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Abstract Kremer and Maskin (Wage inequality and segregation by skill. Working
Paper 5718, National Bureau of Economic Research, http://www.nber.org/papers/
w5718, 1996) introduced an idealized model for pairing workers and managers with
different skill levels into small teams selected to maximize productivity. They used it
to analyze the impact of technological change and widening skill gaps on labor market
segregation. The present paper extends their model to a workforce with multidimen-
sional skill types, continuously distributed, and gives a mathematical analysis of the
extension. Pure and mixed notions of optimal pairing are introduced, which play an
important role in the formulation and analysis of the model. The existence and uni-
queness of such pairings are established using techniques from the theory of optimal
transportation and infinite-dimensional linear programming.
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1 Introduction

In the past, several models were proposed to analyze the impact of technological change
on labor market segregation. Kremer and Maskin (1996) introduced a matching frame-
work to model within-establishment collaboration between high- and low-skilled labor
in hopes of explaining the recent trend of increasing wage inequality between high skill
and low skill workers. In this framework workers of different skills are matched with
each other to form teams or working pairs. The productivity of a pair is supposed to
depend on skills of both workers, and the firm assigns workers to teams so as maximize
its total production. Kremer and Maskin used this matching framework to argue that
increases in the mean and dispersion of the skill distribution in the economy leads to
segregation of the labor market. Li and Suen (2001) extended this matching framework
to the case when the distribution of labor skill types is taken to be continuous and
derived several properties of optimal matching. It is however not evident a priori that
such a continuous optimal matching problem has a solution or whether it is unique. In
this paper, we introduce two rigorous formulations of the continuous multidimensional
problem, and give conditions under which these formulations become equivalent, and
for which there exists a unique optimal partitioning scheme. In addition we exhibit
sufficient conditions for a partition to be optimal. We also confirm several of Li and
Suen’s results using the rigorous formulation outlined in this paper.

The authors are pleased to express their gratitude to Hao Li, for introducing them
to this problem and providing stimulating conversations.

2 Rigorous formulation of the pure pairing problem

We begin with a rigorous definition of the problem. Here and throughout, the space
of skill types X will be a compact Hausdorff space; typically X ⊆ Rn .

From a mathematical point of view, it is natural to represent the skill distribution of
the workforce by a Borel probability measure on the space X. In this context, the pairing
of the higher skilled worker, whom we may refer to as a manager, with a lower skilled
worker, referred to as an assistant, is accomplished by a Borel map f : X �→ X which
maps the distribution of managers to the distribution of assistants. This terminology is
inherited from the one-dimensional case; the multidimensional generalization allows
for workers with complementary strengths in different areas, lending itself to a richer
interpretation than the manager–assistant paradigm suggests. Note that even when the
skill levels of all workers are known, and the productivity p(x, y) of each working
pair is a specified function, presumably depending asymmetrically on the skill level x
of the manager and the skill level y of the assistant, it is not obvious which employees
should be tasked with which roles: whether it is preferable for the assistant of a talented
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manager to be more skilled than the manager of a weak assistant, or vice versa. This
is one of the questions which such a model is intended to resolve.

Let us denote the known skill distribution of the labor force by the Borel probability
measureω on X, and the unspecified skill distributions of managers byµ and assistants
by ν, so thatµ+ν = 2ω. The above constraints characterize the possible competitors in
the optimization problem which we formulate below. The insistence that each manager
be assigned a single assistant—rather than sharing a probabilistic combination of many
assistants—leads to the notion which we call a pure pairing (in an imperfect analogy
with the strategies of game theory). Mathematically, this notion of pure pairing is
encoded in the next two definitions. The converse requirement that each assistant have
a single manager is not imposed, but sometimes turns out to be a consequence of the
net productivity maximization.

Definition 1 (Push-forward) Given measurable spaces (X, �) and (X′, �′) with a
measure µ on X, each measurable map f : X �→ X′ induces a measure on X′, cal-
led the push-forward of µ through f and denoted µ′ := f#µ, defined by µ′(B ′) =
µ( f −1(B ′)) for each B ′ ∈�′. Equivalently, for each measurable function F : X′ �→ R,∫

X′
Fd( f#µ) =

∫

X

(F ◦ f ) dµ.

Definition 2 (Pure pairing) From here on we denote the set of Borel probability mea-
sures on X by P(X). Given a measureω ∈ P(X), we say that (µ, f ) is a pure pairing
for ω whenever µ ∈ P(X), and f : X �→ X is a Borel map defined µ-a.e. such that
µ+ f#µ = 2ω. We denote the set of all pure pairings by �pure

ω .

For every such pure pairing (µ, f ), the expression
∫

X p(x, f (x)) dµ(x) gives the
corresponding total production. Hereafter we will assume p(x, y) is continuous—to
ensure above integral can be defined—and non-negative without loss of generality.
Then the maximal possible production is given by

Kω := sup

⎧⎨
⎩

∫

X

p(x, f (x)) dµ(x) | (µ, f ) ∈ �pure
ω

⎫⎬
⎭ . (1)

Of course, it is not clear a priori whether the supremum is attained by any pure pairing.
If it is, we call such a pairing optimal. We refer to the value Kω of the above supremum
as optimal paired productivity.

This definition of an optimal pairing generalizes the finite optimization problem
nicely, but the non-linear dependence of the supremum and constraints (1) on f make it
difficult to analyze. Fortunately, mathematical developments in the theory of optimal
transportation provide a way to circumvent this difficulty. As in game theory, the
Kantorovich (1948) approach to Monge’s (1781) transportation problem introduces
a larger class of competitors which convexifies the problem and linearizes the cost,
facilitating its analysis. A discrete version of this approach was already explored by
Li and Suen (2001).
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3 Relaxation: the mixed pairing problem and duality

The similarity between the Monge–Kantorovich and optimal pairing problems will
be apparent to those familiar with the former theory, which is reviewed in Villani
(2003). In fact the only thing that distinguishes the two problems are the constraints
on µ and ν; in the Monge–Kantorovich problem µ and ν would be fixed exogenously,
while in the present problem they are allowed to vary, with only their average ω being
prescribed. This similarity suggests the definition of mixed competitors for the optimal
partitioning problem.

Definition 3 (Mixed pairing) A probability measure γ ∈ P(X×X) is called a mixed
pairing of ω ∈ P(X) if its two marginals average to ω, that is, if γ [B × X] +
γ [X × B] = 2ω[B] for all Borel sets B ⊆ X. The set of mixed pairings γ of ω is
denoted by �mix

ω ⊂ P(X2).

Definition 4 (Optimal mixed pairing) We define an optimal mixed pairing to be any
measure γ0 ∈ �mix

ω which attains the following supremum:

Jω = sup

⎧⎨
⎩

∫

X

p(x, y) dγ (x, y) | γ ∈ �mix
ω

⎫⎬
⎭ . (2)

We refer to the value of the above supremum as optimal mixed productivity.

As a consequence of the Riesz–Markov theorem, γ ∈ P(X2) is a mixed pairing
for ω if and only if

∫

X2

{
u(x)+ u(y)

}
dγ (x, y) = 2

∫

X

u(x) dω(x) ∀u ∈ C(X) (3)

where C(X) is the Banach space of continuous functions on X equipped with the sup
norm. The advantage enjoyed by the mixed pairing problem (2) over the pure pairing
problem is its linearity in γ on the convex, weak-∗ compact set �mix

ω . A maximizer
can therefore be shown to exist using continuity and compactness, and can be charac-
terized using the Kuhn-Tucker conditions which emerge from the dual linear program.
We will go on to prove existence of an optimal mixed pairing in this section and to
state the dual linear problem. We will also give sufficient conditions for duality and
optimality. However, we will postpone the actual proof of the duality theorem for our
linear programming problem until the next section.

We begin by proving existence of an optimal mixed pairing.

Theorem 1 (Existence of optimal mixed pairing) For any ω ∈ P(X) there exists an
optimal mixed pairing.

Proof Since �mix
ω lies in the unit ball of the Banach space dual to (C(X), ‖ · ‖∞), the

Banach–Alaoglu theorem shows it to be a compact set in the weak-∗ topology, and
the continuous mapping
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γ →
∫

X×X

p(x, y) dγ (x, y)

obtains its supremum over it. �
Looking at (3) and drawing upon the analogy with the Monge–Kantorovich optimal

pairing problem we might suspect that the dual linear problem consists of finding a
feasible potential—an element of the set

U =
{

u ∈ L1(X, dω)
∣∣∣ u is lower semi-continuous, u(x)+ u(y) ≥ p(x, y)

}
,

which attains the infimum

Iω = inf

⎧⎨
⎩2

∫

X

u(x) dω(x)
∣∣∣ u ∈ U

⎫⎬
⎭ . (4)

Finite-dimensional linear programming provides further reason to suspect that this is
the right dual problem, see, e.g. Li and Suen (2001) where duality for the discrete
matching problem was derived. Assuming lower semi-continuity of u ∈ U will turn
out to cost no generality since p(x, y) has been assumed to be continuous.

We proceed to state sufficiency of the Kuhn–Tucker conditions and some aspects
of the asserted duality.

Theorem 2 (Sufficient conditions for duality and optimality) With p : X2 �→ [0,∞)

nonnegative, continuous and ω ∈ P(X), it follows that Iω ≥ Jω ≥ Kω. If for some
γ ∈ �mix

ω and some feasible potential v ∈ L1(X, dω)

2
∫

X

v(x)dω(x) =
∫

X×X

p(x, y)dγ (x, y), (5)

then Jω = Iω, with the supremum (2) and infimum (4) being attained by γ and v,
respectively.

Proof First of all it is clear that Jω ≥ Kω. This is because any pure pairing (µ, f ) is
also a mixed pairing of the form (id × f )#µ. Furthermore, since for any γ ∈ �mix

ω

and any u ∈ L1(X, dω) such that u(x)+ u(y) ≥ p(x, y), we have∫

X

2u(x) dω =
∫

X2

u(x)+ u(y) dγ ≥
∫

X2

p(x, y) dγ,

we see immediately that Iω ≥ Jω. This proves the first claim. As for the second claim,
equality (5) together with

∫

X

2v(x) dω ≥ Iω ≥ Jω ≥
∫

X×X

p(x, y) dγ,

immediately imply that Iω = Jω with Iω attained by v and Jω attained by γ . �
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The value v(x) of the minimizer may be interpreted as the gross marginal utility
provided to the company by a worker with skill level x , relative to the utility provided
by its other employees. The deviation of this value from the wage commanded by a
similar worker in the marketplace would be an appropriate parameter to keep in mind
for a company planning to expand its workforce.

Example 1 Let us now describe an example which motivates above problem. Suppose
skill levels are measured on a scale from 0 to 1 and the production function p : [0, 1]×
[0, 1] → R is of the form p(x, y) = xα yβ , where α, β > 0. This is the so-called
Cobb-Douglas production function. Given that our skill distributionω is represented by
some L1([0, 1]) density, we wish to know how this distribution is split into distribution
of managers and assistants. For example, is it possible for some managers to have the
same skill levels as some assistants? This was among the problems studied by Li
and Suen (2001), who concluded that it is impossible as long as labor distribution is
assumed to be concentrated sufficiently close to 1. In the last section we will provide
independent confirmation of their results in our setting.

4 Proof of duality theorem

The fact that, under suitable conditions, linear programs possess dual problems is
very well known and goes back to the work of Dantzig (1949), von Neumann and
Morgenstern (1944), Kantorovich (1942) and Koopmans (1970). There are many
books available on the subject; Anderson and Nash (1987) for example is particularly
relevant to our infinite dimensional setting. For the particular case of optimal trans-
port a version of the duality theorem was originally proved by Kantorovich (1942).
Since then the duality theorem for optimal transportation has been proved in a rather
general setting; see, e.g. Ramachandran and Rüschendorf (1995, 1996). In this section
we will derive a duality theorem for our linear programming problem. We could do
that using abstract Fenchel–Rockafellar duality theorem, as in, for instance, Brezis
(1983); however, we choose to proceed by exploiting Monge–Kantorovich duality
instead, which we feel presents a more concrete exposition.

Let us first review Monge–Kantorovich duality. As we mentioned this duality has
been much studied and there is extensive literature on it. For a modern treatment with
the emphasis on optimal transportation, see Rachev and Rüschendorf (1998). See also
Villani (2008) for a nice and thorough exposition.

There are several ways to state Monge–Kantorovich duality. The following Theorem
presents it in a way that is most useful to us in this paper.

Theorem 3 For any two measures µ, ν ∈ P(X)

sup

⎧⎨
⎩

∫

X×X

p(x, y) dγ (x, y)
∣∣∣ γ ∈ �(µ, ν)

⎫⎬
⎭ = (6)

inf

⎧⎨
⎩

∫

X

φ(x) dµ(x)+
∫

X

ψ(y) dν(y)
∣∣∣ (φ,ψ) ∈ 
p

⎫⎬
⎭ (7)
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where�(µ, ν) is a set of measures in P(X×X)with x- and y- marginals beingµ and
ν respectively, and 
p is a set of lower semi-continuous pairs in L1(dµ) × L1(dν)
satisfying

φ(x)+ ψ(y) ≥ p(x, y) for (x, y) ∈ X × X. (8)

Furthermore, both supremum (6) and infimum (7) are attained. In addition, any maxi-
mizer γ of (6) and minimizer (φ,ψ) of (7) are characterized by the following

φ(x)+ ψ(y) = p(x, y) holds for all (x, y) ∈ spt γ. (9)

Above, spt γ refers to the smallest closed set carrying the mass of γ .

Having reviewed Monge–Kantorovich duality we return to the proof of duality for
our pairing problem. The concept that will play an important role in the following is
that of symmetrized productivity

s(x, y) := sup{p(x, y), p(y, x)}. (10)

It turns out that optimal mixed productivity with production function p(x, y) is the
same as the optimal mixed productivity with symmetrized production function s(x, y).
Intuitively, if for some pairing we have a pair of workers with manager of skill x and
assistant of skill y, but with

p(x, y) < p(y, x),

we can always improve paired productivity by making the worker of skill x the
assistant and the worker of skill y his or her manager. The symmetrized produc-
tion function, however, is symmetric and we can exploit this symmetry together with
Monge–Kantorovich duality applied to the production function s(x, y) to obtain a
feasible potential which would satisfy Theorem 2.

Let us introduce some notation. For any measure γ ∈ P(X × X) by γ �S we mean
the measure γ restricted to the set S, i.e. γ �S[B] = γ [B ∩ S]. For any set S by S†

we denote the reflection S† = {
(y, x) ∈ X × X

∣∣ (x, y) ∈ S
}
. Also by γ † we mean

a push-forward of γ by a map that interchanges the two coordinates. Notice that the
sum of marginals of γ † is the same as that of γ and spt (γ †) = (spt γ )†.

We proceed to prove that mixed optimal productivity with production function
p(x, y) and production function s(x, y) are the same.

Proposition 1

sup

{∫
p(x, y) dγ (x, y)

∣∣∣ γ ∈ �mix
ω

}
= sup

{∫
s(x, y) dγ (x, y)

∣∣∣ γ ∈ �mix
ω

}
.

Proof From (10), the expression on the right is greater then the expression on the left.
Now let γ be any measure in �mix

ω and

S =
{
(x, y) ∈ X × X

∣∣∣ s(x, y) > p(x, y)
}
.
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Let γ̃ = (γ �S)† + γ �Sc, then γ̃ ∈ �mix
ω and

∫

X×X

s dγ =
∫

S

s(x, y) dγ (x, y)+
∫

Sc

s(x, y) dγ (x, y)

=
∫

S

p(y, x) dγ (x, y)+
∫

Sc

p(x, y) dγ (x, y)

=
∫

X×X

p dγ̃ .

This equality immediately implies that optimal mixed productivity with production
function p(x, y) is at least as big as with production function s(x, y). �

Next we use the symmetry of s(x, y) and Monge–Kantorovich duality to find a
feasible potential that satisfies the condition (5) of Theorem 2, thus proving the duality
theorem and showing that the dual problem has a minimizer in one shot. In what follows
π X : X × X → X and πY : X × X → X denote the projections π X (x, y) = x and
πY (x, y) = y onto the first and second factors of the product space.

Remark 1 Before we proceed, let us point out that optimal mixed pairings are naturally
maximizers of Monge–Kantorovich problem. This is because if γ ∈ �mix

ω is an optimal
mixed pairing but not a Monge–Kantorovich maximizer, there would be some measure
in �(π X

# γ, π
Y
# γ ) ⊂ �mix

ω with higher paired productivity then γ , which is obviously
a contradiction. In particular for an optimal mixed pairing γ , the value of the Monge–
Kantorovich supremum (6) with µ = π X

# γ and ν = πY
# γ is the same as optimal

mixed productivity corresponding to γ .

Theorem 4 There exists a feasible potential v that satisfies the conclusion (5) of
Theorem 2. In particular Iω = Jω and the dual problem has a minimizer.

Proof Let γ ∈ �mix
ω be an optimal mixed pairing for the production function s(x, y)

and set γ̃ to be

γ̃ = γ + γ †

2
,

then γ̃ ∈ �mix
ω and is also an optimal mixed pairing for the production function s(x, y)

(this is because s(x, y) is symmetric). Also γ̃ is a maximizer among measures in
�(π X

# γ̃ , π
Y
# γ̃ ) of the Monge–Kantorovich problem with production function s(x, y),

as was pointed out in Remark 1 above. Now we can apply Theorem 3 to conclude that
there exist functions (φ,ψ) ∈ 
s with

φ(x)+ ψ(y) = s(x, y) for all (x, y) ∈ spt γ̃ .

However, spt γ̃ = spt γ
⋃

spt γ †, thus

φ(x)+ ψ(x)

2
+ φ(y)+ ψ(y)

2
≥ s(x, y)
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with equality holding for (x, y) ∈ spt γ . Now if we let

v(x) = φ(x)+ ψ(x)

2

then v is a feasible potential, since s(x, y) ≥ p(x, y), and

∫

X×X

s(x, y) dγ (x, y) =
∫

X×X

(v(x)+ v(y)) dγ (x, y) = 2
∫

X

v(x) dω(x).

Therefore Proposition 1 implies that v satisfies the conditions of Theorem 2. �
At this point we have proved a duality theorem and showed the dual problem has

a minimizer. We will see later that just as in the case of the Monge–Kantorovich
problem, we can take minimizers of the dual problem to be of a special form. This, as
in the case of optimal transportation, turns out to be crucial for further analysis of the
pairing problem.

5 Review of optimal transportation theory

In this section we review important concepts from the theory of optimal transportation
and state some theorems that we will need later to prove existence and uniqueness of
optimal pairing. The material in this section is well known. For the relevant discussion
see, e.g. Rochet (1987), Gangbo (1994), Gangbo and McCann (1995, 1996), Caffarelli
(1996), Smith and Knott (1997), McCann (1999), Villani (2003, 2008).

We begin this section by discussing notions of p-convexity and p-cyclical
monotonicity.

Definition 5 (p-convexity) Fix u : X �→ R ∪ {+∞} not identically infinite.

(i) The p-subdifferential of u is the set

∂pu := {(x, y) ∈ X × X | u(z) ≥ u(x)+ p(z, y)− p(x, y)∀z ∈ X}.

(ii) The p-transform u p of u is the function u p(y) := supx∈X {p(x, y)− u(x)} .
(iii) The function u is called p-convex if u = u p p̃ := (u p) p̃ where p̃(y, x) =

p(x, y), or equivalently, if there is a set A ⊂ X × R such that

u(x) = sup
(y,λ)∈A

p(x, y)+ λ.

(iv) A set S ⊂ X × X is called p-cyclically monotone if for each k ∈ N, chain
(x1, y1), . . . , (xk, yk) ∈ S, and permutation σ on k letters,

k∑
i=1

p(xi , yi ) ≥
k∑

i=1

p(xi , yσ(i)).
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Remark 2 Notice that (x, y) ∈ ∂pu holds if and only if u(x) + u p(y) = p(x, y),
which is also denoted by writing y ∈ ∂pu(x).

The relationship between p-convex functions and p-cyclically monotone subsets
is made explicit by the following generalization of Rockafellar’s theorem (see Rochet
1987):

Theorem 5 A set S ⊂ X × X is p-cyclically monotone if and only if it is contained
in the p-subdifferential of a p-convex function.

A very useful notion which we will employ later is that of p-contact maps.

Definition 6 Suppose u : X → R ∪ {+∞} is p-convex. We say that a Borel map
f : A → X is a p-contact map for u if

{
x ∈ A | { f (x)} �= ∂pu(x)

}
is of Lebesgue

measure zero.

The Monge–Kantorovich optimal plans in general are not pure but the following
condition of Gangbo (1995), Carlier (2003), and Ma et al. (2005), is sufficient to
establish purity of optimal plans. This condition can be viewed as a generalization to
higher dimensions of the single-crossing criterion of Lorentz (1953), Mirrlees (1971),
and Spence (1974), and was called a generalized Spence-Mirrlees condition by Carlier.

Definition 7 (Twist condition) We say that p satisfies a twist condition if for all
x ∈ X map y → ∇1 p(x, y) is injective. Here and in what follows ∇1 p(x, y) =(
∂p
∂x1 , . . . ,

∂p
∂xn

)
and ∇2 p(x, y) =

(
∂p
∂y1 , . . . ,

∂p
∂yn

)
.

Remark 3 It turns out (see, e.g. Theorem 5.9 in Villani (2008)) that supports of maxi-
mizers of Monge–Kantorovich problem are p-cyclically monotone. Since Remark 1
tells us that optimal mixed pairings are also maximizers of the Monge–Kantorovich
problem, they have p-cyclically monotone supports as well.

Now we state our assumptions on p and X:

A1 X is a compact subset of Rn .
A2 p is non-negative on X.
A3 p is continuously differentiable on X.
A4 p satisfies the twist condition of Definition 7.

The above assumptions apply to all statements in the rest of the paper.
It is well know that p-convex functions under some assumptions possess regularity

properties. In consequent sections we need the following result:

Lemma 1 Under our assumptions on p, p-convex functions are Lipschitz.

Proof For the proof we refer to the proof of Theorem 10.26 in Villani (2008). �
In what follows Pac(X) is a set of Borel measures on X absolutely continuous

with respect to Lebesgue measure.

Theorem 6 Let S be a p-cyclically monotone set. Then there exists a p-contact map
f such that all γ ∈ P(X × X) with spt γ ⊆ S and π X

# γ ∈ Pac(X) are of the form
γ = (id × f )#(π X

# γ ).
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Proof The proof of this theorem is essentially contained in the proof of Theorem 5.26
in Villani (2008). We need only to check that for any p-convex function ψ the set
of x ∈ X such that ∂pψ(x) contains more then one element has Lebesgue measure
zero. However, this follows easily from differentiability ofψ (see Lemma 1) and twist
condition (Definition 7). �
Theorem 7 (Uniqueness of optimal transport) Let f and g be two p-contact maps
and µ ∈ Pac(X). If f#µ = g#µ, then f = g, µ-almost everywhere.

Proof The above uniqueness statement is contained in Theorem 10.28 in Villani
(2008). �

6 Existence and uniqueness of optimal pairing

In this section, we show the optimal mixed pairing is pure and characterize the possible
non-uniqueness. In addition, we show that the optimal paring is unique if we assume
that the only optimal way to pair managers and assistants who have the same skill
distributions is by pairing workers of the same skill level, so that the only optimal
transport between identical distributions is the identity map.

Our proof of the fact that optimal mixed pairing is pure is reminiscent of the proof
of purity in Gangbo and McCann (1996). Basically we show that union of supports of
all optimal mixed pairings is a p-cyclically monotone set. This together with results
from optimal transportation will enable us to conclude existence of a pure pairing.

Theorem 8 (Existence of optimal pure pairings) Let p satisfy assumptions A1–A4 and
ω ∈ Pac(X). Then there is a p-contact map f such that all optimal mixed pairings
γ are of the form γ = (id × f )#(π X

# γ ). It is unique in the sense that if for some
p-contact map g, some optimal mixed pairing γ is of the form γ = (id × g)#(π X

# γ ),
then f (x) = g(x) for (π X

# γ )-almost every x.

Proof Let us denote the set of optimal mixed pairings in �mix
ω by �0. Let

S =
⋃
γ∈�0

spt γ

be the union of supports of all optimal mixed pairings. We claim that S is p-cyclically
monotone. Indeed, the definition of p-cyclical monotonicity is a condition on finite
subsets, thus a union of a collection of sets is p-cyclically monotone if and only if the
union of any finite subcollection of sets is p-cyclically monotone. However, it is clear
that the union of any finite number of supports of optimal mixed pairings is itself the
support of a measure that is some convex combination of optimal mixed pairings, hence
an optimal mixed pairing itself, and therefore has p-cyclically monotone support by
Remark 3. See Corollary 2.4 in Gangbo and McCann (1996), where a similar argument
was used to prove purity of optimal transport.

At this point we have established existence of a p-cyclically monotone set S that
contains supports of all optimal mixed pairings. By Theorem 6, which was discussed
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in the previous section, we can conclude existence of a p-contact map f such that all
optimal mixed pairings γ are of the form (id × f )#(π X

# γ ). The uniqueness statement
is a consequence of Theorem 7. �

The next theorem limits possible non-uniqueness by comparing positive and nega-
tive parts of the difference between any two optimal distributions of managers.

Theorem 9 (Controlling non-uniqueness) Suppose p satisfies assumptions A1–A4
and ω ∈ Pac(X), and let f be as in the statement of Theorem 8. For any two mixed
optimal pairings γ1, γ2 ∈ �mix

ω with corresponding x-marginals µ1, µ2 we have

(µ2 − µ1)+ = f#
[
(µ2 − µ1)−

]
, (µ2 − µ1)− = f#

[
(µ2 − µ1)+

]
, (11)

|µ2 − µ1| = f#|µ2 − µ1|. (12)

Proof Let γ1 and γ2 be two mixed optimal pairings. Theorem 8 tells us that γ1 and γ2
can be written as (id × f )#µ1 and (id × f )#µ2 respectively. Since (id × f )#µ1, (id ×
f )#µ2 ∈ �mix

ω we have the following equality µ1 + f#µ1 = µ2 + f#µ2 = 2ω, in
particular (µ2−µ1)+ f#(µ2−µ1) = 0. Denoting byµ+ andµ− positive and negative
parts of µ2 −µ1 we see immediately that µ+ + f#(µ+) = µ− + f#(µ−). Let A ⊆ X
denote the set of full measure for µ+ and zero measure for µ− provided by the Hahn
decomposition and set B = X\A. We observe that

µ+[X] ≤ µ+[A] + f#(µ+)[A] = f#(µ−)[A] ≤ µ−[X],

However, since (µ+−µ−)[X] = (µ2−µ1)[X] = 0, we conclude that f#(µ+)[A] = 0.
Similarly we conclude f#(µ−)[B] = 0. In particular, this implies that µ+ = f#(µ−),
µ− = f#(µ+), and therefore |µ2 − µ1| = f#|µ2 − µ1|. �

To deduce uniqueness we need to assume that identity is the only optimal matching
between two equal measures. In terms of economic interpretation this means the
following: given managers and assistants with the same distribution of skills the only
optimal way to pair them is to match manager with assistant of the same skill.

Corollary 1 (Uniqueness) Suppose p satisfies assumptions A1–A4 andω ∈ Pac(X).
If the diagonal {(x, x) ∈ X × X} is p-cyclically monotone, then there is a unique
optimal mixed pairing.

Proof Let γ1, γ2 ∈ �mix
ω be two optimal mixed pairings. The above Theorem, Eq. (12)

and Theorem 7 imply that f is equal to identity |µ2 − µ1|-almost everywhere. But
then by (11), (µ2 −µ1)+ = (µ2 −µ1)−, which is a contradiction unless µ2 = µ1. �
Remark 4 (Supermodularity implies uniqueness) For skills in an interval X = [a, b] ⊂
R, a productivity function p ∈ C([a, b]2) is said to be strictly supermodular if

p(x, y)+ p(x ′, y′) > p(x, y′)+ p(x ′, y) (13)

for all a ≤ x < x ′ ≤ b and a ≤ y < y′ ≤ b. Strict supermodularity guarantees the
diagonal {(x, x) | x ∈ [a, b]} is p-cyclically monotone by the following argument.
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The measure γ ∈ �(µ, ν) supported on [a, b]2 with Gaussian marginals dµ/dx =
dν/dx = e−x2

/
∫ b

a e−y2
dy which maximizes the expectation (6) of p is well-known to

exist, and to have p-cyclically monotone support, as in Gangbo and McCann (1996).
Supermodularity therefore implies the support of γ is a non-decreasing subset of the
plane. On the other hand, (id × id)#µ is a measure in �(µ, ν) with non-decreasing
support; it is the only such measure according to McCann (1999, Appendix A). Thus
γ = (id × id)#µ and spt γ = {(x, x) | x ∈ [a, b]}, from which we conclude the
diagonal is p-cyclically monotone hence the uniqueness hypothesis of the preceding
corollary is satisfied.

7 Geometric structure of optimal pairing

In this paper we chose to exploit the Monge–Kantorovich theory to prove existence
and uniqueness of optimal pairings. However, we feel it is worthwhile to point out
that this optimization problem enjoys a peculiar geometric structure, which could be
alternatively used to prove most of the above results. We will also employ this structure
to characterize optimal pairing as well as to deduce existence of minimizers of the
dual problem that are of special form. Namely we will show that we can take such a
minimizer to be

φ(x)+ φs(x)

2
,

where s is the symmetrized cost and φ is s-convex. Since under our assumptions on
p, s-convex functions are Lipschitz (see Lemma 1), this implies that minimizers of
the dual problem can be taken to be Lipschitz as well.

Let us thus suppose that γ ∈ �mix
ω is optimal with x- and y- marginals µ and ν

respectively, and that v is a minimizer of the dual problem. Then duality implies

∫
v(x) dµ(x)+

∫
v(y) dν(y) = 2

∫
v(x) dω(x) =

∫
p(x, y) dγ (x, y),

and together with v(x)+ v(y) ≥ p(x, y) we conclude that

p(x, y) = v(x)+ v(y) for all (x, y) ∈ spt γ.

The fact that this equality holds on the support of optimal pairings has particular
implications for its geometry, which we state in the following Proposition.

Proposition 2 Let v be a feasible potential and Sv be the set

Sv = {
(x, y) ∈ X × X

∣∣ v(x)+ v(y) = p(x, y)
}
.
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Then for any k points (x1, x2), . . . , (x2k−1, x2k) ∈ Sv and for any permutation σ on
2k symbols the following holds:

k∑
i=1

p (x2i−1, x2i ) ≥
k∑

i=1

p
(
xσ(2i−1), xσ(2i)

)
. (14)

Proof The proof of this Proposition is very straightforward. Let (x1, x2), . . . ,

(x2k−1, x2k) be k points in Sv , then

k∑
i=1

p(x2i−1, x2i ) =
k∑

i=1

v(x2i−1)+ v(x2i )

=
k∑

i=1

v(xσ(2i−1))+ v(xσ(2i))

≥
k∑

i=1

p(xσ(2i−1), xσ(2i)).

�

Definition 8 Let us say S ⊂ X × X is p-optimal if for any k points (x1, x2), . . . ,

(x2k−1, x2k) ∈ S and for any permutation σ on 2k symbols the following inequality
holds:

k∑
i=1

p(x2i−1, x2i ) ≥
k∑

i=1

p(xσ(2i−1), xσ(2i)). (15)

We obtained the existence of p-optimal sets from feasible potentials, but we can
ask ourselves whether for any p-optimal set S there exists a feasible potential such
that S ∈ Sv . The answer is yes.

Proposition 3 If S is a p-optimal set, then there exists a feasible potential v of the
form

v(x) = φ(x)+ φs(x)

2

such that S ⊆ Sv . We call feasible potentials of this special form canonical.

Proof Let S be a p-optimal set. We first show that there exists a s-convex φ whose
s-subdifferential contains S∪S† ⊂ ∂sφ. To do this we first prove that if S is p-optimal,
then T := S ∪ S† is s-optimal.
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Indeed, given any (x1, x2) . . . (x2k−1, x2k) ∈ S and permutation σ there exists a
permutation τ such that

k∑
i=1

s(xσ(2i−1), xσ(2i)) =
k∑

i=1

p(xτ(2i−1), xτ(2i))

≤
k∑

i=1

p(x2i−1, x2i )

≤
k∑

i=1

s(x2i−1, x2i ).

Thus S is s-optimal. On the other hand s(x, y) = s(y, x), so any sequence (x1, x2) . . .

(x2k−1, x2k) from S ∪ S† corresponds, after reordering some number of the pairs, to
a sequence from S. This shows that T := S ∪ S† is s-optimal.

Since T is s-optimal, it is s-cyclically monotone a fortiori. Now Rochet’s generali-
zation Theorem 5 of Rockafellar’s theorem, applied to the s-cyclically monotone set
T = S ∪ S†, yields the desired s-convex function φ = φss with T ⊂ ∂sφ.

Now from the definition of φs we obtain φs(y) := supz∈X{s(z, y) − φ(z)} ≥
s(x, y)− φ(x) for all (x, y) ∈ X × X. Thus

v(x)+ v(y) := φ(x)+ φs(y)

2
+ φ(y)+ φs(x)

2

≥ s(x, y)+ s(y, x)

2
= s(x, y)

≥ p(x, y).

For (x, y) ∈ S, the first inequality is saturated because both (x, y) and (y, x) lie in
∂sφ; the second inequality is saturated due to the case k = 1 = σ(2) and σ(1) = 2 in
the definition (15) of p-optimality of S. �

The above discussion points to the following characterization of optimal pairing.

Theorem 10 (Characterization of optimal support) Let p be continuous. A measure
γ ∈ �mix

ω is an optimal mixed pairing if and only if spt γ is p-optimal. Also, γ is
an optimal mixed pairing if and only if spt γ ⊆ Sv for some feasible potential v. In
particular the infimum Iω is attained by a canonical potential.

Proof Suppose γ ∈ �mix
ω is optimal. As we discussed at the beginning of this section,

if v is any minimizer of the dual problem, then spt γ ⊆ Sv , hence spt γ is p-optimal
by Proposition 2.

Suppose conversely that γ ∈ �mix
ω has p-optimal support. By Proposition 3 we

conclude that there exists canonical feasible potential v such that

v(x)+ v(y) = p(x, y) for all (x, y) ∈ spt γ.
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Therefore, since v is lower semi-continuous and non-negative (2v(x) ≥ p(x, x)),

∫

X×X

p(x, y) dγ (x, y) =
∫

X×X

(v(x)+ v(y)) dγ (x, y) =
∫

X

v(x) dω(x)

and by Theorem 2 we deduce that v is a minimizer of the dual problem and γ is an
optimal mixed pairing. �
Remark 5 As we discussed at the beginning of this section canonical feasible poten-
tials are Lipschitz due to Lemma 1, hence differentiable Lebesgue almost everywhere.

The concepts of p-optimality and canonical potential are clearly analogous to
concepts of p-cyclical monotonicity and p-convex function. In fact it is possible to
prove existence of optimal pure pairings by pursuing this analogy further and taking
an approach similar to the one taken by McCann (1995) to prove existence and unique-
ness of optimal transport. Thus one could show that there exists a measure γ0 in �mix

ω

with p-optimal support, construct a canonical feasible potential using Proposition 3,
and then use the fact that equality

v(x)+ v(y) = p(x, y)

holds for all (x, y) ∈ spt γ0 together with Theorem 2 to conclude duality, optimality
of γ0 and v all in one go.

8 Examples and discussion

In this section, we revisit several results obtained by Li and Suen (2001) using the
mathematical framework we have introduced. Some of the results generalize their
work to a multidimensional setting. We begin by deriving a condition that must be
satisfied for a worker to be indifferent to being a manager or an assistant. Then we
proceed to specialize this condition to the case of a multidimensional Cobb–Douglas
type production function and deduce complete segregation of the labor market into
managers and assistants in the case of skill distribution concentrated in a narrow skill
band. We then derive efficiency of the linear matching with a given slope and point
out how one can obtain examples of optimal pairing without role segregation.

The next lemma is a multidimensional generalization of Li and Suen’s Lemma 5.1.
It essentially states that if in an optimal pairing a worker of skill level z is indifferent to
being matched as a manager to assistant of skill level y or as an assistant to a manager of
skill level x , then x, y, z must satisfy a condition involving the partial derivatives ∇1 p
and ∇2 p of p with respect to x = (x1, . . . , xn) and to y = (y1, . . . , yn), respectively.

Lemma 2 Suppose p is continuously differentiable. Let S ⊂ X × X be p-optimal.
Then for Lebesgue almost all z ∈ π X (S) ∩ πY (S) we have

∇1 p(z, y) = ∇2 p(x, z), (16)

where (x, z) ∈ S and (z, y) ∈ S.
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Proof Let v be a canonical feasible potential such that Sv ⊃ S. By Lemma 1 and
Rademacher’s theorem v is differentiable Lebesgue almost everywhere. Let z ∈
π X (S) ∩ πY (S) be a point where v is differentiable and suppose x, y ∈ X are such
that (z, y), (x, z) ∈ S. Since v is a feasible potential and Sv ⊃ S

v(a)+ v(b)− p(a, b) ≥ 0

for all (a, b) ∈ X with equality holding for (z, y) and (x, z). Hence we conclude that

∇v(z) = ∇1 p(z, y), ∇v(z) = ∇2 p(x, z),

and the lemma follows. �
We need the following lemma to relate the support of the marginal to the projection

of the support.

Lemma 3 (Projected support is dense in support of projection) If γ ≥ 0 is a Borel
measure on Rn × Rn, then spt (π X

# γ ) = π X (spt γ ).

Proof We first showπ X (spt γ ) is contained in spt (π X
# γ ). Suppose that x ∈π X (spt γ ),

meaning there is a point (x, y) ∈ spt γ . If B ⊂ Rn is a neighbourhood of x , then
B × Rn is a neighbourhood of (x, y), so (π X

# γ )[B] = γ [B × Rn] > 0. Therefore x

is in support of π X
# γ . Because sptπ X

# γ is closed, π X (spt γ ) ⊂ spt (π X
# γ ).

Conversely, suppose x ∈ sptπ X
# γ . Then for every open set U ∈ Rn containing

x , γ [U × Rn] = (π X
# γ )[U ] > 0, hence U × Rn intersects the support of γ . Thus

U contains a point in π X (spt γ ), and we conclude that x belongs to the closure of
π X (spt γ ). This completes the lemma. �

Let us now restrict our attention to the Cobb–Douglas type production functions of
the form

p(x1, . . . , xn, y1, . . . , yn) =
n∑

i=1

xαi
i yβi

i (17)

on [0, 1]2n ; the case n = 1 was discussed in Example 1. We take αi > βi ≥ 1 for
each i , meaning the productivity of each pair is more sensitive to the manager’s skill
level than to the assistant’s. We now specialize the preceding result to deduce and
constrain the possibilities of substantial overlap between the skill levels of managers
and assistants, represented by the intersection sptµ ∩ spt ν.

Theorem 11 Let ω be supported on [0, 1]n, and let p(x, y) be as in (17) with αi >

βi ≥ 1 for all i . Suppose γ ∈ �mix
ω is the optimal mixed pairing and µ, ν are the

x- and y- marginals ofγ respectively. Then for Lebesgue almost every z in sptµ
⋂

spt ν,
there exist x, y such that (x, z), (z, y) ∈ spt γ and the following equality holds for
each i:

(
zi

xi

)αi
(

yi

zi

)βi

= βi

αi
. (18)
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Proof First notice that equality ∇1 p(z, y) = ∇2 p(x, z) for our particular p becomes
(18). Now because π X is a compact map and the set spt γ is closed and bounded, we
have

π X (spt γ ) = π X (spt γ ) = sptµ,

where last equality holds by Lemma 3. Similarly,πY (spt γ ) = spt ν. Thus by Lemma 2,
the fact that spt γ is p-optimal implies that for almost every point of sptµ

⋂
spt ν =

π X (spt γ )
⋂
πY (spt γ ) our assertion is true. �

We proceed to derive several consequences of this theorem. For the ratio 0 <

βi/αi < 1, it is clear that (18) cannot be satisfied if for some i , xi , yi and zi are all
close to 1. Quantifying this observation allows us to establish the following result.

Proposition 4 (Role segregation in a narrow skill band) Let γ be an optimal pairing

for ω. If for some i ∈ {1, . . . , n}, π xi (sptω) is contained in ](βi/αi )
1

αi +βi , 1], then
|sptµ

⋂
spt ν| = 0.

Proof To derive a contradiction, suppose |sptµ
⋂

spt ν| �= 0. Then Theorem 11 pro-
vides z ∈ sptµ∩ spt ν and x, y ∈ sptω such that equality (18) is true. For the moment

set a := (βi/αi )
1

αi +βi . We note that yi > a, zi > a and 1
zi

≥ 1, hence
(

yi
zi

)βi
> aβi .

However, equality (18) implies that

1

xαi
i

βi

αi
= aαi +βi

xαi
i

<

(
zi

xi

)αi

aβi <

(
zi

xi

)αi
(

yi

zi

)βi

= βi

αi
,

but that means xi > 1, which is the desired contradiction. �
The preceding proposition illustrates how clustering of skill levels in a narrow range

can lead to essentially complete segregation of managers from assistants according
to their different skill levels. We now would like to develop a class of examples that
illustrate the opposite phenomenon, in which there is a full interval of skill levels where
both managers and assistants need to be represented to achieve optimal productivity.
To do this we can use Li and Suen (2001) Proposition 7.1, where they have shown that

the pairwise matching with constant degree of segregation
(
β
α

) 1
α+β

is optimal if it is

feasible. We will confirm their Proposition by first showing that for p ∈ C1(R × R)
of the form p(x, y) = xα yβ there is precisely one line through the origin which is
p-optimal in the plane.

Lemma 4 For Cobb–Douglas production function p(x, y) = xα yβ in C1([0, 1]2),
there exists a unique line through the origin which restricted to [0, 1]2 is p-optimal.
The slope of this line is λ := (β/α)1/(α+β).

Proof Suppose that some line S through the origin described by y(x) = λx is
p-optimal, then Proposition 3 gives us existence of canonical feasible potential v
such that Sv ⊃ S.
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Recall that canonical potential v is Lipschitz. Let now (x0, λx0) be a point in S, then
notice that v(x)+v(λx0)− p(x, λx0) as a function of x attains its infimum at x0, hence
for almost all x0 it is the case that dv

dx (x0) = ∂p
∂x (x0, λx0). This in particular implies

that v′(x) = αxα+β−1λβ . Integrating both sides and using the fact that 2v(0) =
p(0, 0) = 0, we derive that v(x) = λβ α

α+β xα+β . Substituting back into equation
v(x)+ v(λx) = p(x, λx), we obtain

λβxα+β = λβ
α

α + β
xα+β + λ2β+α α

α + β
xα+β.

Therefore λ must necessarily be equal to (
β
α
)

1
α+β . This proves uniqueness of a

p-optimal line. At this point to prove existence it suffices to show that v(x) is a
feasible potential, since Proposition 2 would then imply S ⊂ Sv is p-optimal. To do
this we need only to show that inequality v(x)+ v(y) ≥ p(x, y) holds for all points

(x, y) ∈ [0, 1]2 for v(x) = (
β
α
)

β
α+β α

α+β xα+β . To do that it suffices to check that the

minimum of (β
α
)

β
α+β α

α+β xα+β + (
β
α
)

β
α+β α

α+β yα+β − xα yβ on [0, 1]2 is zero. This,
however, is not hard to do. Therefore, as claimed above there is only one line through

the origin that is also a p-optimal subset of [0, 1]2 and its slope is equal to (β
α
)

1
α+β . �

Now we state a Proposition which allow us to construct examples of optimal pairing.

Proposition 5 Fix p(x, y) = xα yβ with α, β ≥ 1. Let λ = (
β
α
)

1
α+β and denote by

lλ(x) = λx the line through the origin with slope λ. If µ is any measure supported
in [0, 1] which is absolutely continuous with respect to Lebesgue, then (µ, lλ) is the
unique optimal pairing for ω = µ+ (lλ)#µ.

Proof By Lemma 4 and Theorem 10 the measure (id × lλ)#µ is optimal and to
conclude uniqueness we need only then check that the diagonal is a p-cyclically
monotone subset of the plane. This follows either from Remark 4 or else by a direct
argument: consider functions u(x) := α

α+β xα+β and w(y) := β
α+β yα+β . It is easy to

see that

α

α + β
xα+β + β

α + β
yα+β − xα yβ ≥ 0, (19)

with equality when x = y. This implies that u = w p̃ andw = u p. Hence u is p-convex
and since equality in (19) holds for x = y, the diagonal {(x, x) ∈ X × X} ⊆ ∂pu and
therefore the diagonal is p-cyclically monotone. Now, since p satisfies assumption of
Corollary 1, we conclude the proof of the Proposition. �

Below f L1 denotes a measure absolutely continuous with respect to Lebesgue
measure on R with Radon–Nikodym derivative equal to f .

Corollary 2 If f is any function in L1([0, 1]), then ( f L1, lλ) is an optimal pairing
for ω := hL1, where 2h(x) = f (x)+ f (x/λ)/λ.
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Proof This follows immediately from the fact that (lλ)# f L1 = hL1, where h(x) =
f (x/λ)/λ. �

The Corollary above immediately provides us with a series of examples in which
managers and assistants share same skill levels. The observation contained in the
statement of the above Lemma also appears in Li and Suen (2001). We refer the reader
to them for an economic interpretation.

In conclusion, we would like to note that our approach not only provides a rigorous
foundation for the economic partitioning model discussed by Kremer and Maskin
(1996) and Li and Suen (2001), but also uncovers a hidden geometric structure enjoyed
by this model. This structure can be exploited, as we have done in the examples, to
provide further insight into optimal partitioning.
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