus v/ lies in the Hilbert
space Wﬂl’z, and indeed in D(H, ). We see A = Ay by comparing (3.3) with the
explicit form of T given in the proposition. Comparing (3.5) with (4.19) we also
read off ¥/c; = Y| = Yyx. Apart from its normalization and domain, ¥ coincides
with the Jacobi polynomial r¢ P> 727P=MI2(1 1 2,2/C) of [1, (15.4.6)].
Note that Agg is not an eigenvalue, because the corresponding oo is a constant
function, i.e., vanishes in the quotient space W/Zl’zz0 according to (4.14).

Finally for T < 0, both terms in (4.23) contribute equally to the growth of
Y1, with an oscillatory coefficient whose amplitude grows like r!77/2, thus we get
logarithmic divergence of the integral | o |1//{|2,0r”’1 dr. So no eigenfunctions
arise for T < 0, although we will see later that this case contributes the continuous
spectrum. The same reasoning applies to the case T = 0, again by a limit argument,
and the corollary is complete. O
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We recapitulate the last part of the proof for future reference: when T < 0,
the asymptotic behavior (4.21)—(4.23) of | makes the integrals of py{“r 2,n=1 and
,owlz n=3 defining |11l 12 just barely divergent (logarithmically) at +oc. The

4

corresponding values of A should therefore belong to the continuous spectrum.
Indeed, condition T < 0 is equivalent to A = A{°™, with 9™ given by (3.2).

4.4. Continuous spectrum

Next we have to prove that, in the case T < 0, we have indeed a continuous
spectrum, i.e., that there exists a sequence of approximate eigenfunctions f; € W@] 2
such that [[(He — A) fell3/1l fel2 — 0, but no genuine eigenfunction.

Proposition 10 (Continuous spectrum). The continuous spectrum of the operator
Hy on D(Hy) C W, from (4.15) includes the interval [\, +o00[ of (3.2).

Proof. Assume A 2> A;"m. We claim that A belongs to the spectrum of H; on

DMH,) C W/é1 2 but is not an eigenvalue. The latter is clear from Corollary 9 and
the ordering Agx < Aconl of (3.2), (3.3). To see that the inverse of H; — AI fails to be
bounded we construct a sequence of approximate eigenfunctions f; € D(H,;) C
Wz 2 such that I(Hy —A) fk”Wl 2/l fk”Wl 2 — 0. This construction begins with

the solution 1 to Hy ¢ = M/fl which was analytic at the origin in Proposition 8.
Since A = A9°" implies we are in the case 7 < 0 of that proposition, we know
[y || W) ) diverges (logarithmically as r — +00). The approximate eigenfunctions

are fashloned from | by means of a cutoff function 7:
neC0,2[, n=1lon[0,11, () :=n@r/k), fi:=vin. (4.27)

Clearly f; € C2°([0, oo[) C D(Hg ). Moreover, the i-th derivative ' =din/dr
satisfies the usual decay estimates:

Dl — 0%k™) ask — +oo,

LOO

I

sup nk)(r) =007 asr — +oo.
k

We may neglect the case 7 = 0 now, because the spectrum is closed. Therefore,
recalling mp"~ ' = (r* + C)/(p + n) from (1.4), and the asymptotics Y1 =
O *P/2) Y = O@rP/?) and ¥ = O(r?/>~1) from (4.21)~(4.23), we compute

Hy fi = Hey)me + o™ 10 (1Winpl + Wiy | + [ /rl) + O (1w ]) r
= (Hyy)m + O P/%),
H fi)' = Hev) ke + O (W] + Wl + g /rl) r

11 "

+pm—10(|¢i’n,1| + il + [y |
Hlynp /2 4 /| + g /)
= (Hyy)'mi + 0P/
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asr — +oo. Using (H, — A)y¥; = 0 pointwise in (4.12) yields

IGHe = 2) fellf2
oo L2

- fo {[(He fie=2mo) P + —5 (He fi —M/flﬂk)z}/or"_ldr
2k , 0(r1+p/2)2 =l

i e MER
2k

=| o(r')ar=0a1
[ o()ar=om

as k — +o0. On the other hand, Lebesgue’s monotone-convergence theorem gives

k 2

L
; > P2 tar > 2, =400
{fies fie) 12 _/0 p ( kT3 fk)r r ||1ﬁ1||W(1,2

from (4.27). This shows the inverse of Hy — AI on Wel 2 cannot be bounded, con-
cluding the proof that A e c(Hy). O

We still need to show that there is no further continuous spectrum; this is accom-
plished in Section 4.6 by showing that for 7 > 0 not in the eigenvalue case, A
belongs to the resolvent set. Before beginning that task, we must devote a section
to developing the auxiliary inequalities that will be required.

4.5. Weighted Poincaré inequalities and Sobolev spaces

The quotient (4.14) in the definition of Wl1 2 applies to the case L?> = 0 only,
where constant functions are to be removed. Even in this case, we will need to con-
trol inf . f L F(r) =) 2pr)rVdr/r? + 1,<,) in terms of ||f||€v1_2 to deduce the

- 4

density of C2°(R") in W/}’Z(R”) and establish the resolvent set of H, . This control
is obtained as a consequence of the following Hardy / Poincaré type inequality, with
weight function sin” x vanishing quadratically at both ends of its domain [0, 77].

Lemma 11 (Hardy/Poincaré inequality with doubly degenerate weight). The
embedding W:ifzx[O, m] C L?[0, w]/{const} is continuous: i.e., any function g :
[0, 7] — R satisfies

T T
inf/ lg(x) — c|*dx < 7r2f sin” x |g'(x)|* dx. (4.28)
¢ Jo 0

Proof. We first show the estimate for trigonometric cosine polynomials g(x) =
2N . .

Y k= ak cos kx. It costs no generality to discard the constant term ag and choose ¢ =

ap = 01in (4.28). Let the space of these polynomials be called Foy = F5,, ® F35,,

where the superscripts refer to even and odd Fourier indices k respectively. In the

odd subspace, g(5 +x) = —g(5 — x),s0 g(5) = 0 and

7/2 /2 /2 /2 /2 172
f gtdx = [xgz] - / x2gg dx <2 <(/ g’ dx) / x2g"? dx) )
0 0 0 0 0
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This one-liner yields a variant of the classical Hardy inequality:

/2 /2
/ g(x)rdx < 4/ x2g'(x)? dx.
0 0

Now 2x < 7 sin(x) on the interval ]0, 7 /2[, and symmetry around 77 /2 gives the
desired result (4.28) for odd trigonometric polynomials g € F5,,.

To complete the lemma, we now show that the inequality for odd polynomials
implies the inequality for all polynomials g € Ff, . Using relations like

m
.. . s .
[ sininysinGe) s dx = F18,4s2+84-2-j2-1-j2-0). ik €2
0

with Kronecker’s symbol §; x € {0, 1} and g'(x) = — Z,%Zl kay sin kx, we evalu-
ate

4 [T

— / g (x)?sin’ x dx

T Jo

2 i 1 2
= —/ g (x)°(1 —cos(2x))dx
=y 7" [2kay — (k + 2)ars2 — (k= Dag—2 + 2 = Kaz—].

k=1
Thus

b
inf {/ g (x)?sin’ x dx
0

is the lowest eigenvalue of a symmetric tridiagonal matrix A° or A° respectively:

g
/() g)’dx =1, g e FSy, orFSN}

- 3 13 - - 2 24 .
2 2 2 2
g ooy |-y ey
o_ _ _35 52 _57 e_ Z _46 2 68
A_Z 2 5 2 ’ A_z 2 6 2

(no misprint: the (k, k) = (1, 1) term in A° is special). Now B := A® — A® =
{bjk} =1 gives a positive-definite form: indeed bIBb = Z;V 11 4l bjy1 —
b j)2 + %b%\,. Therefore, the lowest eigenvalue comes from the odd subspace
F5 ., and we have proved the lemma for cosine polynomials.

It suffices to prove the lemma for g € C°°[0, xr], by virtue of this space being

dense in the weighted Sobolev space Wslifz . [0, ] (see KUFNER [23, Theorem 7.2]).

Such g still extends to a piecewise C!, 277 -periodic, even function, so that its Fourier
partial sums gy satisfy gj, — ¢’ and gy — g in (unweighted) L?. The inequality
(4.28) survives this limit. This ends the proof of the lemma. O

The indicator function /,<, in the denominator below ensures summability of
the weight in the proposition for all dimensions n = 1.
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Proposition 12 (Weighted Poincaré inequality). Fix p > 0, n > 1, and let p be the
corresponding Barenblatt profile (1.4). Each function f € Wl (R”) satisfies

00 _ 12 00
inff |fz(r)—clp(r)r”_ldr < C(p, n)/ L/ Py dr  (4.29)
0 0

c r +1n§2

with the indicator function 1,<, € {0, 1} vanishing unless n < 2. Thus there is a
continuous embedding

R+ p(r)r

W) /{COHSt}.

wgqy(

Proof. Fix f € D’(]0, oo[). The same proof works whether or not f is a smooth

function, provided all objects are interpreted distributionally using C2°(]0, ool)
test functions.

Note that for any finite measure du — unless the infimum is infinite — we have

2
nt [170)=caner = [170Rao - ([ roaun) [ [aners

then the infimum is attained at the average value ¢ = [ f(r)du(r)/ [ du(r), and
it costs no generality to assume that [ f du = 0 and set ¢ = 0. If the infimum
is infinite, it is also attained trivially at ¢ = 0. Assuming n = 3 for the moment,
employ the transformation x () = for p(s)s" 3 ds, and call its inverse r = o (x).
Note that xoo := lim,_ o x(r) is finite. For g(x) := f(o(x)) our claim (4.29)
becomes

Xoo (.¢]
/ g0’ dx = / fOp@yrdr

0 0

o
< C(p, n)/ £y dr

a(x)

/( )2
From the asymptotic behavior of x = o ~!(r) and its derivative as r — 0 and +o0,

we see (by continuity of the weights on x € [x, xo0]) that C(p, n) large enough
implies

= C(p,n) / g () —— (4.30)

72 sin? (X7 /x00) < o2(x) {clx2 asx — 0T,

C(p,n) (m/xx0)? ~ o'(x)? c2(X00 — x)2 as x — Xg

(4.31)

Here c; = (n—2)%and ¢ = (p+2)2. At this point, a trivial length scaling reduces
the assertion (4.30) of the proposition to Lemma 11.

For n < 2, we must use a modified coordinate transformation, to avoid diver-
gence at 0. Namely, we take x(r) = for ,o(s)s”_l/(s2 + 1) ds. The claim then

transforms to
Xoo 1 2
/ g(x)2 dx <C(p,n)/ x)? +’?());) dx.
0
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and forn = 1, 2, we have ‘;;;2 = (1+r2)x'()|> ~ np(0)x" "' as x — 0. Except
for this modification, (4.31) carries over and the proposition follows. O

Corollary 13 (Sobolev space embedding). For n = 2, p > 0 and p as above, the
embeddings

d
wl2R") — L% [R”, M /{const} < L%(R", p>~" dx)/{const}
P X2+ 1,<,
are continuous:
p(x)

inf/ [W(x) —c|?

c

z—dx < max{C(p, n), 1}/ |V\IJ(x)|2,o(x) dx.
|x| +1n§2 R”

(4.32)

Proof. Proposition 6 and Remark 7 show that (4.32) follows from the analogous

r2+1n§2
uniformin £ € N. For £ = 0, this embedding is given by Proposition 12. For £ # 0,
the embeddings (without the inf. or /,<,) follow trivially from (4.12):

embeddings Wel’2 < L?(RT, M) provided the embedding constant is

00 2
| ()] - !
/0 7P ldr < o 1 f e S A1 (4.33)

This establishes (4.32). Continuity of the second embedding L? (R", ‘;"(sz)gxz) >

L>(R", p>~™ dx) follows immediately from p(x)"™~!/const = [x|>?+ C. O

Note the relation between this Sobolev embedding corollary and the Poincaré
inequality discussed by CARRILLO et al. for ¥ = v,o""2 [14, (2.20)]. The result can
also be used to deduce the density of compactly supported functions in WK}'Z(R”).
In fact, since the Sobolev space (2.4) is defined modulo constants, functions with
compact support in R \ {0} should be enough. However we need only the weaker
assertion:

Corollary 14 (Density of smooth functions with compact support). The functions
C°(R") form a dense subset of the Sobolev space WJ'Z(R").

Proof. Let us first verify the density of smooth functions C*°(R"). Given ¥ €
WLZR™), with [ |V [2pdx < oo, define W, := W % g, € C*(R") by convo-
lution with a smooth mollifier o, (x) = ¢ "o (x/¢) supported in the unit ball: 0 <
o< x BI(0)- Jensen’s inequality yields the pointwise relation |V W, 12 < VY| 2xo,,
which, integrated with Fubini’s theorem, leads to

/ IVl pwdr < / L IVEOP )y 34)
x|> y|>R—¢

The estimate p,(r@) < p(w[r — ¢]4) and tail behavior of the Barenblatt profile
(1.4) show that p.(x)/p(x) < 1+ O(¢g) as ¢ — 0; here the error term is uniformly
bounded when x — oo. Thus taking R large enough makes (4.34) uniformly small
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for all ¢ € [0, 1]. A standard argument (see, e.g., ADAMS [2]) gives ¥, — W
strongly in Wl’z(Bﬁ (0)), and, since the truncation error (4.34) is small, in the
desired space Wg’z(R").

The corollary will be completed by showing that any smooth ¥ € C* N
Wpl’z(R”) can be approximated by one with compact support. Introduce a cutoff
function n € C°(R") such that XBI(0) < < xB2(0), and define Wg(x) :=
W (x)ng(x) using ngr(x) = n(x/R). Then V¥p — V¥ = (ng — HVVY +
R™'WVny(x/R) implies

42

1
§/|V\IIR—V\I’|2pdx < / VU2 pdx + | VnllLe®n) / Wpdx.
R" |x|>R R<|x|<2R

(4.35)

Now W e L? (R", p(x)dx/(|x|> + 1n§2)> by Corollary 13, so taking R large
enough makes both terms in (4.35) smaﬁ. Thus [|[Vr — \IJ||W;,2(R,,) — 0as R —
00, concluding the corollary. O

Remark 15. In the abstract, we announced Wg’2(R”) as closure of C2°(R") with
respect to the norm ||-|| ,, 12(Ro)- Precisely speaking, this involves, next to the above
corollary, also the statement that for any Cauchy sequence ¥ ;, in CZ°(R") there
is a sequence of constants c¢j and a function ¥ € WIL’CZ (R"), such that a sub-
sequence W; — c; converges to W pointwise a.e., and in leoc, and such that
|w; —w| wimn ~ 0. The proof uses a similar cutoff argument; the constants c;
can be taken as the average of W; over, say, the unit ball, and the Poincaré inequality
over an arbitrary ball |[x| < R together with a diagonal sequence argument must
be used to construct the function W first.

4.6. The resolvent set

To complete our description of the spectrum of Hy , we need to prove that each
A< AEO‘“ which is not an eigenvalue A # Ay is in fact in the resolvent set. This is
the content of the next theorem. Its proof goes by first solving the inhomogeneous
differential equation (Hy, — A)f = g € WZI’2 , and then checking that the solution

gives a bounded operator taking g — (H; — 1) lg = f € Wzl 2,

Theorem 16 (Spectrum). Let Hy be the self-adjoint operator (4.15), on its domain
(4.16). Its spectrum o (Hy ) is given by (3.1)—(3.3).

Proof. Fix 0 < ¢ € Z and assume 1 < A{°™ is not an eigenvalue. Variation of
parameters yields a solution f for (Hy —A) f = g € Wel’z; in terms of the functions
Y1 and 1}2 introduced at (4.19) and (4.22), this solution is given by

£ =) /0 FOVI)p(5) 5" ds + 1 (r) / F()p(s) " ds,

fl(r)y = ¥50r) /0 ) V1(s)p(s) s"ds + ¥ (r) / )V (s)p(s) s"ds,
(4.36)
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where 2(s) = g(s)p(s)' ™" /y and y := ms"~ ! p(s)[Y2(s)¥{ (s) — Y} ()1 (s)] is
a nonvanishing constant whose precise value is not relevant here.

If this solution is well defined and indeed in ng (and we will show it is),
then it is clearly the unique solution in this space, since A is assumed not to be an
eigenvalue. Note that in the case £ = 0, the space Wzl 2isa quotient space modulo
constants; equation (4.36) is compatible with this, even though it is not manifest
in the formula. For a constant function g, (4.36) will be seen to yield the constant
solution f.

We estimate f, assuming p > 0. This will in particular guarantee the conver-
gence of the integrals in (4.36).

Indeed, Proposition 8 and the analyticity of 2 F1(z) near 2 F1(0) = 1 imply

vi(r) = 0@ asr — 0, ()] < 01 FP24VTy as r — too;
() 06> Hasr -0,  Ja(r) = 0"+ VT)yasr — foo;
(4.37)

with T > 0 since 1 < A§°".

Letus firstdeal with the case £ = 1;the modifications for £ = 0 will be discussed
afterwards. With the norm (4.12) in mind, we distribute an extra factor s/s when
using the Holder inequality in the spaces LY (R™, du), du(s) := p(s)s" 1 ds, with
1/q +1/q' = 1. Ultimately ¢ = g’ = 2, but first we need the extra flexibility. We
do assume g, g’ to be sufficiently close to 2, depending on T > 0. From (4.37)
and g(s)/const = g(s)/(s> + C), we estimate vanishing and growth rates for the
variable coefficients in (4.36):

, 1/q r ) 1/q'
< ( / |gs|qps”‘ds) ( / 1 /sl ps'”ds)
0 0

,
U gyips" ' ds
0

< g { O (rt-1+n/d"y asr — 0
= C p/2=p/qd'+NT ’
s+ 3 Latdp) Oo(r ) asr — o0
1 ’ 1/q’
< _= n—1 < . q ,n—1 /e s 9 n—1 /a
gvops" T ds| = 1gs?ps" " ds Va/s| ps" T ds
r r r
< g { O(r'—t—nla) asr — 0
= C pl2—plq'—~T :
s+ S Lad) o(r ) asr — o0
(4.38)

In these estimates, we have assumed that ¢, ¢’ are sufficiently close to 2 such that
p/2—p/q'+~T >0and p/2— p/q' — /T < 0.Otherwise the first term would
be only O(1) as r — 00, and the second term would diverge at co. Similarly, we
have made use of £ = ltoensure | — € —n/qg <0and ¢ — 1+ n/q" > 0. (Note,
for later use, that these inequalities are also justified for £ = 0 if n = 3.)

The estimates (4.38), with ¢ = ¢’ = 2, show already that f, f’ are well defined
(and smooth) on ]0, oo[ by (4.36), because (4.12) controls [|g/sl 124, by 18]l w2

We also conclude immediately that
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—n/q 0
< r asr —
mwngmmmmmemzm%w

For any ¢, in particular ¢ = 2, these estimates just barely fail to control
| f/7llLa (). However, they show that our solution operator g/r + f/r is of
weak type (g, g) forevery g ( & 2 such that the estimates hold). The Marcinkiewicz
interpolation theorem then bounds || /724, in terms of [|g/r |l ;2(4,,)- For the
definition of “weak type” and the Marcinkiewicz interpolation theorem, the reader
may consult, e.g., MALY & ZIEMER [26, pp. 51-53]. The very same argument holds
for f’ instead of f/r. We have shown that, for £ # 0, and A as specified, the
resolvent is a continuous operator from W@] 2 into itself.

Forn 2 3 and £ = 0, the estimates (4.38) can also be used with Marcinkiewicz
to estimate || f/”Lz(d;L) in terms of ||g/r |l 12(4,,)- The latter is finite by (4.29), since
c/r € Lz(d,u,). Let us now argue the case for n = 2, £ = 0, where a few modifica-
tions must be made. To begin with, the asymptotic behavior (4.37) of 9/, near zero
is altered, according to Proposition 8:

Y1(r) = 0(1),  Ya(r) = O(logr)

Y =0@), Phr)=00"") asr — 0, (n=2). (4.39)

Even though the asymptotics of | have not changed, the first estimate in (4.38)
is no longer good enough for varying g around 2. However, if, instead of s/s, we
distribute +/s2 + 1/4/52 + 1, we gain one power of r near zero:

-
o o/ ' § 2/q’
g¥ipsds| < Hg s2 4 IH 0?7y < const | —>—— r

'/0 Li(dp) Vs2 4+ 1l Lap

asr — 0. Here ||g/~/s? + 1] 124, is finite according to (4.29), since ¢/v/s% + 1
belongs to L>(d ). The estimate as r — oo is not affected, nor need it change.
The asymptotics (4.39) for Vrp are worse however, so redoing the second growth
estimate in (4.38) (distributing s /s, but estimating g(s) in terms of g/+/sZ + 1)
yields:
o0 ~
/ 8¥apsds

r

O +r'"2logr]) as r— 0.
L9(dp)

= /—2

In any case, for ¢ ~ 2 the bound (4.40) grows slower than 1/r and hence, being
multiplied by the cofactor wl’ (r) = O(r), does not contribute to the growth of
f'(r) near zero. Indeed, estimating (4.36) using (4.39), (4.40) and the unchanged
asymptotics at r = 0o yields

r142/4 a5y 5 0
rPl asr — oo

8

| £'(r)| < const ——
s+ 1

|
La(dp)

Now |f'|7 is integrable at the origin, and Marcinkiewicz bounds || 'l ;2(4,) =
||f||wel,_20 in terms of ||g/~/s2 + Ul 224,
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For all dimensions n = 2, and £ = 0, we have shown f € W;;zo. If g happens
to be constant, then f must also be a constant, since the equation (H;, — Ay = g
admits a constant solution, and has a unique solution ¢ € WL,I’ZZO. Thus formula
(4.36) respects the quotient-space structure, and we may immediately improve our

estimate of ”f/”LZ(dM) = ||f||W(1,_z0 via ||g/./s% + 1n§2||L2(dp.)’ to an estimate in

terms of inf. ||(g — ¢)/./s% + 1,<5ll12ay)- This latter is controlled by ||glly,1.2
= 14

according to Proposition 12.
We have therefore seen that || H, — A)’lg”Wl.z =1 flly12 < const lglly.2
4 14 14

with the constant depending on A and £ but not g. This estimate holds for those A
satisfying 7 > 0 which are not among the eigenvalues g specified in (3.3).

This shows that A is in the resolvent set. Since the eigenvalues (3.3) were estab-
lished in Corollary 9, while A = A$°™ lies in the continuous spectrum according to
Proposition 10, this establishes the theorem and completes our rigorous analysis of
the spectrum. O

4.7. Proof of Lemma 5

For the proof of Lemma 5 we let n := x¢u, ¢ 1= P¢u, § := Egy, as defined
in (4.6), (4.7). In doing so, note that (4.6) holds for each » and is not depen-
dent on the asymptotic behavior implied by the radial spaces used there. Note
that n € C*°[0, oo[, and that n(0) = 0 if £ # 0. In deviation from the rest of
the paper, here we will use H, as the differential expression (4.15), not with the
specific domain (4.16). From —mp’”_zApX = 0, we get H,n = 0, and from
X = 2+ mpm_zApdD, we get n = & — Hy . We also get ¢, & € Wel’2 and

3,2
pe W

We note that Hyp = 0 and n € C®°[0, oo[ imply that 5 is a multiple of v;
use equation (4.19) with A := 0 for this. In the case £ = 0, this means that 7 is
a constant. We are left with showing that, for £ # 0, it follows n = 0. We will
do this by concluding from the asymptotic behavior of 1 (or 1) as r — 0o to an
asymptotic behavior of ¢, based on Hy ¢ = & — n = & — ay; and (4.36) above. It
will turn out that, unless a = 0, the asymptotic behavior of ¢ is incompatible with
Qe W;*z. Soa = 0 and hence n = 0.

Let us analyze the asymptotic behavior as r — oo of a solution ¢ to Hy ¢ =
& —ayr, (0) = O in the case £ # 0, L. = 0. We must show ¢ € Wzl’z = a=0.
We have already seen that A = 0 is in the resolvent set, and the estimates give us
ag e WZI’2 such that Hy ¢ = &. That leaves us with solving Hy; 99 = ay; for
O—@p=:¢p € W@] 2, All solutions to this equation are given by a modified version
of (4.36), namely

a( - "o, _
P0(r) = ;(sz(r) | oo s tas
r
—V1 (r)/ P> ()Y (S)I/fz(S)S"_ldS> + iy + aayo.
0
We need ¢> = 0 to have g square integrable (with respect to "~ p dr) at 0. From

(4.19), (4.21)—(4.23), (4.37), we get the respective asymptotics of the three terms
asr — oo:
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() Jy 2 )P s Nds ~ I TEET
Yi(r) ~ 1T

Y1) fy P2 W) Pa(s) 5" ds ~ rHEHYT logr,

The last term is the dominant one; unless a = 0, this behavior is incompatible with
Qo € Wﬂl’z, because it makes [ @Z(r)r=2p(r) r"~tdr ~ foorzﬁ_l(log r2dr
divergent. This concludes the proof of Lemma 5. O

4.8. Modifications for one dimension (n = 1)

We have assumed n = 2 so far. However, the formulas obtained apply to the
simpler case n = 1 as well, with a few obvious changes.

We do not have a spherical Laplacian on S°, but the operator H commutes
with the parity operator [P defined by (Pf)(x) = f(—x), and we can identify the
restriction of H to even functions with £ = 0, and the restriction to odd functions
with £ = 1. Higher values of £ do not occur, so L% := 0.

The operators H, Hy—o and Hy—; all have the same differential expression,
but operate in the full, the even, and the odd space respectively. (We may write x
instead of r.) Formulas (4.19) and (4.20) in Proposition 8 remain valid, however
we have V1l¢=0 = Y¥2l¢e=1 and ¥2|¢—0 = ¥1]e=1. With either £, we must discard
Yy for parity reasons. The formulas for the eigenvalues Ay and for the threshold
)\20‘“ defined by T = 0 remain intact, as well as the reasoning in Section 4.3 and
4.4. However, it becomes convenient for n = 1 to merge the point spectra (3.3) for
¢ =0and ¢ = 1 by setting 2k = « for £ = 0, and 2k + 1 = « for £ = 1. The
continuous thresholds (3.2) coincide anyway: 1527 = 19", so we have a complete
absense of eigenvalue crossings. Indeed, for n = 1:

k(k —1) k(k —1)
M =k————A—-—m) =«kx———,ke€ZN[l, 1+ p/2],
2 p2—|—1
p
cont __ 1 +1—m+l=(7+1)'

- 2(1—m) 8 2 p+1

(4.41)

Extrapolating these eigenvalues to the regime m = 1 yields the spectrum discovered
by ZEL’'DOVICH & BARENBLATT [44] and ANGENENT [3] for the porous medium
equation in one dimension. The continued absence of level crossings among the
extrapolated eigenvalues explains why phase transitions were never observed in
these one dimensional studies. Indeed, the dynamics remain translation-governed
in the entire supercritical regime m = —1, because the phase transitionat p = n = 1
is suppressed: dilations cease to be a dp small perturbation at p = 2, where the
eigenvalue A,—> = Aq; dissolves into the continuous spectrum.

The resolvent estimate in Section 4.6 requires a re-counting of exponents as
in the case n = 2, simplified by the fact that both 1 (r) and J/z(r) are analytic
at r = 0; this yields an estimate of ”f/“Lz(du) in terms of ||g/+/r% + Ul z2(ap)-
Proposition 12 extends to n = 1. However, for £ = 1, we cannot get rid of the
constants, but still need an analogous estimate, namely
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If( nI? <
p(rydr = C(p) If (P p(r)dr (4.42)
o r+1
provided f(0) = 0. This is proved like the Hardy inequality, by integration by
parts: Let h(r) := — rp(t)l o0 ép(s) ds. Then

/Oof(r)2 pr) ~d
0

p(r)
—/0 2f(r) f'(Hh(r) 55— o dr y
pr) \'? ;o h(r)?
52(0 r2r2+1dr> </O f(r)2r2+l,0(r)dr> .

ilz(:-)i is bounded above on [0, co[, the desired inequality (4.42) follows.

Since

4.9. Form domain and sharp spectral-gap inequality

According to Corollary 3, H is a positive, symmetric operator on C2°(R").
Its form domain Q(H) is defined as the closure of CZ°(R") with respect to the

norm Hess, (¥, ¥) + ||‘-IJ||2 12y’ Thanks to Lemma 4, there is a unique self-

adjoint extension of H, Wthh must therefore coincide with the Friedrich’s exten-
sion described, e.g., in RIESZ & SZ-NAGY [38, VIII Section 124]. In particular, it
follows that the form domain Q(H) contains the domain D(H) of the extended
operator, and that this extension does not change the lower bound of the quadratic

form, i.e., the spectral gap inf{Hess, (¥, V) | INR WI2Re = 1}. We have cal-

culated the spectrum of H to lie in [Ag, 00), the sharp threshold Ag > 0 being
given by (3.7). By the spectral theorem, this spectral gap implies the Poincaré type
inequality:

W1, 12 gy = f IVW[*pdx
P n
< — (div[pVW¥]/p)” p™ dx = —Hess, (¥, V) (4.43)
AO R” A()

forall p > Oand ¥ € W;’Z(R”). Apart from constants, this equality is saturated
only by linear functions of x in the translation-governed regime p > n, and only by
multiples of the quadratic function W(x) = |x|? in the dilation-governed regime
p € 12, n[. (Recall Fig. 1.) It is not saturated but remains sharp in the near-critical
regime p € ]0, 2[, except that when n = 1 it is saturated by linear functions of x
for all p > 0. Together with Theorem 16, this completes the proof of all results
announced in our earlier note [16].

It is worthwhile to have a direct characterlzatlon of the form domain. Our final
lemma will show Q (H) to consist of those W1 (R") functions lying in the Sobolev
space
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W2 (R") = {\IJ :R" — R ‘ W 22y < oo} /{|| =0}, (444
19122 g, / [+ 1xP)Hesswi3 + VWP pdx. (4.45)
Rn
Lemma 17 (Form domain). The norms Hess, (W, \I')+||\Il||2 12y , Hess, (W, W),
and |V||% ,, all induce the same topology on CZ°(R").
Wr2(Rm)

Proof. The first two norms are equivalent because of the spectral gap (4.43):

Hess, (¥, W) = < Hess, (¥, W) + ||\IJ||2 1.2 <1+ 1/Ap)Hess, (¥, W).

R") —

To see the last two are equivalent, recall (2.9):

Hess, (W, W) < > WA R +/ m_1|Hess\Il|% pdx (4.46)

= Hess, (W, W) + (1 = m) [AW 172 go gy -

The right-hand side of (4.46) gives a norm easily seen to be equivalent to (4.45),
in view of (1.4): const,om_1 = |x|> 4+ C. To conclude the lemma, it remains only

to bound ||A\I!|| LR i) above by Hess, (¥, V). Introducing the differential
operator
1-m
AV = div[pVV¥]/p = AV — x -V, 4.47)
m
(2.10) and (2.11) imply
m ||A\P||%42(Rn’p,,,dx) = Hess, (¥, V). (4.48)
Also, (4.47) gives
1AW = AV, g g, —f PRIV P dx
const
< — / VW |%pdx, (4.49)
m R"

since |x|>p! ™" (x) is bounded. Combining (4.48), (4.49) with (4.43) yields

”A\IIHLZ(Rn pMdx) g ”A\II”LZ(Rn pMdx) + ||A\IJ A“I’”L2(Rn pMdx)

< 1 1+ const 0 . 0
< — ess , ),
—m mAo ?

to give the desired bound on (4.46) and complete the lemma. O
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Remark 18 (L? embedding). Corollary 13 shows that the norms || I3 w2 and

(R™)
R4 ||2 12 induce the same topology on the codimen-

®ny T ”‘I’”LZ(Rn pdx /(1x[2+1))
sion-one subspace {1}* orthogonal to the constant functions in the space
L? (R", pdx/(|x|> +1)). Thus Wg’z(R”) and Wg’z(R") are continuously embed-
ded in {1}*. One power of |x| enters the weight at +oo for each derivative of W in
these norms and (4.45).

5. Special functions: notation and background lore

This appendix collects the few facts about special functions which prove rele-
vant to our investigation. For the Gamma function I'(z) and hypergeometric func-
tions 2 F(a, b, c; z) we refer to ABRAMOWITZ & STEGUN [1] or STALKER [40]. For
a discussion of spherical harmonics Yy, (@) see BERGER, GAUDUCHON & MAZET
[7].

LetI" : C — C U {00} be defined by the Newman-Weierstrass product [40,
(1.3.6)]

I(z) = ? ]o_o[ (1 - %)_1 ek (5.1)
k=1

withy = klim a1+ % 4.+ % —log k); it gives the meromorphic continuation of
—00

I'(z) = / *~le~dt (5.2)
0

from z € ]0, oo[ to the complex plane C [40, (1.1.18)]. The product representation
shows that I'(z) does not vanish, its poles are all simple, and their locations coincide
with the non-positive integers. The integral representation shows I"'(1) = 1 and the
functional equation I'(z + 1) = zI'(z) is satisfied.

For fixed a, b, ¢ € C the Pochhammer symbol (a); := (a)(a+1)---(a+k —
1) =T'(a 4+ k)/ I'(a) may be used to define the hypergeometric series

m( i,z) :=1+Z(a)"(11’)" k= F(z) (5.3)
2 (e

(provided c is not an integer < 0) within its radius of convergence |z| < 1. As is
well known, the hypergeometric function arising by analytic continuation from the
series (5.3) solves the following differential equation of Fuchsian type [40, (1.6.19)]
or[1, (15.5.1)]:

d*F dF
(l-2)—— +(—(@a+b+1Dz)— —abF =0, (5.4
dz dz
away from z = 0, 1, 0o. A second linearly independent solution is
- — 1,b— 1
2GR (a ot ;J:C;z> : (5.5)

unless c is a positive integer.
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In the nongeneric cases, when c is a positive integer, certain linear combina-
tions of solutions for nonsingular ¢ have a limit as ¢ approaches the singular value,
and this limit will actually be a derivative with respect to c. The actual formulas,
involving logarithmic terms, can be found in [1] and need not be repeated here.

The analytic continuation of hypergeometric series can be effected by means of
certain integral formulas. One of them (valid for real parameters a and ¢ > b > 0)
is [40, (1.6.22)]

a,b I'(c) /oo b—1 — —
Fil 7 sz)i = T+ A+t —tz2)" e (5.6

21( CZ) TOTe—b) Jy 1+n)""(1+ 2) (5.6)
(for real parameters a and ¢ > b > 0). In particular, it gives the analytic contin-
uation to —oo < z < 1. This and similar integral representations can be used to
show certain connection formulas, due to Thomé 1879 (see STALKER’s footnote
[40, p. 48]). The following is germane to (4.21)—(4.23) (see [40, (1.6.39)] or [1,

(15.3.7)]):
a,b \ _ F(c)l"(b—a)_ —a a,l—c+a 1
2F1< c’z>‘ NOIRCErE 2F1< 1—b+a’Z> (5.7)
F(C)F(a—b)(_ )by F b,l—c+b'l> '
F@lc—b ' 2 2\ 1—a+b7)

The singular points 0, 1 and oo of the hypergeometric equation can be treated on
the same footing, and the permutation group on these three points, represented as
a group of Mobius transformations in C U {oo}, induces corresponding self-trans-
formations of equation (5.4). For instance, the substitution F(z) = 779Gz ™Y,
7z~ = w, transforms (5.4) into the same equation for G(w), but with different
parameters a, b, ¢, namely a, 1 —c+a, 1 — b + a respectively. This sheds light on
(5.7), and permits us to reduce the discussion of nongeneric cases for (5.4) at oo
(namely when a — b is an integer) to the nongeneric cases at 0 (namely when c is

an integer).
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