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Abstract

This note exposes the differential topology and geometry underly-
ing some of the basic phenomena of optimal transportation. It surveys
basic questions concerning Monge maps and Kantorovich measures:
existence and regularity of the former, uniqueness of the latter, and
estimates for the dimension of its support, as well as the associated
linear programming duality. It shows the answers to these questions
concern the differential geometry and topology of the chosen trans-
portation cost. It also establishes new connections — some heuristic
and others rigorous — based on the properties of the cross-difference
of this cost, and its Taylor expansion at the diagonal.

1 Introduction

What is optimal transportation? This subject, reviewed by Ambrosio and
Gigli [5], McCann and Guillen [58], Rachev and Ruschendorf [69], and Villani
[81] [82] among others, has become a topic of much scrutiny in recent years,
driven by applications both within and outside mathematics. However, the
problem has also lead to the development of its own theory, in which a
number of challenging questions arise and some fascinating answers have
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been discovered. The present manuscript is intended to reveal some of the
differential topology and geometry underlying these questions, their solution
and variants, and give some novel and simple yet powerful heuristics for
a few highlights from the literature that we survey. It attempts to frame
the phenomenology of the subject, without delving deeply into many of the
methodologies — both novel and standard — which are used to pursue it.
The new heuristics are largely based on the properties of the cross-difference
(4), and its Taylor expansion (6) at the diagonal.

Given Borel probability measures µ± on complete separable metric spaces
M±, and a continuous bounded function c(x, y) representing the cost per unit
mass transported from x ∈ M+ to y ∈ M−, the basic question is to correlate
the measures µ+ and µ− so as to minimize the total transportation cost. In
Monge’s 1781 formulation [63], we seek to minimize

cost(G) :=

∫

M+

c(x,G(x)) dµ+(x) (1)

among all Borel maps G : M+ −→ M− pushing µ+ forward to µ− = G#µ+,
where the pushed-forward measure is defined by G#µ+(Y ) = µ+(G−1(Y ))
for each Y ⊂ M−. This question is interesting, because it leads to canonical
ways to reparameterize one distribution of mass with another. When the
probability measures are given by densities dµ±(x) = f±(x)dx on manifolds
M±, we can expect G to satisfy the Jacobian equation ± det[∂Gi/∂xj] =
f+(x)/f−(G(x)). Additional desirable properties of G can sometimes be
guaranteed by a suitable choice of transportation cost; for example, G will be
irrotational for the quadratic cost c(x, y) = 1

2
|x− y|2 on Euclidean space [9].

For subsequent purposes, we will often assume the cost c(x, y) and manifolds
M± to be smooth, but quite general otherwise.

In Kantorovich’s 1942 formulation, we seek to minimize

cost(γ) :=

∫

M+×M−
c(x, y) dγ(x, y) (2)

over all joint measures γ ≥ 0 on M+ ×M− having µ+ and µ− as marginals.
The form of the latter problem — minimize the linear functional cost(γ) on
the convex set Γ(µ+, µ−) := {γ ≥ 0 | π±#γ = µ±}, where π+(x, y) = x and
π−(x, y) = y — makes it easy to show the Kantorovich infimum is attained.
A result of Pratelli [67] following Ambrosio and Gangbo asserts that its value
coincides with the Monge infimum

min
γ∈Γ(µ+,µ−)

cost(γ) = inf
µ−=G#µ+

cost(G) (3)
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if c is continuous and µ+ is free of atoms. However it is not straightfor-
ward to establish uniqueness of the Kantorovich minimizer, nor whether the
Monge infimum is attained, and if so, whether the mapping G which attains
it is continuous. A sufficient condition (A1)′+ for existence (and unique-
ness) of optimizers G (and γ) was found by Gangbo [30] and Levin [44],
building on work of many authors, including Brenier, Caffarelli, Gangbo,
McCann, Rachev and Rüschendorf. When M± ⊂ Rn are the closures of
open domains, sufficient conditions for the existence of a smooth minimizer
G : M+ −→ M− were provided by Ma, Trudinger and Wang [53], building
on work of Delanoë, Caffarelli, Urbas and Wang, and later refined through
work of Delanoë, Figalli, Ge, Kim, Liu, Loeper, McCann, Rifford, Trudinger,
Villani and Wang, among others. See Appendix A for a statement of their
conditions (A0)′-(A4)′. At the same time, we introduce a new but equiv-
alent formulation of conditions (A0)′-(A4)′ in terms of the cross-difference
(4), which emphasizes their purely topological (A0)-(A2) and geometric
(A3)-(A4) nature, exposing their naturality and relevance. This process of
reformulation, begun with Kim in [38], is completed here, as part of a series
of questions and responses.

2 Why do Kantorovich minimizers concen-

trate on low-dimensional sets?

Abstractly, one expects a linear functional cost(γ) on a convex set Γ(µ+, µ−)
to attain its infimum at one of the extreme points. So it is interesting
to understand the extreme points of Γ(µ+, µ−). Such extreme points are
sometimes called simplicial measures. Despite much progress, surveyed in
[2], a characterization of simplicial measures in terms of their support has
long remained elusive and is probably too much to hope for. Recall that
a measure γ ≥ 0 is simplicial if it is not the midpoint of any segment in
Γ(π+

#γ, π−#γ). Ahmad, Kim and McCann [2] showed each simplicial mea-
sure γ vanishes outside the union of a graph {(x,G(x)) | x ∈ M+} and
an antigraph {(H(y), y) | y ∈ M−}, generalizing Hestir and Williams [35]
result from the special case of Lebesgue measure µ± on the unit interval
M± = [0, 1]. This shows γ concentrates on a set whose topological dimen-
sion should not exceed max{n+, n−}, where n± = dim M±. Taking n+ ≤ n−

without loss of generality, if the measure µ− fills the space M−, then γ cannot
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concentrate on any subset of lower dimension than n−, so it would seem we
have identified the topological dimension of the set on which γ concentrates
to be precisely n− = max{n+, n−}. Unfortunately, this simple argument is
somewhat deceptive. Although the graph and antigraph of [35] and [2] enjoy
further structure, they are not generally γ-measurable; a priori it is conceiv-
able that their closures might actually fill the product space N = M+×M−.

With some assumptions on the topology of the cost function c and spaces
M±, it is possible to better estimate the size of support of the particular
extreme points of interest using the more robust notion of Hausdorff dimen-
sion. The basic object of geometrical relevance will be the support spt γ of the
Kantorovich optimizer, defined as the smallest closed subset S ⊂ M+ ×M+

carrying the full mass of γ. If the Monge infimum (3) is attained by a map
G : M+ −→ M− and the Kantorovich minimizer is unique, it will turn
out that spt γ agrees (γ-a.e.) with the graph of G; when this map is a dif-
feomorphism, then γ concentrates on a subset of dimension n+ = dim M+

in M+ × M−. We shall show why this might be expected more generally,
assuming M± to be (smooth) manifolds henceforth.

Setting N := M+ ×M− and S = spt γ, consider the cross-difference [56]

δ(x, y; x0, y0) := c(x, y0) + c(x0, y)− c(x, y)− c(x0, y0) (4)

defined on N2. An observation — special cases of which date back to Monge
— asserts δ(x, y; x0, y0) ≥ 0 on S2 ⊂ N2; in other words, we cannot lower the
cost by exchanging partners between (x, y) and (x0, y0); for a modern proof,
see Gangbo and McCann [31]. This fact is called the c-monotonicity of S.

If c ∈ C2, then (x0, y0) ∈ N is a critical point for the function δ0(x, y) :=
δ(x, y; x0, y0), whose Hessian

h = 1
2
Hess δ0(x0, y0) (5)

is then well-defined (though it need not be at points (x, y) 6= (x0, y0) which
are non-critical). Now for (x0, y0) ∈ S, we have δ0(x, y) ≥ 0 on S, with
equality at (x0, y0). On the other hand, the symmetries of the cross-difference
δ ensure that the Hessian h contributes the only non-vanishing term in the
second order Taylor expansion of δ0: more explicitly

δ0 (x0 + ∆x, y0 + ∆y)

= h((∆x, ∆y), (∆x, ∆y)) + o(|∆x|2 + |∆y|2) (6)

= −
n+∑
i=1

n−∑
j=1

D2
xiyjc(x0, y0)∆xi∆yj + o(|∆x|2 + |∆y|2)
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as (∆x, ∆y) → 0. It is then not so surprising to discover that the Hessian
h controls the geometry and dimension of the support of any Kantorovich
optimizer γ near (x0, y0) in various ways, as we now make precise following
Pass [66] and my joint works with Kim [38], Pass and Warren [60].

Let (k+, k0, k−) be the (+, 0,−) signature of h, meaning k+, k0, k− ∈ N
count the number of positive, zero, and negative eigenvalues of h in one and
hence any choice of coordinates.

Claim 2.1 (Signature and rank) For each (x0, y0) ∈ N , the signature of
(5) is given by (k+, k0, k−) = (k, n+ + n− − 2k, k) where k ≤ min{n+, n−}
and n± = dim M±. We may henceforth refer to the integer 2k as the rank of
c ∈ C2 (and of h) at (x0, y0); it depends lower-semicontinuously on (x0, y0).

Proof. The sum k+ + k0 + k− = n+ + n− must agree with the total
dimension of N = M+ × M−. Since any perturbation direction (∆x, ∆y)
in which δ0 grows, corresponds to another direction (−∆x, ∆y) in which δ0

shrinks (6), it follows that k+ = k−. Thus (k+, k0, k−) = (k, n+ +n−−2k, k).
In fact, since the matrix h is symmetric, in any coordinate system we can

find a basis of orthogonal eigenvectors for h. The preceding argument shows
that if (∆x, ∆y) is an eigenvector with eigenvalue λ > 0 then (−∆x, ∆y) is an

eigenvector with eigenvalue−λ. In this case ∆x = − 1
2λ

∑n−
j=1 D2

xyjc(x0, y0)∆yj

is determined by ∆y and vise versa, so at most k ≤ min{n+, n−} eigenvectors
can correspond to positive eigenvalues [66].

Lowersemicontinuity of k = k(x0, y0) follows from the fact that c ∈ C2.

The Hessian h of the cross-difference also determines the spacelike, time-
like, and lightlike cones Σ+, Σ− and Σ0 ⊂ T(x0,y0)N according to the defini-
tions Σ± = {V ∈ T(x0,y0)N | ±h(V, V ) ≥ 0} and Σ0 = Σ+ ∩ Σ−.

Definition 2.2 (Spacelike, timelike, lightlike) A subset S ⊂ N is space-
like if each (not necessarily continuous) curve t ∈ [−1, 1] 7−→ z(t) ∈ S differ-
entiable at t = 0 satisfies h(ż(0), ż(0)) ≥ 0, where ż(0) is the tangent vector
and h denotes the Hessian (5) at (x0, y0) = z(0). Similarly, S is timelike (or
lightlike) if the inequality is reversed (or if both inequalities hold).

Since we want to allow sets S which are rough and potentially incomplete,
it is important to permit curves in the definition above whose continuity at
t = 0 may not extend to any neighbourhood of t = 0.
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Lemma 2.3 (c-monotone implies spacelike) Any c-monotone set S ⊂
N is spacelike.

Proof. Take any curve (x(t), y(t)) ∈ S, not necessarily continuous but
differentiable at (x0, y0) = (x(0), y(0)), with tangent vector V = (ẋ(0), ẏ(0)).
Since δ0(x(t), y(t)) ≥ 0, from (5)–(6) we see h(V, V ) ≥ 0, as desired.

Corollary 2.4 (Dimensional bounds) If c is C2 and has rank 2k at a
point (x0, y0) where S has a well-defined tangent space T , then c-monotonicity
of S ⊂ N implies the dimension of this tangent space satisfies dim T ≤
n+ + n− − k.

Proof. Fix coordinates on N . As a consequence of the (Courant-Fischer)
min-max formula for eigenvalues of h at (x0, y0), the signature (k+, k0, k−) =
(k, n+ + n− − 2k, k) of h limits the maximal number of linearly independent
tangent vectors to N which are not timelike to k+ + k0 = n+ +n−− k. Since
the preceding lemma shows the tangent space T of S to be spanned by such
a set of vectors, its dimension satisfies the asserted bound.

The following much stronger result of Pass [66] asserts S is contained
in a spacelike Lipschitz submanifold of the prescribed dimension — hence
implies differentiability a.e. as a consequence instead of a hypothesis. The
case k = n+ = n− was worked out earlier by McCann, Pass and Warren [60],
by adapting an idea of Minty [61] [3] from the special case c(x, y) = −x · y.

Theorem 2.5 (Rectifiability [66]) If c has rank 2k at (x0, y0) and is C2

nearby, then on a (possibly smaller) neighbourhood N0 ⊂ M+ × M− of
(x0, y0), c-monotonicity of S ⊂ N0 implies S ⊂ L where L ⊂ N0 is a spacelike
Lipschitz submanifold of dimension dim L ≤ n+ +n−−k with n± = dim M±.

Idea of proof. A kernel of the proof can be apprehended already in the
one-dimensional case n± = 1. When c has rank zero, taking L = N0 implies
the result, so assume c has full rank (2k = 2), meaning either ∂2c/∂x∂y <
0 or ∂2c/∂x∂y > 0 near (x0, y0). In the first case, c-monotonicity of S
implies S∩R is contained in a non-decreasing subset of any sufficiently small
two-dimensional rectangle R = Bε(x0) × Bε(y0). This monotonicity is well-
known in both mathematical [51] and economic contexts [76] [62]. Rotating
coordinates by setting u = (x+y)/

√
2 and v = (y−x)/

√
2, the monotonicity

is equivalent to asserting that S is contained in the graph of {(u, V (u))}
of a function v = V (u) with Lipschitz constant one. In the second case,
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c-monotonicity would imply S ∩ R is non-increasing, hence contained in a
1-Lipschitz graph of u over v.

The same argument carries over immediately to the bilinear cost c(x, y) =
−x · y in higher dimensions n+ = n− [61]. For other costs with rank
2k = 2n+ = 2n−, one can make a similar argument after a linear change
of coordinates x̃ = x− x0 and ỹ = Λ(y− y0) chosen so that in the new coor-
dinates the cost takes the form c̃(x̃, ỹ) = −x̃ · ỹ + o(∆x̃2 +∆ỹ2)+ f(x̃)+ f(ỹ)
[60]. The cases k < min{n+, n−} and n+ 6= n− are worked out in [66].

When the rank of c is maximal (i.e. k = min{n+, n−}), then the dimen-
sional bound is dim L ≤ max{n+, n−}. Taking n+ ≤ n− without loss of
generality, if the measure µ− fills M− (say, by being mutually absolutely
continuous with respect to Lebesgue measure in any coordinate patch), the
dimension of the Lipschitz submanifold L on which γ concentrates cannot be
less than n−, in which case we see the bound given by the theorem is sharp:
dim L = n−.

Example 2.6 (Submodular costs on the line) If M± = R there is a
unique measure in Γ(µ+, µ−) whose support S = spt γ forms a non-decreasing
subset of the plane. This measure is the unique minimizer of Kantorovich’s
problem (3) for each cost c ∈ C1(R2) satisfying ∂2c/∂x∂y < 0; see e.g.
[56]. Apart from at most countably many vertical segments, the set S is
contained in the graph of some G : R −→ R∪{±∞} non-decreasing. Unless
µ+ has atoms, the vertical segments in S are γ negligible, in which case
γ = (id×G)#µ+ and Monge’s infimum is attained uniquely by G.

Example 2.7 (Transporting mass between spheres) Transporting mass
on the surface of the earth has lead to consideration of the cost function
c(x, y) = 1

2
|x − y|2 restricted to the boundary of the unit sphere x, y ∈

∂Bn+1
1 (0) ⊂ Rn+1 so that 0 ≤ c ≤ 2 [14][2][26][59], a problem consid-

ered earlier in the context of shape recognition [32][1]. The restricted cost
has rank 2n except on the degenerate set c = 1, where it has rank 2n − 2.
Thus any c-cyclically monotone subset S of the 2n-dimensional product space
∂Bn+1

1 (0) × ∂Bn+1
1 (0) has dimension at most n except along the degenerate

set, where it has dimension at most n + 1 (in spite of the fact that the de-
generate set is 2n − 1 dimensional). Since the degenerate set separates the
orientation preserving and orientation reversing parts S+ and S− of S, this
means that S+ cannot intersect S− transversally (except in dimension n = 1);
instead, if S+ meets S− at a point where both have n-dimensional tangent
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spaces, these spaces must have n− 1 directions in common. For example, if
n = 3, and both S+ and S− are generically 3-dimensional, but their union is
contained in a 4-dimensional Lipschitz submanifold, whereas the cost degen-
erates on a smooth 5-dimensional hypersurface.

In summary, c-monotonicity implies rectifiability of S = spt γ ⊂ N =
M+ ×M− in a dimension determined locally by the rank of the Hessian h
of the cross-difference δ0 ∈ C2; moreover S must be spacelike with respect
this Hessian (5). If h is non-degenerate, we will eventually see that h can
be viewed as a pseudo-metric on N whose Riemannian sectional curvatures
combine with µ± to determine smoothness of S.

3 When do optimal maps exist?

We now turn to the more classical question of attainment of the infimum
(3). To expect existence of Monge maps, we generally need µ+ to be more
than atom-free. We need µ+ not to concentrate positive mass on any lower
dimensional submanifold of M+, or more precisely on any hypersurface para-
meterized locally in coordinates as the graph of a difference of convex func-
tions. This condition, proposed by Gangbo and McCann [31], is sharp in a
sense made precise by Gigli [33], and implies Lipschitz continuity and C2-
rectifiability of the hypersurfaces in question. Absolute continuity of µ+ in
coordinates — i.e. the existence of a density f+ such that dµ+(x) = f+(x)dx
— is more than enough to guarantee this. However, we also require further
structure of the transportation cost.

For c ∈ C1(N), the Gangbo [30] and Levin [44] criterion for existence of
Monge solutions G : M+ −→ M− given in Appendix A is equivalent to:
(A1)+ For each x0 ∈ M+ and y0 6= y1 ∈ M−, assume x ∈ M+ 7−→ δ0(x, y1)
has no critical points, where δ0(x, y1) = δ(x, y1; x0, y0) is from (4).
Naturally, this implies n+ ≥ n−, due to the fact we cannot generally hope
to use a (rectifiable) map G on a low dimensional space to spread a mea-
sure over a higher dimensional space. In fact, (A1)+ implies something
stronger: namely that every solution of the Kantorovich problem is a Monge
solution. This in turn implies uniqueness of the Kantorovich (and hence
Monge) solution, for the following reason. Suppose two Kantorovich solu-
tions exist, and both correspond to Monge solutions: γ0 = (id × G0)#µ+

and γ1 = (id × G1)#µ+. Linearity of the Kantorovich problem implies
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γ2 := (γ0+γ1)/2 is again a solution, hence by (A1)+ must concentrate on the
graph of a map G : M+ −→ M−. It is then easy to argue γi = (id×G)#µ+

for i = 0, 1, 2 as in e.g. [2]. This implies γ0 = γ1; moreover G0 = G = G1

µ-a.e. Thus we arrive at the following theorem [30] [44] [2] [33]:

Theorem 3.1 (Existence and uniqueness of optimal maps) Let µ± be
probability measures on manifolds M±, with a cost c ∈ C1(M+×M−) which
is bounded and satisfies (A1)+. If µ+ assigns zero mass to each Lipschitz
hypersurface in M+, then Kantorovich’s minimum is uniquely attained, and
the minimizer γ = (id×G)#µ+ vanishes outside the graph of a map G solv-
ing Monge’s problem. In fact, not all Lipschitz hypersurfaces are required:
it is enough that µ+ vanish on each hypersurface locally parameterizable in
coordinates as the graph of a difference of two convex functions.

Notice (A1)+ asserts the restriction of δ0 to each horizontal fibre M+ ×
{y1} has no critical points, except on the fibre y1 = y0 where δ0 vanishes
identically. To guarantee invertibility of the map G, we need the same con-
dition to hold for the reflected cost c∗(y, x) := c(x, y), meaning the roles of
M+ and M− are interchanged. If both c and c∗ satisfy (A1)+, we say (A1)
holds. Thus (A1) is equivalent to asserting that (x0, y0) is the only critical
point of δ0(x, y).

Many interesting costs, such as c(x, y) = h(x− y) with h strictly convex
or concave on M± = Rn satisfy these hypotheses. The most classical of
these is the Euclidean distance squared [8] [16] [75] [73]. Regularity of the
convex gradient map it induces, generalizing Example 2.6, was established
by Delanoë [17] for n = 2 and Caffarelli [10] [11] and Urbas [80] for n ≥ 3.

Example 3.2 (Euclidean distance squared) If M± ⊂ Rn and µ+ van-
ishes on all hypersurfaces, there is a unique measure in Γ(µ+, µ−) concen-
trated on the graph of the gradient of a convex function u : Rn −→ R∪{+∞}.
This measure is the unique minimizer of Kantorovich’s problem (3) for the
cost c(x, y) = 1

2
|x − y|2 [9] [54]. If dµ± = f±dHn are both absolutely

continuous with respect to Lesbesgue, the Monge-Ampère equation f+(x) =
f−(Du(x)) det D2u(x) holds µ+-a.e. [55]. If moreover, log f± ∈ L∞(M±)
with M− convex and Hn(∂M+) = 0, then u ∈ C1,α

loc (M+) for some α > 0 [10]
estimated in [29]. If, in addition f± ∈ C1,β̄ and M+ and M− are both smooth
and strongly convex — meaning the principle curvatures of their boundaries
are all strictly positive — then u ∈ C2,β(M̄+) for all 0 < β < β̄ < 1 [17] [11]
[80]. Higher regularity follows from smoothness of f±.
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On the other hand, (A1)+ also fails for many interesting geometries. We
mention two such examples. In the first — the cost function of interest to
Monge [63] — optimal maps turn out to exist but are not unique. Their
non-uniqueness was quantified with Feldman [22]. In the second, Monge’s
infimum turns out not to be attained, despite the fact that the Kantorovich
minimizer is unique.

Example 3.3 (Uniqueness fails for Monge’s cost) Let open sets M± ⊂
Rn have finite volume and c(x, y) = |x− y|. Monge was originally interested
in transporting the uniform measure µ± = 1

Hn(M±)
Hn from one domain to the

other, when n = 3 and Hn denotes the n-dimensional Hausdorff measure, and
coincides with Lebesgue measure in this case [63]. Taking M+ disjoint from
M− ensures smoothness of c. Notice that when n = 1 and M+ and M− are
disjoint intervals, every γ ∈ Γ(µ+, µ−) has the same total cost cost(γ). In
this case the solution to Kantorovich’s problem is badly non-unique. Clearly
(A1)+ also fails in this case. In higher dimensions, the situation is slightly
less degenerate since the cost takes a range of values on Γ(µ+, µ−), but it
remains true that its extrema are not uniquely attained. In this setting, it
can be a difficult problem to show that Monge’s infimum is attained. This
problem was first solved by Sudakov in the plane n = 2; he asserted a result
in all dimensions but it was later discovered that one of his claims sometimes
fails if n > 2. This existence result was extended to higher dimensions by
Evans and Gangbo, assuming µ± to be given by Lipschitz continuous densities
on Rn [21], and for general absolutely continuous densities µ± by Ambrosio
[4], Trudinger-Wang [78] and Caffarelli-Feldman-McCann [12] simultane-
ously and independently. The last group also considered costs given by non-
Euclidean norms, but with smooth and strongly convex unit balls, restrictions
removed in a seqeunce of papers by different teams of authors including Am-
brosio, Bernard, Buffoni, Bianchini, Caravenna, Kirchheim, and Pratelli,
and culminating in work of Champion and DePascale [13].

On the other hand, if M+ is a compact manifold without boundary, it is
evident that x ∈ M+ 7−→ δ0(x, y1) must attain at least one maximum and
one minimum so that — as long as the cost is assumed differentiable — it
is clear that (A1)+ cannot be satisfied. In this case, it will not always be
true that Monge’s infimum (3) is attained, as my examples with Gangbo [32]
show:
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Example 3.4 (Transporting mass between spheres, revisited) Restrict
c(x, y) = 1

2
|x − y|2 to M± = ∂B1(0) ⊂ Rn+1 so that 0 ≤ c ≤ 2, as in Ex-

ample 2.7. Take µ± to be mutually absolutely continuous with respect to
surface area Hn on their respective spheres, but take most of the mass of
µ+ to be concentrated near the north pole and most of the mass of µ− to
be concentrated near the south pole. Then Monge’s infimum (3) will not be
attained, despite the fact that the Kantorovich minimizer γ is unique. The
intersection of S = spt γ with the set c ≤ 1 is contained in the graph of a
map G : M+ −→ M−, while the intersection S ∩ {c ≥ 1} is contained in
the graph of a map H : M− −→ M+ — sometimes called an antigraph. If
the densities f± = dµ±/dHn are both bounded, so that log f± ∈ L∞, then
G is a homeomorphism of ∂B1 and H may be taken to be continuous [32];
both maps enjoy a local Hölder exponent of continuity α = 1/(4n− 1) except
possibly where their graphs touch the set {c = 1} where the rank of c drops
from 2n to 2n − 2 [59]. It may be possible to improve this Hölder exponent
to α = 1/(2n− 1) using techniques of Liu [46], but even when f± are smooth
we have no idea how to prove G will be smoother, nor how to extend Hölder
continuity of G up to the degenerate set {c = 1}.

Notice that global differentiability of the cost is crucial to this discus-
sion. For costs whose differentiability fails — even on a small set such as
the Riemannian cut locus — the theorem which follows gives many natural
examples where existence and uniqueness both hold.

Theorem 3.5 (Minimizing Riemannian distance squared) Let c(x, y) =
d2(x, y)/2 be the square distance induced by some Riemannian metric on a
compact manifold M+ = M−. If µ+ is absolutely continuous (with respect to
Riemannian volume) then the Kantorovich minimizer is unique in (3), and
takes the form γ = (id × G)#µ+ for a map solving Monge’s problem [57].
In case M± are round spheres [49] (or quotients [18], submersions [37] or
products thereof [25]), and both µ± are given by smooth positive densities with
respect to surface area, then the map G will be a smooth diffeomorphism.

Notice that the existence and uniqueness asserted in Theorem 3.5 is not
quite a corollary of Theorem 3.1, since compactness of the manifold M±

forces the cut-locus to be non-trivial. Here the cut-locus is defined as (the
closure of) the set of points where differentiability of the cost c = d2/2 fails.
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4 When are optimal measures unique?

The preceding section shows that if the cross-difference δ0(x, y) = δ(x, y; x0, y0)
has no critical points unless x = x0 or y = y0, then Monge’s problem is sol-
uble and the Kantorovich problem admits a unique solution. Although very
useful when it applies, this criterion is not satisfied in all cases of interest.
— for example, when trying to minimize the restriction of the quadratic cost
c(x, y) = |x− y|2/2 to the Euclidean unit sphere M± = ∂B1(0) ⊂ Rn+1. In
such situations, my results with Chiappori, Nesheim [14], Ahmad and Kim
[2] may be useful:

Theorem 4.1 (Uniqueness of minimizer for subtwisted costs) Fix Borel
probability measures µ± on manifolds M±, with µ+ vanishing on each hyper-
surface in M+, and a bounded cost c ∈ C1(M+ × M−). Suppose for each
x0 ∈ M+ and y0 6= y1 ∈ M−, the cross-difference δ0(x, y) := δ(x, y; x0, y0)
from (4) satisfies

x ∈ M+ 7−→ δ0(x, y1)
has at most two critical points, namely, a unique
global minimum and a unique global maximum.

(7)
Then the Kantorovich problem has a unique solution, and it takes the form
γ = (id × G)#µ + (H × id)#(µ− − G#µ) for some maps G : M+ −→ M−

and H : M− −→ M+ and non-negative measure µ ≤ µ+ such that µ−−G#µ
vanishes on the range of G.

In other words, the unique Kantorovich solution concentrates on the union
of the graph and an antigraph, of G : M+ −→ M− and of H : M− −→
M+ respectively. Notice that if the manifold M+ is compact, hypothesis
(7) restricts its Morse structure to be that of the sphere, so the theorem
generalizes of Example 3.4: However apart from the continuity results of [32]
[59] and [?], it is not known when G and H can be expected to be smooth. It
is even more shocking that no criterion analogous to Theorem 4.1 is known
which guarantees uniqueness of Kantorovich minimizer on the torus — or
indeed on any other compact manifolds M± apart from the sphere.

5 When are optimal maps continuous? Smooth?

Examples 3.2, 3.4 and Theorem 3.5 complement Theorems 2.5 and 3.1 by
providing a variety of settings where the optimal map G is continuous and/or
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support of the optimal measure can actually be shown to be smooth. In each
case, we need the cost to be suitable, the domain geometry to be favorable,
and the measures to be positive, bounded and possibly smooth.

Following the analysis of a number of such examples, including the re-
striction of c(x, y) = − log |x−y| to the unit sphere [83] [84], a general theory
for addressing such questions has begun to be developed, starting from the
pioneering work of Ma, Trudinger and Wang [53], who identified conditions
on the transportation cost c which are close to being necessary and sufficient
for smoothness of G. Their work is set on bounded domains M± ⊂ Rn, and
as we now explain, each of their conditions can be reformulated in terms of
the topology and geometry of the cross-difference δ0(x, y) = δ(x, y; x0, y0)
from (4) and its Hessian h = 1

2
Hess(x0,y0)δ

0.
Where c has full rank 2n, the Hessian h is non-degenerate and can be

understood as a pseudo-Riemannian metric tensor on the product space. Ac-
cording to Claim 2.1, this pseudo-metric tensor is not positive definite, but
instead has the same number of spacelike and timelike dimensions. At each
point point (x0, y0) ∈ N , the light-cone separating these spacelike from time-
like directions consists of the tangent spaces to {x0} ×M− and M+ × {y0}.
However, just as in Riemannian (and Lorentzian) geometry, the pseudo-
metric tensor h induces a geometry on the product space N = M+ ×M−,
including geodesics and a pseudo-Riemannian curvature tensor Ri′j′k′l′ , which
assigns sectional curvature

sec
(N̄,h)
(x0,y0) P ∧Q =

∑

1≤i′,j′,k′,l′≤2n

Ri′j′k′l′P
i′Qj′P k′Ql′

to each pair of vectors P,Q ∈ Tx0,y0N . The explicit formulae expressing
geodesics and the curvature tensor (12) in terms of h can be found in [38] or
deduced from Appendix A; they are precisely analogous to the Riemannian
case.

In terms these notions, we may now state conditions equivalent to those
of Ma, Trudinger and Wang (A1)′–(A4)′ found in Appendix A below:

(A0) c ∈ C4(N̄), and for each (x0, y0) ∈ N̄ = M̄+ × M̄− ⊂ Rn ×Rn:

(A1) (x, y) ∈ N̄ 7→ δ0(x, y) from (4) has no critical points save (x0, y0);

(A2) c has rank 2n, so h =Hess(x0,y0)δ
0 defines a pseudo-metric tensor;

(A3) sec
(N̄,h)
(x0,y0)(p⊕ 0) ∧ (0⊕ q) ≥ 0 for each lightlike (p, q) ∈ T(x0,y0)N̄ ;

(A4) the sets {x0} ×M− and M+ × {y0} are h-geodesically convex.
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Here a subset Z ⊂ N̄ is said to be h-geodesically convex if each pair of points
(x0, y0) and (x1, y1) ∈ Z can be joined by an geodesic in N̄ lying entirely
within Z, geodesics being defined relative to the pseudo-metric h.

The most intriguing of these conditions is the curvature condition (A3).
A large body of example costs which satisfy [53] [49] [18] [38] [27] [28] [43]
[41] [42] [19] or violate it [53] [48] have now been established. Among the
former we may mention the restriction of the Euclidean distance squared
to the graphs M± ⊂ Rn+1 of any pair of 1-Lipschitz convex functions [53],
as well as the Riemannian distance squared on the round sphere [49], and
any products [38], submersions [38] or perturbations [18] [27] [28] thereof.
Among the latter we may mention the Riemannian distance squared on any
manifold (M, gij) with a non-negative sectional curvature somewhere [48],
and the restriction of the Euclidean distance squared to the graphs of two
functions in Rn+1, one of which is convex and the other non-convex [53].
Thus the distance squared in hyperbolic space c = d2

Hn violates (A3), though
c = − cosh dHn satisfies it [45] [42].

To conclude continuity or higher regularity of G at present requires a
slight strengthening of one of the geometric conditions (A3) or (A4). If the
inequality in (A3) holds strictly whenever the h-orthogonal vectors p⊕0 and
0 ⊕ q are non-vanishing, we denote that by (A3)s. If instead the geodesic
convexity of the sets in (A4) is strong (i.e. 2-uniform, in the sense of Example
3.2 or Appendix A), we denote that by (A4)s. Under these assumptions the
following extensions of Theorem 3.1 and Example 3.2 have been proved, in
works of Ma, Trudinger, Wang, Loeper, Liu, Figalli, Kim and myself.

Theorem 5.1 (Continuity and smoothness of optimal maps) Assume
(A0)-(A4) hold, and dµ± = f±dHn are given by densities satisfying log f± ∈
L∞(U±) with U− = M− and U+ ⊂ M+ open. (a) If (A3)s holds, the map
G ∈ Cα

loc(U
+,M−) is Hölder continuous [48], with an exponent α = 1/(2n−1)

known to be sharp [46]. (b) If (A3)s fails but (A4)s holds, the same conclu-
sion persists but with an unknown exponent α independent of c, but presumed
to depend on ‖ log(f+/f−)‖L∞(U+×M−). Either way, higher interior regularity
of G follows from smoothness of f± [47]. If, U± = M± and f± are smooth in
case (b), the smoothness of G shown in [53] extends up to the boundary [79].

It is possible to construct smooth bounded f± for which continuity of G
fails in the absence of either (A3) or (A4) as was done by Loeper [48] and
by Ma, Trudinger and Wang [53] respectively. Still, there are few results
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quantifying the discontinuities of G, except for the cost c(x, y) = 1
2
|x − y|2

of Example 3.2 [85] [23] [24], for which examples of discontinuous maps go
back to Caffarelli [10].

6 Closed forms and c-cyclical monotonicity

The sections above have discussed many necessary conditions for optimal-
ity of γ, but few sufficient conditions. In fact, for bounded continuous
c ∈ C(M+ × M−), a condition on the support S = spt γ well-known to
be necessary and sufficient for optimality in Γ(π+

#γ, π−#γ) is given by:

Definition 6.1 (c-cyclical monotonicity) A set S ⊂ M+ × M− is c-
cyclically monotone if and only if each k ∈ N, sequence (x1, y1), . . . , (xk, yk) ∈
S, and permutation τ on k letters satisfy the following inequality:

k∑
i=1

c(xi, yi) ≤
k∑

i=1

c(xτ(i), yi). (8)

This result can be found in Pratelli [68] or Schachermayer-Teichmann [74],
building on earlier works of Knott-Smith, Gangbo-McCann, Rüschendorf,
and Ambrosio-Pratelli. The case k = 2 corresponds to the c-monotonicity
condition which implies that S is h-spacelike. The result quoted above shows
the cross-difference δ(x, y; x0, y0) is just the first in an infinite sequence of
functions whose non-negativity on Sk for each k ∈ N characterizes optimality
of γ. In fact, since all permutations are made up of cycles, for each k it is
enough to check (8) for the cyclic permutation τ(i) = i + 1 if i < k with
τ(k) = 1. This family of conditions has a differential topological content
whose relevance we now try to make clear.

Choose any map G : U+ ⊂ M+ −→ M− defined on a subset U+ ⊂ M−,
whose graph lies inside S. Any differentiable loop σ : S1 −→ M+ may be
approximated by xi = σ(θi) for a partition 0 < θ1 < · · · < θk ≤ 2π as fine as
we please. The non-negative sums (8) then approximate Riemann sums for
the integral

0 ≤
∫ 2π

0

Dxc(σ(θ), G(σ(θ))) · σ′(θ)dθ

arbitrarily closely. If the form x ∈ U+ 7−→ Dxc(x,G(x)) is continuous on an
open set U+ ⊂ M+ containing σ, then the Riemann integral exists. Since
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the curve can be traversed in either direction, the non-negative integral must
actually vanish, hence the form must be closed: for U+ simply connected,
there would exist u ∈ C1

loc(U
+) such that Dxc(x,G(x)) = Du(x). Similarly, if

G could be continuously inverted on a simply connected domain U− ⊂ M−,
there would exist v ∈ C1

loc(U
−) such that Dyc(G

−1(y), y) = Dv(y). These
suppositions are not so implausible when (A1)–(A2) hold, since S at least
coincides with the graph of a map G and has a well-defined tangent space
Hn-almost everywhere.

However, despite the fact that neither G nor its inverse will be continuous
in general, some vestige of this integrability persists. If c is Lipschitz contin-
uous for example, then (8) implies the existence of Lipschitz u, v such that
c(x, y)−u(x)−v(y) ≥ 0 on N = M+×M− with equality holding throughout
S. This fact, which goes back to [72] [71], is in many senses better than mere
integrability of a form: it requires no topology restriction on the domains,
and not only do we get the first-order condition Du(x) = Dxc(x, y) for those
points (x, y) ∈ S with x in the set of Hn full measure Dom Du where u
is differentiable; as a second-order condition we get positive-definiteness of
the matrix D2

xxc(x, y) − D2u(x) ≥ 0 if x ∈ Dom D2u, and analogous condi-
tions for v. Verily is S contained in the gradient of a convex function when
c(x, y) = −x · y or c(x, y) = 1

2
|x− y|2 on U± ⊂ Rn.

As Gangbo and McCann argue [31], this rough integrability result of
Rockafellar and Rochet implies the famous duality of Kantorovich [36], Koop-
mans and Beckmann [40]:

min
Γ(µ+,µ−)

∫

M+×M−
c(x, y)dγ(x, y) = sup

(u+,u−)∈Lipc

∫

M+

u+dµ+ +

∫

M−
u−dµ− (9)

with the supremum over

Lipc := {u± ∈ L1(dµ+) | c(x, y) ≥ u+(x) + u−(y) throughout N} (10)

being attained at (u+, u−) = (u, v). Indeed, for any (u+, u−) ∈ Lipc, inte-
grating the inequality (10) against γ ∈ Γ(µ+, µ−) yields

∫

M+×M−
cdγ ≥

∫

M+

u+dµ+ +

∫

M−
u−dµ−. (11)

Thus the min dominates the sup in (9). Starting from γ ∈ Γ(µ+, µ−) with c-
cyclically monotone support, Rochet’s generalization of Rockafellar’s theorem
provides (u+, u−) = (u, v) ∈ Lipc — bounded and Lipschitz if c is — such
that equality holds in (11), and hence in (9) as desired.
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7 Connections to differential geometry

We have already seen that the pseudo-Riemannian geometry induced on the
product space N = M+ × M− by the metric tensor h = 1

2
Hess δ0(x0, y0)

plays a key role in determining whether or not maps y = G(x) which solve
Monge’s problem (1) are smooth. Here h is the Hessian of the cross-difference
(4)–(5) associated to the cost c. The antisymmetry

δ(x, y; x0, y0) = δ(x0, y0; x, y) = −δ(x, y0; x0, y)

ensures that h vanishes on n×n diagonal blocks. The involution U(∆x, ∆y) =
(∆x,−∆y) on T(x0,y0)N allows us to define an antisymmetrized analog of h
by

ω(P, Q) = h(P, U(Q)).

Here ω turns out to be a symplectic form if and only if h has the full rank
2n = 2n± that we often assume. Notice the similarity to Kähler geometry,
with the splitting T(x0,y0)N = Tx0M

+⊕Ty0M
− of the tangent space associated

to U playing the role of the almost complex structure J , and the cost c
playing the role of the Kähler potential. For geometric measure theory in
such geometries see Harvey and Lawson [34].

Kim and McCann showed that any c-optimal diffeomorphism G : M+ −→
M− has a graph which is ω-Lagrangian in addition to being h-spacelike.
Conversely, when (A0)–(A4) hold, then any diffeomorphism with an ω-
Lagrangian and h-spacelike graph is necessarily c-optimal [38]. Here a sub-
manifold S ⊂ N is called ω-Lagrangian if ω(P, Q) = 0 for every pair of
tangent vectors P,Q ∈ T(x0,y0)N . Being ω-Lagrangian is essentially the in-
tegrability condition which asserts closure of the form Dxc|(x,G(x)) on M+; it
amounts to equality of the cross-derivatives ∂Gi/∂xj = ∂Gj/∂xi which imply
the existence of u such that G(x) = Du(x) in case c(x, y) = −x · y.

So far these geometric structures — the pseudo-metric h, symplectic form
ω, c-cyclical monotonicity, and c-optimality — reflect only the cost function
c(x, y), and not the densities dµ±(x) = f±(x)dx. Remarkably, however, there
is a conformally equivalent pseudo-metric

h̃(x0, y0) =

(
f+(x0)f

−(y0)

| det ∂2c/∂xi∂yj|
)1/n

h(x0, y0)

for which the graph Graph(G) of an optimal mapping G#µ+ = µ− turns
out to be a zero mean curvature surface — and in fact h̃-volume maximizing
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among homologous surfaces. This surprising connection of optimal trans-
portation to geometric measure theory was discovered with Kim and Warren
[39].

Thus the properties of optimal maps relate to both sectional and mean
curvatures with respect to h̃. On the other hand, in the special case of the
quadratic cost c = d2 on a Riemannian manifold M = M±, several surprising
connections relate optimal transportation to the Riemannian geometry of
(M, gij). For example, in this case Loeper and Villani conjecture [50] —
and in some cases have proved — (A3)s implies convexity of the tangent
injectivity locus, which is to say the cut locus of each given point x0 ∈ M ,
lifted to the tangent space Tx0M

+ by the Riemannian exponential exp−1
x0

.
An earlier development involved lifting the metrical distance d from M to

the space P (M) of Borel probability measures µ± ∈ P (M) using the minimal
transportation cost d2(µ

+, µ−) =
√

cost(γ) with respect to distance squared
c = d2 [6] [20] [64]. Geodesic convexity of various entropy functionals on
P (M) turns out to be equivalent to Ricci non-negativity of (M, g). This
was shown by von Renesse and Sturm [70], building on work of myself [55],
Cordero-Erausquin, Schmuckenschläger and I [15], and Otto and Villani [65].
This idea was turned on its head by Lott-Villani [52] and independently
Sturm [77], who used geodesic convexity of the same entropies to define Ricci
non-negativity in (not necessarily smooth) metric-measure spaces. This non-
negativity is stable under measured Gromov-Hausdorff convergence, and has
significant consequences.

A Ma-Trudinger-Wang conditions

The conditions (A0)-(A4) above have been synthesized in a language se-
lected to manifest their topological and geometric invariance — aspects not
readily apparent [7] from the original formulation by Ma, Trudinger, and
Wang [53] in coordinates on the bounded sets M± ⊂ Rn, as we now recall.

Use subscripts such as i and j to denote derivatives with respect to xi

and yj, and commas to separate derivatives in M+ from those in M−, so
that ci,j = ∂2c/∂xi∂yj and cij.kl = ∂4c/∂xi∂xj∂ykyl, etc. Also let ck,l denote
the matrix inverse of ci,j, and let Dxc(x, y) = (c1, c2, . . . , cn)(x, y). Then
the original conditions of Ma, Trudinger and Wang were formulated as the
existence of a constant C0 > 0 such that:

(A0)′ c ∈ C4(N̄), and for each (x0, y0) ∈ N̄ = M̄+ × M̄− ⊂ Rn ×Rn:
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(A1)′+ the map y ∈ M̄− 7−→ Dxc(x0, y) ∈ T ∗
x0

M+ is injective;

(A1)′ both c(x, y) and c∗(y, x) := c(x, y) satisfy (A0)′ and (A1)′+;

(A2)′ det ci,j(x0, y0) 6= 0;

(A3)′s (−cij,kl + cij,mcm,nckl,n)piqjpkql ≥ C0|p|2|q|2 whenever pici,jq
j = 0;

(A4)′ the sets Dxc(x0,M
−) ⊂ Rn and Dyc(M

+, y0) ⊂ Rn are convex.

Here the Einstein summation convention is in effect, and |p| and |q| denote
the Euclidean norm on p ∈ Tx0M

+ and q ∈ Ty0M
− ⊂ Rn respectively.

Their method is heavily based on a priori C2 estimates, which require a
maximum principle for the directional second derivatives D2

ppu := uijp
ipj of

the unknown maximizers u± ∈ C(M±) for the dual problem (9). A second-
order linear elliptic equation satisfied by D2

ppu is obtained by twice differ-
entiating the prescribed Jacobian equation for the map G, which is a fully
nonlinear Monge-Ampère type equation for the potential u = u+. Condition
(A3)s

′ ensures the zeroth order term in the elliptic equation satisfied by D2
ppu

has a coefficient with the correct sign to admit a maximum principle.
The relaxation (A3)′ of C0 > 0 to C0 = 0 and strengthening (A4)s

′ which
requires all principal curvatures of Dxc(x0,M

−) and Dyc(M
+, y0) to be posi-

tive was introduced in the subsequent investigation of boundary regularity by
Trudinger and Wang [79]. We leave it as an exercise to the reader to confirm
the equivalence of each primed hypothesis (A0)′-(A4)′ and their variants to
the corresponding unprimed hypothesis in the text. The connection of these
conditions to the Riemann curvature tensor

sec
(N̄,h)
(x0,y0)(p⊕ 0) ∧ (0⊕ q) = (−cij,kl + cij,mcm,nckl,n)piqjpkql (12)

and geodesic equations for the pseudo-metric h = 1
2
Hess(x0,y0)δ

0 was first
discovered in my joint work with Kim [38]. However, the link to the cross-
difference δ0(x, y) originates in the present work.
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