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Abstract Hedonic pricing with quasi-linear preferences is shown to be equivalent
to stable matching with transferable utilities and a participation constraint, and to an
optimal transportation (Monge–Kantorovich) linear programming problem. Optimal
assignments in the latter correspond to stable matchings, and to hedonic equilibria.
These assignments are shown to exist in great generality; their marginal indirect pay-
offs with respect to agent type are shown to be unique whenever direct payoffs vary
smoothly with type. Under a generalized Spence-Mirrlees condition (also known as a
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twist condition) the assignments are shown to be unique and to be pure, meaning the
matching is one-to-one outside a negligible set. For smooth problems set on compact,
connected type spaces such as the circle, there is a topological obstruction to purity,
but we give a weaker condition still guaranteeing uniqueness of the stable match.

Keywords Hedonic price equilibrium · Matching · Optimal transportation ·
Spence-Mirrlees condition · Monge–Kantorovich · Twist condition

JEL Classification C62 · C78 · D50

1 Introduction

The goal of this note is to establish and exploit a general, structural equivalence result
between three families of models, two of which are familiar to economists while
the third belongs in mathematics and operational research. Specifically, we consider a
general framework for studying hedonic price problems with quasi-linear preferences,
and show that it is equivalent to a matching model with transferable utilities. From a
mathematical perspective, both problems can in turn be rephrased under the form of a
linear program, in fact an optimal transportation problem of Monge–Kantorovich type.
Secondly, we argue that, due to the wide body of knowledge about linear program-
ming in general, and optimal transportation in particular (see for example Anderson
and Nash 1987; Villani 2003), the reduction of the model to this form seems not only
conceptually clearer, but better adapted to bringing powerful methods of theoretical
and computational analysis to bear on the question.

As an illustration, we first provide a general existence result for the models under
consideration. The result is valid for matching as well as hedonic pricing models. It
applies to multidimensional problems, and does not require single crossing conditions
à la Spence-Mirrlees.1 In the smooth setting, we establish uniqueness of the marginal
payoff with respect to type, even though the optimal matching can be non-unique.

We also clarify the role of the well known Spence-Mirrlees condition, also called the
twist condition in the mathematical literature. In the one-dimensional setting usually
considered by economists, the condition guarantees some form of assortative match-
ing—which, in turn, implies that the equilibrium is both unique and pure, (purity
meaning the matching is one-to-one for almost all agents). As we discuss below, the
notions of purity and uniqueness generalize naturally to multi-dimensions, whereas
the notion of assortative matching does not.

We first describe a generalization of the Spence-Mirrlees condition that is valid in
general type spaces, does not require differentiability of the surplus function, allows
for non-participation, and is not dependent on the coordinates (i.e. the parametrization)
of the problem. We then show that this condition, while sufficient, is not necessary
for uniqueness of the stable match. In particular, we discuss an example in which the

1 Our approach can be viewed as a simplification of the more complex (but ultimately equivalent) for-
mulation of the problem as a convex nonlinear program due to Ekeland (2005, 2009), and subsequently
developed in his joint work with Carlier and Ekeland (2009).
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stable match is unique although the Spence-Mirrlees condition is violated. In such a
case, however, the solution fails to be pure. That is, when Spence-Mirrlees does not
hold, it may be the case that identical agents on one side of the market are matched
with different counterparts, a situation that might be interpreted in terms of mixed
strategies. Lastly, we provide a new and weaker condition that guarantees uniqueness
of the stable match in the matching model (or of the equilibrium in the hedonic model)
even in the absence of pure matching.

In both hedonic models and matching (or assignment) models, much of the intui-
tion economists have developed is restricted to models in which either there is a finite
number of types or in which the agents in the model can be described by a one-dimen-
sional characteristic under a single-crossing property. Much of the discussion in the
theoretical and empirical literature focuses on whether there is positive assortative
matching. The optimal transportation approach, initially introduced by Shapley and
Shubik (1972) and extended to a continuous setting by Gretsky et al. (1992), opens up
the study of hedonic and matching models with multidimensional characteristics, gen-
eral surplus functions, and general distributions of types. The present paper reviews
the relevant results from this literature showing how they can be applied in these eco-
nomic settings. Further, it highlights some significant issues related to the geometry
and topology of the type spaces which have not previously been explored, neither
in the economics nor the mathematics literature. For example, when agent types are
located on a circle, a sphere, or products thereof (such as a periodic square), no smooth
generalization of the Spence-Mirrlees condition can hold, and stable matchings (or
assignments) are not generally pure. The subtwist criterion we introduce resolves
assignment uniqueness in some of these settings, but leaves others as open challenges.
An interesting question that we do not discuss relates to the continuity or smoothness
of the dependence of the buyer’s characteristics on those of the seller with whom he
chooses to match. Significant recent progress on this question is surveyed by Villani
(2009).

Our work builds upon and extends several existing contributions in economics and
in mathematics. Gretsky et al. (1992, 1999) also study the matching of buyers and sell-
ers in an economy with potentially a continuum of agents. In their economy, buyers
and sellers who match are not free to trade any contract. Rather each seller is endowed
with a single contract that they can sell or not. Their economy is thus a hedonic endow-
ment economy, while ours can be seen as hedonic production one. Gretsky et al. (1992)
shows that equilibrium in the endowment economy is equivalent to an optimal trans-
portation problem and to a matching problem. They also prove that equilibrium exists.
Gretsky et al. (1999) analyze the equilibrium in the endowment economy and focus on
its links with perfect competition. They prove that in the continuum economy, perfect
competition (the inability of individuals to influence price) obtains when the social
gains function (i.e. the value of the primal program) is differentiable, or equivalently
when the solution to the dual is unique. They also prove that perfect competition is
generic and provide a sufficient condition for uniqueness of the dual solution. They
do not analyze uniqueness of the optimal assignment or purity of the solution.

Our approach can also be viewed as a simplification of the more complex (but
ultimately equivalent) formulation of the problem as a convex nonlinear program
due to Ekeland (2005, 2009), and subsequently developed in his joint work,
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Carlier and Ekeland (2009). In particular, Ekeland (2005, 2009) also points out the
similarity between hedonic models and optimal transportation problems. He proves
existence of equilibrium under conditions very similar to ours and uniqueness and
purity under an analogous version of the multidimensional Spence-Mirrlees condi-
tion. However, he does not consider our weaker, sufficient condition for uniqueness.

On the mathematical side, multi-dimensional generalizations of the Spence-
Mirrlees condition developed through work of many authors, including Brenier,
Caffarelli, Gangbo, McCann, Carlier, Ambrosio, Rigot, Ma, Trudinger, Wang,
Bernard, Buffoni, Bertrand, Agrachev, Lee, Figalli and Rifford as surveyed by Villani
(2003, 2009). Special cases of costs satisfying the subtwist condition were investi-
gated by Uckelmann (1997), McCann (1999), Gangbo and McCann (2000), Plakhov
(2004), and Ahmad (2004).

In the absence of a Spence-Mirrlees criterion, our uniqueness assignment result
relies on Hestir and Williams’ sufficient condition for extremality among doubly sto-
chastic measures (Hestir and Williams 1995), and a variant thereon from Ahmad et al.
(2009).

2 The basic framework

2.1 The competitive hedonic model

Consider a competitive spot market in which sellers produce and buyers acquire objects
or contracts z which come in a wide range of qualities z ∈ Z0. What is peculiar to
many competitive hedonic markets, including those for housing, workers, vegetables,
automobiles, pensions, insurance contracts, and many others, is that in the spot mar-
ket for these contracts, a large number of buyers and sellers trade fixed quantities,
often small, of contracts whose value (to buyers and/or sellers) depend on quantifi-
able qualities, or characteristics.2 These “hedonic” characteristics are known to the
buyers and/or sellers at the time of the transaction and as a result are reflected in the
equilibrium market price.

Assuming buyer and seller preferences have been specified, the problem posed by
such a market is to decide how supply equilibrates with demand to determine the set
of contracts actually exchanged on the market (or the set of commodities actually
produced and consumed), and the price P(z) at which each type of contract is traded.
Note that such an equilibrium implicitly defines a pairing or matching of buyers with
sellers who choose to enter into this market by agreeing to contract or exchange with
each other.

Standing hypotheses The sets X0, Y0, Z0, of buyer, seller, and contract types, may be
modeled as subsets of complete separable metric spaces, possibly multidimensional.
To allow for the possibility that some agents choose not to participate, we augment
the spaces X := X0 ∪ {∅X }, Y := Y0 ∪ {∅Y } and Z = Z0 ∪ {∅Z } by including an
isolated point in each: a partner ∅X for any unmatched sellers, a partner ∅Y for any

2 These models also apply to markets where prices are nonlinear in quantities because different quantities
are not perfect substitutes and cannot be freely traded.
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unmatched buyers, and the null contract ∅Z . Preferences are encoded into functions
representing the utility u(x, z) of product z ∈ Z to buyer x ∈ X , and the utility
(disutility or cost) v(y, z) of product z ∈ Z to seller y ∈ Y . These utility functions
u : X × Z −→ R ∪ {−∞} and v : Y × Z −→ R ∪ {+∞} are specified a priori,
along with non-negative Borel measures µ0 on X0 and ν0 on Y0 of finite total mass
representing the distribution of buyer and seller types throughout the population. The
utility functions are constrained so that neither the dummy buyer type ∅X nor the
dummy seller type ∅Y can participate in any exchange save the null contract:

u(∅X , z) =
{

0 if z = ∅Z ,

−∞ else; v(∅Y , z) =
{

0 if z = ∅Z ,

+∞ else,
(1)

while the measures µ0 and ν0 are extended to X and Y by assigning mass ν0(Y0) + 1
and µ0(X0) + 1 to the points ∅X and ∅Y , respectively:

µ := µ0 + (ν0(Y0) + 1)δ∅X ν := ν0 + (µ0(X0) + 1)δ∅Y . (2)

The augmented measures balance µ[X ] = ν[Y ] < ∞, so we can renormalize them
to be probability measures (i.e. have unit mass) without loss of generality.3

To guarantee the convergence of various integrals, and attainment of various sup-
rema and infima, we assume throughout (and tacitly hereafter) that u(x, z)<∞ extends
upper semicontinuously to the completion of X × Z and v(y, z) > −∞ lower semi-
continuously to the completion of Y × Z . We normalize the utility of the null-contract
to be zero

u(x,∅Z ) = 0 = v(y,∅Z ), (3)

which can be achieved without loss of generality if the reserve utilities u(x,∅Z ) ∈
L1(X, dµ) and v(y,∅Z ) ∈ L1(Y, dν) are continuous and integrable, by subtracting
them from u and v.

Define the pairwise surplus function

s (x, y) = sup
z∈Z

u(x, z) − v(y, z) . (4)

We assume that for each pair the supremum is attained. Further, in case u or v is
discontinuous or Z fails to be compact (Hildenbrand 1974), we assume the set of
contracts

Z(x, y) = arg max
z∈Z

u(x, z) − v(y, z) (5)

that maximize the surplus (4) is non-empty, compact, and depends upper hemicon-
tinuously on (x, y) ∈ X × Y . It is well-known (Hildenbrand 1974) that there exists

3 The excessive mass on δ∅X and δ∅Y ensures that at least some null types match with each other and obtain
a pairwise surplus of zero.
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a measurable selection, i.e., a Borel function z0 : X × Y → Z such that z0 (x, y) is
contained in Z (x, y) for all (x, y).

In case u or −v fails to be bounded, we assume there exist q̄ ∈ L1(X, dµ) and
r̄ ∈ L1(Y, dν) which extend to real-valued lower semi-continuous functions on the
completions cl X and cl Y of their domains such that

sup
x∈cl X

u(x, z) − q̄(x) ≤ inf
y∈cl Y

v(y, z) + r̄(y) (6)

for all z ∈ Z . This is roughly equivalent to the existence of prices on Z which make
the indirect utilities integrable. Given any µ-measurable map f : Dom f −→ Z on a
subset Dom f ⊂ X , we define a measure on Z , called the push-forward of µ through
f , by the formula ( f#)µ(B) = µ( f −1(B)) for Borel B ⊂ Z . Here µ-measurability
simply means f −1(B) differs from a Borel set by set of µ outer-measure zero.

Suppose P : Z −→ R ∪ {±∞} denotes the competitive market price of quality
z ∈ Z . To allow non-participation, it is subject to the constraint P (∅Z ) = 0. We
assume that buyer utility is linear in price so that in such a market, the indirect utility
available to buyer type x ∈ X is defined by the quasi-linear utility maximization

U (x) = sup
z∈Z

{u(x, z) − P (z)} . (7)

Here U (x) ≥ 0 is non-negative since ∅Z ∈ Z; each buyer x retains the right not to
consume. Similarly, we assume seller utility is linear in price so that the indirect utility
available to seller type y ∈ Y is given by the utility maximization

V (y) = sup
z∈Z

{P(z) − v(y, z)} , (8)

with V (y) ≥ 0 and vanishing in the case of non-participation. We make the con-
ventions (−∞) − (−∞) = −∞ and ∞ − ∞ = −∞ to resolve ambiguities in (7)
and (8).

Let α be a non-negative measure on X × Y × Z . The support of α refers to the
smallest closed set Spt (α) ⊆ X × Y × Z of full mass. The measure α represents an
assignment of buyers and sellers to each other and to products. We use the push-for-
ward notation to denote its marginal projections π X

# α and πY
# α under mappings such

as π X (x, y, z) = x and πY (x, y, z) = y on X × Y × Z .
The pair (α, P) is an hedonic equilibrium if these projections coincide with the

initial measures on each set:

π X
# α = µ (9)

πY
# α = ν

and if, for α-almost all points (x, y, z) ∈ Spt α, we have that

U (x) = u(x, z) − P(z) (10)

V (y) = P(z) − v(y, z) .
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In such an equilibrium, each triple (x, y, z) ∈ Spt α represents a mutually agree-
able exchange of contract z between seller y and buyer x , where z is a contract most
favored by both seller y and buyer x independently, given market prices P . The prices
are market clearing, in the sense that the assignment α is consistent with the utility
maximization of both buyers and sellers (10) while simultaneously balancing sup-
ply with demand (9). Since the prices of untraded commodities potentially affect the
indirect utilities U (x) and V (y), prices for these commodities are subject to upper
and lower bounds in a market at equilibrium. We use the term market clearing pair
synonymously with equilibrium pair. This notion of equilibrium allows for the possi-
bility that some agents are indifferent between multiple qualities in Z . Indeed, when
α assigns a buyer x to multiple sellers or contracts, we may interpret the conditional
distribution implied by α as a mixed strategy for buyer x . In such an equilibrium, the
assignment α must still ensure that the number of buyers and sellers of each contract
type are compatible in the sense of (9).

2.2 The associated matching problem

Similarly, models of one-to-one matching with transferable utility are used to analyze
marriage markets, labour markets and the matching of students to schools to under-
stand who matches with whom in an equilibrium stable matching. In these models
the partners on each side of the matching have characteristics that affect the surplus
that may be attained by any matched pair. The characteristics of the agents matched
are reflected in the equilibrium matching and in the utility payoffs that each agent
obtains. Formally, a matching model is defined by two spaces X and Y defined as
above and an upper semicontinuous mapping s: cl(X × Y ) −→ [0,∞[ which rep-
resents the surplus that can be generated by any pair (x, y) in X × Y if matched
together. Under transferable utility, for any match (x, y) the surplus s(x, y) can be
distributed between the partners: i.e., x receives some u(x) and y receives some v(y)

with u(x) + v(y) = s(x, y).
As stated in introduction, there is a natural, one-to-one correspondence between

hedonic models and matching problems. We first characterize the pairwise matching
problem derived from the hedonic price model just described.

Characterization The basic idea is very simple. For each pair (x, y) ∈ X × Y ,
recall the pairwise surplus function s defined in (4). In words, whenever a buyer x is
matched with a seller y, they generate together the total surplus s(x, y), defined as a
maximum over the set Z of possible commodities. Then s : X × Y −→ [0,∞[ is
upper semicontinuous by our assumptions (3), and the set Z (x, y) where the supre-
mum is attained (5) is non-empty, compact-valued, and upper hemicontinuous. Our
normalizations (1)–(3) permit either buyer or seller to go unmatched (to match with a
null type) and force the utility of the unmatched state to be zero:

s(x,∅Y ) = u(x,∅Z ) = 0

s(∅X , y) = −v(∅Z , y) = 0.
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One can then define a pairwise matching problem by the set of buyers (X, µ),

the set of sellers (Y, ν), and the pairwise surplus defined by the surplus function s.
An assignment (or a matching) is defined as a measure γ on X × Y , the marginals
of which coincide with µ and ν. Using the same notations as above, we thus write
that

π X
# γ = µ

πY
# γ = ν

(11)

where the projection mappings π X (x, y) = x and πY (x, y) = y this time are defined
on X × Y . If (x, y) ∈ (X0 × Y0) ∩ Spt (γ ) , we say that x and y are matched. A
buyer may be matched to multiple sellers and vice versa. If x ∈ X0 and there is no
y ∈ Y0 such that (x, y) ∈ Spt (γ ) , we say that x is unmatched (and similarly for
y).

A payoff corresponding to γ is a pair of functions Ū : X → R and V̄ :Y → R with
the normalization Ū (∅X ) = 0 such that for γ -a.e. (x, y) ∈ Spt (γ ),

Ū (x) + V̄ (y) ≤ s (x, y) . (12)

Finally, an outcome is defined as a triple
(
γ, Ū , V̄

)
where

(
Ū , V̄

)
is a payoff corre-

sponding to γ .
We have thus showed how one can associate, to any hedonic problem, a matching

model. Note that the converse is also true: for every matching problem defined by the
upper semicontinuous surplus function s(x, y), one can trivially construct a hedonic
problem from a suitable choice of utility functions.

For example Z = Y , u = s, with v(y, y) = 0 and v(x, z) = +∞ for all z �= y.
Smoother examples are more involved to articulate but also possible; in fact, every
upper semicontinuous surplus function s(x, y) ≥ 0 and continuous assignment z(x, y)

can be shown to arise from a hedonic model.

Stability Following the literature,4 we define stability by:

Definition 1 An outcome
(
γ, Ū , V̄

)
is stable if for any (x, y) ∈ X × Y ,

Ū (x) + V̄ (y) ≥ s(x, y) . (13)

Note, that this definition implies that a stable outcome satisfies

Ū (x) ≥ s(x,∅Y ) = 0

V̄ (y) ≥ s(∅X , y) = 0

for all x ∈ X and for all y ∈ Y. In words: a match is stable if two conditions are
fulfilled:

4 See for instance Roth and Sotomayor (1990).
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1. No matched agent would be better off unmatched.
2. No two agents x and y, who are not matched together, would both prefer being

matched together than their current situation.

To see the link between the formal and informal definitions, consider an outcome(
γ, Ū , V̄

)
that satisfies (13). The functions Ū (x) and V̄ (y) can be interpreted as the

utilities derived by x and y from the outcome at stake. As noted above, restriction
(13) immediately implies condition one. In addition, restriction (13) along with the
definition of a payoff implies that Ū (x)+ V̄ (y) = s (x, y) for γ -a.e. (x, y) ∈ Spt (γ ).
Finally, restriction (13) guarantees that any two agents (x, y) /∈ Spt (γ ) who are not
matched with each other, cannot generate a surplus larger than Ū (x)+ V̄ (y). Indeed,
if x and y were such that s (x, y) > Ū (x) + V̄ (y), then it would be the case that (i)
they are not matched together in the outcome under consideration, and (ii) they can
both improve their utility by leaving their current situation and rematching together.
But such a situation would violate the definition of stability.

Finally, a matching γ is stable if there exists a payoff
(
Ū , V̄

)
such that the outcome(

γ, Ū , V̄
)

is stable.
A well known result, in our transferable utility context, is that a matching is stable

if and only if it maximizes total surplus.5 Define for each matching γ the total surplus

γ [s] =
∫

X×Y

s (x, y) dγ (x, y) .

Then

Proposition 1 (Gretsky et al. 1992) A matching γ of (X, µ) with (Y, ν) is stable if
and only if there exists no other matching γ ′ such that

γ ′ [s] > γ [s] .

It follows that the matching problem is itself equivalent to a linear programming
problem of the optimal transportation type, as we next discuss.

2.3 The transportation problem

We claim that in fact both hedonic pricing and stable matching lead to the problem of
pairing buyers (X, µ) with sellers (Y, ν) so as to optimize the average (or total) of the
surplus function s(x, y). This problem can be expressed as a linear program:

Program (MK) (Monge–Kantorovich) Given an upper semi-continuous function
s : X × Y −→ [0,∞] on two probability spaces (X, µ) and (Y, ν), solve

max
γ∈�(µ,ν)

γ [s] (14)

5 Shapley and Shubik (1972) prove this result in the matching problem with a finite number of types.
Gretsky et al. (1992) extend the Shapley Shubik result to the economy with a continuum of types.
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over the set of measures

�(µ, ν) = {0 ≤ γ on X × Y | π X
# γ = µ, πY

# γ = ν}. (15)

with prescribed marginals. Here the π are the projections: π X (x, y) = x and
πY (x, y) = y.

Dual program (MK′) This surplus maximization can be interpreted as an optimal
transportation problem of Monge–Kantorovich form (Monge 1781; Kantorovich 1942;
Rachev and Rüschendorf 1998; Villani 2003). The dual linear program, found by
Kantorovich and his collaborators, is posed as follows. Define

µ [q] =
∫
X

q (x) dµ (x)

and

ν [r ] =
∫
Y

r (y) dν (y) .

Then the Kantorovich dual program is:

min
(q,r)∈Lips (µ,ν)

{µ [q] + ν [r ]} (16)

where Lips(µ, ν) consists of all pairs of functions q ∈ L1(X, dµ) with q(∅X ) = 0
and r ∈ L1(Y, dν) which satisfy the constraint6

q(x) + r(y) ≥ s(x, y) ∀ (x, y) ∈ X × Y. (17)

Interestingly, the dual constraints (17) exactly reproduce the stability conditions
(13) of the matching problem. Indeed, for any stable match, the dual variables q(x)

and r(y) can be interpreted as a payoff.
A key property of the primal–dual pair is that for all γ that are feasible for (MK)

and for all pairs (q, r) feasible for (MK′)

γ [s] ≤ µ [q] + ν [r ] . (18)

Moreover, a feasible triple (γ, q, r) produces equality in (18) (if and) only if γ max-
imizes (MK) and the pair (q, r) minimize (MK′). The only if statement is obvious
and plays a crucial role hereafter; the if statement is the basic duality result from
linear programming (see e.g., Anderson and Nash 1987; Gretsky et al. 1992 or
Villani 2003); it can also be recovered as a special instance of the existence of a Nash

6 The choice q(∅X ) = 0 costs no generality. Theorem 1 then implies r(∅Y ) = 0 for any pair (q, r) achieving
the infimum (16), in view of our normalization (2).
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equilibrium in an infinite-dimensional, two-player, zero-sum, bilinear, mixed-strategy
game (von Neumann 1953).

3 Stable matching and hedonic pricing via optimal transportation

3.1 The matching problem: an existence result

A first outcome of the previous arguments is a general existence result for the optimal
transportation problem, therefore for the matching problem. Specifically, the upper
semi-continuity of s(x, y) ≥ 0 guarantees that the maximum (14) is attained. It has
a finite value if the dual problem is feasible in which case the minimum (16) is also
attained (Kellerer 1984). To summarize, we quote Villani (2009, Theorem 5.10), giv-
ing the obvious extension from complete separable metric spaces to subsets X and Y
thereof, whose closures will be denoted cl X and cl Y :

Theorem 1 (Existence and duality) Let subsets X and Y of complete, separable metric
spaces be equipped with Borel probability measures µ and ν and an upper semicon-
tinuous function s: cl(X × Y ) −→ [0,∞[. Assume some feasible (q̄, r̄) ∈ Lips(µ, ν)

extend to real-valued lower semicontinuous functions satisfying q̄(x)+r̄(y) ≥ s(x, y)

on cl X × cl Y . Then the maximum (14) is attained by some γ ∈ �(µ, ν) and the min-
imum (16) by some (q, r) ∈ Lips(µ, ν). Moreover, γ [s] = µ[q] + ν[r ] < ∞, and γ

assigns zero outer measure to the complement of the zero set

S := {(x, y) ∈ X × Y | q(x) + r(y) − s(x, y) = 0}. (19)

Proof Since X̃ := cl X and Ỹ = cl Y are themselves complete separable metric
spaces, the theorem follows immediately from Villani (2009, Theorem 5.10) assum-
ing X and Y are complete. When X and Y are incomplete, µ extends to a Borel
probability measure µ̃ on the closure X̃ which assigns zero outer measure to X̃ \ X ,
so that X is µ̃-measurable even if it is not Borel. Similarly, ν extends to a Borel prob-
ability measure ν̃ on Ỹ . Villani asserts the existence of optimizers γ̃ ∈ �(µ̃, ν̃) and
(q̃, r̃) ∈ Lips(µ̃, ν̃). Moreover γ̃ assigns zero outer measure to the complement of
X × Y , hence restricts to the γ -measurable set X × Y and induces a Borel measure
γ ∈ �(µ, ν) there, with γ [s] = γ̃ [s]. Similarly, the µ̃-measurable and ν̃-measurable
functions (q̃, r̃) restrict to µ- and ν-measurable functions (q, r) ∈ Lips(µ, ν) which
satisfy the conclusions of the theorem. ��

Notice our assumptions (3)–(6) on the utilities u(x, z) and v(y, z) imply the surplus
s(x, y) defined by (4) satisfies all hypotheses of this theorem.

Remark 1 (s-convex payoff functions) Define

rs(x) = sup
y∈Y

s(x, y) − r(y) (20)

qs̃(y) = sup
x∈X

s(x, y) − q(x) (21)
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in which case we say q is s-convex and r is s̃-convex (Rachev and Rüschendorf 1998;
Villani 2003). It is important to note that any feasible pair (q, r) in (16) can be replaced
by (rs, r) and hence (rs, rss̃) without increase in cost. Since rss̃s = ((rs)s̃)s = rs ,
it costs no generality to take (q, r) = (rs, qs̃), meaning q = qs̃s and r = rss̃ . Any
minimizing pair from the theorem above therefore satisfies (q, r) = (rs, rss̃) on a set
of full µ× ν measure—which implies the µ-measurability of the s-convex minimizer
rs (and the ν-measurability of r s̃s) as required. If s is actually continuous then all
s-convex functions are lower semi-continuous (hence Borel measurable) whether or
not they are minimizers. These well known facts play a key role in the proof that the
minimum is attained, in the developments to come, and in computational strategies to
approximate a solution to the minimization.

The geometry of the set S defined in (19) takes center stage in the analysis which
follows, since this set determines which buyers can match with which sellers at equilib-
rium. For example, it is well known that in the one-dimensional matching model with
D2

xys (x, y) > 0, there is a unique optimal assignment that involves positive assor-
tative matching. In this case, the set S is the graph of a strictly increasing function
y = f (x) .

Economically, the solutions (q, r) of the dual problem are also important because
they represent the utility payoffs obtained by each type. Even for x �∈ Spt µ, the range
of allowed values for q(x) has economic relevance, since it bounds the payoff available
when a few new buyers of type x choose to enter the established market; similarly, at
y �∈ Spt ν the range of values for r(y) bounds the payoff available when a few sellers
of type y enter the established market.

3.2 Existence of an hedonic equilibrium

It remains to show that the existence result obtained in the matching problem implies
the existence of an hedonic equilibrium. Given the structure of the relationship between
the two problems, it is clear that if buyer x and seller y are matched in the matching
problem, they will trade some common quality z in an hedonic equilibrium. What has
to be constructed is a price schedule P (z) that supports those trades.

Recall the definition of Z(x, y) given in (5) and let z0 (x, y) ∈ Z (x, y) be a mea-
surable selection. The main result is the following:

Proposition 2 (Equilibrium prices) Let γ solve the primal program (14) and (q, r)

solve the dual program (16). Then there exist a price function P : Z −→ R ∪ {±∞}
satisfying

Pmax(z) := inf
y∈Y

{v (y, z)+r (y)}≥ P (z)≥ sup
x∈X

{u (x, z)−q (x)}=: Pmin(z). (22)

With α ≡ (idX × idY × z0)# γ , any such P forms an equilibrium pair (α, P).

Note that the left side of (22), Pmax (z), is the minimum equilibrium willingness to
accept of all sellers in the market: no sellers will trade z unless P (z) ≥ Pmax (z). Simi-
larly, the right side of (22), Pmin (z), is the maximum equilibrium willingness to pay of
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all buyers. No buyers will trade z unless P (z) ≤ Pmin (z). When Pmax (z) > Pmin (z)
no trade takes place. When Pmax (z) = Pmin (z), an exchange may be made by the set
of buyers and sellers who attain the infimum and supremum.

Proof Combining (17) with the definition of the surplus s:

q(x) + r(y) ≥ s (x, y) ≥ u (x, z) − v (y, z) on X × Y × Z ,

hence

v (y, z) + r (y) ≥ u (x, z) − q(x) on X × Y × Z

and

inf
y∈Y

{v (y, z) + r (y)} ≥ sup
x∈X

{u (x, z) − q (x)} on Z .

which shows that Pmax (z) ≥ Pmin (z). Now, choose any function P (z) satisfying
(22); the infimum or supremum themselves would suffice.

The basic duality result from linear programming asserts γ [s] = µ[q] + ν[r ] =
γ [q + r ], since γ ≥ 0 has µ and ν for marginals. Thus equality holds for γ -a.e. (x, y)

in the inequality (17); i.e. whenever γ matches buyer x with seller y. Consider x̄ who
is matched with ȳ, in the sense that they belong to the Borel set S defined in (19). This
is the set of full γ measure where equality holds in the dual inequality constraints.
Since the pair (x̄, ȳ) agree on their preferred contracts z̄ ∈ Z(x̄, ȳ) attaining (4),

q (x̄) + r (ȳ) = s (x̄, ȳ) = u (x̄, z̄) − v (ȳ, z̄) ,

and we have

v (ȳ, z̄) + r (ȳ) = P (z̄) = u (x̄, z̄) − q (x̄)

on the set T := {(x̄, ȳ, z̄) ∈ X × Y × Z | z̄ ∈ Z(x̄, ȳ))}. Upper hemicontinuity of
Z(x̄, ȳ) implies T is closed, while z0(x̄, ȳ) ∈ Z(x̄, ȳ) implies Spt α ⊂ T . Our choice
(22) of price now yields

u (x̄, z) − P (z) ≤ q (x̄) = u (x̄, z̄) − P (z̄) ∀z ∈ Z

and

P (z) − v (y, z) ≤ r (ȳ) = P (z̄) − v (ȳ, z̄) ∀z ∈ Z

so that z̄ maximizes both u (x̄, z) − P (z) and P (z) − v (ȳ, z). Since the equalities
hold for (x̄, ȳ, z̄) in a set (S × Z) ∩ Spt α of full measure for α, we conclude that
(α, P) is a market-clearing hedonic equilibrium pair. ��
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The result implies that to any stable match corresponds an hedonic equilibrium.
Therefore, the existence result derived in the previous section has the immediate,
following consequence:

Corollary 1 The hedonic model described in Sect.1 has an equilibrium.

It is important to note that existence obtains in a general context. No restriction
is imposed on the dimension of the spaces at stake nor on the measures describing
the distributions of types. Both discrete and continuous distributions are allowed.
Moreover, no specific assumptions are made on u and v beyond the standard ones. In
particular, we do not assume any Spence-Mirrlees condition. Our result thus establishes
the existence of hedonic equilibria in a fully general context.7

Finally, it is interesting to note that the converse is also true: to any hedonic equi-
librium, one can associate a stable match, as asserted by the following result:

Lemma 1 Let (α, P) be a hedonic equilibrium pair. If u ∈ C(X × Z) and v ∈
C(X × Z) are continuous, then the indirect utilities U (x) and V (y) from (7) to (8)
minimize Kantorovich’s dual problem (16), while γ = (

π X × πY
)

# α maximizes the
primal problem (14). Here π X (x, y, z) = x and πY (x, y, z) = y.

Proof First observe that equilibrium condition (9) states that γ has µ and ν for mar-
ginals, hence is a feasible competitor in the Monge–Kantorovich primal program (14).
The definitions (7) and (8) of U (x) and V (y) imply

U (x) + V (y) ≥ u (x, z) − v (y, z) (23)

for all z ∈ Z . Taking the supremum over z ∈ Z implies that (U, V ) is a feasible
pair for the Kantorovich dual program (16); they are lower semi-continuous due to
continuity of u and of v. Moreover, equilibrium condition (10) forces equality in (23)
for α-a.e. (x, y, z) ∈ Spt (α) , hence

U (x) + V (y) = s(x, y).

The lower bounds U, V ≥ 0 permit this to be integrated against α, yielding

∫
U (x) dµ (x) +

∫
V (y) dν (y) =

∫
s (x, y) dγ (x, y) .

Hence γ maximizes the primal program whilst the pair (U, V ) minimizes the dual
program. ��

In other words, (i) the hedonic pricing problem with quasi-linear utility, (ii) the
stable matching problem with transferable utility, and (iii) the optimal transportation
problem are equivalent; none is more nor less general than the others. Moreover,
approximate solutions can be computed using linear programming techniques. This

7 Ekeland (2005, 2009) presents an alternative proof based on convex programming instead of linear
programming. Gretsky et al. (1992) prove existence in a version of the model in which sellers are endowed
with z. That is, v(y, z) = +∞ unless y = z, so seller utility is simply v (z).
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opens up the study of these problems in empirical settings in which the type spaces
are high dimensional, have both discrete and continuous elements, and have different
dimensions on the buyer and seller side of the market. More work needs to be done to
study these problems in these applied settings.

In theoretical settings, one obtains necessary and sufficient conditions for the opti-
mal assignment or the stable matching, now shown to exist, via the Kuhn–Tucker
conditions from linear programming. The form of these conditions in the optimal trans-
portation context is well-understood (Rachev and Rüschendorf 1998; Villani 2009).
In a suitably weak topology, one could also show that the solution depends contin-
uously on the data in the sense that the limit of a sequence of solutions to different
problems is a solution of the limiting problem. However, to make concrete statements
about uniqueness of the solution or the form of the optimal measure γ , one requires
additional structure on the problem. This is the topic of the next section.

4 Uniqueness and purity

4.1 Pure solutions

We consider two properties of the equilibrium, namely uniqueness and purity. Gretsky
et al. (1992) study whether the dual has unique solutions; i.e. whether the equilibrium
payoffs to agents are unique. They derive a condition equivalent to this in terms of dif-
ferentiability of the social gains function, prove genericity of this property, and provide
a sufficient condition for uniqueness of payoffs in a certain range of environments.

When empirical issues are at stake, however, uniqueness of payoffs may not be suf-
ficient. Two issues should be considered here. First, uniqueness of the matching itself is
an important property; if not satisfied, more sophisticated econometric techniques are
needed to account for the possible multiplicity of equilibria. Second, empirical works
devoted to identification (particularly in the hedonic framework) usually assume that
the equilibrium is pure, in the sense that the mapping between producers and buyers is
deterministic (or, equivalently, the support of the optimal measure in the X × Y space
is born by the graph of a function). Intuitively, an equilibrium is pure if (almost) all
agents have a pure strategy at equilibrium, i.e., for each agent there exists one trad-
ing partner that she chooses with probability one. In the opposite case of a non-pure
equilibrium, a non-null set of agents are either indifferent between several partners, or
indifferent between action and inaction; then equilibrium may require randomization
or mixed strategies. Again, such situations require the use of econometric techniques
specifically designed for set identification. On both issues, the reader is referred to the
paper by Galichon and Henry in this issue.

In the smooth setting, we first complement existing results by giving alternative suf-
ficient conditions for uniqueness of marginal payoffs in terms of exogenous parameters
of the hedonic model. We then focus our attention on purity, and show that a generalized
version of the standard, Spence-Mirrlees condition guarantees both uniqueness and
purity of the optimal solution. Finally, we provide a weaker condition that is sufficent
for uniqueness, but not for purity, of the solution.
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A couple of well-known examples illustrate these ideas. We start with a standard
situation in which the Spence-Mirrlees condition guarantees a unique, pure equilib-
rium.

Example 1 (Positive assortative matching) Consider a hedonic economy in which
X0 = Y0 = Z0 ⊆ R are intervals. Assume s (x, y) is twice differentiable in the
interior of X0 × Y0 and extends to a continuous bounded function on its closure. If
D2

xys (x, y) > 0, then there is a unique equilibrium, it involves positive assortative
matching, and all but countably many agents have a pure strategy optimum. The same
facts are true if s (x, y) is supermodular, in the sense that whenever x > x ′ and y > y′
then

s (x, y) + s
(
x ′, y′) > s

(
x ′, y

) + s
(
x, y′)

Both D2
xys (x, y) > 0 and supermodularity of s (x, y) are versions of a Spence-

Mirrlees or single-crossing condition.

At the opposite end of the spectrum, we may have models in which a continuum of
(pure and non-pure) equilibria exist:

Example 2 (Orthogonal surplus) Consider a plane, and let X0 be the interval [0, 1]
on the horizontal axis, and Y0 be the interval

[− 1
2 , 1

2

]
on the vertical axis; both sets

are equipped with the uniform distribution. Finally, consider the surplus s (x, y) =
2 − x2 − y2; i.e., any match generates a surplus of two, from which a transportation
cost equal to the square of the distance between the two points is withdrawn. Then
the maximum aggregate surplus, equal to 5/12, is obtained by uncountably many
measures γ , including pure solutions (e.g., the uniform distribution over the graph of
functions like f (x) = 1/2 − x or f (x) = x − 1/2) and non-pure solutions (e.g. the
uniform distribution over the square [0, 1] × [− 1

2 , 1
2

]
).

These examples suggest interesting conclusions. First, additional restrictions are
clearly needed to guarantee either uniqueness or purity. In the first example, a standard
Spence-Mirrlees condition produces assortative matching, which in turn guarantees
uniqueness and purity. Note, however, that in this example (as in the second one) the
sets X0 and Y0 are one-dimensional.

When we move away from the one-dimensional matching model, the concept of
assortative matching is not well-defined. In such economies, in which X0 and Y0 are
not subsets of the real line and the surplus s need not be differentiable, a condition
more general than the Spence-Mirrlees conditions above is required. In this section
we recall such a condition. The generalized Spence-Mirrlees condition (or ‘twist con-
dition’, as it is known in the mathematics literature) is sufficient for both uniqueness
and purity. We develop a version of this condition that is valid in general type spaces,
does not require differentiability of the surplus function, allows for non-participation,
and is not dependent on the coordinates (i.e. the parametrization) of the problem. This
condition also need only apply to either the buyers or the sellers.

Finally, we emphasize that uniqueness and purity are different concepts. For inst-
ance, a unique equilibrium may fail to be pure, as we illustrate in an example. Therefore,
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we introduce a condition (called subtwist below) weaker than generalized Spence-
Mirrlees, and we show that this condition is sufficient for uniqueness but not purity.
Let us define the concept of pure matchings formally.

Definition 2 (Pure) Let X = X0 ∪ {∅X } and Y = Y0 ∪ {∅Y } be subsets of complete,
separable metric spaces augmented with isolated points ∅X , ∅Y , and equipped with
Borel probability measures µ and ν. A feasible (but not necessarily optimal) solution
γ ∈ �(µ, ν) to (MK) program (14) is pure if there exists a function f :X0 −→ Y
such that γ is concentrated on the graph of f , in the sense that γ assigns zero outer
measure to the set {(x, y) ∈ X0 × Y | y �= f (x)}.

In words, if the solution is pure, then there exists a well-defined function f such
that any x ∈ X0 is matched with probability one to y = f (x). The set of buyers
who remain indifferent between action or inaction, or between two or more preferred
sellers, forms a set of measure zero; almost every buyer has a pure (as opposed to
mixed) preference for whether he wishes to buy, and if so from whom. Such a pure
solution will entail a pure matching of buyers and sellers to products if Z(x, f (x)) :=
arg maxz∈Z {u (x, z) − v ( f (x) , z)} is a singleton. Note that most empirical studies
consider only solutions which are pure, and for which Z(x, f (x)) consists of a single
contract (for µ almost all x ∈ X0).

4.2 A generalized Spence-Mirrlees (twist) condition

A standard tool in economic approaches to matching or hedonic problems is the
Spence-Mirrlees condition—also known as the twist condition in the mathematics
literature (Villani 2009).

Though the Spence-Mirrlees condition has been generalized to multidimensional
type spaces—see Gangbo (1995), Carlier (2003) or Ma et al. (2005)—one may notice
that the vast majority of economic studies still adopt a one-dimensional version of the
condition.

Let us first specialize to the Lipschitz-buyer setting, meaning the space of buyers
X0 is an n-dimensional manifold (smooth without loss of generality), and the surplus
function s(x, y) and distribution dµ0(x) of buyers enjoy a sufficiently smooth depen-
dence on x ∈ X0, as we now make precise. We describe this setting as Lipschitz-buyer
to emphasize that Y0 and Z0 may or may not be smooth manifolds, and could even
be finite spaces as when a continuum of buyers match with finitely many sellers. In
this and subsequent definitions (of the twist and subtwist conditions, and of numbered
limb systems), we go to some trouble to define notions which are independent of local
choices of coordinates on the manifold X0.

The reason for this is the following. Imagine a model which matches workers with
varying skill levels x ∈ X0 with firms which employ different technologies y ∈ Y0.
Obviously the skill level of the workers can be assessed (or parameterized) in many
different ways. However, the question of whether the surplus function s(x, y) is Lips-
chitz, semiconvex, twisted or subtwisted should be independent of the methodology
used to assess the worker’s skill levels, at least among methodologies which provide
equivalent information. This principle of parametrization independence also plays
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a striking role in the theory addressing smoothness of the assignment y = f (x) of
workers to tasks (Kim and McCann 2009). The reader may prefer to skip the formal
definitions, consulting instead the examples of relevance immediately thereafter.

Definition 3 (Lipschitz and semiconvex functions) Let X0 be a smooth n-dimensional
manifold and X = X0 ∪ {∅X }. Then s : X × Y −→ R is said to be Lipschitz on X0
uniformly in Y if for each (nonmaximal) coordinate ball BR ⊂ X0\∂ X0, there is a
constant CB depending on the coordinates and the ball, but independent of y, such
that all x, x̄ ∈ BR satisfy

|s(x, y) − s(x̄, y)| ≤ CB‖x − x̄‖, (24)

where ‖x‖ = 〈x, x〉1/2 denotes the distance and inner product in coordinates. Simi-
larly, s(x, y) is semiconvex on X0 uniformly in Y if for each nonmaximal coordinate
ball BR ⊂ X0\∂ X0, there is a function ωB(r) depending on the coordinates and the
ball, but independent of y ∈ Y , such that 0 = limr→0 ωB(r)/r , and for each x̄ ∈ BR

there exists p̄ ∈ Rn such that

s(x, y) ≥ s(x̄, y) + 〈 p̄, x − x̄〉 + ωB(‖x − x̄‖) (25)

holds for all x ∈ BR and y ∈ Y . A function q : X −→ R is said to be Lipschitz
on X0, or semiconvex on X0, if s(x, y) = q(x) independent of y ∈ Y satisfies the
corresponding definitions above.

This definition of semiconvexity—which is sometimes called locally uniform sub-
differentiability—is weaker than the standard one, in which 2ωB(r) = CBr2, but has
been chosen for consistency with usage in Villani (2009, Proposition 10.12). It might
be appropriate to add the adjective local to the definitions of Lipschitz and semiconvex
given above, as Villani does, but since differentiable manifolds are defined by local
charts, there is no good definition for what it might mean for a function thereon to
be globally Lipschitz, so we omit the adjective local for brevity whenever we feel
confusion cannot arise. For this purpose, we overlook the fact that X0 was assumed
to be a metric space at the outset.

Definition 4 (Lipschitz-buyer and semiconvex-buyer settings) Assume, in addition
to the hypotheses of Theorem 1, that X0 is a smooth n-dimensional manifold and µ

a Borel probability measure on X := X0 ∪ {∅X }. The setting is Lipschitz-buyer if µ

concentrates no mass on subsets of X0 which have zero volume, and if moreover the
surplus function s ∈ C(X × Y ) is locally Lipschitz on X0 uniformly in Y . Similarly,
the setting is semiconvex-buyer if µ concentrates no mass on countably rectifiable
hypersurfaces8 in X0, and the surplus function s ∈ C(X × Y ) is locally semiconvex
on X0 uniformly in Y .

8 Here sets of zero volume refer to sets which are Lebesgue negligible in any and hence all coordinate
charts on X0. A countably rectifiable hypersurface refers to a set which is contained in a countable union
of Lipschitz hypersurfaces; more precisely, it is countably (n − 1)-rectifiable in local coordinates on X0,
in the sense of Definition 10.47 of Villani (2009).
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As the next examples show, our model falls into the semiconvex-buyer setting
whenever the buyer’s utility u(x, z) or the surplus function s(x, z) is sufficiently
smooth. Although its description appears more technical, the semi-convex buyer set-
ting has the advantage that the measure µ may be more concentrated than the Lipschitz-
buyer setting allows. In particular, a measure µ0 on the interval X0 = [0, 1] satisfies
the semiconvex-buyer hypothesis as long as it assigns zero mass µ0({x}) = 0 to
each type x ∈ [0, 1]; it need not be absolutely continuous with respect to Lebesgue
measure, as the Lipschitz-buyer hypothesis would require. This improvement can be
traced back to McCann (1995) and Gangbo and McCann (1996).

Example 3 (Lipschitz-buyer) If X0 is a smooth manifold and Y is compact, any sur-
plus function s(x, y) locally Lipschitz on X0 × Y also satisfies (24). Similarly if X0
is a smooth manifold, Z is compact, and v : Y × Z −→ R is arbitrary, any util-
ity function u(x, z) locally Lipschitz on X0 × Z induces a surplus (4) satisfying the
Lipschitz-buyer hypothesis (24).

Example 4 (Semiconvex-buyer) If X0 and Y0 are smooth manifolds and Y0 is com-
pact, any surplus function s ∈ C2(X0 ×Y0) also satisfies (25). If X0 and Z0 are smooth
manifolds and Z0 is compact, and v:Y × Z −→ R is arbitrary, any utility function
u ∈ C2(X0 × Z0) induces a surplus (4) satisfying the semiconvex-buyer hypotheses,
despite the fact that s(x, y) will not generally be differentiable.

Although the surplus function (4) may fail to be differentiable, the Lipschitz-buyer
setting guarantees the surplus s(x, y) is locally Lipschitz9 with respect to x ∈ X0,
with Lipschitz constant independent of y ∈ Y . This in turn guarantees any s-convex
function q = qs̃s will be locally Lipschitz on X0, hence (by Rademacher’s theorem)
differentiable on a set Dom Dq ⊂ X0 of full measure. The derivative Dq(x) is a vec-
tor in the cotangent space T ∗

x X0 to X0 at the point x ∈ Dom Dq. Given q:X0 −→ R
locally Lipschitz, we define its superdifferential ∂q(x0) at x0 ∈ X0 to consist of the
set of covectors w ∈ T ∗

x0
X0 such that

q(x) ≤ q(x0) + 〈w, x − x0〉 + o(‖x − x0‖) as x → x0, (26)

with the error term allowed to depend on x0 and on the coordinates chosen. For fixed
y ∈ Y , we define the superdifferential ∂x s(x0, y) ⊂ T ∗

x0
X of s(x, y) with respect to x

analogously.
Before proceeding, let us state a uniqueness proposition which does not require fur-

ther assumptions. This proposition asserts µ-a.e. uniqueness of the marginal payoff Dq
with respect to buyer type, which may or may not determine the payoff q(x) uniquely
depending on the connectivity properties of Spt µ0 ⊂ X0, and whether the participa-
tion constraint is active. Still, this proposition yields a point of contact between our
work and that of Gretsky et al. (1999), by giving alternative sufficient conditions on
the measures and surplus function to enforce uniqueness of marginal payoffs. Note
however, in the absence of further assumptions such as the twist condition from Def-
inition 5, our proof of this proposition may not extend to the Lipschitz-buyer setting.

9 See Theorem 10.26 of Villani (2009). The same technique validates the claims made in Examples 3–4.
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Our proposition is inspired by a pressure uniqueness result of Brenier concerning fluid
mechanics (Brenier 1993).

Proposition 3 (A semiconvex buyer’s marginal payoffs are unique) Let s : X×Y −→
[0,∞[ be defined on probability spaces (X, µ) and (Y, ν) in the semiconvex-buyer
setting. If both (q, r) = (rs, qs̃) and (q̃, r̃) = (r̃ s, q̃ s̃) ∈ Lips(µ, ν) minimize (16),
then q and q̃ are (locally) semiconvex and Dq = Dq̃ holds µ-almost everywhere on
X\{∅X }.10

Proof Suppose (q, r) = (rs, qs̃) ∈ Lips(µ, ν) minimizes (16). Since q = r s̃ , q
is lower semicontinuous by the continuity assumption s ∈ C(X × Y ). It is locally
semiconvex and hence differentiable except on a countably rectifiable hypersurface
in {x ∈ X0 | q(x) < ∞} by Villani (2009, Theorems 10.8(iii) and 10.26). Let

S := {(x, y) ∈ X × Y | q(x) + r(y) − s(x, y) = 0}. (27)

denote the closed set where the lower semicontinuous non-negative function q(x) +
r(y) − s(x, y) vanishes. Since µ concentrates no mass on the Lipschitz hypersur-
faces where differentiability of q fails, all joint measures γ ∈ �(µ, ν) assign full
mass to A = Dom Dq × Y in the semiconvex-buyer setting, noting the convention
∅X ∈ Dom Dq. Moreover, at least one optimizer γ ∈ �(µ, ν) exists, and its support
is contained in the closed set S, according to Theorem 1.

If X and Y are complete separable metric spaces, let K denote the σ -compact carry-
ing the full mass of γ provided e.g., by Dudley (2002, p. 255) or Villani (2006, Theorem
I-55), so that µ vanishes outside the σ -compact projection of K ∩ Spt γ through π X .
Now suppose x0 ∈ π X (K ∩ Spt γ ) ∩ Dom Dq\{∅X }. Then there exists (x0, y0) ∈
Spt γ ⊂ S, whence the first-order condition for vanishing in (27) implies superdiffer-
entiability of s(x, y0) at x0 with Dq(x0) ∈ ∂x s(x0, y0). On the other hand, semicon-
vexity implies subdifferentiability and hence differentiability of x ∈ X0 −→ s(x, y0)

at x0, and its super- and subdifferentials must both then coincide with {Dx s(x0, y0)},
as in Gangbo and McCann (1996). Thus Dq(x0) = Dx s(x0, y0). Notice the right hand
side depends only on (x0, y0) ∈ Spt γ such that x0 ∈ π X (K ∩ Spt γ ) ∩ Dom Dq \
{∅X }, and is otherwise independent of q. If a second semiconvex function q̃ mini-
mized (16), we would similarly have Dq̃(x0) = Dx s(x0, y0) = Dq(x0) on the set
π X (K ∩Spt γ )∩Dom Dq ∩Dom Dq̃ of full µ0 measure, to establish the proposition.

If X and Y are merely subsets of complete separable metric spaces, we use their
completions X̃ and Ỹ to find a σ -compact set K̃ ⊂ X̃ ∩ Ỹ carrying the full mass of γ ,
and establish the result on the intersection of the σ -compact set π X̃ (K̃ ∩ Spt γ ) with
Dom Dq ⊂ X , which still carries the full mass of µ. ��

We now state a generalization of the Spence-Mirrlees condition appropriate to the
Lipschitz-buyer setting.

10 It costs no generality to assume (q, r) = (rs , qs̃ ). Indeed, from Remark 1, we know ((rs )s̃ )s = rs

quite generally, and any minimizing pair (q, r) agrees with
(

rs , rss̃
)

∈ Lips (µ, ν) up to L1 (µ) × L1 (ν)

negligible distinctions.
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Definition 5 (Twisted-buyer condition) In the Lipschitz-buyer setting, a surplus func-
tion s : X ×Y −→ [0,∞[ is said to be twisted-buyer if there is a set X L ⊂ X0 of zero
volume such that ∂x s(x0, y1) is disjoint from ∂x s(x0, y2) for all x0 ∈ X0 \ X L and
y1 �= y2 in Y . The same definition applies in the semiconvex-buyer setting, except that
X L must then lie in a µ-negligible set, such as a countably rectifiable hypersurface.

Example 5 A surplus differentiable with respect to x is twisted-buyer if and only if
there is a negligible set X L ⊂ X0 of buyers such that: for each distinct pair of sellers,
any critical points of the function x ∈ X0 −→ s(x, y1) − s(x, y2) lie in X L .

For instance, the surplus function s(x, y) = 2 − |x − y|2 on disjoint open sets
X0, Y0 ⊂ Rn is both twisted-buyer and twisted-seller. We must insist on disjointness of
X0 and Y0 since for y ∈ X0 the function x ∈ X0 −→ s(x, y)−s(x,∅Y ) = 2−|x −y|2
has x = y as a critical point. This fact has been exploited in matching problems with
optional participation, as in Caffarelli and McCann (2009). On the other hand, with
the surplus function of Example 2, neither the twisted-buyer nor the twisted-seller
condition is satisfied, since s(x, y1)− s(x, y2) = (y2)

2 − (y1)
2 does not depend on x .

The twisted-buyer condition has two consequences which are well-known (see
Carlier 2003; Gangbo 1995 or Ma et al. 2005) provided that at equilibrium, par-
ticipation is complete. It guarantees the Monge–Kantorovich maximization (14) is
attained by a unique assignment γ of buyers with sellers. Moreover, it also implies
this unique maximizer is pure, meaning there is a mapping f :X → Y defined µ-
almost everywhere such that γ = (idX × f )#µ. The following theorem confirms
that the twisted-buyer condition formulated above guarantees uniqueness and purity
of the mixed solution even when the situation is complicated by the presence of the
isolated point ∅X in X = X0 ∪ {∅X } representing the null buyer. The proof makes
use of results found in Hestir and Williams (1995) and Ahmad et al. (2009), which
allow us to establish a unique representation of the equilibrium measure simply by
showing that almost all sellers have pure preferences at equilibrium. In Appendix A
we recapitulate those results and in Appendix B give the full proof of Theorem 2 not
only for the sake of completeness, but also to illustrate the efficacy of Lemma 3 and
Theorem 4.

Theorem 2 (Twisted-buyers induce pure and unique assignments) Let s : X ×Y −→
[0,∞[ be a twisted-buyer surplus function, defined on probability spaces (X, µ) and
(Y, ν) in either the Lipschitz-buyer or semiconvex-buyer setting. Then the maximizer
γ of (14) on �(µ, ν) is unique. Moreover, there is a µ0 measurable map f :X0 −→ Y
such that γ = γ0 + γ1 where γ1 = (idX0 × f )#µ0 and γ0 = (∅X × idY )#(ν −πY

# γ1).

Proof See Appendix B.
As anticipated, the set (19) takes center stage in the analysis there.

4.3 Examples of twisted-buyer costs

Since the surplus depends on the utility functions, it is useful to have criteria on
u(x, z) and v(y, z) which guarantee s(x, y) is twisted. One such criterion is given by
the following example.
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Example 6 Consider the Tinbergen (1956) model. Here, X = Y = Z = Rn with
u(x, z) = 1

2 (x − z)′ A (x − z) and v(y, z) = 1
2 (y − z)′ B (y − z) with A and B

symmetric and with A − B < 0. Then

s (x, y) = 1

2

(
x ′ Ax − y′ By

) − 1

2
(Ax − By)′ (A − B)−1 (Ax − By)

and

Dx (s (x, y1) − s (x, y2)) = −1

2
(A − B)−1 B ((y1 − y2)) A′.

This only equals zero when y1 = y2 so s (x, y) satisfies the both buyer and seller twist
condition.

In this model, the hedonic equilibrium is unique. Buyers’ willingness to pay is

WTP = 1

2
(x − z)′ A (x − z) − q (x) .

If A < 0 and B > 0, buyers with smaller values of |x − z| are willing to pay more for
z and sellers with smaller values of |y − z| are willing to accept more. The willingness
to pay curves of different buyers never cross. The exact balance of buyers and sellers
across locations depends on the distributions of buyer and seller types in the economy.

As a more general example in which the twist condition is satisfied, consider the
following lemma.

Lemma 2 (Utilities yielding a twisted surplus) Let X0, Y0, Z0 ⊆ Rn be open domains
with X0 and Y0 convex. Take u ∈ C2(X0×Z0) and v ∈ C2(Y0×Z0) with Dx u(x, z) �=
0 on X0 × Z0. For µ0 × ν0 a.e. (x, y), assume Z(x, y) = arg maxz∈Z {u(x, z) −
v(y, z)} = {z0(x, y)} is a singleton, and for all (x, y) ∈ X0 ×Y0 assume M + Mt > 0,
where

M = D2
xzu(x, z0)(D2

zzu(x, z0) − D2
zzv(y, z0))

−1 D2
zyv(y, z0)

and z0 = z0(x, y). Then s(x, y) satisfies the twisted-buyer condition.

Proof Ignoring ∅Z , the surplus function is given by

s(x, y) = max
z∈Z0

{u(x, z) − v(y, z)}.

Since z0(x, y) is unique and on the interior of Z0 by assumption, and since u and v

are differentiable, z0(x, y) satisfies

Dzu(x, z0) − Dzv(y, z0) = 0. (28)

The envelope theorem then implies differentiability of s at (x, y), and

Dx s(x, y) = Dx u(x, z0(x, y)). (29)
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If for each x ∈ X0, y ∈ Y −→ Dx s(x, y) is injective, then s(x, y) satisfies the twist
condition. Since Y is convex, a sufficient condition for this is the positive (or nega-
tive) definiteness of the quadratic form D2

xys(x, y). Since z0 = z0(x, y) maximize
surplus, D2

zzu(x, z0) − D2
zzv(y, z) ≤ 0, and the inequality is strict by hypothesis. The

implicit function theorem then implies continuous differentiability of z0(x, y) in (28).
Differentiating (29) with respect to y yields

D2
xys(x, y) = D2

xzu(x, z0(x, y))Dyz0(x, y), (30)

while differentiating (28) with respect to y yields

(D2
zzu(x, z0) − D2

zzv(y, z0))Dyz0(x, y) − D2
zyv(y, z0) = 0. (31)

These combine to give

Dyz0(x, y) = (D2
zzu(x, z0) − D2

zzv(y, z0))
−1 D2

zyv(y, z0) (32)

which, substituted into (30) yields

D2
xys(x, y) = D2

xzu(x, z0(x, y))(D2
zzu(x, z0) − D2

zzv(y, z0))
−1 D2

zyv(y, z0). (33)

By hypothesis, this matrix is positive definite as required. ��
When n = 1, this lemma gives the setting whose empirical properties are studied

in Heckman et al. (2005). When n = 1, this also reduces to the usual Spence-Mirrlees
conditions D2

xzu �= 0 �= D2
yzv on u and v separately plus strict concavity with respect

to z of the difference u(x, z) − v(y, z).

4.4 The subtwist: a weaker condition for uniqueness

A priori, there does not seem to be any economic reason why the twist condition
should be expected to hold.11 Whether or not twisting is necessary to guarantee purity
of assignments for general measures µ0 and ν0 in the Lipschitz-buyer setting is an
open question. The good news, however, is that it is certainly not necessary to guaran-
tee uniqueness of the assignment γ . Though it is frequently assumed to be satisfied in
applications where the spaces of buyers X0 and sellers Y0 are subsets of Rn , this is not
always the case. There are also important settings where twisting cannot be satisfied.
Taking X L = ∅ for simplicity, no differentiable surplus function satisfies the twist
condition on a compact space X0 such as the circle or sphere Sn := {‖x‖2 = 1 | x ∈
Rn+1}—or the periodic cube Tn = Rn/Zn—since x ∈ X0 −→ s(x, y1) − s(x, y2)

obviously has critical points where its maximum and minimum are attained. If the
buyers and sellers were distributed continuously over the surface of the planet or

11 For many common economic models, the twist condition cannot actually hold. For instance, it is typically
violated in models of horizontal differentiation on a circle (see Example 4.20 for an illustration).
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around locations on an expressway encircling a city, there would be no hope of twist-
ing. This situation is not much improved by assuming X L non-empty: no surplus
s(Rx, Ry) = s(x, y) ∈ C1(Sn × Sn) invariant under all rotations R of the sphere
X0 = Sn = Y0 can be twisted, since no negligible set X L �= ∅ is rotationally invari-
ant. Similarly, no surplus s(x + k, y + k) = s(x, y) ∈ C1(Tn × Tn) invariant under
all translations k ∈ Rn can be twisted in the periodic setting. Clearly there are topo-
logical obstructions to twisting. It is a fundamental open question to understand when
uniqueness of equilibria can be expected to persist in such settings. We give a sufficient
condition which resolves this question in settings such as the circle and sphere—where
x ∈ X0 −→ s(x, y1) − s(x, y2) has only two critical points. This would not be the
case in the periodic setting T2, and we do not know a single example of a smooth
surplus function for which the (MK) solution to program (14) with µ0 � vol can
generally be expected to be unique in this geometry.

The following theorem guarantees uniqueness of the optimal assignment γ . Even
when all buyers elect to participate, there are many examples where the unique assign-
ment will not be pure, meaning a positive fraction of buyers remain indifferent between
two or more preferred sellers at equilibrium.

Definition 6 (Subtwist condition) In the Lipschitz-buyer setting, a surplus function
s : X × Y −→ [0,∞[ is said to be subtwisted if there is a set X L ⊂ X0 of zero
volume such that whenever ∂x s(x0, y1) intersects ∂x s(x0, y2) for some x0 ∈ X0\X L

and y1 �= y2 ∈ Y , then x0 is either the unique global maximum or the unique global
minimum of s(x, y1) − s(x, y2) on X = X0 ∪ {∅X }. The same definition applies in
the semiconvex-buyer setting, except that X L must then lie in a µ-negligible set, such
as a countably rectifiable hypersurface.

Example 7 A surplus differentiable with respect to x is subtwisted if and only if there
is a negligible set X L ⊂ X0 of buyers such that: for each distinct pair of sellers, the
function x ∈ X0\X L −→ s(x, y1) − s(x, y2) has no critical points except for at most
one global maximum and at most one global minimum.

Theorem 3 (Unique equilibria with mixed assignments) If probability spaces (X, µ)

and (Y, ν) and a surplus function s(x, y) satisfy the subtwist condition in the Lipschitz-
buyer or semiconvex-buyer setting, then the maximizer γ of (14) is unique. Moreover,
γ is supported on a numbered limb system with three limbs, as in Definition7.

Proof See Appendix C. ��

4.5 Circular assignment: example of a subtwisted cost

The preceding theorem generalizes results of Gangbo and McCann (2000) and Ahmad
(2004). A special case of these earlier results yields the following illustrative example,
as in Ahmad et al. (2009). In Appendix D, we describe an algorithm for computing an
approximate solution for this example.

Example 8 (School districts on a ringroad) Consider a simple model of spatial match-
ing in which a continuum of students and a continuum of schools are located at points
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on a circular expressway around a city. The pairwise surplus from matching a student
to a school is a decreasing function of distance due to commuting costs; in particular,
each student x would prefer to be matched to a school with the same location as hers
to minimize transportation expenses.

Formally, thus, let X0 = Y0 = S1 and s(x, y) = 1 + cos (2π (x − y)) where each
x represents a student and each y represents a school. The rate at which the surplus
decreases is increasing for |x − y| ≤ 1

4 . However, it is decreasing for 1
4 ≤ |x − y| ≤ 1

2 .
Note that s (x, y) ≥ 0, so that participation is complete. Also, the model does not sat-
isfy the twist condition. Indeed, the surplus s is differentiable, but for any (y1, y2)

the function s (x, y1) − s (x, y2) admits x = y1+y2
2 ± 1

4 as its global maximum and
minimum; in particular, they are critical points.

Now, assume first that µ = ν, meaning students and schools have the same dis-
tribution on the circle. Then the unique solution of the primal surplus maximization
problem would have support on the graph y = x . Every student would travel a max-
imum distance of zero. Any pair (q, r) of non-negative constants q(x) = q0 and
r(y) = r0 such that q0 + r0 = 2 would solve the dual problem. This is a case in which
the assignment is unique and pure, despite the fact that the twist condition does not
apply. Note however, that the equilibrium price (22) is not uniquely determined until
a choice of utility transferred q0 ∈ [0, 2] is made. This ambiguity in price would be
resolved in scenarios where some students or schools choose not to participate, either
because of a net imbalance between supply and demand, or due to a uniform increase
in the commuting costs.

However, the model becomes much more interesting when the densities associ-
ated with µ and ν are different. Assume µ and ν are those detailed in Appendix D
and shown in Fig. 1. Specifically, the distribution of students is concentrated around
x = 1

4 while the distribution of schools is concentrated around y = 3
4 . That is, most of

the students live on the north side of the city while most of the schools are located on
the south side. In this case, the optimal matching is still unique; but it is very different
from the previous case. Indeed, it is impossible to match each student to a school near
to their residence. The support of the unique optimal measure, computed using the
method described in Appendix D, is shown in Fig. 2. All students x ∈ [

0, 1
8

]∪ [ 3
8 , 1

]
,

are matched to a single school near to their home. For example, x = 0.1 is matched
to y = 0.867. All students x ∈ ( 1

8 , 3
8

)
are matched to two schools; one at a distance

less than or equal to 1
4 and one at a distance greater than 1

4 . In the equilibrium these
students are indifferent between the two locations.12

Students from location x , obtain a surplus equal to q(x). Schools in location y,

obtain a surplus r(y). The surplus functions of the students and schools are displayed
in Fig. 3. The students and schools that are in scarce supply, x = 3

4 and y = 1
4 , obtain

the highest surplus. Those who are abundant, x = 1
4 and y = 3

4 , obtain the lowest.
The optimal measure assigns a fraction of each of the abundant students and schools

12 The apparent indifference of certain students to three or more schools is due to the limited resolution of
our computation in Fig. 2. Otherwise, the solution would violate a theorem of Gangbo and McCann (2000).
We do not know whether the true solution has the triple junctions suggested by the figure, or gaps separating
the increasing from the decreasing curves. However, Ahmad (2004) asserts the number of triple junctions,
if any, cannot exceed two.
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Fig. 1 Densities of students and schools on the circle in Example 8
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Fig. 2 Numerical support of optimal assignment in Example 8

to each of two locations, one less than a distance of 1
4 , one greater than this distance.

Because there is such a large number of students near x = 1
4 and schools near y = 3

4 ,

there is a social benefit from having some students travel a great distance. Technically,
the measure γ on each branch is calculated as follows. Figure 2 depicts two limbs of
a numbered limb system:
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Fig. 3 Indirect utilities of students and schools computed numerically

y = f2 (x) for x ∈ [0, 1] and y ∈
(

5
8 , 7

8

)

x = f3 (y) for y ∈
[
0, 5

8

]
∪ [ 7

8 , 1
]
.

The third limb f1 (y) :
(

5
8 , 7

8

)
→ {∅X } is not displayed. These limbs define the support

of the optimal measure. The optimal measure is given by

γ3 = ( f3 × idY )# ν
∣∣
Dom f3

γ2 = (idX × f2)#

(
µ − π X

# γ3

)∣∣∣
Dom f2

γ1 = ( f1 × idY )#

(
ν − πY

# γ2

)∣∣∣
Dom f1

= 0.

In the example, we see the matches (x, y) ∈ X × Y0 between γ -a.e. participating
pair can be found in the graph of one of two mappings g: Dom g ⊂ Y0 −→ X or
f : Dom f ⊂ X0 −→ Y0, with range of f disjoint from Dom g. This should be con-
trasted with the Spence-Mirrlees (twisted) case, where the matches lie on the graph of
a single map f :X0 −→ Y , à la Monge. It can also be compared with the necessary and
nearly sufficient condition given in Hestir and Williams (1995) for a doubly stochastic
measure γ ∈ �(λ, λ) on the square X0 = Y0 = [0, 1] to be extremal, which asserts
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that the support of γ must lie in a numbered limb system, with at most countably many
limbs; see also Appendix A. In our theorem the system consists of three limbs, while
in the twisted-buyer case it consists of two limbs. We do not know of any convenient
condition on the surplus function which could lead to unique matches γ concentrated
on a system with four or more numbered limbs. However, developments so far sug-
gest the maximal number of limbs must generally be linked to the complexity of the
(Morse) critical point structure of the function x ∈ X0 −→ s(x, y1) − s(x, y2).

Alternately, taking student assignments to schools to be fixed, Example 8 can par-
layed into an example set on the periodic square T2 instead of the circle, by allowing
students without cars to contract with students who drive to school to achieve desirable
carpooling arrangements. There are then two kinds of students, and the type space of
each is two-dimensional, consisting of a residential and a school location. In this case,
topology forces even the subtwist condition to fail, leaving uniqueness an unresolved
issue for all smooth surpluses!

5 Multiple-agent contracts

The hedonic pricing and matching problems we have discussed admit a natural gener-
alization to the setting in which each contract z requires the participation of k agents
chosen from different type spaces (X1, µ1), …, (Xk, µk). Carlier and Ekeland (2009)
study this problem and establish existence of equilibrium. In this section, we show
how to formulate their multiple agent contract problem as a linear program, instead
of as a convex program.

The case k = 2 has been discussed above, but for k > 2 we assume the utility
of contract z ∈ Z to agent x ∈ Xi is given by an upper semicontinuous function
ui : cl(Xi × Z) −→ R ∪ {−∞} plus any compensation Pi (z) he receives. Thus the
indirect utility available to him is

Ui (x) = sup
z∈Z

{ui (x, z) + Pi (z)},

with the usual convention −∞ + ∞ = −∞. The payments Pi (z) are assumed to
satisfy a frictionless trading condition 0 = ∑k

i=1 Pi (z) on Z which prevents arbi-
trage and neglects friction. Payments corresponding to the null contract must vanish
Pi (∅Z ) = 0. As before, each type space Xi = X0

i ∪ {∅i } includes an isolated dummy
agent type of mass

µi (∅i ) = 1 +
∑
j �=i

µ j

(
X0

j

)
,

and satisfies

ui (x, z) =
{

0 if z = ∅Z and x ∈ Xi ,

−∞ if z ∈ Z \ {∅Z } and x = ∅i .
(34)
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A joint measure α on X1 ×· · ·× Xk × Z together with frictionless payment schedules
Pi : Z −→ R ∪ {±∞} represent a market clearing equilibrium if it has marginals
π

Xi
# α = µi for each i = 1, . . . , k, and

Ui (xi ) = ui (xi , z) + Pi (z)

holds for each i = 1, . . . , k and α-a.e. (x1, . . . , xk, z) ∈ Spt α. Here, π Xi (x1,

. . . , xk, z)xi ∈ Xi for each i = 1, . . . , k.
Define the non-negative surplus function

s(x1, . . . , xk) = max
z∈Z

k∑
i=1

ui (xi , z).

The same arguments presented above show equivalence of this hedonic pricing prob-
lem to the linear program

max
γ

γ [s],

where the maximum is taken over all joint measures γ ≥ 0 on X1 × · · · × Xk having
prescribed marginals µi = π

Xi
# γ . The dual infimum

min
qi :Xi −→[0,∞]

k∑
i=1

µi [qi ] (35)

is taken over functions qi satisfying s(x1, . . . , xk) ≤ ∑k
i=1 qi (xi ) on X1 × · · · × Xk ,

normalized so q1(∅1) = 0. Duality still holds γ [s] ≤ ∑
µi [qi ], with equality if

and only if γ is a maximizer and (q1, . . . , qk) minimizes. As before, it follows from
q1(∅1) = 0 that qi (∅i ) = 0 for each i ≤ k. The existence and characterization
of maximizers, minimizers, and equilibria is identical, but the literature exploring
conditions on the surplus which guarantee uniqueness of the maximizing assign-
ment or assortative matching is much more limited in the multiple marginal case; see
Rachev and Rüschendorf (1998) and Gangbo and Świȩch (1998) for references. The
frictionless transfer payment Pj (z) required by the agent playing the j th role in the
contract z ∈ Z is related to the equilibrium payoffs qi (xi ) of all types by

Pj (z) = Tj (z) − 1

k

k∑
j=1

Ti (z),

Ti (z) = inf
xi ∈Xi

qi (xi ) − ui (xi , z).

(36)

Let us also observe that the uniqueness of marginal payoffs proved in Proposition 3
extends immediately to the multiple agent problem. Thus if µ1 vanishes on all count-
ably rectifiable hypersurfaces of a smooth manifold X0

1 := X1\{∅1}, and the surplus
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function s ∈ C(X1 × · · · Xk) is semiconvex on X0
1, uniformly in the other k − 1

variables, and (q1, . . . , qk) minimizes (35) with q1 semiconvex, then Dq1 is uniquely
determined µ1 almost everywhere on X0

1.

Appendix

A Supports of extremal doubly stochastic measures

The uniqueness of optimal assignments is established above using Hestir and William’s
(1995) characterization of extremal doubly stochastic measures in terms of their sup-
ports, or more precisely a variant of this characterization formulated by Ahmad et al.
(2009). We summarize hereafter the characterization in the form that we need.

An important property of pure solutions is that the equilibrium is uniquely deter-
mined by the profile of buyers and their strategies. The first result that we shall use
from Ahmad et al. (2009) allows us to establish a unique representation of the equi-
librium measure simply by showing that almost all sellers have pure preferences at
equilibrium, as in Theorem 2. What separates the following lemma from antecedents
such as Lemma 2.4 of Gangbo and McCann (2000) is that µ0-measurability of f is a
consequence and not a hypothesis. This improvement was derived using an argument
from Villani (2009, Theorem 5.28).

Lemma 3 [Pure measures are push-forwards (Ahmad et al. 2009)] Let X0 and Y0 be
subsets of complete separable metric spaces, and γ ≥ 0 a σ -finite Borel measure on
the product space X0 × Y0. Denote the left marginal of γ by µ0 := π

X0
# γ . If γ is

concentrated on the graph of f : X0 −→ Y0, meaning {(x, y) ∈ X0 × Y0 | y �= f (x)}
has zero outer measure, then f is µ0-measurable and γ = (idX0 × f )#µ0.

The preceding lemma shows that any measure that is concentrated on a graph is
uniquely determined by its marginals. This would be the case for optimal measures in
the twisted-buyer setting. Uniqueness, however, does not require the twist condition to
be satisfied; as the next result demonstrates, the sufficient conditions given by Lemma 3
and Theorem 2 are far from necessary for uniqueness of the equilibrium—a peculiarity
of continuous type spaces X .

Given a map f : D −→ Y on D ⊂ X , we denote its graph, domain, range, and the
graph of its (multivalued) inverse by

Graph( f ) := {(x, f (x)) | x ∈ D},
Dom f := π X (Graph( f )) = D,

Ran f := πY (Graph( f )),

Antigraph( f ) := {( f (x), x) | x ∈ Dom f } ⊂ Y × X.

More typically, we will be interested in the Antigraph(g) ⊂ X ×Y of a map g : Dom g
⊂ Y −→ X . Following Hestir and Williams (1995) we define:

Definition 7 (Numbered limb system) Let X0 and Y0 be subsets of complete separable
metric spaces. A relation S ⊂ X0×Y0 is a numbered limb system if there is a countable
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disjoint decomposition of X0 = ∪∞
i=0 I2i and of Y0 = ∪∞

i=0 I2i+1 with a sequence of
maps f2i : Dom( f2i ) ⊂ X0 −→ Y0 and f2i+1 : Dom( f2i+1) ⊂ Y0 −→ X0 such
that S ⊂ ∪∞

i=1 Graph( f2i ) ∪ Antigraph( f2i−1), with Dom( fk) ∪ Ran( fk+1) ⊂ Ik

for each k ≥ 0. The system has (at most) N limbs if Dom( fk) = ∅ for all k >

N .

Notice the map f0 is irrelevant to this definition though I0 is not; we may always
take Dom( f0) = ∅, but require Ran( f1) ⊂ I0. The point of this definition is the
following sufficient condition for extremality in �(µ, ν). In case Graph( f2i ) and
Antigraph( f2i−1) are (Borel) measurable subsets of X0 × Y0 for each i ≥ 1, the suffi-
ciency of this condition was established by Hestir and Williams (1995). The following
variant of this result was formulated in Ahmad et al. (2009), where a direct proof has
also been given. It plays a key role in Theorem 3. If γ assigns zero outer measure
to the complement of S in X0 × Y0, we say γ vanishes outside of S. In this case S
is γ -measurable, meaning it belongs to the completion of the Borel σ -algebra with
respect to the measure γ .

Theorem 4 (Numbered limb systems support unique equilibria) Let X0 and Y0 be
subsets of complete separable metric spaces, equipped with σ -finite Borel measures
µ on X0 and ν on Y0. Suppose there is a numbered limb system S ⊂ ∪∞

i=1 Graph( f2i )∪
Antigraph( f2i−1) with the property that Graph( f2i ) and Antigraph( f2i−1) are
γ -measurable subsets of X0 × Y0 for each i ≥ 1 and for every γ ∈ �(µ, ν) vanishing
outside of S. If the system has finitely many limbs or µ[X0] < ∞, then at most one
γ ∈ �(µ, ν) vanishes outside of S. If such a measure exists, it is given by γ = ∑∞

k=1 γk

where

γ2i = (idX0 × f2i )#η2i , γ2i−1 = ( f2i−1 × idY0)#η2i−1, (37)

η2i =
(
µ − π

X0
# γ2i+1

) ∣∣Dom f2i , η2i−1 =
(
ν − π

Y0
# γ2i

) ∣∣Dom f2i−1. (38)

Here fk is measurable with respect to the ηk completion of the Borel σ -algebra. If the
system has N < ∞ limbs, then γk = 0 for k > N, and ηk and γk can be computed
recursively from the formulae above starting from k = N.

Measurability of the graphs and antigraphs is required by Theorem 4 only to decom-
pose each candidate γ into countably many pieces, to which Lemma 3 can then be
applied.

The application of these results to deduce Theorem 3 also requires an elementary
measurability lemma from point set topology:

Lemma 4 Let A and B be topological spaces and Z ⊂ A × B be closed. If g : A ×
B −→ R ∪ {−∞} is upper semi-continuous, and B is σ -compact, then

h(a) := sup
{b∈B|(a,b)∈Z}

g(a, b)

is Borel.
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Proof Exhaust B = ∪Bk using countably many compact sets Bk ⊂ Bk+1. Set

hk(a) = sup
b∈B

gk(a, b) = max
b∈Bk

gk(a, b)

where

gk(a, b) :=
{

g(a, b) if (a, b) ∈ Z ∩ (A × Bk),

−∞ otherwise,

is upper semi-continuous.
Defining the levels sets Hλ

k = {a ∈ A | hk(a) ≥ λ} and Gλ
k = {(a, b) ∈ A × Bk |

gk(a, b) ≥ λ} yields Hλ
k = π A(Gλ

k ). The projection Hλ
k of the closed set Gλ

k is easily
seen to be closed using compactness of Bk . Thus hk ≤ hk+1 is a sequence of upper
semi-continuous functions increasing monotonically to a Borel limit h = supk hk

on A. ��

B Proof of Theorem 2

Theorem 1 and Remark 1 provide a non-negative s-convex minimizing pair (q, r) =
(rs, qs̃) to the dual problem (16). Recall that q is then locally Lipschitz on X0, by
Villani (2009, Theorem 10.26), and r = qs̃ is lower semi-continuous in (21) by the
continuity assumption s ∈ C(X × Y ). The same theorem shows q to be locally semi-
convex in the semiconvex-buyer setting. Let

S := {(x, y) ∈ X × Y | q(x) + r(y) − s(x, y) = 0}.

denote the closed set where the non-negative function q(x)+ r(y)− s(x, y) vanishes.
Since µ concentrates no mass on subsets of zero volume and X0\ Dom Dq has zero
volume, all joint measures γ ∈ �(µ, ν) assign full mass to A := (Dom Dq\X L) × Y
in the Lipschitz-buyer setting, with the convention ∅X ∈ Dom Dq. The same con-
clusion is true in the semiconvex-buyer setting, since µ is then assumed to vanish
on the countably rectifiable hypersurface where differentiability of q fails, recalling
Theorem 10.8(iii) of Villani (2009). Moreover, all optimizers γ ∈ �(µ, ν) vanish
outside S, according to Theorem 1. At least one optimizer exists, due to the (upper
semi-) continuity of s ∈ C(X × Y ). The next step of the proof will be to show that
S ∩ A is contained in one of numbered limb systems of Definition 7. After this is
established, Theorem 4 will be used to infer there is only one measure in �(µ, ν) that
vanishes outside S ∩ A, hence the optimizer is unique.

Set I2 = Y0, I1 = Y and I0 = {∅X }. Set f1(y) = ∅X for all y ∈ Dom f1 = Y .
It remains to show that π X (x, y) = x gives an injective map from S2 :=
(S ∩ A) ∩ (X0 × Y ) to Dom f2 := π X (S2). Once this injectivity has been shown,
f2 can be defined to make idX × f2 : Dom f2 −→ S2 invert π X |S2 , and a com-
parison with Definition 7 then reveals that S is contained in a numbered limb sys-
tem. To prove the required injectivity, suppose (x0, y1) and (x0, y2) both belong to
S2 ⊂ S ∩ A. The function q(x) + r(y) − s(x, y) ≥ 0 vanishes at all points in S,
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hence enjoys 0 as a subgradient there. If this function is differentiable with respect to
x at x0 ∈ Dom Dq\X L , we have Dx s(x0, y1) = Dq(x) = Dx s(x0, y2); otherwise
Dq(x0) ∈ ∂x s(x0, y1)∩∂x s(x0, y2). In either case, the twisted-buyer condition yields
y1 = y2, whence π X is injective on S2.

To invoke Theorem 4, it remains only to establish the γ -measurability of Antigraph
( f1) and of Graph( f2) for each γ ∈ �(µ, ν) vanishing outside their union. Since
Antigraph( f1) = {∅X }×Y is Borel and disjoint from Graph( f2), the γ -measurability
of Graph( f2) follows from the complement of Antigraph( f1) ∪ Graph( f2) having
zero γ outer-measure. The µ0-measurability of f2: Dom f2 −→ Y and special form
γ = γ2 + γ1 with γ2 = (idX0 × f )#µ0 and γ1 = (∅X × idY )#(ν − πY

# γ2) are both
consequences of Theorem 4, since the set of optimizers in �(µ, ν) is non-empty. Thus
the theorem is established. ��

C Proof of Theorem 3

Theorem 1 and Remark 1 provide a non-negative s-convex minimizing pair (q, r) =
(rs, qs̃) to the dual problem (16). As in the proof of that theorem, it costs no gen-
erality to replace X and Y by σ -compact sets in the completions cl X and cl Y car-
rying the full mass of µ and ν, respectively. Lower semi-continuity of r (and of q)
follows from the same remark since s ∈ C(X × Y ). Recalling that µ0 � vol by
hypothesis and that q is locally Lipschitz (Villani 2009), let Dom Dq ⊃ {∅X } denote
the Borel subset of X with full µ-measure where q is differentiable. Even in the
semiconvex-buyer setting Dom Dq has full µ-measure, because q is locally semicon-
vex, hence differentiable except on a countably rectifiable hypersurface, to which µ0
assigns zero mass; see McCann (1995) and Gangbo and McCann (1996) or Theorems
10.8(iii) and 10.26 of Villani (2009). Taking X L ⊂ X0 as in the subtwist condition,
set X R = Dom Dq ∩ X\X L and let

S := {(x, y) ∈ X R × Y | q(x) + r(y) − s(x, y) = 0}

denote the set where the non-negative function q(x)+r(y)− s(x, y) vanishes. Lower
semi-continuity of this function implies S is closed in A := X R × Y .

The cross-difference (McCann 1999)

�(x, y, x ′, y′) := s(x, y) + s(x ′, y′) − s(x, y′) − s(x ′, y)

of the surplus is a continuous function on (X × Y )2. Before embarking on the proof,
recall � ≥ 0 on S2, i.e., any two equilibrium assignments (x, y) and (x ′, y′) in S
satisfy

�(x, y, x ′, y′) ≥ 0. (39)
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This intuitive claim of Smith and Knott (1992) dates partly back to Monge (1781),
and can be deduced by summing the inequalities

0 ≤ q(x ′) + r(y) − s(x ′, y) = q(x ′) + s(x, y) − q(x) − s(x, y′)
0 ≤ q(x) + r(y′) − s(x, y′) = q(x) + s(x ′, y′) − q(x ′) − s(x, y′).

All measures γ with left marginal µ assign full mass to A = X R × Y , since
X L is µ-negligible as a consequence of the subtwist hypotheses; this implies the
γ -measurability of A. Theorem 1 asserts that all optimizers γ ∈ �(µ, ν) vanish out-
side S, and by (upper semi-) continuity of s(x, y) that at least one optimal mea-
sure γ exists. The proof will proceed by showing there exist maps f3: Dom f3 −→
X0 and f1: Dom f1 −→ {∅X } on disjoint subsets of Y = (Dom f1) ∪ (Dom f3)

and f2: Dom f2 ⊂ X0 −→ Dom f1 such that S ⊂ Antigraph( f1) ∪ Graph( f2) ∪
Antigraph( f3). Once this assertion is established, the results follow immediately from
Theorem 4 after identifying Ik = Dom( fk) for k = 1, 3, I2 = X0 and I0 = {∅X }, and
verifying the required measurability of Graph( f2) and Antigraph( f3).

Relative closedness of S in A and σ -compactness of B = X × Y imply

h(x1, y1) := sup
{(x,y2)∈X×Y |(x1,y2)∈S}

�(x1, y1, x, y2)

Borel on A = X R × Y , according to Lemma 4. Taking y2 = y1 implies h ≥ 0 on S.
A point (x1, y1) ∈ S is said to be marked if x1 ∈ X0 and h(x1, y1) = 0, i.e.

s(x, y1) − s(x, y2) ≥ s(x1, y1) − s(x1, y2) (40)

for all x ∈ X and (x1, y2) ∈ S.
Let S1 ⊂ S denote the marked points in S, and S2 = (X0 × Y ) ∩ S\S1 the

unmarked points. We claim (x1, y1) ∈ S2 and (x2, y1) ∈ S forces x1 = x2; in
other words, the part of S which projects to Dom f3 := πY (S2) lies in an antigraph
of unmarked points. The proof of this claim is inspired by the sole-supplier lemma
(Gangbo and McCann 2000). Fix (x1, y1) ∈ S2. Then x1 ∈ X0 ∩ Dom Dq\X L and
q(x)+r(y)−s(x, y) ≥ 0 is minimized at (x1, y1), so the first order condition for a min-
imum implies Dq(x1) = Dx s(x1, y1) if the latter exists, and Dq(x1) ∈ ∂x s(x1, y1) in
any case. Since (x1, y1) is unmarked, there exist some (x1, y2) ∈ S and x ∈ X which
violate (40). Obviously, Dq(x1) ∈ ∂x s(x1, y2) so the superdifferentials of s intersect.
The subtwist condition now guarantees x1 is the unique maximizer of s(·, y1)−s(·, y2);
it cannot be the minimizer due to the presumed violation of (40). Any (x2, y1) ∈ S
therefore satisfies s(x2, y1) − s(x2, y2) < s(x1, y1) − s(x1, y2), or else x2 = x1. The
strict inequality violates (39), establishing the claim x1 = x2.

On Dom f3 := πY (S2) define f3(y) := x for each (x, y) ∈ S2. The preced-
ing claim shows the part of S which projects to Dom f3 coincides precisely with
Antigraph( f3) = S2.
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We next show that both (x1, y1) and (x1, y0) in S1 implies y0 = y1, so S1 =
Graph( f2), where f2 : Dom f2 −→ Y is defined on Dom f2 := π X (S1) by

f2(x1) = y1 if (x1, y1) ∈ S1. (41)

Before addressing this claim, note our definitions of S1, S2 ⊂ X0×Y ensure Dom f2∪
Ran f3 ⊂ X0. Also, as argued above, (x1, y1) ∈ S\S2 precludes (x2, y1) ∈ S2, so
(41) guarantees Ran f2 ⊂ Dom f1 := Y\ Dom f3. Finally, defining f1(y) := ∅X

ensures Ran f1 ⊂ I0, where I0 := X\X0 = {∅X }. Also (x1, y1) ∈ S0 := S\(S1 ∪ S2)

implies x1 = ∅X = f1(y1) while precluding (x2, y1) ∈ S2, so y1 �∈ Dom f3 and
S0 ⊂ Antigraph( f1).

Since S2 = Antigraph( f3) and S1 = Graph( f2) we have verified most the hypoth-
eses for the unique representation of given by Theorem 4. It remains only to show suit-
able measurability of these graphs, and that f2(x1) is well-defined by (41).
To contradict the latter point, suppose (x1, y1) �= (x1, y0) both belong to S1. Accord-
ing to (40), this means that s(x, y1) − s(x, y0) and its negative s(x, y0) − s(x, y1) are
both minimized at x = x1. But then s(x, y1) − s(x, y0) = const independent of x ,
which violates the subtwist condition since then ∂x s(x, y0) = {0} = ∂x s(x, y1) for all
x ∈ X . We conclude f2(x1) is well-defined by (41), and therefore that any optimizer
γ ∈ �(µ, ν) is supported on a numbered limb system S with three limbs.

Since A = X R × Y and hence S are γ -measurable for each γ ∈ �(µ, ν), and
h : A −→ R ∪ {−∞} is Borel, γ -measurability of the disjoint sets S2 = S ∩ {h > 0}
∩ (X0 × Y ) and S1 = S ∩ {h = 0} ∩ (X0 × Y ) and S0 = S\(S1 ∪ S2) follow.
Now suppose γ ∈ �(µ, ν) assigns zero outer measure to the complement of S =
S0 ∪ S1 ∪ S2. Then S2 = Antigraph( f3) and S1 = Graph( f2) are both γ -measurable,
as is S0 ⊂ Graph( f1) ⊂ {∅X } × Y since γ vanishes on ({∅X } × Y )\S0. Because all
optimal measures γ ∈ �(µ, ν) vanish outside of S, Theorem 4 asserts uniqueness of
optimizer and concludes the proof. ��

D Computation

We use Example 8 to illustrate a computational algorithm for approximating solutions
to the optimal transportation problem. In this example the surplus function is

s (x, y) = 1 + cos (2π |x − y|)

and the densities of x and y if φ denotes the standard normal density:

dµ (x) = 10φ (10z (x + 0.25)) + 1

11

z (x + 0.25) = ln

(
mod (x + 0.25)

1 − mod (x + 0.25)

)
.
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and

dν (y) = 10φ (10z (y − 0.25)) + 1

11

z (y − 0.25) = ln

(
mod (y − 0.25)

1 − mod (y − 0.25)

)
.

These densities are depicted in Fig. 1. The densities are periodic, bounded away from
zero and symmetric with modes at 1

4 and 3
4 , respectively.

To discretize the problem, we search for solutions to the dual in a space of Fourier
series.13 Let a j ∈ R for all j ∈ {0, . . . , 2n} and define

Fn =
⎧⎨
⎩ f (x) : f (x) = a0

2
+

n∑
j=1

a j cos (2π j x) +
2n∑

j=n+1

a j sin (2π j x)

⎫⎬
⎭

Rather than solve the linear program directly, we solve the following:

min
q,r∈Fn

∫
q (x, a) dµ +

∫
r (y, b) dν (42)

subject to

q (x, a) ≥ max
y∈Y

s (x, y) − r (y, b) for x ∈ {
x1, . . . , xn1

}

r (y, b) ≥ max
x∈X

s (x, y) − q (x, a) for y ∈ {
y1, . . . , yn2

}
.

In the solution shown in Figs. 1, 2, 3, we used n = 7 for both q and r and computed
the integrals in (42) using a mixture of Gauss-Hermite and Gauss-Legendre rules each
with 31 nodes. The constraints were imposed at the 31 Gauss-Hermite integration
nodes. Matlab code to implement this algorithm is available from the authors upon
request.

This method has several benefits. First, the resulting solutions are nearly s-convex
and s̃-convex. Second, the discretization has n1 + n2 nonlinear constraints rather than
the n1 · n2 linear constraints that would result from a pointwise discretization of the
dual linear program constraints. Moreover, the algorithm concentrates computational
effort on regions of X × Y where the constraints are binding; that is, near the zero set

S = {(x, y) |q (x, a) + r (y, b) = s (x, y) } .

13 We also used spline basis functions. However, in this example, the Fourier basis functions produced
more stable and more accurate approximations for a given number of terms in the approximation.
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Finally, the algorithm produces an estimate of the support of the measure γ that
maximizes the primal problem. For each x, this set valued map is

y = m (x) = arg max
ȳ∈Y

s (x, ȳ) − r (ȳ, b) .

References

Ahmad, N.: The geometry of shape recognition via a Monge–Kantorovich optimal transport problem. PhD
thesis, Brown University (2004)

Ahmad, N., Kim, H.K., McCann, R.J.: External doubly stochastic measures and optimal transportation
(2009). Preprint at www.math.toronto.edu/mccann

Anderson, E.J., Nash, P.: Linear Programming in Infinite-Dimensional Spaces. Chichester: Wiley (1987)
Brenier, Y.: The dual least action problem for an ideal, incompressible fluid. Arch Ration Mech

Anal 122, 323–351 (1993)
Caffarelli, L.A., McCann, R.J.: Free boundaries in optimal transport and Monge-Ampère obstacle problems.

Ann Math (2) to appear (2009)
Carlier, G.: Duality and existence for a class of mass transportation problems and economic applica-

tions. Adv Math Econ 5, 1–21 (2003)
Carlier, G., Ekeland, I.: Matching for teams. Econ Theory, this volume (2009)
Dudley, R.M.: Real Analysis and Probability. Revised reprint of the 1989 original. Cambridge: Cambridge

University Press (2002)
Ekeland, I.: An optimal matching problem. Control Optim Calc Var 11(1), 57–71 (2005)
Ekeland, I.: Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional

types. Econ Theory, this volume (2009)
Gangbo, W.: (1995) Habilitation thesis. Université de Metz
Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math 177, 113–161 (1996)
Gangbo, W., McCann, R.J.: Shape recognition via Wasserstein distance. Q Appl Math 58, 705–737 (2000)
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