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ABSTRACT

A new set of variational inequalities is introduced, based on a novel but
natural interpolation between Borel probability measures on R¢. Used in lieu
of convexity or rearrangement inequalities, these estimates lead to existence
and uniqueness results concerning equilibrium states for (i) attracting gases;
and (ii) plane crystals in an external field.

Consider a d-dimensional gas of particles interacting through a force
which increases with distance and obeying an equation of state P = P(p)
relating pressure to density. For P(g)/gl_l/d non-decreasing, a unique energy
minimizing state is shown to exist up to translation.

For a two-dimensional crystal in a convex potential, the equilibrium shape
was known to consist of a countable disjoint union of closed convex sets.
Here it is shown that each convex component minimizes the energy uniquely
among convex sets of its area. Assuming symmetry under z < —z, the
crystal formed must be unique, convex and connected. The last result leads
to a new proof that a convex crystal ¢ = —C away from equilibrium remains
convex and balanced under curvature-driven flow.

Incidental results include new generalizations of the Brunn-Minkowski
inequality from sets to measures, and new derivations of inequalities due to
Prékopa, Leindler, Brascamp and Lieb. A theorem of Brenier is improved to
yield existence of a unique measure-preserving mapping with a convex po-
tential between any pair of L!(R?) probability measures on R?; the potential
satisfies a Monge-Ampere equation almost everywhere.

A separate section considers compressible fluid models for a rotating star.
For fixed mass and large angular momentum, stable uniformly rotating so-
lutions to the associated Navier-Stokes-Poisson system are constructed in
the form of binary stars with specified mass ratio. A one-dimensional toy

model admitting explicit solution is also introduced: to any specified num-
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ber of components and their masses corresponds a single family of solutions,

parameterized by angular velocity up to the point of equatorial break-up.
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1 Introduction

The analysis of energy functionals plays a crucial role both in mathematical
physics and in partial differential equations. Here the central issues are to
determine the existence of stationary configurations, particularly optimizers,
and their properties: uniqueness, stability, symmetry.... Convexity, when
present, is a powerful tool for resolving these questions.

This thesis develops a new convex structure on P(R%), the space of Borel
probability measures on R?. That is, for p,p’ € P(R?) and ¢ € (0,1), an
interpolant p; € P(R?) is defined — see (3) below — which is for some
purposes more natural than (1 —t)p + tp'. Interesting estimates of the form
E(p:) <(1—t)E(p)+tE(p') are established. With these estimates in lieu of
convexity or rearrangement inequalities for E(p), the tools of convex analysis
are brought to bear on problems in which they were not formerly thought to
apply.

Two problems from mathematical physics are solved in this way. The first
models an interacting gas in which the attractive force increases with sepa-
ration, while the second involves the shape of an equilibrium crystal grown
in a convex potential. The third part of the thesis is essentially independent;

it presents some results concerning rotating stars.

Main Results

The first part of this thesis concerns a d-dimensional gas of particles inter-
acting through a convex potential V(z) on R?, and obeying an equation of
state P = P(p) relating pressure to density. Normalizing the mass of the gas
to be one, the state of the system is given by a mass density p € P(R?) abso-
lutely continuous with respect to Lebesgue: p € Pa.(R?). The corresponding



energy is
B(p) = [ Alp(a))dz + [[dp(2)V (e~ y)dn(y). (1)
Here A(p) is a convex function determined by the pressure through (27);
examples include A(p) = o? for ¢ > 1. If P(p) > 0 with P(p)/0* */¢ non-
decreasing, then E(p;) will be convex as a function of ¢t. Under a slightly
stronger assumption®, such as strict convexity of V(z), existence of a unique
energy minimizer up to translation is proved.
The same technique yields a uniqueness result for a two-dimensional crys-
tal in an external field. The field is assumed to be the negative gradient of a
convex potential Q(z), and to vanish only on a bounded set of measure zero.
The crystal configuration is given by a set K C R? of unit area, while the

energy to be minimized is

e(K) = /8 Fliz) dH' (@) + /K Q(z)d%. (2)

Here H' is one-dimensional Hausdorff measure on the boundary 0K of K;
F(7;) > 0 is the surface tension, which depends on the oriented unit tangent
7. to K and satisfies a triangle inequality?. For the isotropic case F' = 1 the
surface energy is the length of 0K . If VQ = 0, the shape of the minimizer is
given by the Wulff construction [1], but when V@ is non-zero, little is known
beyond the case of a sessile crystal in a uniform field [2]. Only an unpublished
result of Okikiolu [3] shows that each connected component of the minimizing
crystal must be convex. Here it is proved that any such component uniquely
minimizes £(K) among convex sets of its area. If W and F' are symmetric
under z <> —z, it follows that the minimizing crystal will be unique, convex

and connected. Whether there is freedom to translate depends on V@Q.

1P(p)/ 0% non-integrable at co to ensure p € Pu(R?).
2F is convex when extended to z € R? by F(Az) := AF(z) for A > 0.



Finally, the problem of rotating stars is examined. Instead of prescribing
a rotation law [4] or uniform angular velocity [5], it is formulated as a vari-
ational minimization over all densities p € P,.(R?) and velocity vector fields
on R® which are consistent with a specified linear momentum and angular
momentum about the center of mass. The energy of such a configuration
consists of (1) with V(z) = —1/|z| (Newtonian gravity), plus a kinetic term.
For suitable P(p), this energy will be bounded below, but it never assumes
a global minimum. Even for local minima to exist, we show that it is neces-
sary to put a very strong, physically motivated topology on the configuration
space: that induced by the Wasserstein L* metric [6]. Local minima in this
topology turn out to be stable, uniformly rotating solutions to the Euler-
or Navier-Stokes-Poisson system (61-62), but the stationarity condition they
satisfy is slightly weaker than for a global energy minimizer: disconnected
components of the star need not have the same chemical potential. For large
angular momentum, such minima are proved to exist in the form of binary
stars with arbitrary mass ratio. This is our only existence result for the real
problem. However, we also introduce a one-dimensional model which cap-
tures some of the complexity of the full problem, while retaining the virtue
of being explicitly solvable. For a given mass, the solutions p come in un-
countably many disjoint families, distinguished by the number of connected
components in {p > 0} and their masses. Each family is continuously pa-
rameterized by velocity of rotation, and terminates with equatorial break-up

of the lightest component.

Outline of Methods

If p € P(R?) and T : R* — R? is a measurable transformation of R?, a new
probability measure Ty p is defined by Typ[M] = p[T~}(M)] for M C Re.
Ty p is called the push-forward of p through T'. A slight extension of a theorem



of Brenier [7] (also Theorem B.1 below) yields:

Theorem: Given p,p’ € P(RY) with p € P..(R?), there exists a convez
function v on R? whose gradient V1) pushes forward p to p'. V1 is uniquely

determined almost everywhere with respect to p.

Our interpolant p; between p and p’ may now be defined in terms of 1:

pe = (1~ )id + V9l p (3)

where 1d : R — R? is the identity transformation. A trivial example, to be
contrasted with the usual interpolation, occurs when p’ is a translate of p:
p'(-)=p(- — ) implies ps( - ) = p(- — tz), also a translate of p.

Control of the internal energy in (1) depends crucially on convexity of .
For the L%(R?%) norm, rather strong inequalities are implied: ||pt||q_q’/d is a
concave function of ¢ when ¢~ +¢'~! = 1. This result is a generalization of the
Brunn-Minkowski inequality from sets to measures: the classical inequality is
recovered by interpolating between the uniform probability measures on two
given sets. Convexity of ¥ also plays a role in the estimates for the energy
in (2): here the endpoints of the interpolation are characteristic functions of

two convex sets with unit area; for the interpolating measure ||pt||oo < 1.

Organization

The three parts of this thesis focus on the three problems here discussed.
Properties of the interpolation (3) are developed alongside the first appli-
cation. Four appendices are also provided. The first summarizes facts of
life regarding differentiability of convex functions, while the second gives the
refinement of Brenier’s theorem described above. A different interpolation
sharing the convexity properties of (3) may be based on certain explicitly

constructed measure-preserving maps; Appendix C explores this alternative.
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Finally, Appendix D exploits these ideas to provide a new proof of inequal-
ities due to Prékopa-Leindler [8, 9, 10] and Brascamp-Lieb [11]. The error

term in these inequalities is obtained exactly!



Part I
Interacting (Gases

2 Attraction Through a Convex Potential

Consider a d-dimensional gas of particles interacting through a convex poten-
tial V(z) on R? and obeying an equation of state in which the pressure P(p)
is a function of the density only. The state of the system is described by an
LY(R?) mass density p(z) > 0; since the total mass of gas is fixed it may be
normalized to /p = 1. Thus p € P..(R?), the space of absolutely continuous
probability measures on R?. The corresponding energy E(p) = U(p) + G(p)
is a sum of the internal energy due to compression and the potential energy
due to the interaction; one would like to show that the competition between

these two terms results in a unique ground state. E(p) is given by

B(p) = [ Alp(@))do + [[dp(@)V(a — y)do(y) (4)

where the first term is the internal energy U(p). Its local density A(p) is
determined by the pressure through (27); to be physical, P(p) should be non-
decreasing and A(p) convex. Under slightly stronger assumptions — notably
P(p)/0'"*/? non-decreasing, and V(z) either strictly convex or spherically
symmetric — Theorems 5.1 and 5.3 show that E(p) admits a minimizer in
P..(R?), unique up to translation. Examples satisfying these assumptions
include the polytropic equations of state P(p) = (¢ — 1)A(p) = o? with
g > 1; for particular ¢, this approximates (semi-classically) the quantum
kinetic energy of a gas of fermions: in three dimensions ¢ = 5/3 [12].

The existence result is obtained by a continuity-compactness argument,
but in the absence of convexity there are few general tools for proving unique-

ness. For a spherically symmetric potential V(z), one might use a sharp



rearrangement inequality to reduce the problem to one dimension and then
try to study the associated ordinary differential equation. This approach has
been used successfully [13] in the important case of the Coulomb potential
V(z) = —|z|~" with the Chandrasekhar equation of state. The strategy pur-
sued in the sequel is rather different: it is based on the presence of a peculiar
sort of convexity in the functional (4).

Although V(z) need not be spherically symmetric, Newton’s Third Law
or the symmetry in (4) show V(z) = V(—z) to be completely general. Thus
V(z) must be minimized at the origin, and G(p) cannot be convex: the Dirac
point mass &, at z € R? is a minimum for G(p), but (1 — ¢)&; + t&, is not.
However, if p; = 8(1-t)o4ty Were used instead of (1 —t)é, + téy, to interpolate
between the two Dirac measures, then the potential energy G(p;) would be
t-independent as a reflection of its translation invariance. Moreover, for a

positive linear combination of such point masses
Pt = Zmig(l—t)xi+tyi7
B

G(p:) is a convex function of ¢t. This point of view, which emphasizes the
linear structure of R? over that of the measure space, is reminiscent of the
Lagrangian formulation in fluid mechanics. It is developed in the following
chapter, where we introduce a new convex structure on P,.(R%): between
arbitrary measures p, p’ € P,.(R?), for ¢ € (0,1) an interpolant p; € P,.(R%)
is defined. (This structure extends to the space of all Borel probability mea-
sures P(R?)). Moreover, both the internal and potential energies satisfy

estimates of the form

Blpe) < (1 - t)B(p) + tE(p'); (5)

they are convex functions of the interpolation parameter ¢t. The existence and

uniqueness results follow rapidly. The estimates (5) may be of some interest
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apart from the application: when A(p) = p? for g > 1, scaling of U(p) implies
logarithmic convexity of the L%(R¢) norm. In fact, ||pt||q_q’/d is concave as a
function of ¢ when ¢=* + ¢~! = 1. That this result generalizes the Brunn-
Minkowski inequality from sets to measures is most readily seen when ¢ = .
The assumption on P(p) leading to (5) was that, as a function of dilation
factor, U(p) be convex non-increasing under mass preserving dilations of p.

In the following chapter, the interpolant p; is introduced and its basic
properties are described. Convexity of the internal energy U(p;) is established
in Chapter 4, but the technical details underlying the proof are relegated to
Chapter 6. The existence and uniqueness theorems for the attracting gas

may be found in Chapter 5.



3 Interpolation of Probability Measures

The current chapter is devoted to defining and establishing the basic proper-
ties of the convex structure on P(R?) which is here introduced. Apart from
Remark 3.9, the discussion is restricted to the case in which one of the mea-
sures is absolutely continous with respect to Lebesgue, in order to streamline
the exposition. Before considering measures on R?, the interpolation is char-
acterized in the simplest case: for measures on the line d = 1.

Let p, p' € Pac(R). For z € R, there exists y(z) € RU {+o0} such that

pl(—o0,z)] = p'[(—o00,y(z))] (6)

Although y(z) may not be one-to-one or single-valued, its value will be
uniquely determined p-a.e. At the remaining points, a choice may be made
for which y(z) will be non-decreasing. As the time t is varied between 0
and 1, the idea of the interpolation is to linearly displace the mass lying
under p at z towards the corresponding point y(z) for p’, so that the inter-
polant p; assigns mass p[(—o0,z)] to the interval (—oo, (1 —¢)z + ty(z)).
This condition turns out to characterize p;. A simple example occurs when p
and p’ are Gaussian measures with means g and p’ and standard deviations
o and o' respectively: y(z) is an affine function with slope o'/, while p; is
the Gaussian measure with mean (1 —¢)p + tp’ and deviation (1 —t)o + to'.

To define p; more generally requires a few notions from measure theory.
Let (X, X) denote a measurable space, meaning X is a o-algebra of subsets
of X. Let (Y,)) be another measurable space, T': X — Y a measurable

transformation and w a measure on (X, X). Then T and w induce a measure

Tyw on (Y,)) defined by
Tyl M) i= w[T- (M) ()
for M € V. Tyw is called the push-forward of w through T'; it is a probability
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measure if w is. Observe that T need only be defined w-a.e. The change of

variables theorem states that if f is a measurable function on Y, then

|, fw)dTpey) = [ FH(T(@)) dofa). (®)

Unless otherwise indicated, the measurable spaces X and Y will both be R?
with the o-algebra of Borel sets. d-dimensional Lebesgue measure will play
a frequently role; it is denoted by wol.

Given p,p' € P(R?), p absolutely continuous with respect to Lebesgue,
we require a transformation 7" which will push forward p to p’. There are
many such 7', several of which are suited for the present purposes. One
suitable map is constructed explicitly in Appendix C, while a more elegant
transformation is shown to exist by a result of Brenier [7]. It states that T'
can be realized as the gradient of a convex function ¢ : R — R U {+o00}.
Brenier proved this under mild restrictions on the measures p and p’, but
the restrictions are lifted in Theorem B.6. Using this theorem, we define the

displacement interpolation between p and p:

Definition 3.1 (Displacement Interpolation)
Given probability measures p,p' € P(R?) with p € P..(R?), there exists 1
convez on R? such that Vipyup = p'. Let id denote the identity mapping on
Re. At time t € [0, 1], the displacement interpolant p; € P(R?) between p and
p' 1s defined by

pr = [(1 —t)d +tVY],p. (9)

The extension of this definition to ¢ € R is suppressed. On the line d = 1,
the monotone function y = V(z) is readily seen to satisfy (6), and the
characterization given for p; follows rapidly.

From Definition 3.1, it is almost immediate that the interaction energy
G(p) in (26) will be convex function along the lines of the displacement

interpolation. We say that the functional G(p) is displacement convez.
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Proposition 3.2 (Displacement Convexity of Potential Energy G)
Given probability measures p,p' € Pa(R), let p; be the displacement in-
terpolant between them (9). Then the interaction energy G(p:) is a convez
function of t on [0,1]. Strict convezity of G(p:) will follow from that of the
potential V(z), except when p' is a translate of p.

Proof: By the change of variables theorem (8)

G(p) = [[dp(z) V(z—y) dpu(y)
= [[ap@) v((1 =) — ) + UTH(2) - Vi(3)) doly)

Since V(z) is a convex function on R? the integrand above is manifestly
convex as a function of ¢. This proves the initial assertion. If the convexity

of V(z) is strict, the integrand will be strictly convex unless

Vip(z)— Vip(y) =z —y. (10)

The integral will be strictly convex unless (10) holds almost everywhere p X p,
in which case Vi(z) — z is z-independent p-a.e. This would imply that p’ is
p translated by Vy(z) — . QED.

The displacement convexity of the internal energy U(p) is a deeper result.
There the convexity of 1, not used in the proof of Proposition 3.2, enters
crucially. Before attacking this issue, it will be helpful to illuminate some
of the elementary properties of the displacement interpolation. The next
propositions show that it induces a bona fide convex structure on P,.(R¢)
and explore the relationship between this structure and the symmetries of R?
— translation, dilation, reflection, rotation. The proofs are postponed until
the end of this chapter. Wherever ambiguity seems likely to arise, pi>p’ is

used instead of p; to indicate explicit dependence on the endpoints p and p'.
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Proposition 3.3 Letp,p' € P(R?) be probability measures with p € Pac(R?).
Fort € [0,1], the displacement interpolant p; = o0 from (9) satisfies
(i) po=p and p1 = p';
(11) pe 1is uniquely determined by p and p';
(111) p: 1is absolutely continuous with respect to Lebesgue fort < 1;
() pSp = p=p (when the latter is defined);
(v) if s,t' €10,1], then pi—>py = p(l_s—)t>+3t’p’.

Remark 3.4 Proposition 3.3(iii) may be interpreted to mean that the ab-
solutely continuous measures P,.(R?) form a displacement convezr subset of

P(R?), with the remaining measures lying on its ‘boundary’.

Remark 3.5 In order to verify the displacement convexity of a functional
W i Pac(RY) — R U {+00} it is enough to show that for p,p’ € Pu(R?),
Wip:) < (1 —t)W(p)+tW(p'). For A = (1 — s)t + st/, Proposition 3.3(v)
then implies that W(px) < (1 — s)W(p:) + sW(pw).

In the next proposition, A : R¥ — R? denotes a translation, dilation,
or orthogonal transformation of R%. In the usual way, the action of A on a

measure p € P(R?) is defined to be Ap := Ayp.

Proposition 3.6 Let p € P,.(R%) and p' € P(R?) with displacement inter-
polant p, = p->p'. Denote by T, the translation T,(z) = z+p for z,u € R?,
and by Sy the dilation Sx(z) = Az on R? by a factor A > 0. A denotes either
T,, Sx or a member of the orthogonal group on R:. Ifv € RY, a,8 > 0 and
s,t € [0,1] then

(i) Apy = ApSAp';

(i) Ta—tyuren pr = Tup>Top'

(i53) Sxp: = Sap—>Spp’ if AM(1 —1) = a(l — s) and Mt = Bs.

12



Example 3.7 (Translates and Dilates) In the trivial case p’ = p, the
convex function 9 may be taken to be (z) = z?/2 since Vi) = id pushes
forward p to itself. The displacement interpolant is p; = p independent of ¢.
Having made this observation, Proposition 3.6(ii) shows that for p' = T,p
a translate of p, the displacement interpolant is p; = Typ. For a dilate

p' = Sap, the displacement interpolant is p; = Sap with A = (1 —t) + ¢g4.

Example 3.8 (Gaussian Measures) Let po,p1 € Pac(R?) be Gaussian
measures. At time ¢t € (0,1) the displacement interpolant p; will also be a
Gaussian; its mean and covariance interpolate between those of pg and p;.
More specifically, let p; be centered at y; € R? (3 = 0,1) and denote its

covariance by Y;. Then ¥; is the d X d matrix whose entries are

/Rda:ja:k dpi(z) 5, k=1...4d;

it is a positive matrix ¥; > 0, meaning positive definite and self-adjoint. It
suffices to find p; when po = u1 = 0, since Proposition 3.6(ii) shows that the
general interpolant is then obtained by translating p; to (1—¢)po+tu:. By the
change of variables theorem (8), the push-forward of a Gaussian po through a
linear transformation A yields another Gaussian with covariance AXgAf. For
the transformation A to be the gradient of a convex function, it is necessary
and sufficient that A > 0 be matrix positive. Although the matrix equation
AYoAT = ¥ has many solutions, the uniqueness part of Theorem B.6 shows
that only one can be positive; it is A = 21/2(21/22021/2)_1/221/2, computed
previously in a related context [14]. Here ©/? denotes the positive square

root of ¥. By uniqueness, p; must be the Gaussian [(1 — ¢)id + tA]4p0.

Remark 3.9 (Singular Measures) A displacement interpolant may still
be defined even if neither of the endpoints p, p’ € P(R?) is in P,.(R?). Let
% be a convex function on R?. As a subset of R? x R?, the graph of Vi)

13



is characterized by a property (118) known as cyclical monotonicity. Here

enotes the Euclidean inner product, so the two-point inequali
, ) denotes the Euclid i product, so the two-point inequality

(Vip(z) — Vi(y), z —y) > 0 (11)

has a clear geometrical interpretation: it states that the directions of the
displacement vectors between z and y and between their images under Vi
differ by no more than 90°; on the line this reduces to monotonicity. Corollary
B.2 provides a joint probability measure p € P(R? x R?) with cyclically

monotone support having p and p' as its marginals. Let ¢ € [0, 1] and define
My(e,y) = (1 — o+ ty (12)

on RY x R4 Then p; := Il;up. Corollary B.4 shows that this definition
coincides with (9) when one of the endpoints is absolutely continuous; if
neither is absolutely continuous, Remark B.7 shows p; need not be unique.
Even when uniqueness fails, Propositions 3.2, 3.3(iv)-(v) and 3.6 will continue

to hold along each of the non-unique paths.

Remark 3.10 (Continuity) Although it is not required here, Lemma B.3
and the uniqueness part of Theorem B.6 combine to show continuity of the
map from Pu(R?) x [0,1] x P(R?) to P(R?) taking (p,t,p0') to p—>p' . As
in Chapter 5, the measure spaces are topologized using convergence against

Cw(Hd) test functions.

Remark 3.11 For comparison with the convexity of Proposition 3.2, we
note that the potential energy G(p), restricted to P(R?), may well be concave
in the usual sense: G((1 —¢t)p+tp') > (1 —1¢)G(p) +tG(p'). For example,
take V(z) = |z|%. To see concavity of G(p) = Q(p, p) on P(R?), expand

G((L=t)p+tp)=(1—t)"G(p) +2(1 - )t Q(p,p') +¢* G(p)

14



where Q(p, p') is the implicit quadratic form, and examine the coefficient of ¢2.
Non-positivity of this coefficient is transparent in the following probablistic
setting. Consider indepedent random variables z,%,y,7 : X — R? on some
measure space (X, X') with probability measure w. Assume p = 24w = Fpw
and p' = ypw = Jypw, so that Q(p,p’) = E[|z — y|?] where E[-] denotes

expectation. Concavity of G(p) is equivalent to
Elle—yP| > Ellz—2| /2 + Ely— 3]’ /2 (13)
Taking expectations, (13) is immediate from the identities

e =g +ly -2 = le—2+ly—g"+2(z—y, 2 —7) and
E[(z—y,2-3)] = (Elz—y],E[z—7]) = [E[z—y]* > 0.

Proof of Proposition 3.3: Let ¢ be convex with p' = Viup. Then (i)
is obvious. Theorem B.6 shows V1 is uniquely determined p-a.e., which
implies the uniqueness (ii) of p;. To see (iii), let ¢(z) := (1 —¢)2?/2 + t(z)
denote the function whose gradient pushes forward p to p;. The claim is that
if M C R? is (a Borel set) of Lebesgue measure zero, so is (V) 1 (M); p;
then vanishes on the former because p vanishes on the latter. Convexity of
implies strict convexity of @, so that (V¢)™! must be a single-valued function

on its domain. Moreover, since

Vé(z) — V()| lz—y| > (Vé(z)—Ve(y), z—y)
= (I—t)|z—y|*+{Ve(z) — VY(y), = — y),

(11) shows that (V@)™! is Lipshitz with constant no greater than (1 —¢)™'.
(iii) is then a consequence of a standard measure theoretic result [15] stating
that vol (V@) *M < (1 —t)"%vol M.

The alternative definition of p; given in Remark 3.9 provides the easiest

way to see (iv). Let p € P(R? x R?) be the joint probability measure with
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cyclically monotone support and p and p’ as its marginals, i.e. connecting
p to p' in the sense of Corollary B.2. Let Il;(z,y) the map (12) pushing p
forward to p-5 p’. If x denotes the involution *(z,y) = (y,z) on R¢ x RY,
then *4p connects p’ to p and is pushed forward to p’ 1—_>tp by II;_;. Since
I _4(y,z) = Hi(z,y), (iv) is proved.

Finally, (iv) is used along with the special case

p5p = pSp, (14)

to prove (v). ¢ as above satisfying p; = Vé4p, is used to define p-> p;; (14)
follows from (1 —s)id+sV¢ = (1 —st)id+st Vip. Now let A = (1 —s)t+ st’,
and noting (iv) take t' < ¢t without loss of generality. Then (14) and (iv)

. t'/t 1-t'/t A/t 1-A/t .
imply pg = p—>ps = p¢ — p and also py = p—p; = pi — p. Since
(t—X)/(t —t) =s <1, (14) once more yields py = p;—> py - QED.

Proof of Proposition 3.6: Remark 3.9 gives a definition of p; through
the measure p € P(R? x R?) with cyclically monotone support and p and o’
as marginals. The relevant observation is that a cyclically monotone subset
of R% x R? remains cyclically monotone under any of the transformations
AxA, T, xT, or Sy x Ssg. The result (i), (ii) or (iii) is then obtained by
pushing p forward through one of these transformations: the push-forward
has cyclically monotone support, and the correct marginals by the change of

variables theorem (8). Defining Ili(z,y) as in (12), the results follow from

AHt(m7y) = Ht(Am7Ay)7
(1—t),u—|—t1/—|—Ht(a:,y) = Ht(m—l—,u,,y—l—u), and
My(z,y) = M,(az,By).

QED.

16



4 Displacement Convexity of /A(p)

In the sequel it is shown that for suitable convex functions A(p), the func-
tional

Ulp) = [ Alpl(a)) do (15)
will be displacement convex on P,.(R¢), i.e. U(p;) will be a convex function
of ¢ along the path of the displacement interpolation p-5p’. For the L(R%)
norm rather more can be said: ||pt||q_q’/d is concave provided ¢7! + ¢'7! =1,
and linear when p and p’ are dilates. The Brunn-Minkowski inequality is
recovered as a special case of this result.

To any p € Pa.(R?) is associated the family of dilates Syp which may
be obtained as the push-forward of p through dilation of R? by some factor
A > 0. The condition for displacement convexity of U(p) is merely this:
U(Sxp) should be convex non-increasing as a function of A. The necessity of
the convexity is obvious; its sufficiency is the content of Theorem 4.2. The
hypothesis is also physically reasonable: as a gas expands, its internal energy
must certainly decrease; it should vanish as A — oo and diverge as A — 0.
In terms of A : [0,00) — R U {+o0}, the condition is:

(A1) A A(X79) be convex non-increasing on A € (0, 00), with A(0) = 0.

Having made this assumption, the displacement convexity of U(p) hinges
on two observations. Consider mass m of a gas whose internal energy is
given by (15). If the gas is uniformly distributed uniformly throughout a
box of volume v, U = A(m/v)v. Imagine then that the side lengths of the
(d-dimensional) box are varied linearly with time, so that the volume, density,
and internal energy U(t) become functions of time. The first observation is
that U(t) is a convex function of time. The second observation is that the

form of the displacement interpolation makes it possible to use convexity

of U(t) locally to obtain a global inequality — Theorem 4.2. The idea of
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the interpolation is to transfer the small mass of gas with approximately
constant density p(z) from a neighbourhood of z to a neighbourhood of
V(z). The mapping Vi may be linearly approximated almost everywhere
by its derivative V2y(z), a non-negative matrix. Choosing a basis which
diagonalizes V23 (z) and replacing the neighbourhood of z by a small cube,
the ¢-linearity of the interpolating map (1 —t)id+ ¢V throws us back to the
first observation. The monotonicity condition (11) ensures that two disjoint
cubes initially at points z and y will not interfere with each other during
subsequent motion for ¢ € [0, 1].

The proof is facilitated by an elementary lemma:

Lemma 4.1 Suppose h : (0,00) — R U {+00} is convez non-increasing
while g : [0,1] — (0,00) is concave. Then the composition hog 1is convez.

FEzcept on intervals where g(t) is constant, hog will be strictly convez if h is.

Proof: For the analysis of cases of equality, assume the convexity — hence

the monotonicity — of h to be strict. Let s,¢,t' € [0,1]. Then

Y

g((1=9)ttst) > (1-s)g(t)+s9(t)
s0 hog ((1 —s)t+ st')) < h((l —s5)g(t) + sg(t'))
< (1 —s)hog(t)+shog(t).

The first two inequalities are strict unless g is affine on [¢,¢'], while the last

is strict unless g(t) = g(¢'). QED.

Theorem 4.2 (Displacement Convexity of Internal Energy U(p))
Let p, p' € Pac(R?), and define the displacement interpolant p; = o5 p' using
the convez function 1 for which Vipyp = p'. Assuming (A1), the internal

energy U(p;) will be a convex function of t on [0,1]. Strict convezity follows
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from that of MA(X~?) unless V%)(z) = I holds p-a.e® In the latter case
U(p:) will be t-independent.

Proof: Proposition 3.3(iii) shows that p; is absolutely continuous (with
respect to Lebesgue). By the Monotone Change of Variables Theorem 6.4,
the set X on which V2y(z) > 0 and its inverse exist has full measure for p,

and moreover

U(pt):/XA<det [(1_;)’5“2 tv2¢(m)]>det (1= )] +tV%p(z)] dz. (16)

Actually, for ¢ < 1, one should integrate over all points at which V?i(z)
exists, but the distinction is moot because A(0) = 0 and X is full measure
for p. Fix z € X, letting A := V*)(z) and v(¢t) := det [(1 — ¢)I + tA]. Since
A is matrix positive, v*/%(¢) is known to be a concave function of ¢, strictly
concave unless A is a multiple of the identity. This is the kernel of any
proof of the Brunn-Minkowski inequality [15, 16]: in the basis diagonalizing
A, concavity may be seen to result from the domination of the geometric
by the arithmetic mean. With g(t) := v'/4(¢) and h(}) := )\dA(p(m)/)\d),
Lemma 4.1 shows the integrand of (16) to be a convex function of ¢, strictly
convex (unless v(t) is constant ) if the convexity in (A1) is strict. v(¢) constant

implies V2(z) = I. Integrating proves the result. QED.

Remark 4.3 In the proof of Theorem 4.2, a crucial role is played by the
fact that the transfer of mass defining the displacement interpolation is #r-
rotational; the matrix positivity of V*)(z) may be interpreted to mean that
under Vi, small neighbourhoods of z are stretched or shrunk in various
directions, but never turned or inverted. For comparison, consider a mass

transfer algorithm in which a rotation by #/2 radians replaces V). Now

3The Hessian V21 is defined as in (120).
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U(0) = U(1) for a global rotation; but for a transfer which is linear in time
the volume of any small set in spt p has been reduced by a factor 1/4/2 at
time ¢ = 1/2. The contribution to U(1/2) is increased accordingly. Obvi-
ously, U(1/2) > U(0) = U(1) is not compatible with convexity. The same
argument applies locally to a transfer procedure which need not be a global

rotation.

In the special case A(p) = p?, a scaling argument strengthens Theorem 4.2
considerably. For the displacement interpolation, convexity of the L?(R%)
norm turns out to be better than logarithmic: if ¢’ is Holder conjugate to g
then ||p||q_‘1'/d is displacement concave. This inequality is sharp in the sense
that ||S>‘p||q_q’/d depends linearly on A > 0 for a mass-preserving dilation
of p. The formulation of the next two remarks has been selected to facilitate

comparison with inequalities from [11], recapitulated here in Corollary D 4.

Corollary 4.4 (Logarithmic Convexity of the L?(R?) Norm)
Let p, = p-5p' be the displacement interpolant between p, p’ € Pac(RY). Let
0 < g<oosatisfyq>1—1/d and define o := —(1 —1/q)"*/d. Then

loellg = (1 =2) llollg +2l1Allg- (17)

As a result, log||pt||q 2s convez on t € [0,1] for ¢ > 1 and concave for g < 1.

Proof: Unless ¢ # 1 and t € (0,1), the assertion is vacuous. To begin,

assume ¢ > 1 and p,p' € LR?). Letting Sy denote dilation by A > 0,

it is possible to choose factors A, A’ > 0 such that ||Sxp|l; = ||Sxp||; and

(1 —=t)/A+t/X = 1. Setting s = ¢t/) € (0,1), Proposition 3.6(iii) shows

that p; = Sxp—> Sxp’'. Because A(p) = o? satisfies (A1), Theorem 4.2 shows
[|p:|2 to be convex as long as g < oo:

loelly < (1= s)l[Sxpllg + sllSxo'll3 (18)

= |[Sanllg- (19)
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Since t* is decreasing for g > 1,

lpellg = 15xellg (20)
= (1= 9)lISxllg + slSxe'llg- (21)

In the case ¢ = o0, (20) follows immediately from Theorem 4.2 with A(p) = 0
where p < ||Sip|leo and A(p) = oo otherwise. Either way, the case ¢ > 1 is
established for p,p’ € L¢(R?) by the scaling relation ||Sxplly = A*|p|, in
(21). If ||p'||lq = o0, a separate argument is required: ||p¢l|q < ||S1-¢pllq =
(1 — )% pl|, follows directly from (16), det [(1 —¢)I +tV2p] > (1 — )¢ and
monotonicity in (Al). When ¢ < 1 the argument is the same, except that
the inequality in (18) is reversed because it is A(p) = —p? which satisfies
(Al); on the other hand, the inequality in (20) is restored because a > 0.
Taking the logarithm of (17), the convexity or concavity of log ||p:||q follows
according to the sign of . Remark 3.5 has been noted. QED.

Remark 4.5 (Brunn-Minkowski Inequality)
This classical geometric inequality [17] compares the Lebesque measures of
two sets K, K' C R?* and their vector sum K+K' = {k+k' | (k, k') € KxK'};

for non-empty sets, it states that
vol 1/d[K + K'] > vol Vg 1 yol ViK', (22)
The inequality is recovered from Corollary 4.4 with g # 1.

Proof of (22): Assume K, K' are compact, since the general case will
follow by regularity of Lebesgue measure; unless both sets are of positive
measure, there is little to prove. (22) is equivalent to the concavity of
vol/4(1 — t)K 4 tK' on [0,1]. Therefore, let p € P, (R?) be the restric-

tion of Lebesgue measure to K, normalized to have unit mass, and let p’
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be the analogous measure on K'. Let ¢ be the convex function for which
Vipup = p'; then Vip(z) € K' p-a.e. Therefore the support spt p: of the
displacement interpolant between p and p’ must lie in the (compact) set

(1-t)K +tK'. With ¢~ + ¢'~! = 1, Corollary 4.4 asserts that
leellg /% > (1 = 8)llpll; 27 + ¢ 'l1 774 (23)

By construction, vol K = ||p||q_‘1’ and the same holds for K'. Applied to
p: € Pac(R?), Jensen’s inequality yields vol [spt p;] > ||pt||q_q’ for ¢ < oo; this

estimate is trivial when ¢ = co. The theorem then follows from the inclusion
(1 —t)K +tK' D spt p. (24)

QED.

Remark 4.6 It is interesting to note that the inclusion (24) will typically
be strict; spt p; interpolates more efficiently between K and K’ than the
Minkowski combination (1 —¢t)K +tK'. As an example, take both K and K’
to be ellipsoids — affine images of the unit ball. The same considerations as in
Example 3.8 show the mass of the displacement interpolant p; to be uniformly
distributed over a third ellipsoid. On the other hand, (1 — ¢)K + tK' will
not be an ellipsoid except in special cases, a fact which is easily appreciated

when K is the unit ball and K’ is highly eccentric (even degenerate).

Remark 4.7 (Prékopa-Leindler Theorems)
A theorem of Prékopa and Leindler [8, 9, 10] gives another generalization
of the Brunn-Minkowski inequality to functions on R?. For non-negative

measurable functions f,g on R? and ¢ € (0,1), it states that the interpolant

pa):=sup f (2) o (55Y) (25)

yeRd
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satisfies the inequality ||2|1 > ||f|li %|lg]lt. By scaling, the case ||f|l. =
llglli = 1 is quite general. The displacement interpolant f Ly e Pac(RY)
between f and g can then be defined, and the Prekopa-Leindler theorem be-
comes a trivial consequence of the observation that A > f i>g: the inequality
||h||1 > 1 is saturated with the displacement interpolant in place of A! A
stronger assertion is verified in Appendix D, and parlayed into a transparent
proof of both the Prékopa-Leindler theorem and related inequalities due to
Brascamp and Lieb [11].
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5 Existence and Uniqueness of Ground State

Armed with the estimates of the two preceding sections, we return to the ex-
istence and uniqueness questions regarding the ground state of the attracting
gas model described by (4). In this model, the configuration of the gas is
given by its mass density p € P,.(R?), and the interaction is through a convex

potential V on R?. This leads to a potential energy

G(p) := [[dp(@)V (@~ y)dp(y). (26)

Although V need not be spherically symmetric, it is clear from (26) or by
Newton’s third law that it may be taken to be even: V(x)=V(-x). Thus V
is minimized at the origin, and V(0) = 0 without loss of generality.

The gas is also assumed to satisfy an equation of state P(p) relating
pressure to density, which leads to an internal energy U(p) of the form (15).
The local density A(p) of U(p) is obtained by integrating dU = — Pduv:

Ae)i= [ Plofv)dv. (27)

To be physical, the pressure P(p) > 0 should be non-decreasing; we make
the stronger assumptions

(P1) P :[0,00) — [0, 00] with P(p)/0'"*/¢ non-decreasing;

(P2) P(p)/¢* not integrable at oco.

1/ in (27) shows the equivalence of

For fixed A, changing variables to s = Av
(P1) to the convexity of U(p) under dilations, (Al) of the previous section.
Strict monotonicity in (P1) is equivalent to strict convexity in (Al). Thus
U(p) will be displacement convex. A(p) is also seen to be convex and lower
semi-continuous. (P2) implies that A(p)/p diverges with p, and excludes
the possibility that the energy minimizing measure might have a singular

part with respect to Lebesgue. Under these assumptions, if V() is strictly
convex we show that the total energy E(p) = U(p) + G(p) > 0 attains a
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unique minimum up to translation, unless E(p) = oo. If convexity of V(z) is
not strict, the conclusions will still hold provided the monotonicity in (P1)
is strict and V(z) = V(|z|) is spherically symmetric, not identically zero.
Uniqueness is proved by combining the displacement convexity of G(p)
and U(p). Displacement convexity also plays a role in the existence proof,
which relies on a compactness argument. Let Co.(R?) be the Banach space
of continuous functions vanishing at oo, under the sup norm. By the Riesz-
Markov Theorem, its dual C,,(R?)* consists of Borel measures of finite total
variation. The relevant topology on Pu.(R?) C Co(R?)* will be the weak-*
topology, the topology of convergence against Co(R?) test functions.

Theorem 5.1 (Existence and Uniqueness of Ground State)

Assume (P1-P2) and V : RY — R U {400} to be strictly convez. Let the
energy E(p) = U(p) + G(p) be given by (4) with A(o) from (27), and E, :=
inf E(p) over p € Pao(RY). If E, < 0o, the infimum is uniquely attained up

to translation. The minimizer py, may be taken to be even: py(z) = p,(—z).

Proof: Uniqueness is proven first: suppose two minimizers pg, pg, € Pac(RY)
exist. Fix ¢ € (0,1) and consider the displacement interpolant p; = p, i,p;
between them. Since U(p) and G(p) are displacement convex (Theorem 4.2
and Proposition 3.2), E(p;) < (1 —t)E(pg) + tE(p,) = E,. Strict inequality
holds by Proposition 3.2 unless pg is a translate of p}. Since no configuration
can have energy less than E,, uniqueness is established.

For the existence proof, replace V(z) by (V(z) + V(—=2))/2, adding a
constant so the minimum V(0) = 0; the effect on E(p) is a shift by the same
constant. Noting that E(p) > 0, choose an energy minimizing sequence
Pn € Pac(ﬂ:\?d) C Coo(Hd)*. By Lemmas 5.4 and 5.6 any weak-* limit point
Pg € Pac(R?) of p, must minimize E(p). In fact, Corollary 5.5 applies because
of (P2), and shows that p, need only satisfy the mass constraint p, € P(R?):
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finiteness of E, implies absolute continuity of p;. The Banach-Alaoglu The-
orem provides weak-* compactness of the unit ball in C,(R?)*, but because
E(p) is translation invariant, precautions must be taken to ensure that no
mass escapes to co.

Consider the reflection A(z) := —z on R?. Propositions 3.6(i) and 3.3(iv)
show the displacement interpolant pl—/2>Ap to be invariant under A; it should
be thought of as a symmetrization of p. Moreover E(Ap) = E(p), so by
displacement convexity this symmetrization can only lower the energy of p.
The minimizing sequence p, may therefore be replaced by one for which
pn(z) = pn(—z). Extracting a subsequence if necessary, p, may be taken to
converge to a limit p, weak-*. p, is a positive Borel measure; it is even and
has total mass no greater than unity.

Since V is strictly convex with minimum V(0) = 0, it is bounded away
from zero on the unit sphere: V(z) > k& > 0 for |z| = 1. For |z| > 1 convexity
yields V(z) > k|z|, in which case

LV =)o) > [ Vie—y)denly) > Hal/2

Y, T)

since half of the mass of p, lies on either side of the hyperplane (y, z) = 0.
Integrating this inequality against p,(z) over |z| > R > 1 yields a lower
bound

Glon) 2 5 [ dpafe). (28)
E(pn) may be assumed to be bounded above, so G(p,) < L. Thus (28)
controls the mass of p, outside of any large ball, uniformlyinn. If 0 < ¢ <1
is a Coo(R?) test function with ¢ = 1 on |z| < R, weak-* convergence yields

/cp dpy > 1 —2L/kR. Since R was arbitrary, p,[R%] = 1. QED.

In the event that the potential V(z) is not strictly convex, it may yet be

possible to prove existence of a unique energy minimizer using a more delicate
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argument. This will be true if the monotonicity in (P1) is strict and the
convex potential V(z) = V(|z|) is spherically symmetric but not identically
zero. The existence argument of Theorem 5.1 requires only the slightest
modification: V(z) might vanish on |z| = 1, but it is non-zero on some
sphere of finite radius. On the other hand, the uniqueness argument fails,
because the displacement convexity of the interaction energy need not be
strict. However, Theorem 5.3 shows that the condition for strict displacement

convexity of the internal energy can be used instead to force two minimizers

to be translates of each other. It is necessary to state a preliminary lemma

regarding the decomposition of convex functions on R¢.

Lemma 5.2 Let ) and ¢ be convexr functions on R?, and Q C R? an open
convez set on which both ¢ and ¢ are finite. Suppose ¢ is differentiable on
with locally Lipschitz derivative V¢ : Q — R2. If the Hessians V2¢=V">1)

agree almost everywhere there, then ¢ — ¢ is convez on (.

Proof: First, consider functions on the line d = 1. 1 may be viewed as a
distribution on ) C R; its convexity is characterized by the fact that its dis-
tributional second derivative is a positive Radon measure w on ). Lebesgue
decompose w = wge + Wsing. Integrating w,. twice from some base point in
1 yields a differentiable convex function v. Its derivative v’ is a monotone
function, absolutely continuous on compact subsets, hence v exists and co-
incides with wy. both pointwise almost everywhere and in the distributional
sense. ¢" also coincides with wg,, thus v/ — ¢’ — being absolutely continuous
— is constant, and v — ¢ is affine. On the other hand, ¥ — v is convex since
its distributional second derivative is wging > 0. Thus ¥ — ¢ is convex.

The higher dimensional case d > 1 is reduced to the case d = 1 as
follows. Suppose convexity of 1) — ¢ were violated along some line segment

with endpoints z’,y’' € Q. Continuity of 1 and ¢ shows that convexity is also
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violated along any line segment with endpoints z and y sufficiently close to
z’ and y'. Since V21 and V2¢ exist and coincide almost everywhere on €,
Fubini’s Theorem shows that for some such z and y, V%) = VZ¢ almost
everywhere along (1 —t)z + ty (with respect to the one dimensional Lebesgue
measure). Viewing ¢ and ¢ as functions of ¢ € [0, 1] along this segment, their
second derivatives are determined by y — = and the Hessians V2¢ and V?2¢
wherever the latter exist. A contradiction with the d = 1 result would be

reached, forcing the conclusion that convexity of ¥ — ¢ cannot be violated.

QED.

Theorem 5.3 (Uniqueness Without Strict Convexity of V(x))

Assume that P(p) satisfies the monotonicity condition (P1) strictly, and that
the convez function V : R® — R U {+oo} is spherically symmetric, not
constant. If the energy E(p) = U(p)+ G(p) given by (4) with A(o) from (27)

attains a finite minimum at py, € Pac(R?), then p, is unique up to translation.

Proof: Denote by p; the symmetric decreasing rearrangement of p,: that

is, the spherically symmetric, radially non-increasing function satisfying
vol {p; > k} = vol{p, > k} (29)

for all & > 0. The internal energy U(p;) = U(py) by (29), while a re-
arrangement inequality due to Riesz [18] states that G(p}) < G(p,) since
the potential V(z) is symmetric non-decreasing. Thus p} also minimizes
E(p). Suppose py € P..(RY) is another energy minimizer, and define the
displacement interpolant p; between p} and p; via the convex ¢ for which
Vupy = py. U(p) and G(p) are displacement convex as before. Since strict
convexity of U(p;) would imply a contradiction, Theorem 4.2 shows that
U(p}) = U(py) and V?(z) = I a.e. on the interior Q of spt p}. Lemma 5.2
shows that ¥(z) — 2%/2 must be convex on Q. Unless ¥(z) — z%/2 is affine on
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this ball — so that p is a translate of p; — we show G(p;) < G(p), a con-
tradiction. If Vi) exists at =,y € R?, then the monotonicity inequality (11)
will be strict unless Vi(z) = Vi(y). Applied to the function ¢(z) — z?/2
rather than ¢(z), this shows that if Vi(z) — z # Vi(y) — y, then

Vi (z) = Vi(y)l > [z —yl. (30)

Unless ¥(z) — z%/2 is affine on 2, (30) will be satisfied at some z,y € Q.
By the continuity properties of Vi, (30) will continue to hold in a small
neighbourhood of (z,y) € R? x R* — which is to say, on a set of positive

measure p; X p;. The change of variables formula (8) yields

Gloy) = [[des(=) V(T4 (2) — Vb(v) doj ().

If the convex potential V(z) assumes a unique minimum at = 0 — so that
it is strictly attractive — then V(V(z) — V¢(y)) > V(z — y) wherever
(30) holds. The contradiction G(p;,) > G(p}), and therefore the theorem, is
established in this case.

The remaining case — V() constant on a ball of radius r about 0 —
requires an additional argument. Take V(0) = 0. If V(z) = oo for |z| > 7,
all of the mass of the minimizer must lie in a set of diameter r; in fact it
must be uniformly distributed over a ball of diameter r» by Jensen’s inequality
and the isodiametric inequality [15]. This case aside, it is necessary to show
that the diameter of € is greater than r; then the argument of the preceding
paragraph will apply: unless V) is affine, it will be possible to choose z,y € Q
with |z| > 7/2 and y = —z to satisfy (30), and V(Vy(z)—Vy(y)) > V(z—y)
will hold on a neighbourhood of (z,y). The possibility that O C B,,»(0) is
precluded by contradiction. Assume G(p;) = 0, and consider the dilation
Sapy of p; by factor A > 1. Defining G(A) := G(Sxp}), it will be shown that
G(X) grows sublinearly with small A — 1 while U()) := U(Sxp;) decreases
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linearly; the contradiction is obtained since pj is allegedly a minimizer. In
fact, G(A) = o(A —1)? as A — 1T. To see this, note that for A > 1 the only
contribution to G()) comes from the self-interaction of the mass m(A) lying
within a spherical shell of thickness (A — 1)r around the surface |z| = r/2.
Since p; is symmetric decreasing, its density is bounded except at the origin;
thus m(A) < k(A —1). By continuity of V(z), A near 1 ensures V(z) < € for
z < Ar, implying G(X) < em?(}). Certainly G'(17) = 0. On the other hand,
strict convexity of the decreasing function U()) follows from strict convexity
in (A1) or strict monotonicity in (P1). Thus U'(17) < 0. In combination,
these estimates preclude G(p;) = 0, and conclude the proof. QED.

Lemma 5.4 (Weak-* Lower Semi-Continuity of U(p))

Assume A : [0,00) —> [0, 00] is convez and lower semi-continuous. Define
U(p) by (15). Then U(p) is weak-x lower semi-continuous on P..(R?) C
Coo(R)*.

Proof: Let p, — p weak-* in Pu.(R?). The claim is that lim, U(p,) > U(p).
Let ¢ > 0 be a continuous (spherically symmetric) function of compact sup-
port such that f¢ = 1. Convolving with the mollifier ¢ (z) := e %p(z/€) €
Coo(R?), one has pointwise convergence of p,*p, to pxp. as n — oco. Jensen’s

inequality with the convex function A(p) yields

[ Alpw)ede—v) dy > A ([ ow)ede -~ v) dy).

U(p) > U(p*e.) is obtained by integrating over z € R?. For fixed € > 0,

lim,U(pn) > lim, U(pnxpc)

> [ limA(enre)
> /A(p*soe)
= Ulpxee)-
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The second inequality is Fatou’s Lemma while the third is the lower semi-
continuity of A(p). At the Lebesgue points of p, hence almost everywhere,
it can be shown that p * oo — p as € — 0. Another application of Fatou’s
Lemma and the lower semi-continuity of A(p) yields im U(p*xwe) > U(p).

QED.

Corollary 5.5 In addition to the hypotheses of Lemma 5.4, suppose A(p)/o
diverges as p — oo. Then U(p) remains weak-+ lower semi-continuous if it

is extended to P(R?) C Coo(R?)* by taking U(p) = oo unless p € P,(R?).

Proof: The only case to check is that lim,U(p,) = oo when a sequence
Pn € Pac(R?) tends to a limit p € P(R?) not absolutely continuous. Lebesgue
decompose p = pac+ Psing- The singular part pgng is a positive Borel measure
with finite mass. By regularity, there is a compact set K and m > 0 such
that psing[K] > m but vol K = 0, and an open set N O K with arbitrarily
small Lebesgue measure. Choose a Co(R?) test function 0 < ¢ < 1 vanishing
outside N with ¢ =1 on K. For n large p,[N] > m and Jensen’s inequality
together with the monotonicity of A(p) yields

m

/NA(pn) > A (Vol [N]> vol [N].

Since A(p)/p diverges, starting with vol [N] very small forces U(p,) — o0
with n. QED.

Lemma 5.6 (Weak-x Lower Semi-Continuity of G(p))
Assume V : R4 — [0, 00] convez and define G(p) by (26). Then G(p) is

weak-*x lower semi-continuous on Pac(ﬂ:\?d) C Coo(Hd)*.

Proof: Let p, — p weak-* in Pu(R?). The claimis that G(p) < lim,G(p,).

Certainly the product measure p, X p, — p X p weak-* in Coo(R? x R4)*.
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Being convex, V(z,y) := V(z —y) agrees with a lower semi-continuous func-
tion except on a set of measure zero. Although V(z,vy) is not Cop(R? x R?),
it can therefore be approximated pointwise a.e. by an increasing sequence
of positive functions V;(z,y) which are. Define G,(p) analogously to G(p)
but with V, replacing V. For fixed r, G,(p) = lign G, (pn) < lim,G(pn). By
Lebesgue’s Monotone Convergence Theorem, G,(p) increases to G(p) and

the result is proved. QED.
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6 Monotone Change of Variables Theorem

Let 9 be a convex function on R?, and denote the interior of the convex
set {1y < oo} by Q := intdom. As the gradient of a convex function,
V1 : Q — R? represents the generalization to higher dimensions of a mono-
tone map on the interval. It is a measurable transformation, defined and
differentiable* almost everywhere, and will be casually referred to as a mono-
tone map. Sundry notions related to 9, including the subgradient 0y and the
Legendre transform ¢* may be found in Appendix A. The goal of the current
chapter is to establish Theorem 6.4, which contains the change of variables
theory for monotone transformations required in the proof of Theorem 4.2.
Although V4 may not be Lipshitz, the Jacobian factor det [V*)(z)] appear-
ing in (34) is exactly what one expects from the standard theory of Lipshitz
transformations.

As before, Vi will be used to push-forward certain positive Radon mea-
sures p from Q to RY. That is p may no longer have unit or even finite
mass, but will be finite on compact subsets. The set of such measures will
be denoted M(Q). p € M() is well known to decompose as p = pac + Psing,
where p,. is absolutely continuous with respect to Lebesgue and p,;ng vanishes

except on a set of Lebesgue measure zero. The set M,.(€2) of absolutely con-

1
loc

tinuous measures is just the positive cone in L, _(2); thus p,. may be viewed
simultaneously as a measure and a function. Differentiation of measures [19]
is exploited to identify the pushed-forward measure: If p € M(Q) for some

domain €, its symmetric deriwative Dp at = € () is defined to be

— . PB:(z)
D(e) = lim £22) (31)
where B,(z) is the ball of radius r centered on z. Dp(z) exists — and
agrees with pec(z) — Lebesgue almost everywhere; Dp(z) = co on a set of

*Its derivative V21 is defined in the sense of (120).
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full measure for pyiny. From the symmetric derivative p-a.e., it is therefore
possible to reconstruct p,. and determine whether p,;,, = 0. At the Lebesgue
points of p = pgc, hence almost everywhere, the limit (31) remains unchanged
if the balls B,(z) are replaced by a sequence of Borel sets M,, shrinking nicely
to z, meaning there is a sequence 7(n) — 0 such that M, C B,,)(z) and the
ratio vol M, /vol B (n) is bounded away from zero.

The first lemma provides an alternative definition of V4p which is ex-

ploited freely throughout this chapter.

Lemma 6.1 Let i be a convez function with €} := intdom, and denote
the subgradient of its Legendre transform by Oy*. Let p € My (). Under
the push-forward V1up, the measure of a Borel set M C R? is equal to

p[OY*(M)].

Proof: The Vi p measure of M is p[(Vep)"*M]. But (Vi)' M C oy*(M),
and the difference is a set of zero measure for p. The containment is obvious:
if Vip(z) =y € M then (z,y) € ¢ or z € 0¢*(y). On the other hand, one
can have z € 0vy*(y) without V4 being uniquely determined at z; however,

this happens only for z in a set of Lebesgue (a fortiori p) measure zero. QED.

Proposition 6.2 Let 1 be convez on R%, Q) := intdom and p € M,..(Q).
Assume z is a Lebesque point for p at which 1 is twice differentiable® with
invertible Hessian A := V*(z). At Vi(z), the symmetric derivative (31)
of the measure Vipup exists and equals p(z)/det A.

Proof: The Inverse Function Theorem (Proposition A.1) yields ¢* twice
differentiable at y = Vi)(z) with A™! as its Hessian. Proposition A.2 then

5In the sense of (120).
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shows that 0vy*(B,(y)) shrinks nicely to z. Since z is a Lebesgue point of p,

pl0Y*(B-(y))]
vol [0y*(B.(y))]

as 7 — 0. For the same limit, Proposition A.2 also shows

vol [0¢*(B;(y))]
vol B,

— p(2), (32)

— det AT, (33)

Taking the product of these two limits and observing Lemma 6.1 proves the

result. QED.

Corollary 6.3 Let ¢ be convez on R?, Q := intdom. Then the function®
det [V%)(z)] > 0 s L}, (Q). Moreover, the push-forward of det [V] through

V1 is Lebesgue measure restricted to Oy(M), where M is the set of points

where V%) and its inverse exist which are also Lebesgue points for det [VZ].

Proof: Consider the convex Legendre transform 4* and Lebesgue measure

on intdom*. The first claim is that det [V2y] € L (Q); in fact, it is the
absolutely continuous part of w := Vipjvol. Although the push-forward w
may have infinite mass near the boundary of (), its restriction to €2 is a Radon
measure: if K C Q is compact, so is 0y(K ), whence w[K| = vol [0¢(K )] <
0o. The result is proven if det [V?1)] agrees with the symmetric derivative
Dw Lebesgue-a.e. on ). Recall that V2 exists almost everywhere there.
Where det [V29)(z)] > 0, Proposition 6.2 (applied to 1* with p := vol) and
the Inverse Function Theorem (Proposition A.1) yield Dw(z) = det [V29(z)].
On the other hand, Dw must vanish almost everywhere on the set Z where
det [V*)(z)] = 0: noting Lemma 6.1 and Proposition A.1, 0 < w[Z] =
vol 8¢ (Z) would be incompatible with the fact that V?)* does not exist on

0vy(Z). This establishes the first claim.

6Here the Hessian V21 is defined in the sense of (120).
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A second application of Proposition 6.2, but to ¢ and with p := det [V%)],
shows that the symmetric derivative of Vip4p equals 1 on 0y(M). 0y(M) is
of full measure for Vi4p, since M is for p. Thus Vip4p can be nothing but

Lebesgue measure on 0y (M). QED.

Theorem 6.4 (Monotone Change of Variables Theorem)

Let p, p' € Puc(R?), and ¢ be a convez function on R* with Vipyup = p'. With
V%Y defined as in (120), the set X := {z | V?9(z) exists and invertible} has
full measure for p. If A(p) is a measurable function on [0, c0) with A(0) =0
then

[ A¢w) dy = [ 4 (%) det [Vip(a)] de.  (34)

(If A(o) is not single signed, either both integrals are undefined or both take
the same value in R U {£o0}).

Proof: Since Vi pushes p forward to p’, 1 must be finite on a set of full
measure for p. Thus V?1)(z) exists p-a.e., and by Proposition A.1 can only
fail to be invertible on the set 9v*(Z) where Z = {y|V?y*(y) does not exist}.
By absolute continuity of p’ and Lemma 6.1, p[0¢*(Z)] = p'[Z] = 0. Thus X
is of full measure for p. Let M C X consist of Lebesgue points for det [V%)],
which is L},(2) by the preceding corollary. M differs from X by a set of

Lebesgue (a fortiori p) measure zero. Thus 0y(M) is of full measure for p'.
Since V4 pushes forward det [V?] to Lebesgue on dv(M) by Corollary 6.3,
the change of variables theorem (8) yields

/ S ) dy = | Al (V) det [V (o)) da.
Taking p’ to coincide with its symmetric derivative, Proposition 6.2 shows
that p'(Vi(z)) = p(z)/det [V2(z)] at the Lebesgue points of p in M. Noting
A(0) =0, (34) follows immediately. QED.
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Remark 6.5 (The Monge-Ampére Equation)
With restrictions on p’, it was argued formally in [7] that the convex function
1 for which Viup = p’ represents a generalized solution to the Monge-
Ampere equation

o' (Vip(z)) det [V2p(z)] = p(z). (35)
A regularity theory for these solutions has been developed by Caffarelli in
[20, 21, 22]. Without any assumptions, Proposition 6.2 and the first part of

Theorem 6.4 show (35) to be satisfied almost everywhere on dom v, provided
the Hessian V?1)(z) is interpreted in the sense of (120).
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Part 11
2-d Equilibrium Crystals in an
External Field

In which the displacement interpolation is used to determine aspects of the

shape of a crystal in a convex background potential.

7 Plane Crystals in a Convex Potential

The purpose of this section is to provide a characterization of the equilibrium
shape of a crystal in an external field. When the field-strength is neglible, the
crystal will form a convex set given by Wulfl’s construction [1] of 1901. The
effect of a uniform field has been investigated in [2], but regarding the shape
of formation in non-uniform fields, little is known. Even when the field is the
(negative) gradient of a convex potential, the equilibrium crystal is not known
to be connected, much less convex or unique. This problem, formulated as a
variational minimization in d dimensions, was proposed for investigation by
Almgren — whose interest may have been stimulated by its connection with
curvature-driven flow [23]. Here it is addressed in the plane d = 2, where an
unpublished result of Okikiolu [3] shows that any energy minimizing solution
consists of a countable disjoint union of closed convex sets. Our main result
— also limited to the plane — states that each convex set in this union is
the unique energy minimizer among convez sets of its area. If the system is
reflection symmetric under z <> —z, it follows that the crystal formed must
be unique, convex and connected. In the context of curvature-driven flow,
the last result leads to a new proof that a non-equilibrium crystal C = —C,

initially convex, will remain convex and balanced as it melts or relaxes.
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A crystal in equilibrium with its vapor or melt may be modeled as a subset
K C R? having area determined by the ambient thermodynamic variables.
In the absence of competing effects, the shape of the crystal will minimize its
interfacial surface energy, which is typically non-isotropic: an initial quantity
of the condensate breaks the symmetry of the underlying space, establish-
ing certain preferred directions. This non-isotropy is modeled by a surface
tension F : S' — (0, 00), which depends continuously on the exterior unit
normal to a boundary point z of K, or equivalently (in d = 2) on the oriented
unit tangent 7, at . The measure theoretic boundary 0,K of K is defined to
consist of precisely those points z at which K enjoys an exterior normal in
the measure theoretic sense [15, §4.5.5], while the surface energy ®(0,K) to
be minimized is

B(0,K) := / F(#,)dH (). (36)

K
Here H' denotes one-dimensional Hausdorff measure. The set K is assumed
to be bounded and measurable, and to have finite perimeter H*(9,K) < oo
so its surface energy is finite; the collection of such sets is denoted by K.

If K is dilated by A > 0, its surface energy scales: ® (@(AK)) = A®(0.K).
Among sets of a fixed area, ® is uniquely minimized by the Wulff shape
W C R? and its translates. W is conveniently constructed by Legendre
transforming the surface tension F', after extending F' from the unit circle
S* = {|z] = 1} C R? to the entire plane by taking it to be positively homo-
geneous: F(Az) = AF(z) whenever z € R? and A > 0. Positive homogeneity
implies that the Legendre transform

F*(y) := :gﬂ%y, z) — F(z)

takes only the values 0 and oco; W is the compact convex set on which F*
vanishes. That W is the unique minimizer of ®(0,K ) among sets of its area is

demonstrated in [24]; a history of this fact is there given. When the surface
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tension F' is convex on R?, the most economical interface connecting two
points will be a straight line: [23, §3.1.9] or Lemma 9.5. From the duality
theory of Legendre transformations it is clear that any surface tension F' may
be replaced by a convex one F** which shares the same Wulff shape.

If the crystalline material interacts with an external potential Q on R?,

then — in addition to its surface energy — K € K carries potential energy

U(K) = /K Q(z) dH?(z). (37)

Here H? denotes two-dimensional Lebesgue measure. At equilibrium, the

shape of the crystal in the field —V @) should minimize the energy
e(K):= ®(0.K) + Y(K), (38)

subject to the constraint of fixed area, normalized so that H?(K) = 1. One
therefore wants to know that with this constraint, a minimum on K is at-
tained by (38), and to deduce what properties one can of the minimizer. For
the remainder of this paper, both energy integrands F' and () are assumed
to be convex. These are the conditions under which Okikiolu’s result is
known to hold: any minimizer coincides — up to sets of measure zero which
contribute neither to ¥(K) nor 0,K — with a countable disjoint union of
closed convex sets”. The potential @ : R? — R is also assumed to attain a
minimum, and to do so only on a bounded set of measure zero in R2.
Existence of a minimizer K, € K follows from a continuity-compactness
argument as in [23, §3.1.5]. Here the salient features of that argument are
recounted without the machinery of integral currents: H?(KAL) is a metric
on K, where KAL := (K ~ L)U (L ~ K) is the symmetric difference of
K, L € K; K is not distinguished from L if H*(KAL) = 0, so K really consists
of equivalence classes. For A, R < oo, the subset {K € Kgr | H*(0,K) < A}

"Lemmas 9.5 and 9.6 provide essential elements of a proof.

40



is compact in this metric, where
Kr:={K € K|H*K)=1, sup|z| < R}; (39)
K

the potential energy U(K) is continuous on Kpg while the surface energy
®(0,K) is lower semi-continuous. Therefore, ¢(K) attains its minimum on
Kr at some Kg: for any minimizing sequence, ®(0,K,) must be bounded
above; it controls H'(8,K,) since F is bounded away from zero on S*. It
remains to show that for R sufficiently large, the infimum of ¢(K) over Kg
is independent of R; the corresponding Kg will be a global energy minimizer
K, among sets with unit area. This last argument is provided by Proposi-
tion 11.1. Regularity of 0,K, is addressed in [23].

The main results of this paper apply to the equilibrium crystal K,, now
known to exist and to consist of countably many closed convex components.
Stated precisely in the following chapter, they are proved by constructing
an interpolation between pairs of convex sets which satisfies suitable energy
estimates. This construction is described in Chapter 9; it is the displacement
interpolation of Part I, tailored to match the background potential Q(z).
Chapter 10 sketches an application of the results to the dynamical problem
of curvature-driven flow, while a final chapter contains estimates required for
the size and number of components of K.

Since crystal formation and evolution are of the most physical interest
in dimension d = 3, it is regretable that the key intermediate result —
Theorem 9.7 — is restricted to the plane. In higher dimensions, the argument
breaks down in two places. The estimate (49), which controls the surface
energy of the interpolant, is false in dimension d > 2. Lemma 9.6 due to
Okikiolu, which indicates that the surface energy of a connected open set
dominates that of its convex hull, also fails when d > 2. Counterexamples to

both are easily constructed in the isotropic case F(z) = |z|.
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8 Statement of Results

The results are most clearly formulated by first considering a simpler vari-
ational problem: that of minimizing £(C) among convez sets of fixed area.
Therefore, let C denote the collection of all closed convex sets of area one, a
complete metric space under the Hausdorff distance

HD(B, C) := sup inf |c — b inf |6 — 4
(B,0C) i‘;g,}SB'C |+§1€1£ggcl | (40)

for B,C € C. The topologies induced on C by HD(B,C) and H?*(BAC)
coincide [25], thus C is a closed subset of K. Existence of a minimizer on C
then follows from a compactness lower semi-continuity argument as above. Its
uniqueness will be proved up to translation. Whether or not there is freedom
to translate depends on the background potential Q(z): strict convexity of
Q(z) forces the minimizer to be absolutely unique; other cases are easily
resolved on an individual basis. All results in this paper pertain to the
energy £(K) from (38), defined through energy integrands F, @ : R* — R
which satisfy
(E1) F convex with F(Az) = AF(z) for A > 0; F > 0 unless z = 0;

(E2) @ is convex, assuming its minimum on a bounded set of area zero.

Theorem 8.1 (Uniqueness of Minimizer Among Convex Sets)
Let m € (0,00) and assume (E1-E2). Among closed convez sets C C R?
with area H*(C') = m, the energy e(C) 1is minimized by a set Cy(m) uniquely

determined up to possible translations.

Proof: It is enough to consider m = 1; the other cases are equivalent after a
new choice of length scale and corresponding modification of the integrands F'
and Q. Let C € C be a convex set with (C') < A < c0. The convex potential
Q(z) assumes a minimum Ag. Thus the surface energy ®(0,C) < A — Ag and
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the diameter of C is bounded (55) in terms of A. C is contained in a ball
B, (y) whose radius depends only on JA; it cannot be centered too far from
the origin since Q(z), being convex, grows linearly away from the bounded
set {@ = Ao} and

inf Q(z) <Y(C) <A

lz—y|<r
The conclusion is that C € Kg for some R which depends on A alone. Exis-
tence of a minimizer on C follows from lower semi-continuity of (K) on Kg
and the compactness result previously stated, equivalent here to the Blashke
Selection Theorem.

To prove uniqueness, suppose there are two convex sets C and C' of
minimum energy on C. Obviously e(C) = ¢(C’). Unless C’ is a translate of C,
Theorem 9.7 provides a path C(t) € C joining C to C’ along which inequality
(42) is strict for ¢ € (0,1). e(C(t)) < €(C) contradicts the assumption that
C minimizes (K ) on C. QED.

This result combines nicely with Okikiolu’s to yield a description of the

energy minimizer K, among all sets of fixed area.

Theorem 8.2 (Classification of Connected Crystal Components)
Assume (E1-E2), and suppose K, minimizes e(K) among K € K with unit
area. Then K, is a finite disjoint union of closed convez sets Cy,(m), each

with distinct area m and minimizing (C) among convez sets C of its area.

Proof: K, is already known to consist of a countable disjoint union of
closed convex components [3]; Proposition 11.2 bounds the number of such
components. Let C' be a convex component of K,, and with m := H?(C)
define C' := Cy(m) from Theorem 8.1. Then £(C) > ¢(C') and equality
holds only when C = C’ or possibly a translate. Otherwise, e(C) > (C’).
Choose a length scale so that m = 1. By Theorem 9.7 it is possible to define
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a continuous curve C(t) € C joining C to C’ along which the energy satisfies
(42) on [0,1]. Thus e(C(¢)) < €(C) for t > 0. Since C is one of finitely
many compact convex components of K, it enjoys a neighbourhood which
is disjoint from K, ~ C. Continuity of the curve C(t) in the Haudorff metric
ensures that for ¢ > 0 small enough, C(¢') lies in this neighbourhood; it
can be substituted for C' without interfering with the remainder of K,. The
energy of K, would be lowered and its area unchanged, contradicting the
fact that K, is a minimizer and proving the main assertion.

The proof is concluded by showing that even if translates of the minimizer
C,4(m) share its energy, no two such translates C and C’ occur as components
in K,. Otherwise, C' may be translated toward C' using C(t) := (1—t)C+tC’,
for t € [0,1] the energy e(C(t)) is convex and therefore constant. As long as
C(t) remains disjoint from K, ~ C, the set

K :=C(t)U(K, ~C) (41)

is a minimizer sharing the area and energy of K,. As soon as C(t) touches
C' or some other component of K, a contradiction is reached: either C(¢)
and C' share an edge, in which case the surface energy has been reduced and
e(K) < e(Ky), or else C(t) and C’ meet at a point, in which case K has a
non-convex component C(t) U C' violating Okikiolu’s theorem. QED.

A corollary to the preceding theorems gives a sufficient condition for the
equilibrium crystal to consist of a single convex component. This will be
the case if the energy integrands F(z) = F(—=z) and Q(z) = Q(—z) are
both even. When the minimizers Cy(m) among convex sets with areas m are
truly unique, this result follows immediately from Theorem 8.2: each Cy(m)
is convex and balanced, hence contains the origin; no two of these sets are

disjoint.
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Corollary 8.3 (A Convex Equilibrium Crystal in the Even Case)
Assume e(K) = e(—K) and (E1-E2). Then among K € K with unit area,
the minimizer K, of e(K) is convez: it is unique up to translation, and may

be taken to be balanced K, = — K.

Proof: If K, is convex, the first part of the theorem is proved. If not, choose
a convex component C' of K, not containing the origin; it is a minimizer
among convex sets of its area by Theorem 8.2. Since —C has the same energy
and area, Theorem 8.1 forces —C to be a translate of C. Let —C = C — =z
and define C(t) := C —tz for t € [0,1]. The energy (C(t)) is independent of
t. As in the proof of the preceding theorem, a contradiction will be reached
if C(t) intersects K, ~ C at any t. Thus C(t) and K, ~ C are disjoint
for all ¢, which could not happen if 0 € K,: being convex and balanced,
C(1/2) contains the origin. In any case, the minimizer K defined by (41)
with ¢ = 1/2 contains the origin. Applying the preceding argument to K
instead of K, leads to a contradiction. Thus K, must have consisted of a
single convex component C.

Thus K, = C coincides with the minimizer Cy(1) of Theorem 8.1, which
was uniquely determined up to translation. The translate C'(1/2) defined as

above also minimizes e(K) and is balanced. QED.
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9 Uniqueness of Convex Crystals

Let C denote the collection of compact convex sets in R? which have unit
area, metrized by the Hausdorff distance (40). Choose two sets C and C’
from C. In the current section, the displacement interpolation is used to
construct a continuous curve C(¢) € C joining C(0) = C to C(1) = C’, along

which the energy satisfies the convexity estimate
e(C(1)) < (1 —1)e(C) +te(C). (42)

The inequality is strict for ¢ € (0,1) unless C' and C are translates. The
existence of such a path forces C' and C' to be translates if both minimize
g(K) on C. Theorem 8.2 exploits the continuity of C(t) as well.

A result of Brenier [7] guarantees the existence of a unique® convex func-
tion ¢ : C — R whose gradient V1) is (an H?) measure-preserving map
between C' and C’. Because the sets are convex, Vi is a homeomorphism
from C to C': it is Holder continuously differentiable (C'*) on the interior of
C and Hélder continuous (C*) up to the boundary [20, 21]. The idea devel-
oped in Part I was to use the mapping V1 to define an interpolant between C
and C', viewed not as sets but as measures. That is, the characteristic func-
tions p := xs and p' := x lie in the space Pu.(R?) of non-negative functions
with integral one, and may therefore be regarded as probability measures.

Being measure-preserving, Vi may be said to push-forward p to p':

[ £(V9(@)) ple) dH(a) = [ f(3) ' (y) dH(y) (43)

for measurable f on R2. The measure of a set M under p’ may be recovered
from p and V4 by taking f = x,, in (43). For t € [0, 1], the displacement
interpolant p; € P.(R?) is defined to be the push-forward of p through

8Up to an additive constant.
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(1 — t)id + tV; here id is the identity map on R® p; is again a non-
negative function with integral one; for z in the interior of C its value at

(1 —t)z +tVey(z) is given by
pe((1 = t)z + tVh(z)) = det [(1 — )T + tV23p(z)] (44)

here I is the identity matrix while V2(z) is the derivative of Vi) at z —
matrix positive by convexity of ¢. Unlike p and p’, p; will not generally be
the characteristic function of any set; however by Proposition 9.4 it is true
is that p;(z) < 1. The notation p-5p' may replace p; in order to emphasize
explicitly the dependence on endpoints p and p’.

Although the surface and potential energies ® and ¥ have been defined
for sets rather than measures, the next two results show why one one can
hope to use p; to construct a set C(t) whose energy satisfies the convexity
estimate (42). To state these results, it is convenient to extend the definition

of ® to rectifiable curves, and of ¥ to measures p € P,.(R?) by

(o) = [ Q=) pl() dH2(a). (45)

A continuous curve o : [a,b] — R? is said to be rectifiable if has finite
arc length L(o). The latter is defined as a supremum over finite partitions
II={sg<s1 < <s,}Cla,bl:

L(o):= sup z”: lo(si) — o(8i-1)]- (46)

IIC[a,b] =1

In its arc length reparameterization 7 : [0, £(c)] — R?, the rectifiable curve
o is seen to be Lipschitz. As a consequence, the tangent 7'(s) exists for

almost all s, and it is natural to define the surface energy ®(o) by

(o) := /0 “ p(r(s))ds. (47)
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If the measure theoretic boundary 0,K of a set K € K coincides (up to
sets of H' measure zero) with a positively oriented, rectifiable simple closed
curve o, then the definitions (36) and (47) coincide; this is certainly the case
when K is convex. ®(o) may also be computed directly from o in a manner

analogous to the arc length (46):

n

®(o):= sup ZF(O’(SZ') — U(si_l)). (48)

MClab] =1
(48) is manifestly invariant under reparameterization; in the arc length pa-
rameterization it can be seen to coincide with (47) by the dominated conver-
gence theorem. Note that finiteness of (48) is equivalent to the rectifiability
of o: the surface tension F(z) is positively homogeneous, bounded away from

zero and infinity on the unit circle.

Lemma 9.1 (Displacement Convexity of Potential Energy ¥(p;))

Let C,C" € C be convez sets, and define the measure p; = XCLXC’ to be
the displacement interpolant between them. Then the potential energy ¥(p:)
is convez as a function of t on [0,1]. Strict convezity of U(p;) follows from

strict convezity in (E2) unless C = C'.

Proof: Let ¢ be the convex function whose gradient is a measure preserving
map from C to C'. The change of variables formula (43) is used to define p;.
Taking f(y) = Q(y), the potential energy (45) is given by

(o) = [ Q((1 - t)a + V() xc(e) dHE(2).

The integrand is manifestly convex as a function of ¢, therefore the integral
must be as well. If the convexity of Q(z) is strict, then the integral will be
strictly convex unless Vi(z) = z almost everywhere on C. In the latter case,

C and (' differ only by a set of measure zero; C = C' since both are compact

and convex. QED.
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Remark 9.2 The fact that the endpoints pg and p; were characteristic func-
tions of convex sets played no role in Lemma 9.1. The displacement inter-
polant p; may in fact be defined between any pair of probability measures
po,p1 € Pa(R%) and in any dimension. Displacement convezity of ¥ —

convexity of U(p,) as a function of ¢t — holds true in this general framework.

Proposition 9.3 (Displacement Convexity of the Surface Energy)

Let C,C" € C be convez sets, t € [0,1], and the measure p; := Xg 4 X
be the displacement interpolant between C and C'. The set {p: > 0} has
a (positively oriented) rectifiable simple closed curve o; : S* — R? as its

boundary, and the surface energy ®(o:) satisfies
(o) < (1 —1t) (0.C) +t ®(0.C"). (49)

Proof: Let ¢ be the convex function whose gradient is a measure-preserving
homeomorphism from C to C’; by the invariance of domain, V1 is a homeo-
morphism of their boundaries as well. Therefore, choose a positively oriented
simple closed curve o : S' — R? parameterizing the boundary of C. For
s € S, define oy(s) := Ty(o(s)) where T; := (1 —t)td + ¢ V3. The boundary
of C' is parameterized by oy, and o0:(s) is a homotopy between oy and o;.
For t < 1, the continuous map Ty : C — R? is the gradient of a strictly
convex function, hence one-to-one; o; must be a simple closed curve with the
same orientation for all ¢ € [0,1]. The image of C under the map 7; must be
simply connected; it therefore covers the region enclosed by oy. From (44) it
is clear that p; > 0 in the interior of this region.

To prove that p; vanishes outside of oy, it is enough to show that for
z from the interior of C, the point Ti(z) is enclosed by o; the support of
p: will then be encircled. This is obviously true at ¢t = 0 and ¢ = 1. The
homeomorphic image of S* x [0,1] in R® under the map (s,t) — (o:(s),?)
forms a “tube” having C x {0} and C' x {1} as its ends. Both ends of
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the line segment (T3(z),t) lie in this tube; the entire segment must also lie
within unless it crosses through the tube at some ¢t € (0,1). In the event of
a crossing, Ti(z) = Ti(o(s)) with s € S*. Since z lies in the interior of C,
o(s) # z and a contradiction is reached since T} is one-to-one.
It remains to show (49); rectifiability of o, is a consequence. From (48),
®(oy) = sup ZF(O’t(Si) — Ut(si_l))
ncst

= sup Z F((l — 1) (Uo(si) - UO(Si—l)) +1 (01(&) - 01(Si—1)))

< (1- t; ®(0g) +t P(0q).

The final inequality was obtained using the convexity of the surface tension
F. The proof is completed by the observation that ®(og) = ®(0.C) and
®(0;) = (0.C") by construction. QED.

It remains to construct a convex set C(t) € C to replace the measure
p: in the preceding estimates. The construction, given in Theorem 9.7, is
facilitated by three preliminary results. The first of these is a refinement of
Theorem 4.2, easily proved directly in this context. It shows that p; will not

be the characteristic function of any set unless C' and C' are translates.

Proposition 9.4 Let C,C' € C be convez, and the measure p; := Xc—t>ch
be the displacement interpolant between them. Then pi(z) < 1 on R%. Unless

C and C' are translates, pi(z) € (0,1) holds on a set of positive measure.

Proof: Asin Theorem 4.2, the fundamental observation is that for a positive
d x d matrix A > 0, det [(1 — ¢)I 4 tA]*/? is a concave function of ¢, strictly
concave unless A is a multiple of the identity 7. In the basis diagonalizing A
this is seen to result from the domination of the geometric by the arithmetic
mean. Observing (44) and taking A := V?y(z), from ¢ = 1 it is clear that
det [A] = 1. Therefore, p, < 1 for t € (0,1) with equality only if A = I.
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Either p; takes values in (0,1) on a set of positive measure, or V2 (z) = I
almost everwhere in the interior of C. 9 is continuously twice differentiable
there, so the latter implies V4(z) = z 4+ y for some y € R? and C' = C +y
a translate of C. QED.

The following lemmas show that the surface energy ®(0,C(¢)) is decreased
by convex intersections or by taking convex hulls. The second lemma is
based on an idea from Okikiolu’s proof that the connected components of an

equilibrium crystal are convex.

Lemma 9.5 (Convex Set Comparisons) Suppose K € K and let C C R?
be conver. Then the surface energy @(&(K N C)) < $(0.K).

Proof: C is assumed to be closed, since the difference is a set of measure
zero and therefore irrelevant. If C is a half-plane H = {z | (z, y) < A}
with y € R? and A € R, the desired inequality was noted in [23, §3.1.9].
The observation underlying it is that the surface energy of a piecewise linear
curve with vertices at zo, z1, . .., 2, € R dominates the energy of the segment
joining zg to z,:

F(z, —z0) < 27:: Flz;, —z;_1) (50)

by convexity and positive homogeneity of the surface tension F'. This gener-
alizes through (48) to rectifiable curves, and thence to 0, K.

If C is an arbitrary closed convex set, choose a countable dense set of
points from its boundary. C is the intersection of its supporting half-planes
H, D C at these points. Define K,, := H, N K,,_; inductively from K, :=
K. ®(K,) will be non-increasing. Moreover, H*(K,A(C N K)) — 0 with
n since H*(K) < oo. By the lower semi-continuity of ® in this metric,

B(8,(K NC)) < im&(8.K,) < B(8.K). QED.
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Lemma 9.6 (Okikiolu [3]) Let o : S* — R? be a simple closed curve and
) := conv o the convez hull of the domain it encloses. Then ®(0,0) < ®(0).

Proof: Let K denote the domain enclosed by the curve . By the preceding
lemma or inequality (50), ®(o) is decreased whenever any portion of the
curve is replaced by a straight line. If P is a convex polygon having vertices
in K, then ®(0,P) < ® (&(KUP)) < ®(0,K). Qis approximated up to a set
of area 1/n by a convex polygon P, C ). Exploiting lower semi-continuity

of ® as before, ®(0,0) < lim,, ®(0,P,) < ®(0.K) = ®(0). QED.

Theorem 9.7 (Interpolation Between Convex Crystals)

Let C,C' € C be convez. Then there is a continuous curve C(t) € C joining
C(0) = C to C(1) = C' along which the energy e(C(t)) satisfies (42) on
[0, 1], with strict inequality when t € (0,1) unless C' is a translate of C.

Proof: If C' = C + z is a translate of C, then C(t) := C + tz satisfies the
theorem. Otherwise, define the displacement interpolant p; := x, 4 Xo
between C and C’, and let (¢) := conv {p; > 0}. By Proposition 9.3 and

Lemma 9.6 the surface energy
®(8.0(t)) < (1—1) 8(8.C) + t&(8.C").

Proposition 9.4 shows p; < 1 on Q(t), with strict inequality on a set of positive
measure. H*(Q(t)) > 1 since [p; = 1. To replace Q(t) by a set of unit
area, consider its intersection with the nested convex sets @ = {Q(z) < A}
indexed by A € R. Since Q(z) is convex and attains its minimum Ag on
a set of measure zero, the area of {@ = A} vanishes for all A. H?*(Q,) is
continuously increasing on [Ag,00) as a result, having [0,00) as its image.

For each t € (0,1), choose A depending on ¢ so that H*(Q(¢) N Q,) = 1, and
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set C(t) := Q(t)NQx. Then C(t) € C, and by Lemma 9.5 the surface energy

has not been increased:
®(8.0(1)) < 2(a.0(2)).

The potential energies are compared by observing that 0 < (p; _Xc(t))(Q =),

with strict inequality on a set of positive measure. Integrating yields

w(C(t)) < o).

These estimates, together with Lemma 9.1, imply strict inequality in (42).
It remains to show that C(¢) is a continuous function of ¢ in the Hausdorff
metric. This metric (40) applies equally well to compact sets which need
not be convex. Since the homeomorphism (1 — ¢)id 4+ tV of C onto the
closure of {p; > 0} varies continuously with ¢ in the sup norm, its image
varies continuously in the Hausdorff metric. Taking convex hulls of compact
sets is a continuous operation, thus €(¢) is a continuous function of ¢ € [0, 1].
At the same time H2(QAAQ ) = H2(Q2) —H3(Qx) for A > X, so the nested
sets () depend continuously on ) in the area metric, or equivalently in the
Hausdorff distance. () N @ is jointly continuous as a function of (¢, A)

since

(2() N Qx) A ()N Qw) C (ADNA(L)) U (@:xAQw).

The proof will be completed by showing that in order to define C(t), A(t) :=
sup{Q(z) | z € C(¢t)} was chosen continuously as a function of t.

The function A(¢, A) := H2(Q(t)N@Q)) is continuous on [0, 1] X (g, 00) and
h(t,A(t)) = 1. For ¢ fixed, h(t, A) is a monotone non-decreasing function of A,
strictly monotone for A near A(¢) when ¢ € (0,1) since the convex set (¢) has
area larger than one. At the endpoints t = 0 and ¢ = 1, strict monotonicity

holds only in the one-sided neighbourhood A < A(¢). For all ¢t and € > 0,
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h(t,A(t) — €) < 1. For t' near t, it will still be true that A(¢, A(t) — €) < 1;
thus A(¢') > A(¢) —e. For t € (0,1) the reverse inequalities hold with € < 0.
As a result, A(t) is continuous on (0,1) and lower semi-continuous at the
endpoints. Finally, choose A > A(0). @, contains a neighbourhood of the
compact set C; by continuity in the Hausdorff metric Q(¢) C Q, for small
enough ¢, hence A(¢) < A. The same argument applies at ¢t = 1 and shows
A(t) to be continuous on the interval [0,1]. Thus C(t) := Q(t) N Qag) is a

continuous curve in the Hausdorff metric on C. QED.
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10 Curvature-Driven Flow

Curvature-driven flow, or motion by weighted mean curvature, is a dynamical
model for the time evolution of a non-equilibrium crystal under the influence
of its surface tension. In this model, the normal velocity of each point on the
crystalline interface is presumed proportional to the local change of surface
energy with volume (area in R?) [23, §2.2]. If the interface and its evolution
are both smooth, the flow may be referred to as classical. For curves in
the plane, the resulting motion has been studied by Angenent and Gurtin
[26]. Here a connection will be established between curvature-driven flow
and the statical problem we have considered. Corollary 8.3 will be used
to provide an alternative proof of a result announced in [26, §7.3]: that a
convex crystal Ko € K away from equilibrium, remains convex for all time
under curvature-driven flow. This result was known earlier in the isotropic
case F(z) = |z| both for curves in the plane [27] and surfaces in higher
dimensions [28], but [26] is more general, addressing a wide class of surface
energies as well as non-convex crystals. Our approach — currently limited
to the case Ko = —Ky — is of interest because it reduces the non-isotropic
question in higher dimensions to the study of a statical problem.

The connection is established through results of Almgren, Taylor and
Wang [23]. There it was shown that the curvarture-driven flow starting from
Ky, € K was approximated by a discrete time flow, in which the evolved
crystal K after time At is the minimizer on K of a functional (38). The
potential Q(z), which need not be convex, represents the tendency of the
flow to remain near its initial condition Ky for short times: it is proportional
to the signed distance to the boundary 0,K, and decays with elapsed time

At:
dist(z, 0.Ko) if z & Ko

1

Q(z) At := disty(z, Ko) := {
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A discrete evolution is generated by repeated minimization, replacing Ky by
K at each step. A continuous time flow, called a flat ® curvature flow, may
be extracted in the limit At — 0. Under additional restrictions this flat flow
coincides with classical curvature flow when the latter exists.

If the initial configuration Ky is a convex set, Lemma 10.2 shows that the
corresponding potential (51) is convex. If Ky is balanced and F(z) = F(—=z)
is even, an application of Corollary 8.3 then shows that the crystal remains
balanced and convex at all subsequent times. It is of interest to note that
the distance function appearing in (51) need not be Euclidean distance: it is
sufficient that

dist(z,0,K) := inf M(z — k) (52)

kb K
for any norm M(z) on R%. A non-Euclidean norm corresponds to a non-
isotropic mobility: a direction dependent response of the crystalline interface

to applied force.

Theorem 10.1 (Curvature Flow Preserves Balanced Convex Sets)

Let K(t) € K be a flat & curvature flow [28] on some interval t € [0,T].
If the initial condition K(0) = —K(0) is convez and the surface tension
F(z) = F(—=z) satisfying (E1) is even, then the crystal K(t) will be convex
at each subsequent time. K(t) will also have reflection symmetry through

some point z; € R?: K(t) — z; = z: — K(t).

Proof: Since K, = K(0) is convex and balanced, Lemma 10.2 shows the
potential Q(z) from (51) to be convex and balanced, and to assume its min-
imum on a bounded set of measure zero. Let K minimize ¢(K) over K, i.e.
among sets of all areas. K exists, though it may be the null set; it is a for-
tiori an energy minimizer among sets of its area. Corollary 8.3 shows K to be

convex, and if not balanced, then reflection symmetric through some other
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z € R%. K is an approximant to K(At). The approximant to K(2At) is ob-
tained by repeating the procedure, starting from K instead of Ky. Since the
problem is translation invariant, and a translate of K satisfies the hypotheses
on Ky, the approximants to K(nAt) must all be convex and symmetric for
n > 1. The flat ® curvature flow K(t) at time ¢ is obtained [23, 2.6] as a limit
of such approximants in the metric H?(-A-). K(t) is convex since convex
sets form a closed subset of K in this metric; it has a balanced translate for

a similar reason. QED.

Lemma 10.2 (Convexity of the Signed Distance to a Convex Set)

Let C C R be a convez set, and M(z) a norm on R%. The signed distance
dist4(z,C) from (51) and (52) is a convez function of z on R%. If C is
bounded, disty(z,C) assumes its minimum on a bounded set of measure zero

in R if C = —C is balanced, disty(z,C) = dist+(—z,C).

Proof: Choose any supporting hyperplane to C, and let H D C be the

corresponding half-space. The first observation
disty(z,C) > disty(z, H) (53)

is seen from three cases: if z ¢ H, the boundary of H lies M-closer to  than
the boundary of C; if z € C the situation is reversed, and (53) holds since
both distances are negated; if z € H ~ C, (53) holds on the basis of sign.

Now fix z € R?. There is some ¢ in the boundary of C such that
dist(z,0,C) = M(z — ¢). A supporting half-space H O C exists with
¢ € 0,H and with dist(z, H) = M(z — ¢): if ¢ € C this is obvious, while if
z ¢ C the hyperplane 0,H must be slipped between the convex sets C' and
{y | M(z —y) < dist(z,C)}. Thus (53) will be saturated for this H, and

disty(z,C) = sup disty(z, H),
H>C
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where the supremum is over half-spaces H O C. Convexity of disty(z,C) is
manifest since disty(z, H) is linear (or at least affine).

The signed distance is positive for z ¢ C, thus attains its minimum on
a compact convex set K C C when C is bounded. Any interior point of
K would be M-farther from 0,C than some point on the boundary of K is,
contradicting the fact that disty(z,C) is constant on K. Thus K is measure
zero. disty(z,C) is obviously even if C = —C. QED.
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11 Support and Number of Components

In this section, two a priori estimates are proved regarding energy minimizing
crystals K, of ¢(K) with constrained area; the first localizes the support
of K,, while the second provides a lower bound for the area of its convex
components, implying an upper bound on their number.

The next proposition implies that the minimizers of e( K') among crystals
with unit area must all lie in a single large ball. To prove this, it is useful to

have scaled copies of the Wulff shape W available for comparison; for m > 0,

W is defined as the dilate of W having H*(W,,) = m. If K € K,

®(0.K) > \/H?(K) ®(0.W1). (54)
In two dimensions, a trivial estimate shows that the diameter of a connected
open set U € K is controlled by its surface energy:

diam U := sup |z —y| < (2F,)7' (8,U); (55)

z,yeU

here Fy > 0 is the minimum of the surface tension F(z) on |z| = 1.

Proposition 11.1 (Bound on the Radius of a Minimizing Crystal)
Let K' be a minimizer of e(K) on Kr for R < oo. There is some radius
R' — given by (56) — depending only on the integrands F' and Q such that
K' € Kgr' whenever R > R'.

Proof: The proof uses the fact that K’ is expressible as a disjoint union
of connected open sets U, with ®(0,K') = ¥, ®(0.Uy,). In fact, the U,
are convex by Okikiolu’s argument, which applies even though K’ may only
minimize ¢(K) on Kg.

Assume the Wulff shape W; is translated so that W(W;) < W(W; +z) for
all z € R?, and define A := sup{Q(z) | z € W1} and @, := {Q(z) < A}. This
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set is bounded since the convex potential Q(z) attains its minimum A on a
bounded set. Since R’ will be taken from (56), e(K') < e(W;) when R > R'.
Thus the surface energy ®(K') is controlled, leading through (55) to a bound
r:=(2F;) ' (e(W1) — Xo) on the diameter of each connected component U,.
Enlarging @, by radius 7, the result will be proved by showing that unless
K' C Qx+B,(0), some L € Kg has lower energy. It will therefore be sufficient
to take

R :=r+ SélQp |z]. (56)
z€Q»

Suppose that a connected component U of K’ intersects the complement
of @+ B,(0); it must be disjoint from @ by construction. This observation,
together with (54), shows that the energy gained by removing U from K’ to
leave K := K' ~ U, is at least

e(K") — e(K) > /H2(U) ®(8.,W1) + X H*(U). (57)

K will not satisfy the area constraint, but there is room inside W; ~ K to
restore the excess mass 'Hz(U) since 'Hz(K)—I—'H2(U) =1= 7‘(2(W1). Because
W1 C @), the potential energy cost for introducing this mass will be

(L)~ U(K) < XH(U);

if L can be formed without paying too great a price in surface energy, the gain
(57) will dominate. Choose a scaled copy of the Wulff shape W,,, C W; for
which H3(W,, ~ K) = H*(U), and define L := W,,, U K. Certainly L € Kg
if R > R'. The surface energy of L is controlled by an inclusion-exclusion

estimate [23, §3.1.4], (54) and m > H*(U):

B(0.L) — B(8.K) < (8. W) — @ (0u( Wi N K))
< B(8.W) (1 iz Hz(U)/m)
< (8. W)y H2(U)/m.
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The three preceding inequalities yield (L) < e(K'), contradicting the fact
that K'is an energy minimizer. QED.

Proposition 11.2 (Lower Bound on Area of Convex Components)
Let K, minimize e(K) among K € K with unit area. If C is one of the dis-
joint conver components of K,, then H*(C) > m' > 0; the area bound m'

depends only on the integrands F' and Q).

Proof: Choose the origin of R? to lie somewhere in C. Since C is convex, it
may be contracted by a factor 0 < 7 < 1 without intersecting K := K; ~ C
or indeed any dilation of K by factor A > 1. Moreover, n and A may be
chosen to depend on each other in such a way that nC U AK has unit area.
Then the energy of this configuration is bounded below by ¢(K,), which will
lead to a lower bound on H?(C).

Before the origin was shifted, K was contained in the ball Bg/(0) by
Proposition 11.1; R’ depended only on F' and Q. It will still be true that K
is contained in a ball of radius 2R’ about the new origin. The infinitesmal

increase in e(AK) = A®(0,.K) + )\2/ Q(\z) dH?(z) with X is given by
K

% AZla()\K) = ®(0,K) + /K(ZQ +(z, VQ)) dH(z); (58)

being convex, Q(z) is Lipschitz on |z| < 2R' and the dominated conver-
gence theorem has been applied. The cost (58) of dilating K is controlled
by a constant depending only on F' and ). On the other hand, both the
surface and potential energy of C' will decrease as it is contracted ...the
latter because nC C C. The proposition is proved by the next estimate,
which shows that unless H?(C) is bounded below, the gain in ®(nC) with a
small change in A outweighs the cost (58); this would be inconsistent with

e(K,) a global minimum. The estimate relies on (54) and the area constraint
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7?H*(C) + X3(1 — H*(C)) = 1; when H?(C) is small, a slight change in A

results in a huge change in 7. Thus

d dn
g B00) = —e(0.0)5 (59)

n=A=1

> HA(C)TVP(1 - HP(C)) ®(Wh) (60)

diverges with H?(C') — 0. The proposition is concluded by choosing m/
small enough so H?(C) < m' implies the gain (60) in surface energy alone

outweighs the K, independent bound on the cost (58). QED.
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Part III
Rotating Stars

12 The Stability of Rotating Stars

In a simple class of astrophysical models, a star is represented as a fixed
mass of gravitating fluid, obeying an equation of state in which the pressure
P(p) depends on the density only; with an appropriate equation of state this
is a reasonable model for a cold white dwarf star [13]. The investigation
of rotating equilibria for such a fluid has been of great mathematical and
physical interest since the time of Newton: the homogeneous incompressible
case alone has a venerable history chronicled elsewhere [29]. More recently,
compressible fluid models have enjoyed a revival of interest [30, 31, 32, 33,
34, 35, 5, 36] since Auchmuty and Beals [4, 37] demonstrated the existence
of axisymmetric equilibria in which infinitesmal concentric cylinders of fluid
rotate differentially. Either the angular velocity or angular momentum profile
of differential rotation was specified a priori, and satisfied decay conditions
precluding the possibility of uniform rotation [5]. Thus the equilibria of
Auchmuty and Beals, though they solve the inviscid Euler equations, do not
represent ground states of the physical system: differential rotation implies
that there is excess energy waiting to be dissipated through viscous friction.

A more fundamental problem is to determine the stable equilibrium states
of the system, subject only to the physical constraints of specified fluid mass,
linear momentum and angular momentum J about the center of mass. This is
the problem addressed here. It is formulated as a variational minimization of
the energy E(p, v), which depends on the fluid density p(x) > 0 and velocity
field v(x) on R®. The problem is peculiar in that the energy — although

bounded below — does not attain its constrained minimum except in the
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non-rotating case J = 0. As a result, one is forced to settle for local energy
minimizers, where local must be suitably defined. Such minimizers prove to
be stable, uniformly rotating solutions of the Euler or Navier-Stokes-Poisson

system:

VP(p) = p{V(Vp)+w*r(x)i}; (61)
—AVp = 4mp. (62)

Here cylindrical co-ordinates have been chosen for the center of mass frame;
the angular momentum J = J7 selects the z-axis. This axis will be a principal
axis of inertia for p, and the corresponding moment of inertia I(p) determines
the angular velocity w := J/I(p). The gravitational potential Vp is given by
(68). Regarding the astrophysical relevance of this formulation, we concede
that for many applications relaxation to uniform rotation takes place on
unreasonably long time scales. Nevertheless, there are contexts in which
it may be a dominant effect. For example, observational evidence indicates
that in ancient close binary systems, the rotational periods of the component
stars coincide with the system’s orbital period; the two stars rotate as a solid
body [38].

On physical grounds, it is evident that the system (61-62) should have
solutions for any prescribed fluid mass M and angular momentum J. How-
ever, solutions have been proven to exist only for J small [5]; the analysis
there is formulated in terms of angular velocity w and assumes axisymmetry.
In the following pages, the existence of solutions is demonstrated in the op-
posite regime: for large angular momentum J. These solutions take the form
of binary stars, in which the fluid mass is divided into two disjoint regions
widely separated relative to their size. The ratio of masses between the two
regions may be specified a priori. It is clear that these solutions will not be

axisymmetric, but they do have z = 0 as a symmetry plane.
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Since they are constructed as local energy minimizers, these binary stars
will be stable. However, the stationarity condition they satisfy (75) differs
slightly from the Euler-Lagrange equation for a global energy minimizer, in
that the chemical potential — usually thought of as a Lagrange multiplier
conjugate to the constraint of fixed mass — need not be constant throughout
the set {p > 0}; instead, each connected component of {p > 0} has its
own chemical potential. This possibility is of particular relevance if one is
interested in counting connected components of a solution as in [32, 36]. It
also makes perfect sense physically: one would not expect mass at the earth’s
surface to be as tightly bound as at the surface of the sun, even if the system
were in equilibrium.

Unfortunately, intermediate values of the angular momentum J remain
inaccessible to us. However, some global features of the problem may be
demonstrated in the context of a one-dimensional toy model proposed in
Chapter 15. This model represents an interacting compressible fluid, con-
strained to live in a long light tube, and rotating end-over-end about its cen-
ter of mass. It has the virtue of being exactly solvable: for a given mass, the
solutions come in an uncountable number of disjoint families, each parame-
terized continuously by the angular velocity w. The solutions with connected
support — single stars — form a family which persists as long as J is not
too large. The remaining families persist for J not too small, and repre-
sent binary stars or stellar systems in the astrophysical analogy. All families
terminate with equatorial break-up of the lightest star in the system.

In the following chapter, the three-dimensional problem and results are
formulated precisely. Chapter 14 collects results which, although not original,
are required for the analysis; the reduction to uniform rotation is due to
Elliott Lieb [39]. In Chapter 15 the one-dimensional model is introduced

and analyzed, while the stationarity and regularity properties of local energy
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minimizers for the real problem are discussed in Chapter 16. The last chapter
contains the proof that for large angular momentum, local minimizers exist

in the form of binary stars.
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13 Formulation of the Problem

The state of a fluid may be represented by its mass density p(x) > 0 and
velocity vector field v(x) on R3. If the fluid interacts with itself through
Newtonian gravity and satisfies an equation of state in which the pressure
P(p) is an increasing function of the density only, then its energy E(p, V)
is given as the sum of three terms: the internal energy U(p), gravitational
interaction energy G(p, p), and kinetic energy T'(p,v). Each is expressed as

an integral over x € R3:

E(p,v) = Ulp) = Glp,p)/2+T(p,v); (63)
Ue) = [ Alp) d*x (64)
Glo,p) = [ Vo dp(x) (65)
T(o,v) = 5 [ IvPdp(x) (66)

Here A(p) is a convex function obtained from the equation of state by inte-

grating dU = — Pdv from infinite to unit volume,

Ae)i= [ Plofv) v, (67)
while Vp represents the gravitational potential of the mass density p(x):

_ [ do(y)
x -yl

Vp(x) : (68)

Units are chosen so that the total mass of fluid M =1 and the gravitational
constant G = 1, and a frame of reference is chosen in which the center of

mass
-1

%(p) = ([do) " [xdp(x) (69)

is at rest. One is then interested in finding minimum energy configurations

subject to constraints of fixed mass and angular momentum J about the
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center of mass X(p). The fluid angular momentum is given by J(p, v):

I(p,v) = /(x ~x(p)) x v dp(x). (70)

Before addressing the rotating problem J # 0, further assumptions and
results will be required of the non-rotating energy Eo(p) := U(p) — G(p, p)/2.
The pressure P(p) may take a quite general form, including the polytropic
equations of state P(p) = p? with ¢ > 4/3 and the Chandrasekhar equation
of state [13]. Following Auchmuty and Beals [4], the tacit assumptions on
P(p) will be:

(F1) P :[0,00) — [0, 00) continuous and strictly increasing;

(F2) lim P(e)e™"/* = 0;

(F3) ligglfp(g)g_‘l/?’ > K(M).

In (F3), the constant K (M) > 0 must be sufficiently large to prevent grav-
itational collapse: U(p) must control G(p,p) at large energies so that the
Chandrasekhar mass for the model is greater than M = 1. (F1-F2) ensure
that A(p) is C! and strictly convex with A'(p)o — A(p) = P(p) on [0, c0).
(F2) also ensures that a diffuse gas does not disperse to co. Under these

assumptions, Fo(p) will be bounded below on

R(RY) ={p e LR [p>0 [p=1}, (71)

assuming its minimum there [4]. The problem is formulated in L*3(R®) be-
cause Fo(p) < C and (F3) imply a bound on ||p[|4/3. Results are also required
regarding the non-rotating minimizer o, of E¢(p) among configurations of

mass m < 1, and the corresponding minimum energy

eo(m) := peiél(]%a)E’o(mp) = Eo(om). (72)

Drawn from [4, 13|, these are summarized in Theorem 14.5 below.
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In the presence of rotation, it is convenient to formulate the variational

problem on a subset Ro(R?) of R(R3):
Ro(R3?) :={p € R(R*) | X(p) =0 spt p is bounded}. (73)

Here spt p denotes the support of p, the smallest closed set carrying the full
mass of p. Bounded support ensures that p has a center of mass and finite mo-
ments of inertia. It is not implausible that solutions to (61) will have bounded
support, since that equation is trivially satisfied where p vanishes. The ve-
locity fields v will be taken to lie in V(R?) := {v : R®> — R® measurable}.

For prescribed angular momentum J # 0, the energy E(p, V) is bounded
below by the non-rotating energy eo(l). However, Example 14.6 demon-
strates that this bound — although approached — will not be attained. Thus
the search for a global energy minimizer will be futile, and one is forced to
settle for local minimizers of E(p,Vv) in an appropriate topology. However,
the choice of topology on R(R?) is quite delicate: Remark 14.7 shows that
local energy minimizers will not exist if this topology is inherited from a
topological vector space. Instead, R(R?) is topologized via the Wasserstein
L* metric of the probability literature. This metric is defined in Chapter 16
and denoted by W,,. The velocity fields v may be topologized in any way
which makes V(R?) a topological vector space. Local and continuous refer to
these topologies hereafter.

With these definitions, Theorem 13.1 may be stated; it collects the results
of Chapter 14 and 16. Its conclusions apply to energy minimizers subject
only to a constraint on the z-component J,(p,v) :=z-J(p, v) of the angular
momentum, but are extended to the case of physical interest by the corollary
and remark following. That local minimizers exist in the form of binary stars
for large J is the content of Theorem 17.1 and its corollary. Both theorems
are proved by adapting the approach of [4] to the context of W,-local energy

minimizers.
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Two final definitions are required: let [A]; := max{},0}; and for § > 0
define the §-neighbourhood of Q! C R3 to be the set
Q+ B5(0):= J{xeR®| |x—y| <8} (74)
yeN
Theorem 13.1 (Properties of W,,-Local Energy Minimizers)
Let J > 0. If (p,v) minimizes E(p,Vv) locally on Ro(R*) x V(R3) subject to
the constraint J,(p,v) = J then:
(1) the z-azis is a principal azis of inertia for p, with a moment of inertia
I(p) which is mazimal and non-degenerate;
(11) the rotation is uniform: v(x) := (Jz x x)/I(p);
(1it) p is continuous on R3;
(tv) on each connected component Q; of {p > 0}, p satisfies

A (p(X)) - [ Zjizp)Tz(X) + Vp(x) + A N (75)

for some chemucal potential A; < 0 depending on the component;
(v) the equations (75) continue to hold on a §-neighbourhood of the §;;
(vi) where p is positive, it has as many dertvatives as the inverse of A'(p);

(vii) if P(p) is continuously differentiable on [0,00) then p satisfies (61);

(viii) this solution is stable with respect to L*°-small perturbations of the La-

grangian flurd variables.

Corollary 13.2 (Local Minimizers with J, = J have J(p,v) = JZ)
Let J > 0. Suppose (p,v) minimizes E(p,v) locally on Ro(R?) x V(R?)
subject to the constraint J,(p,v) = J. Then (p,v) also minimizes E(p,V)
locally subject to the constraints J(p,v) = JZ.

Proof: Theorem 13.1(i-ii) shows that the angular momentum of (p, v) satis-

fies the constraints J(p,v) = Jz of the more restricted minimization. QED.
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Remark 13.3 Although the proof is not given, the converse to Corollary
13.2 is also true provided the topology on V(R?) enjoys a little more structure:
the map taking w € R3 to v(x) := w x x € V(R?) should be continuous.
The proof requires Remark 14.3, and the observation that a local energy
minimizer subject to the constraint J(p, v) = J must rotate about a principal
axis with maximal moment of inertia. Otherwise a slight rotation would lower
its energy. To exploit this observation, it is necessary to know that slight
rotations are local perturbations in Ro(R?) x V(R?), but this follows from the
topology on V(R?) and Lemma 16.1(iii).

Remark 13.4 (Stationarity Conditions for Energy Minimizers)

The Euler-Lagrange equation for a global energy minimizer, or indeed any
critical point of the functional E(p,v), differs from Theorem 13.1(iv) in that
(75) would be satisfied on all of R® for a single chemical potential );. Since
the Navier-Stokes equation (61) follows from (75) by taking a gradient and
multiplying by p, it will be satisfied whether or not A, = A; on different
connected components of {p > 0}. Conversely, for p € Ro(R3?) to be a
solution of (61), an integration shows that the conclusion of Theorem 13.1(iv)

is necessary as well as sufficient.
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14 TUniform Rotation

This chapter recounts several results which, although not original, will be
required for the analysis. In particular, it is shown that the problem of min-
imizing E(p,v) is equivalent to a minimization in which the fluid rotates
uniformly about its center of mass; this reduction is due to Elliott Lieb [39].
Results regarding the minimization of the non-rotating energy are also re-
called. Used here to demonstrate that the energy of a rotating star — though
bounded below — cannot attain its minimum, they will also be required in
Chapter 17.

Since the z-component of the angular momentum is specified, the mo-
ment of inertia I(p) of p € Ro(R?) in the direction of Z will be relevant; in
cylindrical co-ordinates (r(x), #(x), 2(x)) it is given by

I(p) = [ 7*(x = (p)) do(x) (76)

Proposition 14.1 (Uniform Rotation around Center of Mass [39])

Fiz a fluid density p € Ro(R?) and J > 0. Among all velocities v € V(R?)
for which T'(p,v) < oo and satisfying the constraint J,(p,v) = J, the kinetic
energy T(p,v) is uniquely minimized by a uniform rotation v(X) := wz X X

with angular velocity w := J/1(p).

Proof: Let H := L*(R3,dp(x)) C V(R®) denote the Hilbert space of vector
fields on R®, with inner product (-, -),, determined by (v, v),, := 2T(p, V).
The uniform rotation Z x x € H, while the velocities v of interest lie in the
affine subspace G C H where the constraint (v, z x x),, = J is satisfied.
Minimizing the norm (v, v),, over G yields v, := w(Z X x): any other v € G

differs from v, by a vector orthogonal to Z x x in H. QED.
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Corollary 14.2 (Local Energy Minimizers Rotate Uniformly)
Let J > 0. If (p,v) minimizes E(p,Vv) locally on Ro(R*) x V(R3) subject to
the constraint J,(p,v) = J, then v(x) = wz x x with w := J/I(p).

Proof: The curve (1 —t)v(x) + tw(z X x) is continuous in the topological
vector space V(R?), and the linear constraint is satisfied along it. Moreover,
T(p,v) and hence E(p,v) is a quadratic function of ¢ along this curve, as-
suming its minimum at ¢ = 1 by Proposition 14.1. Thus (p, V) cannot be a

local minimum unless v(x) = wz X x. QED.

Remark 14.3 (Uniform Rotation when J(p,v) is Prescribed)

The proofs of Proposition 14.1 and its corollary extend to the case where
the linear constraint J,(p,v) = J is replaced by three linear constraints
J(p,v) = Jz. The conclusion then is that v(x) = w X x, where w € R3 is
the unique angular velocity compatible with the given density p and angular
momentum J. Of course, the axis w of rotation may not coincide with the

z-axis.

If p € Ro(R?) rotates with velocity v(x) = (JZz x x)/I(p), then its kinetic
energy T'(p, V) is given by
J2
Ti(p) := .
)= 5105)

A second corollary shows that the minimization of Theorem 13.1 is equivalent

(77)

to the minimization of

E;(p) :=U(p) — G(p, p)/2 + Ts(p)- (78)

Corollary 14.4 (Velocity Free Reformulation)
Let J > 0 and p € Ro(R?), and define w := J/1(p). Then (p,v) minimizes
E(p,v) locally on Ro(R?) x V(R3) subject to the constraint J,(p,v) = J if

and only if p minimizes E(p) locally on Ro(R?) and v(x) = wz X x.
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Proof: Assume (p,v) minimizes E(p,v) locally on Ro(R?) subject to the
constraint J,(p,v) = J. By Corollary 14.2, v(x) = wz x x, whence T'(p,v) =
Ti(p). Lemma 16.1(v) shows that I(p) is continuous on Ro(R?), therefore p’
sufficiently close to p ensures that w' := J/I(p') differs little from w. Because
V(R?) is a topological vector space, v/(x) := w'Z X x can be made close to
v. Since (p, V) is a local energy minimum, taking p’ closer to p if necessary
ensures E(p,v) < E(p',v') = E;(p'), establishing one implication.

The other implication is easier. Assume p minimizes E;(p) locally, and
define v(x) := wz X x. For p’ near p and any v’ € V(R?), Proposition 14.1
yields E(p',v") > E;(p') > E;(p) = E(p, V). QED.

The analysis will henceforth be devoted to E;(p). Some results regarding
the non-rotating problem J = 0 are required. Implications of [4, Theorems
A and B] and [13, Theorem 3(b,d,e)] are summarized here. Results from
the latter are statedly explicitly for the Chandrasekhar equation of state,
but apply equally well to all A(p) consistent with (F1-F3). If, in addition,
A'(0%) is convex, uniqueness of minimizer up to translation is also known [13,

Lemma 11 and remark following].

Theorem 14.5 (Non-rotating Stars [4, 13])
For Eo(p) from (78), eo(m) from (72) and m € [0,1]:

(1) Eo(p) attains its minimum eo(m) among p such that m~'p € R(R?);
(11) eo(m) decreases continuously from eo(0) = 0 and is strictly concave;
There are bounds Ro(m) and Co(m) on the radius and central density, such

that any mass m minimizer o, of Eo(p) satisfies
(111) O is spherically symmetric and radially decreasing after translation;
(1) |lomlleo < Co(m);
(v) sptom is contained in a ball of radius Ro(m);
(vi) om is continuous; where positive it has as many derivatives as the in-

verse of A'(p);
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(vii) om satisfies (75) on all of R® for J =0 and a single X < 0;
(viii) the left and right derivatives of eo(m) bound A: ef(m™*) < XA < ef(m™).

For a rotating star J > 0, it has already been asserted that the lower
bound Ej(p) > eo(l) is approached but not attained on R(R3). That it
cannot be attained is now clear: Eo(p) > eo(1) while T(p) > 0; when the first
inequality is saturated, Theorem 14.5(v) forces the second inequality to be
strict. The following example uses Theorem 14.5(ii) to construct p € Ro(R?)
with E;(p) arbitarily close to eg(1).

Example 14.6 (No Constrained Minimum of E(p,v) is Attained)
Let J > 0 and o, and o(1_m) be the non-rotating energy minimizers of
masses m and 1 —m respectively. From Theorem 14.5(ii), eg(m) + eo(1 —m)
approximates eg(1) for m > 0 sufficiently small. Since o,, has a finite radius,
ly| sufficiently large yields a trial function p(x) := om(X) 4+ o_m)(x — y)
with energy

By(p) = colm) + eo(l — m) — Glop_myom) + Tolp).  (79)
Taking |y| larger if necessary forces T7(p) to be small since
1(p) = I(om) + I(00_my) + m(1 — m)ly . (30)

Thus E;(p) can be made to approach the energy eg(1) of the non-rotating

minimizer.

Remark 14.7 (No Local Minimizers in a Vector Space Topology)

The preceding example showed that the search for a global minimizer will
be fruitless. More is true: for Ej(p) to have even local minimizers, the
topology on Ro(R3) must not be inherited from a topological vector space.

Otherwise, a local minimum p € Ro(R?) would be stable with respect to
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all perturbations p + to € Ro(R?); that is, ¢ > 0 sufficiently small would
imply Ej(p + to) > E;(p). The resulting stationarity condition would be
(75), satisfied on on all of R® for a fixed A;. But this is absurd: it implies
p(x) — oo as 7(x) — oo. Stated physically, it is energetically favorable to
slow down a rotating star by removing a small bit of mass to a far away orbit,

where it carries little kinetic energy but great angular momentum.
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15 Fluid in a Tube: A Toy Model

Before proceeding with the analysis of the three-dimensional problem, a one-
dimensional toy model is introduced which illustrates a number of subtleties.
This model represents an interacting fluid, constrained to live in a long light
tube, and rotating end-over-end about its center of mass. The interaction
is one-dimensional Coulomb attraction — force independent of distance —
while the equation of state is taken to be P(p) = cp®. As in the three-
dimensional problem, the energy (81) of a mass of fluid carrying angular
momentum J assumes its minimum only in the non-rotating case J = 0.
However, the (one-dimensional) Euler-Poisson system (88) is explicitly sol-
uble for this model, and a complete catalog of solutions may be obtained.
These fall into an uncountable number of disjoint families or sequences, each
parameterized continuously by the angular velocity w = J/I(p) > 0 up to
some critical value w.. Beyond w, the sequence fails to exist. The solu-
tions with connected support — single stars — begin with the non-rotating
minimizer and persist as long as J is not too large. Each remaining family
persists for J not too small, and consists of configurations in which a number
of components with fixed masses ‘orbit’ each other; these represent binary
stars or stellar systems in the astrophysical analogy.

The absence of bifurcations in this model should be emphasized. In prob-
lems of stellar evolution, bifurcations along equilibrium sequences raise in-
teresting cosmological possibilities. For example, a theory of formation of
double stars known as the fission hypothesis [40, 41] asserts that as w is in-
creased by gravitational contraction, a single star may deform quasi-statically
into a binary system. Proposed by Kelvin and Tait before the turn of the
century, this conjecture has not yet been rigorously resolved even in the con-

text of the homogeneous incompressible model in R®*. On the other hand,
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numerical studies [42] show that bifurcations do not occur in axisymmetric
uniformly rotating models with polytropic equations of state P(p) = p? in
which ¢ < 2.24. Instead, the axisymmetric equilibria remain stable up to a
point of ‘equatorial break-up’. This is also the case in our toy model. There
cooling or contraction may be represented by decreasing c at fixed J, which,
after rescaling units, is equivalent to increasing J at fixed ¢. For a single
star, w increases with J; the radius grows, and the atmosphere near the sur-
face becomes thinner and thinner until it is no longer gravitationally bound.
For larger J there is no nearby equilibrium and the family ends. The same
mechanism is responsible for the demise of the other equilibrium sequences as
well. In these sequences however, w varies tnversely with J at large angular
momentum: w — 0 as J — oco. In this limit, the components approximate
non-rotating minimizers of the same masses, placed so far apart that the
system rotates very slowly. For larger w, the stars draw closer together and
the stellar material becomes less concentrated; equilibrium persists only as
long as the atmosphere of the lightest star (or planet) continues to be bound.

In our one-dimensional model, the state of the fluid is represented by its
mass density p(z) > 0 on the line; its total mass is is taken to be M and
its center of mass to lie at the origin. If the whole tube rotates about this

center of mass, the energy of the fluid is given by

Bilo) = [[5@) do + 5 [[ o) o —vldolo) + s (61

Units of mass, length and energy may be fixed to ensure c = M = G = 1,
where G is the ‘gravitational’ constant — the coefficient of the potential
energy. The angular momentum J scales with (M®c®/G)/*, and the moment

of inertia I(p) is given by

1(p) := /R z2dp(x). (82)
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The energy E;(p) is defined on the space Ro(R) C L?(R) of densities p(z)

with bounded support and satisfying the constraints

Y

Z

p(z) 0, (83)
/ do(z) = 1, (84)
/a:dp(a:) = 0. (85)

Defining [z]4 := max{z, 0}, any minimizer of E;(p) on Ro(R) must be a

pointwise a.e. solution to the Euler-Lagrange equation

2p(z) = [% — Vp(z) + )\] . (86)

Here A is the Lagrange multiplier conjugate to the mass constraint, while Vp

is the gravitational potential

Vp(e) = [ I~ yldoly). (87)

For the real model, (86) is established rigorously in [4] (see Chapter 16);
for the toy model, the proof would be similar. However, unless J = 0, (86)
can have no solutions in Ro(R), thus E;(p) is not minimized there: since
Vp(z) grows no faster than linearly for p € Ro(R), any solution of (86) would
diverge quadratically as |z| — oo, violating the mass constraint.

On the other hand, the equations corresponding to the Fuler-Poisson

system (61) are quite easy to solve; they are obtained by differentiating (86-

87) to yield:
2p'(z) + 2M(z) — M(o0) — % =¢ where p(z) > 0 (88)

and M(z) := / p. Here £ = 0 if p has its center of mass at the origin. The
sections below classify all continuous solutions p € Ro(R) to these equations;

their properties are immediate from the exact solutions.
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Solutions with Connected Support

All continuous solutions p € Ro(R) of (88), differentiable where positive,
must be C* there: M(z) gains regularity from p and the result follows by a
bootstrap. Thus p satisfies

p"(z)+ p(z) = w?/2 where p(z) > 0, (89)

for some w. Conversely, any solution p to (89) with {p > 0} connected also
solves (88) for J = wl(p) and some €. Such a star, if it has radius r and
center of mass at the origin, can only be of the form

._M _Ls(m) fzel-rr otherwise
pr(z) := 5 (1 cos(’r‘)) fze|-rr], 0 oth . (90)

r must lie in [r/2, 7], while the normalization constant 5(r) := (r — tanr)™!
for unit mass. The angular velocity required to sustain p, is related to r by
w? = 2p2(r) + 2p.(r) = n(r). (88) is satisfied for J = wl(p,) and some ¢,
while p/(0) = 0 and M(0) = 1/2 imply ¢ = 0. Finally, n(r) increases from
0 to ! on [r/2, 7], so w parameterizes the sequence as it ranges from 0 to
we(l) = a1/2,

For single stars it remains to demonstrate that J = I(p, )w varies directly
with w. Since w increases with 7, it suffices to show that I(p,) is also in-
creasing. For r < 7', p.(z) = pp(z) is solved at a unique value of |z| < r/;
I(pr) < I(p..) therefore follows from (82). Thus J attains its maximal value
for r = m. At this value, the density gradient at the star’s surface vanishes:
pi(r) = n(7)tan(n) = 0; the pressure gradient must vanish as well, so the
fluid at the surface is ‘in orbit’. For larger angular momentum this outermost

fluid cannot remain contiguous with the star in equilibrium.
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Solutions with Disconnected Support

Having enumerated the solutions corresponding to single stars, it remains to
consider solutions p to (88) for which {p > 0} is disconnected. These must
also satisfy (89). If the interval (z — 7,z + r) is a connected component of
{p > 0}, then the retriction of p to this interval must be mp,(z — z) for some
mass m < 1. As before, r € [1/2,7]. One can then ask: given an ordered
n-tuple of masses satisfying m; + ...+ m, = 1, for which angular velocities

will there be a solution p € Ro(R) given by

P(m) = Zmipri(m - zi) (91)

for some radii r; and centers z;, ordered so that z;, + r; < z;41 — ripq. All
solutions to (88) in Ro(R) must be of this form: a star cannot have infinitely
many planets with radii r > 7 /2 and also have bounded support. Below it is
demonstrated that exactly one such solution exists for each w > 0 up to some
critical value w.(my, ma,...,my,) < co. The sizes of the components vary
inversely with their masses, and it is easiest to parameterize the sequence
in terms of the radius r of the lightest component. » = 7 at the critical
value w = w,(ma,...,my), while r — 7/2 (the radius of the non-rotating
minimizer) and J — oo as w — 0.

If (91) is to satisfy (89), it is necessary that p”(z; + ;) = w?/2 indepen-
dently of z. Thus the radii must satisfy

n(r;) = w®/m;. (92)

! on [r/2,7], these equations are soluble

Since n(r) increases from 0 to 7~
provided w?/m < 77! for the lightest mass m. Conversely, w > 0 may
selected by precribing the radius » € (7/2, 7] of the lightest component, in
which case the remaining radii are uniquely determined. (89) will be satisfied,

provided the centers z; are chosen far enough apart so that the components
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do not overlap. This will be verified a posteriori. With J/I(p) replaced by w,
(88) will also be satisfied on each component separately if the constant of
integration ¢ is allowed to depend on the component. The trick is to choose
the centers so that £ = 0 for all . Computing (88) at z = z; where p'(2;) = 0,

it is clear that £ = 0 is equivalent to

2z = w2 (Z mj; — ij) . (93)

J<i J>t
Y- m;z; = 0 follows, proving that p has its center of mass at the origin. At this
point I(p) may be determined, and (88) will be satisfied with J = I(p)w. A
posteriori, one notes that z;,; — 2z, = w‘z(mH_l +m;) > 27; since r; < 7 there
is no danger of overlapping components. However, if the lightest component
has radius m and the same mass as one of its neighbours, these components
will just touch.

The foregoing is summarized by:

Theorem 15.1 (Catalog of One-dimensional Equilibria)

Choose the number of components n > 1 and their masses (mq,...,my),
ordered from left to right and with > m; = 1. The radius r € (7/2,7] of
the lightest component may also be specified. Then there 1s unique solution
(91) to (88) in Ro(R) with the given parameters. The angular velocity w
and radii v; of any heavier components are determined by (92), while the
locations z; of the components are determined by (93). £ =0 and J = wi(p).
All continuous p € Ro(R) which solve (88) with J > 0 are of this form. The
r; and w increase continously with r while the |z;| decrease. Asr — w, all

tend to finite limiting values determined by the masses.

Having shown these solutions to exist, it is natural to remark upon their
relationship to the energy functional E;(p). Fix a solution p to (88) from
Theorem 15.1. While (86) cannot be satisfied for a global choice of A, it
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is satisfied on each component of p separately: permitting A to vary from
component to component, differentiating makes this clear. Thus the mass
within each component of p is in equilibrium. There will be perturbations
p + to in Ro(R) which lead to a linear decrease in Ej(p), but these involve
either a transfer of mass between components, or from some component(s)
into the vacuum {p = 0}. Such perturbations involve ‘tunneling’ of mass
from one region to another, and as such are unphysical. If they could be
precluded, p would be a critical point for the functional (81). This is also
the nature of the local minima for the three dimensional model which are

investigated in the following chapters.
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16 W_-Local Energy Minimizers

If a stability analysis is to explore local minima, a topology must be specified
which determines a precise meaning for local. The examples of the preced-
ing chapters illustrate that for rotating stars this choice will be delicate: for
E;(p) to have local minima the topology must be strong enough to preclude
tunneling of mass; for such minima to be meaningful, it must be weak enough
so that physical flows are continuous. A topology enjoying these properties
can be found in the probability literature [6]: it is induced by the Wasserstein
L* metric on R(R?). This metric is defined in the sequel, where results from
[4] are applied to show that a local minimizer p € Ro(R3?) of E;(p) must
be continuous everywhere, smooth where positive, and satisfy the station-
arity condition of Theorem 13.1(iv). It follows by taking a gradient that p
represents a stable solution to the Navier-Stokes-Poisson system (61).
Viewed as a measure, p € R(R?) has unit mass. It may be represented in
many ways as the probability distribution of a vector-valued random variable
x : § — R on a probability space (5,S,v). The relationship between x
and p, here denoted by x4v = p, is that v[x71(Q)] = p[Q] for Borel  C R?;
x is said to push-forward the measure v to p. The Wasserstein L* distance
between two measures p, £ € R(R?) may now be defined as an infimum over

all random variable representations of p and « on a space (5,S,v):

Weol,8) 1= Jnf (%~ ¥ oo (94)
Yupv=k

Here ||x — ¥||co,» denotes the supremum of |x — y| over S, discarding sets
of v-measure zero. Whether the infimum in (94) ranges over all probability
spaces (5,8, v), or is restricted to (say) S = [0, 1] with Lebesgue measure, is
irrelevant. That Wy, is a metric follows from Strassen’s Theorem [6]. Note
that although W, (p, k) may be infinite on R(R?), it is finite whenever p and

k are of bounded support.
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It is clear from the Lagrangian formulation of fluid mechanics that the
Wasserstein L* metric is not unphysically strong. In that formulation, the
state of a fluid system is specified by its original density profile p € R(R?),
together with the positions of the fluid particles as a function of time. At
time ¢, Y¢(y) € R® represents the position of the fluid which originated at
Yo(y) = y. The density profile p; after time ¢ is obtained as the push-forward
of p through Y;. From its definition,

Weolpss pt) <[ Ys = Yilloo,p- (95)

If the fluid particles move with bounded velocities, then Y:(y) will be a
Lipshitz function of ¢ uniformly in y, and it is evident that (95) will be
controlled by a multiple of |s — t|. Thus p; € R(R?) evolves continuously as
a function of time, at least for bounded fluid velocities. The same argument
shows Lemma 16.1(iii): an L*-small perturbation of the Lagrangian fluid
variables produces only a W,,-small perturbation of the density: a local
energy minimum p € Ro(R?) must be physically stable.

The next lemma collects elementary properties required of W,,. The
proofs are immediate from the definition (94). Here spt (p — k) C R® denotes
the support of the signed measure p — &, while a §-neighbourhood is defined
as in (74).

Lemma 16.1 (Simple Properties of the Wasserstein L> Metric)
Let p,k € R(R®). Then
(1) Weol(p, k) does not ezceed the diameter of spt(p — &);
(11) if Woo(p, k) < 6, each connected component of the é-neighbourhood of
spt p has the same mass for & as for p;
(iis) W(p,y#p) < |y — 1d||oo,p for y : R> — R® measurable and 1d(x) := x;
(1v) the centers of mass |X(p) — X(k)| < We(p, k);

(v) the moment of inertia I(p) depends continuously on p.
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Lagrange multipliers conjugate to the center of mass constraint do not
appear in (75). This is because a local energy minimizer p on Ro(R?) is also

stable under perturbations which shift its center of mass:

Corollary 16.2 If p minimizes E;(p) locally on Ro(R3), then it minimizes
E;(p) locally on R(R?).

Proof: There exists § > 0 such that E;(p) < Ej(x) whenever & € Ro(R?)
with Wao(p, k) < 26. Now, suppose k € R(R?) with W, (p, k) < §. Part (iv)
of the lemma shows that |X(k)| < §; part (iii) then shows that the translate
of kK by —X(k) lies within 2§ of p in Ro(R?®). By translation invariance,
E;(p) < Es(x). QED.

Therefore, suppose p minimizes E;(p) locally on Ro(R?) and let o €
L>(R?3). Even if the perturbation p + to € R(R?) for ¢ € [0, 1], it may not
be W-continuous as function of ¢; nevertheless, Lemma 16.1(i) guarantees
that E;(p+to) is minimized by p provided o is supported on a small enough
set. o will then be a useful variation of E;(p).

The variational derivative E'(p) of the energy E;(p) is formally given by

J2
- 21%(p)

For J = 0 and a restricted class of perturbations ¢ € F,, a more general

E;(p)(x) := A'(p(x)) — Vp(x)

2 (X — i(p)) . (96)

result [4] not quite including the kinetic energy T;(p) shows that

lim ¢ (Es(p +t0) — Eo(p)) = [ Ei(p)or (97)

t—

The admissable perturbations depend on p:

UzOWherep>R0r|X|>R}‘ (98)

o > 0 where p < R7!

P:= | {a € L=(R?)

R< oo
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(97) may be immediately extended to positive angular momentum J > 0
by the following observation: even though o may not have its center of
mass at the origin, I(p) is cubic in p; a direct computation shows that
lim 71 (I(p + t0) — 1(s)) = (o),

The next pair of propositions show that local minimizers of E;(p) satisfy

the stationarity conditions of Theorem 13.1(iv-v).

Proposition 16.3 (Locally Constant Chemical Potential)
Let p € Ro(R?) minimize E;(k) among k € R(R?) for which Wa(p, ) < 26.
Let M be an open set with diameter no greater than 26 which intersects spt p.

There is a unique A, € R depending on M such that (75) holds on M a.e.

Proof: The proof is an application of a constrained minimization argument
as may be found in [4]. We rely on intermediate results formulated there.
Therefore, define the convex cone Py, := {¢ € Py | spto C M}, and let
U ={p+0c > 0lc € Po}, so that P, is the tangent cone of U at p. It
is noted above that E;(p) is differentiable at p in the directions o of P.
On Wi,e = R(R*)NU, where the mass constraint is satisfied, Lemma 16.1(i)
shows that p minimizes Ej(k). Moreover, since the open set M intersects
spt p, 1t must carry positive mass under p. Thus there is a smaller subset
C C M of positive measure on which p(x) is bounded away from zero and
infinity. If x, is the characteristic function of this set, both +x, € P,
although p + xo € Wis.. These conditions imply that there is a unique
Lagrange multiplier A € R such that

/E"J(p)a > )\/U (99)

for all 0 € Py [4, Proposition 2]. If E(p) < X on a subset K C M which
had positive measure, this subset may be taken slightly smaller so that p is

bounded on K; xx € Pioc would then contradict (99). On the other hand, if
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E'(p) > A on a subset K C M with positive measure and where p > 0, then
K may be taken slightly smaller so that p is bounded away from zero and
infinity on K; in this case —xx € Py contradicts (99). Since A’(p) in (96)
vanishes precisely where p does, these two inequalities show that (75) holds

for almost all x € M with A; := A QED.

Proposition 16.4 (Component-wise Constant Chemical Potential)
Let p € Ro(R?) minimize E;(k) among k € R(R?) for which Wa(p, ) < 26.
Choose one of the connected components Q; of the é-neighbourhood (74) of
spt p. Then there is a constant A\; < 0 such that (75) holds a.e. on ;.

Proof: For y € Q, the ball Bs(y) intersects spt p. Thus Proposition 16.3
guarantees a unique A(y) such that (75) holds a.e. on Bs(y) when A; := A(y).
The claim is that A(y) is independent of y. Therefore, fixy € ;. Since Bs(y)
is open, it will also be true that a slightly smaller ball Bs_.(y) intersects spt p.
If |x —y| < ¢, then M = Bs(x)N Bs(y) intersects spt p. In Proposition 16.3,
the uniqueness of A corresponding to M forces A(x) = A(y). Thus A(y) is
locally constant. As a result, the disjoint sets C = {x € Q, | A(x) = A(y)}
and D = {x € Q; | A(x) # A(y)} are both open. Since Q; = C U D is
connected, C = ;. Defining A; := A(y), (75) must be satisfied a.e. on ;.
An additional argument shows A < 0. Any point on the boundary of
); cannot lie within § of spt p. Since spt p is bounded, ; has non-empty
boundary, and it follows that p(z) = 0 on a set of positive measure in ;. On
the other hand, A(p) is strictly convex so A'(p(x)) vanishes only if p(x) = 0.
A > 0in (75) would imply p > 0 a.e. on );, a contradiction. QED.

Arguments from [4] now apply to local minimizers on E;(p), yielding:
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Proposition 16.5 (Regularity of W,, Local Energy Minimizers)
Let p minimize E;(p) locally on Ro(R3). Then p is continuous everywhere;

where positive it has as many derivatives as the inverse of A'(p).

Proof: Proposition 16.4 applies by Corollary 16.2. The stationarity condi-
tion (75) must be used to control p with Vp at large densities. The chemical
potential A; < 0 may be discarded, while 7?(x) cannot be too large on the
bounded support of p, so A'(p(x)) < Vp(x) + C for C < co depending on p
but independent of x. Wherever A'(p) > 2C, the bound A'(p) < 2Vp holds.
Thus Vp is continuous on R? as in [4, Lemma 3 and Theorem A].
Continuity of p on €, follows from that of Vp through (75) because A'(p)
is continuously invertible. Q; was a component of some é-neighbourhood of
spt p, so it is clear that p will be compactly supported on it. Because Vp gains
a derivative from p, smoothness of p where positive follows from a bootstrap

in (75). QED.
Only Theorem 13.1(i) remains to be proven:

Lemma 16.6 (Principal Axis of Inertia)
Let p minimize Ej(p) locally on Ro(R3?). Then the z-azis is a principal azis
of inertia for p, with a moment of inertia I(p) which is mazimal and non-

degenerate.

Proof: Let I;(p) := /(5ij|x|2 — z;z;)dp(x) denote the moment of inertia
tensor I(p) of p, and 1 € R3 denote the eigenvector of I(p) corresponding to its
maximal eigenvalue. Then I(p) = (2, I(p)z) < <i, l(p)D The first claim is
that the inequality is saturated. If not, a slight rotation of p bringing 1 toward
the z-axis would increase I(p): letting k(8) := cos(8)l + sin(8)k where k and
1 are orthonormal, either <lA<(0), I(p) 12(0» is constant or it attains a unique

local maximum at 8 = 0. Since Eo(p) is rotation invariant, E;(p) would be
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decreased. But p minimizes E;(p) locally. A contradiction is produced since
for p with bounded support, a slight rotation is a W,-local perturbation by
Lemma 16.1(iii).

Now suppose that (2, I(p)z), although maximal, is not unique. Then a
slight rotation of p (about an axis other than Z) is also a W, local minimizer
of Ej(p) on Ro(R*). By Propositions 16.4 and 16.5, A'(p) — Vp must be
constant along line segments parallel to the z-axis where p > 0, and cannot
be constant along line segments with other orientations. This cannot be true

for both p and its rotate. QED.

Proof of Theorem 13.1 Let (p, v) locally minimize E(p, V) subject to the
constraint J,(p,v) = J. Corollary 14.4 proves (ii) and implies that p locally
minimizes E;(p). Parts (i), (iii, vi) and (iv-v) then follow from Lemma 16.6,
and Propositions 16.5 and 16.4 respectively. If P(p) is continuously differen-
tiable, then A”(p) = P'(0)/0 and (vii) follows by taking the gradient of (75).
By Lemma 16.1(iii), the energy cannot be decreased by perturbations of p
which result from L*-small perturbations in the Lagrangian fluid variables.
Perturbations of the velocity field v are irrelevant: if consistent with the

constraint, Proposition 14.1 shows that E(p, V) can only increase relative to

E;(p). QED.
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17 Existence of Binary Stars

This chapter is devoted to establishing the existence of local minimizers for
E;(p) carrying large angular momentum J. Such minimizers represent stable,
uniformly rotating solutions to the Navier-Stokes-Poisson system (61). They
are constructed in form of binary stars, which is to say that the fluid mass
is divided into two disjoint regions 2~ and Q%, widely separated relative to
their size. The mass ratio m : 1 — m between the two regions is specified a
priori.

The OF C R® will be closed balls centered on the plane z = 0, whose size

and separation scale with J? (103); the relevant fluid configurations are
Wy ={p" +p" € R(R?) | /p‘ =m, sptp* CQT}L  (100)
The following theorem will be proved:

Theorem 17.1 (Existence of Binary Stars)

Given m € (0,1), choose the angular momentum J to be sufficiently large
depending on m. Then any global minimizer of Ej(p) on Wy will, after a
rotation about the z-azis and a translation, have support contained in the
interior of Q= U QY. It will also be symmetric about the plane z = 0 and a

decreasing function of |z|.

Since a global energy minimizer on W; exists by arguments [4, 5] sum-

marized below, this theorem has as its consequence:

Corollary 17.2 Given m € (0,1), let J > J(m) as in Theorem 17.1. Then
the energy E;(p) admits a local minimizer p on R(R3) in the form of a global
energy minimizer on Wy. Uniformly rotating, p minimizes E(p, V) locally on

R(R?) x V(R?) subject to the constraint J,(p,v) = J or J(p,v) = Jz.
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Proof: Let p be the minimizer on W;. The theorem shows that sptp is
compact in the interior of Q= U Q%, therefore separated from the bound-
ary by a positive distance §. Lemma 16.1(ii) shows that if x € R(R?) with
We(p, &) < 6, then k in W;. Thus E;(p) < Ej(k). Since E;j(p) is locally
minimized, Corollary 14.4 provides a local minimizer (p,v) of E(p,v) sub-
ject to the constraint on J,. Corollary 13.2 shows that (p, V) satisfies the

constraint on the vector angular momentum as well. QED.

The separation of the domains Q% is determined by the Kepler problem for
two point masses m and 1 —m, rotating with angular momentum J > 0 about
their fixed center of mass. The reduced mass of that system is denoted by
g :=m(l—m). As a function of the radius of separation d, the gravitational

plus kinetic energy

po o J? p
- = > 101
i < o (101)
assumes its minimum at separation n := p~2J2. This is the radius of the

circular orbit. Therefore, choose two points y* € R® from the plane z = 0,

separated by 7, to be the centers of QF:
ni=pt Tt =y =yt (102)

0* = {x e R® | x —y*| < n/4}. (103)

Here and throughout the following, the superscripts 4+ denote an implicit
dependence on J, or equivalently n. When 7 is large, one expects a stable,
slowly rotating equilibrium to exist in which fluid components with masses m
and 1 —m lie near y~ and y*. The distance separating QF and the diameter

of their union is given by:

dist(Q7, Q%) = 7/2; (104)
diam (Q- U Q") = 35/2. (105)
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It follows that for p € W; rotating uniformly with angular momentum J,

the fluid velocities will not be too large:

Lemma 17.3 (Velocity Bound)

Fizm € (0,1) and let € > 0. For J > ¢, there is a mazimum velocity v(m, €)
which does not depend on J, such that if p € Wy and x € Q= U Q* then
Jr(x —X(p))/I(p) < v(m,e€). Moreover v(m,€) — 0 as € — o©.

Proof: Let p = p~ + p* € W;. The centers of mass X(pT) € QF, or
rather their projections onto z = 0, are separated by at least /2 (104). The
moment of inertia I(p) is bounded below by that of two point masses m and

1 — m at this separation:

I(p) = pr’(X(p™) = X(p")) + 1(p7) + (") (106)
> pun’l4. (107)

At the same time x € Q% implies r(x — X(p)) < 37/2. Since n = p=2J2,
these two estimates show 7(x —x(p))/I(p) < O(J~2) as J — oo, proving the
lemma. QED.

Before addressing the proof of Theorem 17.1, the existence of a global
energy minimizer on W; is sketched following [4, 5]. For constants A*, such

a minimizer satisfies the Euler-Lagrange equations

A (p(x)) = l%:p)rz (X — i(p)) + Vo(x) + 2\E ] . a.e. on Qi, (108)

much like (75) before setting X(p) = 0. To prove existence of a minimizer,
one first imposes a large bound ||p|lcc < R on the configurations in Wj.
E;(p) is then lower semi-continuous in the weak topology on W; C L*/3(R®);
the kinetic term T's(p) is continuous. Since E;(p) diverges with ||p||4/3, the

Banach-Alaoglu compactness theorem guarantees a minimizer pg. Because
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pr was constrained to be bounded, it satisfies a version of (108) in which
the truncation [z]; is modified so that [z]; = A'(R) when z > A’(R). From
this equation, an additional argument [5, Proposition 1.4] using the bound

on Jr/I(pgr) from Lemma 17.3 shows
|pR]le0 < C(m) (109)

independent of R. This R-independent pg is the desired minimizer. As in
Lemma 17.3, the constant C(m) is J-independent for J bounded away from
zZero.

Theorem 17.1 controls the support of the global minimizer p = p~ + p*
on Wj. Its proof begins with a series of estimates on p*, the components of
p supported in QF respectively. Using the symmetry in m and 1 — m, it is
sufficient to establish these estimates for p~ only. The first proposition relies
on an energetic comparison with the configuration o~ + ot obtained from

suitable translations of non-rotating minimizers o,, from Theorem 14.5:
o (X) i =om(x—y7); 0T (X):=ocu_m(x—y"). (110)

Proposition 17.4 (Energy Converges to Non-rotating Minimum)
Given € > 0, if J 1s sufficiently large and p~ + pt minimizes E;(p) on Wjy,
then Eo(p~) < eo(m) + €. Here eo(m) is the mass m infimum of Eo(p).

Proof: By Theorem 14.5(v), taking J large enough will ensure that o is

supported in Q*. Then o~ + o7 € Wy, so its energy decomposes as
Ej(c™+0o%)— Eo(07) — Eo(c") = —-G(o™,0") + Ts(c™ +0T). (111)

The gravitational interaction and kinetic energy may be estimated by com-
parison with the point masses (101): G(c7,0%) = un~! by Newton’s Theo-
rem and (102), while I(c™ + o) > pn? as in (106). Thus the right side of
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(111) is less than —p3J~%/2, yielding

Eo(c7)+ Eo(c™) > Ejlc” +0o7)
> Ej(p” +p")
> Eo(p™) + Eo(p™) = G(p™, ")

The last inequality follows from T';(p) > 0, since E;(p~+p™) also decomposes
as in (111). Taking J large forces the separation 7/2 between = and Q7

1

to diverge. Taking G(p~,pt) < 2un~' < € proves the proposition because

Eo(p™) > Eo(c™). QED.

Thus E(p~) converges to the minimum energy for a non-rotating mass m
as J — oo. In this case [43, Theorem I1.2 and Corollary II.1] a subsequence
of the p~ may be extracted, which, after translation, converges strongly in
L*3(R®) to a minimizer for the non-rotating problem. The next two results

exploit this convergence.

Lemma 17.5 (Bound for the Chemical Potential)

Given € > 0 and J large enough, if p~ + p™ minimizes E;(p) on Wj, then the
chemical potential A\~ in (108) satisfies A~ < e'(m~ )+ €. Heree'(m™) <0 is
the bound for the non-rotating chemical potential from Theorem 14.5(viii).

Proof: The proposition can only fail if there exists a sequence of angular
momenta J, — oo together with minimizers p, + p} for E; (p) on Wy,
for which the chemical potentials A, have a limit greater than e'(m™). The

Euler-Lagrange equation (108) implies
A(p ) > Vp, + A, ae. on )7, (112)

an invariant statement under translations of p,. Proposition 17.4 and [43]

imply — after translating each p; and extracting a subsequence also denoted
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p; — that one has L**(R®) convergence to a non-rotating minimizer o,, for
Eo(p). Since Vp is the convolution of p with a weak L3 (R3) function, the
Generalized Young’s Inequality shows that Vp, — Vo, strongly in L'*(R?)
(here 3/4 + 1/3 = 1 + 1/12). Extracting another subsequence, one has
pointwise convergence a.e. of both p, and Vp,. A contradiction follows

from (112) on the set {om > 0}, where by Theorem 14.5(vii-viii):
Aom) — Vo, = Am < €'(m7).

QED.

Proposition 17.6 (Bound on the Radius of Support)

There ezists a radius R(m) independent of J, such that if p~ + p* minimizes
E;j(p) on Wy for J sufficiently large, then sptp~ is contained in a ball of
radius R(m).

Proof: Take J large enough that A > e{(m~) bounds A~ by Proposition 17.5,
while the velocity bound v(m) of Proposition 17.3 satisfies v?(m) < —A. In
the Euler-Lagrange equation (108) these estimates yield

A'(p7) < [Vp_ + Vot + A/Z]_l_ a.e.on Q. (113)

Strict convexity of A(p) forces p = 0 where A'(p) = 0, so p~ must vanish
where the gravitational potential is less than —\/2. Vp? is easily controlled:
for J large enough, Vpt < —A/6 on O~ since the distance to spt pt C QF
will be large (104). Therefore, consider Vp~. For p € L*(R3) N L°(R3), there
is a pointwise bound

Volloo < kLol 10l15° (114)

saturated when p is supported on the smallest ball consistent with | p||co-

Since ||p7 || < C(m) from (109), choose § > 0 such that [[p|l; < § and
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llplloo < C(m) imply || Vp||loo < —A/6. Now, let Ro(m) from Theorem 14.5(v)
bound the support radii of all mass m non-rotating minimizers o,,, and
choose R(m) > Ro(m) large enough so that m/(R(m) — Ro(m)) < —A/6.
Using Proposition 17.4 and [43] once again, J large enough implies that p~ is
L*3(R3) close to a translate of some o,y; in particular, all but mass § of p~ is
forced into a ball of radius Ro(m). Neither the restriction of p~ to this ball,

nor the remaining mass 8, contributes more than —A/6 to Vp~ outside the

larger ball of radius R(m). Thus (113) establishes the proposition. QED.
The following lemma and proposition essentially prove Theorem 17.1.

Lemma 17.7 For € > 0 define g(z) := (2® + €2/u)™t — 2(z — 2¢)™*. Ife
is sufficiently small, the function g.(z) is uniquely minimized on the interval

(1/2,3/2) and has no local mazima there.

Proof: For esufficiently small, the functions g.(z) are analytic and uniformly
bounded on {z € C | |z| > 1/4}. It follows that g(z) converges uniformly
to go(z) := 272 — 227! as € — 0 on |z| > 1/2. The derivatives converge
also. g{(z) vanishes on (0,00) only at z = 1, while gj(z) > 0 for z < 3/2.
Therefore, if § < 1/2, sufficiently small € ensures: g/(z) > 0 where |[z—1| < 6,
while g/(z) < 0for 1/2 <z <1—¢§ and g/(z) > 0 for z > 1+ 8. The lemma
is proved. QED.

Proposition 17.8 (Estimate for the Center of Mass Separation)
Let 0 < § < 1/2. For J sufficiently large, if p = p~ + p* minimizes E;(p)
on Wy then the ratio |X(p~) —X(pT)| /n lies within § of 1. Here n = p~2J2.

Proof: Take J large enough so that Proposition 17.6 provides bounds R(m)
and R(1 — m) for the support of p*. Taking J larger if necessary ensures

R :=2max{R(m), R(1 —m)} < n/4. (115)
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Since spt p* must be contained within radius R of X(p*), there is room in Q*
to translate p~ and p* independently so that X(p*) = y* lie at separation 7.
Denote these translates by = and k™, so that Kk = k= + kT € Wj. Asin
(111), E(x) differs only from E(p) by terms of the form —G(p~, p*) 4+ Ts(p).
These terms may be estimated using the center of mass separation d between

the translates of p~ and p™; with an abuse of notation, they are denoted by
G(d) and Ty(d), and the moment of inertia by I(d):

a < G(d) < a

d+ 2R d—2R
pd> < I(d) < pd®+ R?
J? J?
— < Ty(d :
2(pd? + R?) <Ts(d) < 2ud?

If p minimizes E;(p) on Wy, comparison with « forces d := [X(p~) — X(p™)|
to satisfy
— G(d) + T5(d) < =G(n) + Ts(n). (116)

Using the preceding estimates and J? = p?n, the implication of (116) for the
dimensionless parameter  := d/n in terms of € := R/n is

2 N 1 < _
z—2 z24+ept T 142

+1. (117)

This condition is satisfied for x = 1. However, it fails to be satisfied at
z = 146 for large J, because it does not hold in the € — 0 limit. Lemma 17.7
then guarantees that for large J, (117) can hold on z € [1/2,3/2] only when
|z—1| < 8. This range includes all relevant separations by (104), thus proving
the proposition. QED.

Proof of Theorem 17.1 First it is shown that any minimizer p = p= + p*
for E;(p) on W; may be translated so that both X(p*) lie in the plane z = 0.
Since the OF are convex and symmetric about z = 0, it is enough to know that

p enjoys a plane of symmetry z = ¢. This follows from a strong rearrangement
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inequality [44, Lemma 3] and Fubini’s Theorem: the symmetric decreasing
rearrangement of p along lines parallel to the z-axis leaves U(p) and I(p)
unchanged; however, since the potential (r? + 22)71/2 is strictly decreasing
as a function of |z|, the rearrangement increases G(p, p) unless p is already
symmetric decreasing about a plane z = ¢. Since p minimizes E;(p) and its
rearrangement is in Wy, G(p, p) cannot be increased.

Now, take J large enough so that Proposition 11.1 provides a bound R
such that spt p* C Br(X(p*)) if p~ + p* minimizes E;(p) on W;. Translate
p so that its symmetry plane is z = 0 and let d := [X(p~) — X(p*)|. Then
(103-105) show that if d — 2R > 7/2 and d + 2R < 37n/2, a translation and
rotation of p yields a minimizer in W; supported away from the boundary
of = U Q*. By Proposition 17.8, this is certainly true when J and hence 7
is sufficiently large. QED.
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Part IV
Appendices

A Differentiability of Convex Functions

This appendix establishes some facts of life regarding convex functions and
notation from convex analysis. Rockafellar’s text [45] is the standard refer-
ence, while [17, Notes to §1.5] contains a brief synopsis of the differentiability
almost everywhere of convex functions.

By a convez function 1 on R?, we shall mean what is technically called a
proper convex function: v takes values in R U {+00}, is not identically +oo,
and is convex along any line in R?. If ¢ is convex, its domain dom :=
{z |¢(z) < oo} will be convex and 1 will be continuous on the interior 2 of
dom). 1 may be taken to be lower semi-continuous by modifying its values
on the boundary of €2, in which case 1 is said to be closed.

The convex function 1 will be differentiable (V1) exists) Lebesgue-a.e. on
Q. Tt is also useful to consider the subgradient 01 of 1: this parameterizes
the supporting hyperplanes of ¢, and consists of pairs (z,y) € R? x R? such
that ¥(z) > (y, z—z)+ (z) for all z € R?. Here { , ) denotes the usual
inner product. & should be thought of as a multivalued mapping from R¢
to R?: the image of a point z is denoted by dv¢(z) := {y|(z,y) € v}, and
of a set X by 0¢(X) := Ux0y(z). O¢(z) is a closed convex set, bounded
precisely when z € ); it is empty for z outside dom ), and possibly for some
of the boundary points as well. Differentiability of ¢ at x is equivalent to
the existence of a unique y € 0¢(z), in which case V¢(z) = y. 0y will be
closed as a subset of R? x R? if 1) is a closed convex function; this property
can frequently be used in lieu of continuity of V. Related expressions of the

continuity of 8¢ include: compactness of 0y(K) when K C 2 is compact,
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and convergence of y, to Vi(z) when the latter exists and z, — z with
Yn € OY(zy).

A subset § C R? x R? is said to be cyclically monotone if for any n points
(m'nyz) € S;

(y1, 22 — 1) + (Y2, T3 — @2) + -+ + (Yn, @1 — ) < 0. (118)

The subgradient of any convex function ¢ will be cyclically monotone: if
one linearly approximates the change in ¢ around a cycle zq,zs,... 2y, 21,
a deficit must result since the approximation underestimates each step; the
deficit will be finite, and the inequality in (118) strict, unless y; € 0¢(zi11)
for each 2. Conversely, any cyclically monotone set is contained in the sub-
gradient of some convex function. This is an integrability result: if the set
were known to be the gradient of a potential 4, the two-point (n=2) inequal-
ity alone would guarantee convexity of 1. Applied to the closure of the set
oy* = {(y, z)|(z,y) € O}, it implies the existence of a convex dual function

¥* to . Of course, ©¥* is just the Legendre transform of 1, more commonly

defined by
$*(y) := sup(y, z) — ¥(). (119)

zeR4
1* will be closed, and ¥** < 1) with equality if and only if 4 is closed.

A convex function 1 will be twice differentiable almost everywhere on its
domain in the following sense: 1) is said to be twice differentiable at zo with
Hessian V2)(zo) if Vi(zo) exists, and if for every € > 0 there exists § > 0
such that |z — zo| < § and A = V?¢(z,) imply

sup |y — V(zo) — Az — zo)| < €|z — zo]. (120)
yEdY(x)

The Hessian V23)(zo) is a non-negative (i.e. positive semi-definite and self-
adjoint) d x d matrix. Even though points where V1) is not uniquely de-

termined may accumulate on zg, it is not difficult to see that many of the
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fundamental results pertaining to differentiable transformations remain true

in this modified context. Two such results are required herein:

Proposition A.1 (Inverse Function Theorem for Monotone Maps)
Assume ¢ convez on R?, twice differentiable at zo € R in the sense of (120),
so that V(zo) ezists and 1) < oo in a neighbourhood of zo. If A = V(o)
is invertible, then * is twice differentiable at Vi(zo) with Hessian A™'; if
A is not invertible then * fails to be twice differentiable at Vip(zo).

Proof: Denote Vi(zo) by yo. Replacing the functions (z) and ¥*(y) by
P(z + zo) — (Yo, z) and its transform ¥*(y + yo) — (¥ + Yo, Zo), the case
Yo = zo = 0 is seen to be completely general. The first thing to show is that
for A invertible, ¢* is differentiable at 0 with V#*(0) = 0. This follows if
z € 0¢*(0) implies ¢ = 0. Since the convex set J¢*(0) contains the origin, it
is clear that (tz,0) € 0y whenever z € 0¢*(0) and ¢ € [0, 1]. For any € > 0,
taking ¢ small enough in (120) implies |Az| < €|z|. Because A is invertible,
this forces z = 0. Thus V*(0) = 0.

To show twice differentiabilty of * at 0, let € > 0 be small. By the
continuity properties of 09* at 0, (z,y) € 0y and |y| sufficiently small imply
|z| will be small enough for (120) to hold: |y — Az| < €|z|. The inequality

AT A Yy — 2] < ele — A7y + e|ATMy|

is immediate. For € < (2||A7*||)~' one obtains |z — A™'y| < 2¢||A~1]]2]y],
which expresses twice differentiability of 1* at 0.

Finally, the case A non-invertible must be addressed. Some z € R? is
annihilated by A. From (120), there is a sequence z, — 0 of multiples
of z and (zn,yn) € O¢ such that |y,| < n7!|z,|. For any matrix A’ and
e > 0, taking n large violates |z, — A'yn| < €|yn|. Thus ¢* fails to be twice
differentiable at 0. QED.
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The second proposition states that the local volume distortion under the
transformation V4 at z is given by the determinant of V2¢(z), or in other

words, that the geometric and arithmetic Jacobians agree.

Proposition A.2 (Jacobian Theorem) Assume 1 is convex on R?, twice
differentiable at zo € R* with Hessian A := V%)(zo) in the sense of (120).
If B.(z0) is the ball of radius v centered at zo, then asr — 0,

vol [8¢(B:(w0))]

vl B(zg) GtV (o)l (121)

For A invertible, 0y(B,(zo)) shrinks nicely to Vi(zo) in the sense of (81).

Proof: As in the preceding proposition, the case zg = Vip(zo) = 0 is quite
general. Assume A invertible. Denote B,(0) by B,, and its image under A
by AB,. Given € > 0, for r < § from (120) it is immediate that

0(B,) C (1 + €| A~Y)AB,. (122)

On the other hand, 1* is twice differentiable with Hessian A~ at 0 by Propo-
sition A.1. The same argument, applied to AB, instead of B,, shows that
for r small enough 0y*(AB,) C (1 + €||A||)B,. Taking r smaller if necessary,
so that (1 + €[|A]])"'AB, lies in the interior of dom *, duality yields

(1+ ¢ A])AB, C 8y(B,). (123)

Since € > 0 was arbitrary, (121) follows from (122-123) in the limit » — 0,
with the identity det [A] = vol[AB,]/vol B,. For small r, it is evident from
(122-123) that 0vy(B,) is nicely shrinking: i.e. it is contained in a family of
balls Bg(r) for which R(r) — 0 with r, while (B;) occupies a fraction of
Bpg(r) which is bounded away from zero.

Finally, A non-invertible must be dealt with. In this case AB, lies in a

d—1 dimensional subspace of R%. Given € > 0, if (z,y) € 9% for small enough
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|z|, (120) implies that |y — Az| < €|z|. Thus vol dv[B,] < 2¢(||A|| + €)¢terd,
where c is the measure of the unit ball in R¥!. Since € > 0 was arbitrary,
the limit (121) vanishes.

QED.
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B Monotone Measure-Preserving Mappings

Let p € P..(R?) and p' € P(R?) be probability measures. In this appendix
we recall and refine a result of Brenier which provides a unique measure pre-
serving map between (R?, p) and (R¢, p’) realized as the gradient of a convex
function. Such a map might technically be termed cyclically monotone, but
this will be casually and imprecisely abbreviated to monotone here. Brenier
proved this result — Proposition 3.1 and Theorem 3.1 of [7] — for a weak-x*
dense set of p and p' in P(R?) C Co(R?)*. The proof was based on a lovely
duality argument requiring moment conditions as follows; a variant of the

proof is sketched in [21].

Theorem B.1 (Brenier’s Monotone Mapping [7]) Let p € Pa.(R?) be
supported on ) for some bounded, smooth and connected open set Q). Assume
p(z) to be bounded away from 0 and co on (), and the boundary of Q to be
measure zero for p. If p' € P(R?) with /|y| dp'(y) < oo, then there ezists a
convez function v on R? whose gradient is a measure preserving map between

(R4, p) and (R%,p"). On Q, 1 is unique up to an additive constant.

In the language of Chapter 3, V4 pushes forward p to p’: Vipup = p'. The
gradient V1) is defined Lebesgue almost everywhere on {¢ < co}. It is the
pointwise limit of a sequence of continuous approximants (finite differences),
hence Borel measurable, and enjoys an irrotationality property which has
been emphasized by Caffarelli [22].

To extend Theorem B.1 to arbitrary p,p’ € P(R9), it is necessary to
reformulate the result slightly and extract a limit. This limit will be unique as
long as one of the measures is absolutely continuous with respect to Lebesgue,
but since the duality argument will not be of use without moment conditions

we rely on earlier, geometrical ideas of Aleksandrov [46] to prove it.
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Notions from convex analysis established in Appendix A will be freely
employed. Cyclically monotone subsets S of R x R?, and the subgradient
0 of a convex function v play a central role; the cyclical monotonicity of S is
equivalent to the existence of a convex function whose subgradient contains S.
The support spt p of a measure p refers to the smallest closed set which is of
full measure in p. Using this language, our extension — Theorem B.6 — of

Brenier’s result begins with:

Corollary B.2 (Monotone Correlation) Let p,p’ € P(R?). Then there
exists a joint probability measure p on R? x R? with cyclically monotone
support having marginals p and p': for M C R? Borel, p|[M] = p[M x RY|
and p[R¢ x M) = p'[M].

The proof proceeds through a lemma regarding weak-* limits of measures
with cyclically monotone support. As in Chapter 5, Co(R?) denotes the

Banach space of continuous functions vanishing at co under the sup norm.

Lemma B.3 Let p, — p and p!, — p' weak-*x in P(R?) C Coo(R4)*. Assume
pn € P(R? x R?) with cyclically monotone support has marginals p, and p.,.
A weak-* limit p € P(R? x R?), with cyclically monotone support and p and

p' as its marginals, may be extracted from a subsequence of the p,.

Proof: P(R?) lies in the unit ball of Coo(R?)*. Letting R” denote the one-
point compactification of R?, it is equivalent to view P(R?) as lying in the
Banach space dual of C(ﬁd) (the continuous functions under the sup norm):
the weak-* topologies coincide on P(Hd) because C(ﬁd) = Cw(Hd) @ C.
Similarly, the p, lie in Cm(ﬁd X ﬁd). By the Banach-Alaoglu Theorem, the
pr admit a weak-* convergent subsequence with limit p € P(ﬁd X ﬁd). Since

any continuous f € C(ﬁd) extends to a function f € C(ﬁd X ﬁd) which is
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independent of its second argument, the first marginal of p must coincide
with p:
/fdp _ 115n/fdpn _ liTEH/fdpn _ /fdp.

By symmetry, the second marginal of p agrees with p’. Moreover, it is clear
that none of the mass of p can live “at co”, so p € P(R? x R?). It remains to
check that the support of p is cyclically monotone. If not, it would contain m
points (z;,y;) violating (118). Choosing a sufficiently small neighbourhood
in R? x R? for each point, the inequality would also be violated when any or
all of the (z;,y;) were replaced by points from these neighbourhoods. Each
neighbourhood would have positive mass for p, hence for p,, when n is large.

Cyclical monotonicity of spt p,, produces a contradiction. QED.

Proof of Corollary B.2: When Theorem B.1 applies, p may be obtained by
pushing forward p through id x V1) where 4d is the identity map on R¢. From
Vipup = p', p is readily seen to have the correct marginals; it is supported
on (the closure of) the subgradient of v, so the corollary is proved in this
case. To extend to arbitrary p € P(R?), approximate by:

(i) convolving with the uniform probability measure on the ball B /,(0);

(ii) restricting the resulting measure to a ball B,(0) with radius chosen

to yield total mass 1 — 1/n; and

(iii) adding 1/n of the uniform probability measure on B,(0).
If p,, denotes the approximating measure, then [ fdp,— [ f dp whenever
f € C(R%). Moreover, p, satisfies the hypotheses of Theorem B.1: p, €
P..(R%) and bounded by (i), it is supported on @ = B,(0) by (ii) and bounded
away from zero there by (iii). If p’ is similarly approximated by pl,, then there
is a p, € P(R? x R?) with cyclically monotone support having p,, and p!, as
its marginals. Now Lemma B.3 implies the Corollary. QED.
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A second corollary recovers the connection with convex functions and

measure preserving mappings.

Corollary B.4 Define p, o', p as in Corollary B.2. If p € P..(R?) then there
ezists a convez function 1 on R® such that id x V) pushes p forward to p.
If p' € Pao(R?) also, then Vib* x id pushes forward p' to p. Here id denotes
the identity map on R?, and 1* the Legendre transform of 1.

Proof: Corollary B.2 guarantees a joint measure p with cyclically monotone
support having p and p’ as its marginals. By cyclical monotonicity there is
a convex function ¥ whose subgradient contains the support of p. It follows
that ¢ < oo on the support of p, whence Vi exists p-a.e. Let X be the set
on which V1 exists; p[X x R?] = p[X] = 1. For z € X there is at most one
y such that (z,y) € sptp C 0¢. Thus p [{(:IJ,V’I,b(:IJ)) |z € X}] = 1. The
claim is that (id, Vip)xp = p. It is enough to check that these two measures
coincide on sets of the form M x N, where M, N C R? are Borel sets.

e XNM
[ {en| Sy o) ]
= p[MN(Vu)'N]

= (id, V)40 [M x N,

p[M x NJ

The symmetrical statement for p’ follows from the observation that the in-
volution *(z,y) = (y,z) on R? x R? pushes p forward to a measure whose

cyclically monotone support is contained in Oy*. QED.

Finally, the monotone mapping of Corollary B.4 (and hence the joint
measure p) is shown to be unique. The following lemma and theorem employ

variants of ideas of Aleksandrov [46].

Lemma B.5 (Aleksandrov) Let ¢ and ¢ be closed convez functions on

Re, differentiable at zo with ¢(zo) = P(z0) = 0 and V(zo) # Vip(zo) = 0.
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Define M := {¢ > ¢} C dom and X := O¢Pp*(04(M)). Then X C M, while

zo lies a positive distance from X.

Proof: To obtain the inclusion, let 2 € X. There exist m € M and y € R?
with (m,y) € 8¢ and (z,y) € 8¢. For any z € R?

©-
—~
N
~—
v

(y, z—m)+ ¢$(m) and
Y(m) > (y, m—z)+ ().

Noting that ¢(m) > (m), these inequalities combine to yield

¢(z) > (y, z — z) + P(z). (124)

Taking z = z shows z € M.

Next, suppose a sequence z,, € X has limit zo. Again, there exist m,, € M
and y,, € R? with (mn,yn) € 0¢ and (2, yn) € Ov. Now Vii(zo) = 0 implies
1 > 0 and y, — 0 by the continuity of 8v; on the other hand, V¢(zo) # 0

implies ¢(z) < 0 for some z near zo. Making use of (124) once more yields

0> $(2) > (um 2~ 2a) +(an)
> —Jyal |o -zl

Since z, — zo and y, — 0, a contradiction is obtained. The conclusion is

that z¢ cannot lie in the closure of X. QED.

Theorem B.6 (Monotone Mapping) Let p € Pu(R?) and p' € P(R?).
There is a conver function ¢ whose gradient Vi pushes forward p to p'.

Moreover, Vi 1s uniquely determined p-almost everywhere.

Proof: Corollary B.4 gives existence of 1. To establish uniqueness, assume ¢

is another convex function for which Vgup = Vipup = p’, but that V¢ = Vi
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does not hold p-a.e. Choose a point zg from the set satisfying

(i) z is a Lebesgue point for p with positive density p(z) > 0, and

(ii) ¢ and ¢ are differentiable at z with Vi(z) # Vé(z).

This set cannot be empty, for it has positive mass under p: (i) holds p-a.e.
while (ii) holds on a set of positive measure by hypothesis.

The properties of 1 and ¢ are insensitive to the addition of arbitrary
constants, and it is convenient to take ¥(zo) = ¢(zo) = 0. A linear function
may also be added to 1 and ¢; this corresponds to a translation of p' and
allows us to take Vi)(zo) = 0. Finally, the convex functions ¥ and ¢ may be
assumed to be closed. Define M := {z |¢¥(z) < #(z)} and Y = 04(M). Asin
[46], the idea is to show that the two push-forwards — given by Lemma 6.1

— cannot agree on Y, because

o0 (Y)] < p[M] < p[06*(Y)] (125)

The second inequality follows from the obvious inclusion
M Nintdom ¢ C 9¢*(Y);

the first inequality follows from Lemma B.5, which shows that 0y*(Y) C
M and excludes a neighbourhood of zo. Strict inequality in (125) will be
established by showing that a little bit of the mass of p in M must lie near z,.

This follows from the definition of g and M. Translate p, 1 and ¢ so that
zo = 0. Let 0 < € < 1 and consider the cone C := {z | (V¢(zo), z) > €|z|}.
Using (ii) to approximate ¢ and ¢ near zq = 0,

¢(z) — ¥(z) = (Vé(wo), z) + of|z]).

Thus z € C sufficiently small implies z € M. The average of p over CN B,(0)
must converge to p(zg) > 0 by (i), since C N B,(0) shrinks nicely to o = 0

with 7 in the sense of (31). For small r, this set is contained in M but disjoint

from Oy*(Y). (125) is established and the proof is complete. QED.
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Remark B.7 (Non-Uniqueness of Monotone Correlation)

If neither p nor p' is absolutely continuous, the joint distribution p of Corol-
lary B.2 need not be unique in dimension d > 2. For ezample, let d = 2
and suppose that p is supported in the interval [-1,1] on the z-azis while p’
18 supported in the corresponding interval on the y-azis. Any p having the

correct marginals will be supported on the subgradient of the convez function

Y(z,y) = lyl.
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C Alternative Measure-Preserving Maps

This appendix discusses an alternative formulation of the displacement in-
terpolation between two measures p, p' € P,.(R?%). It is based on an explicit
construction of R%-valued random variables representing p and p’, rather than
the existence of a convex function ¢ with gradient pushing p forward to p’.
Except in dimension d = 1, the interpolant p 4 p' here defined will not gener-
ally coincide with that of Definition 3.1, but it will satisfy the same convexity
estimates. For the applications of Part I and Part II, Definition 3.1 has been
preferred only because it appears to be more natural, and provides conditions
for strict convexity in Theorem 4.2 and Proposition 9.4. These conditions
are required to infer conclusions when the potentials V(z) and Q(z) fail to
be strictly convex.

Let ¥ := {0,1} be the probability space with two elements equally
weighted, and v the product measure induced on the Cartesian product
»* = 0)22, the space of binary sequences. Let o, € X denote the n-th
digit of clf € ¥*, and define 7, : ¥*° — X" to be truncation of o to n
digits: m,(0) := (01...0n). Then the measure v assigns mass 27" to each
cylinder {o € £%° | m,(0) = 7} with 7 € ¥". Together with the null set,
these cylinders form a semi-algebra of sets; v is uniquely determined on the
o-algebra they generate. Let I1,(z) := , denote the (n mod d)-th coordinate

of z € R%. The construction to follow yields:

Theorem C.1 (Existence and Uniqueness of Dissecting Maps)
Let p € Pa(RY). There is a measurable map y : ¥° — R? pushing v
forward to p which satisfies: 11, (y(a)) <II, (y(T)) when Tp_1(0) = Tp_1(7)

but o, < T,. The map y s uniquely determined up to sets of v-measure zero.

Any map y : ¥° — R? which satisfies the inequalities in Theorem C.1 will

be referred to as a dissecting map. Obviously, this definition depends on
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choice of basis for R%. The existence part of the theorem can be extended
to measures p € P(R?) not absolutely continuous, but uniqueness may fail.

Using this theorem, the displacement interpolant (9) is replaced by:

Definition C.2 (Dissection Interpolation)

Given probability measures p,p' € Pa(R?), let y,y' be the dissecting maps
with yyv = p and yyv = p' of Theorem C.1. At time t € [0,1], the dissection
interpolant p, = p-5p' € P(R?) between p and p' is defined to be

pe = [(1—t)y +ty']yv. (126)

With this definition, conclusions between Proposition 3.2 and Exam-
ple 3.7 (inclusive) — as well as Lemma 9.1 and Remark 9.2 — apply to
dissection interpolation as to displacement interpolation; the linear trans-
formations A of Proposition 3.6(i) must be diagonal instead of orthogonal.
The proofs are essentially the same and will not be repeated; some exploit
convexity of the set of dissecting maps. Only the absolute continuity of p;

and the dissection convezity of /A(p) will be proved in detail.

Dissecting R? with a Probability Measure

A half-open d-cell is a non-empty subset D C R? of the form
D= {:IJ € R¢ | a < Hk(:ll) < bk} (127)

for some constants ag,by € RU {+foo} and k = 1,...,d. A closed d-cell is
a non-empty subset of the same form, but with the strict inequalities re-
laxed. In particular, a closed d-cell may be of dimension less than d. Given
a probability measure p € P,.(R?), the following recursive algorithm gener-
ates nested partitions of R? into d-cells (or cells). At the n-th stage of the

construction, there will be 2" d-cells D(7), each of measure 27" with respect
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to p. These cells will be indexed by n-digit binary sequences 7 € X™. The
d-cells will taken to be closed, but for absolutely continuous measures the
distinction is moot.

At the first (n = 1) step of the construction, R? is divided into two d-cells
by a hyperplane II;(z) = const perpendicular to the z;-axis. The d-cells
(half-spaces at this stage) may be labeled D(0) and D(1), where D(0) lies
on the negative z; side of D(1). The dividing hyperplane is chosen so that
p[D(0)] = p[D(1)] = 1/2. This choice need not be unique. Here p[D] denotes
the measure of D with respect to p, or mass of D. vol[D] will be used to
denote the Lebesgue measure, or volume, of D.

At the n-th step of the construction, each D(7) with 7 € ™! is sub-
divided by a coordinate hyperplane II,,(z) = const into two d-cells of mass
27" under p. Using juxtaposition to denote concatenation, so that 70 =
(1172 . . . Tn—10), the two subcells of D(7) will be indexed by 70 and 71 to
be consistent with (iii) below. Taking the sole element of %° to be ¢ by
convention, the key properties of the construction are summarized by

() D(p) = R,
(i) D(r) = D(r0)U D(r1),
(iii) I,(z) < II,(y) whenever z € D(70) and y € D(71) for 7 € ™71,
together with
p[D(1T)]=27" for 7€ X" (128)

(128) is the only property involving the original measure p € P,.(R%); it has

been separated to motivate the following abstract definition.

Definition C.3 A dissection of R? is a map D : Un>o X" — closed d-cells
C R? which satisfies properties (i)—(iii) above. The image of D restricted to
Y™ is called the n-th level of the dissection.

In particular, it is clear that [, 5. D(7) = R? and that this union is disjoint
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apart from sets of Lebesgue measure zero. To recapitulate the foregoing:

Proposition C.4 (Dissection of a Probability Measure on R%)
Associated to p € P,.(R?) is a dissection D(7) of R? satisfying (128).

Recovering a Measure from a Dissection of R?

The next step is to show that any dissection D(7) of R? induces a dissecting
map y : 1*° — RY and corresponding measure yuv € P(R?). If the
dissection was constructed from a measure p € Poo(R?), then yuv = p.

Naturally, one expects the map y(o) to satisfy

y(@) € (] D(ma(0)). (129)

n=1
Proposition C.7 shows that (129) determines y(o) uniquely almost every-
where in . The key to its proof, as well as the demonstration that yxv = p
when D(7) is constructed from p, is the following lemma. Fix a coordinate
hyperplane IIx(z) = c. If mass 27" is assigned to each cell from the n-th level
of D, the lemma states that the mass straddling IIx(z) = ¢ goes to zero as

n — oo. In fact, it decays like 2 - 27™/9,

Lemma C.5 Let IIi(z) = ¢ be a coordinate hyperplane, and D(7) a dissec-
tion of R%. For each integer n > 0 define

T, = {7’ ex” ‘ {c} C Ik (D(T)) strictly}.
Then #(I',,)/2™ — 0 as n — oo, where #(I',) is the cardinality of T'y,.

Proof: It will be enough to count d-cells D(7) which intersect both H :=
{z |lx = c} and H' := {z | Il > c}; at the n-th level of D, the number a,
of such cells is dissection independent, and #(I',) < 2a,. At level 0, there
is exactly one d-cell D(¢) = R?, so that ag = 1. Properties C.3(ii)-(iii) of D
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make it clear that a, = 2a,_; when n mod d # k. In the case n mod d = k,
the hyperplane separating D(70) from D(71) is parallel to H. If it liesin H™,
only one of the subcells of D(7) will intersect H; otherwise, only one of the
subcells of D(7) will intersect H*. Either way, a, = a,_1 for n mod d = k.

Note that the subcells are closed by definition. For arbitrary n, the recursion

yields an.g = 241, 50 a,/2" — 0 as claimed. QED.

Corollary C.6 If D(7) is a dissection of R, then as n — oo
#({7’ e X" | D(r) unbounded}) /2" — 0.

Proof: The argument is the same as that of the lemma. Letting a, be
the number of d-cells at the n-th level of D which extend to 400 in the z
direction: ag = 1 and
_{an, if nmodd==F%k—1;
Ont1 2a,, otherwise.
Thus the total number of cells which extend to infinity at the (nd)-th level
of D must be less than 2d - 2™4-1). QED.

Proposition C.7 If D(7) is a dissection of R%, then N, D(w.(c)) consists

of a single point for v almost every o € .

Proof: Let diam R := sup |y — 2| denote the diameter of R C R?¢. For
y,2€ER

o € £*°, when diam D(7,(¢)) — 0 as n — oo the intersection in (129) is
uniquely determined; it is also non-empty since the closed nested d-cells are
eventually compact. Let Z C ¥* be the set for which diam D(m,(¢)) 4 0,
so that

Z =J({c € £ | diam D(m,(c)) > 1/k}.

k n
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For fixed k£ and n, the set on the right is a union of cylinders in %*°, showing
Z to be measurable. To see that v[Z] = 0, fix an integer k£ and € > 0. Corol-
lary C.6 shows that ' := {7 € ¥V |diam D(7) = oo} satisfies #(I")/2" < ¢/2
for some N < oo. Choose a bounded d-cell R which contains all bounded
D(7) from the N-th level of D. For n > N define

I, :={r € X" |diam D(7) > 1/k}.

A finite number of coordinate hyperplanes, spaced sufficiently close, divide
R into cubes of diameter less than 1/k. For 7 € T, either ny(7) € T,
which holds for at most 2" '€ elements 7 € X", or D(7) crosses one of these
hyperplanes. Applying Lemma C.5, it is clear that for n sufficiently large
#(I',) < 2"e. Then 1/[{0 € X% | mu(o) € Fn}] < e. Because € > 0 was
arbitrary, the intersection over all n has mass zero for v. A countable union

of such sets, v[Z] = 0. QED.

Corollary C.8 A dissection D(7) of R? determines a dissecting map y :
Y — R? satisfying (129) uniquely up to sets of v-measure zero. Any

dissecting map y(o) must be measurable.

Proof: A map y(o) which satisfies (129) is dissecting because of property (iii)
of Definition C.3. Thus the first assertion is immediate from the proposition.
It remains to show that any dissecting map must be measurable. Therefore,
assume a dissecting map y(o) to be given. Construct a dissection D(7)
satisfying (129) recursively from y(o), by using the hyperplane

In(z) = sup Il.(y(o)). (130)

mn(o)=70

to subdivide the d-cell D(7) into D(70) and D(71) when 7 € ™!, The

recursion is initiated from D(¢) = RY. The supremum (130) is finite from

117



the definition of a dissecting map; it lies in II,(D(7)) from the preceding
level of the recursion. Using D(7) and the proposition, y will be shown to
be the pointwise limit of a sequence y,, of measurable transformations almost
everywhere, hence measurable. For each 7 € ¥”, choose z(7) € D(7). If
yn(0) 1= z(mn(0)), then y, is obviously measurable: it takes at most 2" values
and its level sets are cylinders. Proposition C.7 shows that y,(c) — y(o)

almost everywhere as n — oo. QED.

Proposition C.9 Let D(7) be a dissection of R%, and y(o) the map which
satisfies (129). For a d-cell R C R? define v, := {r € ¥ | D(7) C R}.
Then

yvIR] = lim #(n)/2" (131)

Proof: The n-th level of the dissection D may be used to approximate R
from the inside and the outside via 4, and ', := {r € £ | D(7) N R # 0}:
from (129) it follows that

{e€X® | m(0) €} C vy (R) C {0 €X%®|m(0)€TL},

whence #(v,)/2" < ypv[R] < #(I',)/2". Clearly v, C T'y. For 7 € Ty ~ 7,

the cell D(7) straddles one of the hyperplanes bounding R. Lemma C.5

implies (#(I'n) — #(7n))/2™ — 0. Both must tend to the limit yxv[R].
QED.

Proof of Theorem C.1: Proposition C.4 associates to p € P,.(R?) a dissec-
tion D(7) of R%. Let y(o) be the dissecting map of Corollary C.8. It induces
a measure yxv € P(R?). Since the o-algebra of Borel sets in R? is generated
by the semi-algebra of half-open d-cells R, it suffices to verify yxv|R] = p[R].
From Proposition C.9 and (128) it follows that yxv[R] < p[R]. Since both
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are probability measures, equality holds, and yxv = p. This establishes the
existence part of the theorem.

To establish uniqueness, let ¥ be a second dissecting map with yuv =
p. By Corollary C.8, it is enough to show that y satisfies (129) almost
everywhere in %*°. This follows if y(o) € D(7) holds almost everywhere in
each cylinder {o € X% | m,(0) = 7}. The latter is proved by induction;
the case 7 = ¢ is obvious from property (i) of Definition C.3. Assuming the
condition to be satisfied for 7, it is clear from property (ii) that 7,_1(c) =7
implies either y(o) € D(70) or y(o) € D(r1). Suppose that y(o) € D(71)
on a set of positive measure with m,(0) = 70. Since y is a dissecting map, it
follows from property (iii) of the same definition that y(o) € D(71) whenever
7n(0) = 71. Thus p[D(71)] = ypv[D(71)] > 2", contradicting (128). QED.

Dissection Convexity of/A(p)

Finally, it remains to prove the analog of Theorem 4.2 for the dissection
interpolation. Such an estimate becomes more plausible in view of the fact
that dissection resembles the idea underlying the Hadwiger-Ohmann proof
of the Brunn-Minkowski Theorem [16]. Unlike the displacement convexity of
U(p), dissection convexity will be proved by first establishing the estimate
when the interpolant p 4 p' and its endpoints are suitably chosen simple

functions.

Definition C.10 (Dissection Approximants)

Let D(7) be a dissection of R? and yuv € P(R?) the measure it induces
through Corollary C.8. For a bounded d-cell R C R?, let ur denote the
uniform probability measure on R: pr(z) := xr(z)/vol [R] when vol[R] > 0;

define pr = 0 of R 1s unbounded. The measures p, := 27" Z pp(r) will be
TEX™
referred to as dissection approzimants to yuv.
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Because of unbounded d-cells, the measures p,, will not be normalized, but

lim p,[R¢] = 1 by Corollary C.6. The resulting approximation lemma is:

Lemma C.11 (Weak-* Convergence of Dissection Approximants)
Let D(7) be a dissection of RY, and p, be dissection approzimants to the

induced measure yyv. For continuous functions ¢ vanishing at infinity on R?,

lign/go dpn = /cp dysv. (132)

Proof: Since ¢ vanishes at oo it can be approximated in || - ||e by a simple
function 3> axxg, in which the Ry are d-cells. It is therefore enough to prove
(132) when ¢ is the characteristic function of a d-cell R. For a bounded d-cell,
/ dpn > #(7n)/2"™ where v, is from Proposition C.9. The same proposition
ir?lplies

H_mnAdpn > /Rdy#y. (133)
This inequality continues to hold for unbounded d-cells R by Corollary C.6.
Since the complement of a d-cell in R? is a finite union of d-cells, strict
inequality in (133) for some R and any subsequence of the p, would violate
pn(R?) < yuv(R?) = 1. Thus the lim inf in (133) may be replaced by a limit,
and the inequality by equality, concluding the proof. QED.

Lemma C.12 (Dissection Convexity of U(p) Between d-Cells)

Let R, R' C R? be d-cells with finite (non-zero) measure. Fort € [0,1], define
the dissection wnterpolant p, := pgr 4 pr between the uniform probability
measures on R and R'. Then p; = pu_¢)ryerr- If U(p) is defined by (15) and
A(p) satisfies (A1), then U(p;) will be convez as a function of t on [0, 1].

Proof: Let T'(z) := Az + k be the affine transformation of R? taking R to R/
for which A is a positive matrix and k& € R?. Since R and R’ are both d-cells,
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A is diagonal. If y(o) is the unique dissecting map of Theorem C.1 with
Y4V = UR, then the map y'(0) := T(y(0)) is dissecting; it satisfies yyv = pgs
since Typr = pr. Thus the dissection interpolant p; := [(1 — t)y + ty'|pv
is the push-forward of ug through the affine map (1 — t)z + t T'(z), which
is also the gradient of a convex function. The dissection and displacement
interpolants (126) and (9) coincide in this case: both are given by the uniform
probability measure on (1 — t)R 4 tR'. Convexity of U(p:) is a special case
of Theorem 4.2, or may be verified directly. QED.

Proposition C.13 (Absolute Continuity of p-5p')

For t € ]0,1], define the dissection interpolant p; := o5 o (126) between
p,p € Pac(Hd). Then p; € Pac(Hd). Moreover, if D and D' are dissections
of p and p' as in Proposition C.4, then Corollary C.8 associates a map to the
dissection (1 —¢)D +t D'. This map pushes v forward to p;.

Proof: For 7 € X", the d-cell (1 — t)D(7) + ¢t D'(7) is defined through
Minkowski addition; it is then clear that (1—¢)D+tD’ satisfies the properties
(1)-(iii) of a dissection. If the dissecting maps y,y’ : £*° — R? satisfy (129)
for D and D', then the map (1 — t)y + ty' satisfies (129) for the dissection
(1 —t)D 4+ tD'. Since ygv = p and ygv = p' from the proof of Theorem
C.10, [(1 — t)y + ty'|xv = p: by definition. This establishes the second part
of the proposition.

The first part depends on Proposition C.9 and the observation that
vol[(1 — )R+ tR'] > (1 — t)%vol [R] (134)

for two d-cells R, R' C R%. Suppose p; not absolutely continuous with respect
to Lebesgue. For somem > 0, a subset Z C R? has vol [Z] = 0 and p;[Z] > m.
Since p € Pac(R?), there is a § > 0 such that p[M] < m for any measurable
set M with vol[M] < §. By the regularity of Lebesgue measure, there
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is an open set of volume less than (1 — ¢)?§ containing Z. Any open set
is countable disjoint union of half-open d-cells, so there must be a finite
disjoint union U of such cells for which p;[U] > m but p;[U] < (1 — ¢)%.
Defining v, := {7 € £* | (1 — ¢)D(7) + ¢ D'(r) C U}, it is possible to
choose n large enough so that #(v,)/2" > m by Proposition C.9. Taking
M := U;ey,D(7) leads to a contradiction: (134) implies vol [M] < § while
(128) implies p[M] > m. QED.

Theorem C.14 (Dissection Convexity of Internal Energy U(p))

Let p,p' € Pac(R?). Define U(p) through (15) and assume A(p) satisfies
(A1). Then U(pi>p') will be a convez function of t € [0, 1] for the dissection
interpolation (126).

Proof: Using Proposition C.4 and Definition C.10, define the dissection
D(7) of R? and dissection approximants p, associated to p. Let y, be the
dissecting maps of Theorem C.1 which push-forward v to p,. Let D'(7), pl.
and y/, be similarly associated to p’. For 7 € ¥, the restriction of y, to the
cylinder C := {o € £ | mp(0) = 7} is itself a dissecting map. Up to its n-th
level, D coincides with the dissection of p,. Therefore (129) shows that apart
from a set of v-measure zero, y,(c) € D(7) if and only if o € C. A similar
statement holds for y/,. Noting the definition of p,, (1 —t)y, + ty,, must push
forward the restricted measure v|¢ to 27" (1—¢)D(r)+tD(+) @8 in Lemma C.12.

It follows that

P ph =27 " payp(r)1eD/(r), (135)
TEL™

As in Proposition C.13, (1 —t)D 4+t D’ is a dissection so the sets in (135) are

disjoint (up to sets of Lebesgue measure zero). Lemma C.12 then implies

U(pn=pr ) < (1= 8)U(pn) + tU(p},). (136)
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Noting Proposition C.13 and Definition C.10, the dissection approximants
(p>p")nto p5p' coincide with (135). Since p € Pac(R?) was quite general,

the conclusion of the theorem follows from (136) if it can be shown that
U(p) = limU(pn). (137)
Jensen’s inequality, together with (128) and convexity of A(p) yield

A(27"vol [D(7)]7") vol [D(7)] < o A(p). (138)

Summing (138) over 7 € X" implies U(p,) < U(p). On the other hand,
Lemma 5.4 combines with Lemma C.11 to yield U(p) < lim,U(pn). These
two inequalities imply (137), completing the theorem. QED.
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D Prékopa-Leindler and Brascamp-Lieb In-
equalities from Monge-Ampere Equation

In this appendix the displacement interpolation p 4 p' is exploited to provide
a new proof of a theorem due to Brascamp and Lieb [11], which generalized
earlier results of Prékopa and Leindler [8, 9, 10]. The theorem applies to an
interpolant h,(z) defined between non-negative measurable functions f(z)

and g(z) on R? for ¢t € (0,1):

ho(z; f,g,t) := sup {(1 —t)f (%)a Dty (az — y)a}l/a‘ (139)

yeRd t

Here a € [-1/d, 00), while & is distinguished from ordinary addition + only
in that {(1 —¢)f* @ tg*}*/* = 0 if either f = 0 or g = 0. The case & = 0
is defined in the limit, so that ho(z) coincides with the interpolant (25) of
Prékopa and Leindler. The notation h.(z; f,g,t) will be replaced by hs(z)
when the dependence on f, g and ¢ is quite clear.

The central result concerning h, pertains to its mass ||hql[1 := /ha.
Stated as Corollary D.4, it reduces to the assertion that ||hq|[1 > 1 in the case
I7lli = |lglls = 1. In this case our displacement interpolant p; := f4g may
also be defined. The next proposition shows h, > p; almost everywhere, so
that a fortiori ||ha||1 > ||pt]|1 = 1; the discrepancy between A, and p; accounts
for the full error in the Prékopa-Leindler and Brascamp-Lieb inequalities.
The proposition follows formally from the Monge-Ampere equation (141)
satisfied almost everywhere by p;, together with an elementary lemma. The

results for || f||1 # ||g||1 are recovered by scaling z, f, g and t.

Lemma D.1 For constants f,g > 0, t € (0,1) and a positive d X d matriz
A with determinant det [A] = f/g,

fdet[(1—t)I+tA]™* < ((1 —t)f M4 tg_l/d))_d. (140)
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Proof: In the basis which diagonalizes A, concavity of det [(1 — ¢)I + ¢tA]*/¢
is seen using the domination of the geometric by the arithmetic mean; (140)

is equivalent to
det [(1 — )T + tA]Y9 > (1 — t)det [I1]Y4 + ¢ (f/g)"/°.

QED.

Proposition D.2 (hy(z) Dominates the Displacement Interpolant)
Let f,g9 € Pac(R?) and o > —1/d. Fort € (0,1) define ho(z) as in (139).
Then the displacement interpolant p, := f->g of (9) satisfies pi(z) < ho(z)

for almost all z.

Proof: Since (139) is non-decreasing in a, it is enough to establish the propo-
sition when o = —1/d. Let ¢ be the convex function satisfying Vi f = ¢
through which p; is defined. As noted in Theorem 6.4, there is a set X C R?
with f[X] = 1 on which the positive matrix V% (z) and its inverse exist.
Both f,g € P..(R%) have Lebesgue points almost everywhere, and since
fI(Vy¥) "t M] = g[M], taking X smaller if necessary ensures that any z € X
is a Lebesgue point of f at which f(z) > 0, while Vi(z) is a Lebesgue
point for g; the image of X under V¢ remains of full measure for g. Fix
zo € X and define z; = (1 — t)zo + tVep(zo). Proposition 6.2 verifies that
g(z1) = f(zo)det [V2(zo)] . Similarly, the values of p; are specified by

pi(2e) = f(@o) det[(1 — ) + tV(z0)] " (141)

pi-almost everywhere. Identifying ¢ = z; and y = (1 — t)zo in (139), the
conclusion p;(z;) < ho(z:) follows immediately from Lemma D.1; the supre-
mum is gratuitous. Thus p; < A, holds almost everywhere p;, and therefore

Lebesgue almost everywhere. QED.
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Remark D.3 As was pointed out by Brascamp and Lieb, hy(z) may depend
on the values of f and ¢ everywhere on R?, not just almost everywhere. This
annoyance is remedied [11] by replacing the supremum in (139) by an essential
supremum, yielding a modified interpolant k,(z) < ho(z). Moreover, for a
particular choice of f# and ¢#, which differ from f and g only on a set of mea-
sure zero, the interpolants ho(z; f#,9%,t) = kalz; f#,9%,t) = ko(z; f,g,1)
coincide. Thus Proposition D.2 applies equally well to k,(z) as to hq(z).
It is not difficult to argue this directly, using the fact that zo and z; are
Lebesgue points for f and g (respectively) in the preceding proof.

Corollary D.4 (Brascamp-Lieb [11])
Let f,g be non-negative measurable functions on R%. For t € (0,1), define
ho asin (189). Let ||f]l1 > 0, ||g|li > 0. Ifa > —1/d then ||hq||1 > C, where

1/~
C=(@-t)FI7 +tlgll})
and v := a/(1 + da). In particular, |[holls > || FII*/lglt-

Proof: When || f||1 and ||g||1 are both finite, define p(z) := f(z)/||f]|: and
p'(z) = g(z)/]|g]|1. Denote the mass preserving dilation Sy by factor A > 0

as in Proposition 3.6. The scaling
ha(z; £y 9,t) = C halz; Sap, Sxp', t/A") (142)

follows directly from (139) provided A := (C/||f|[1)* and X' := (C/||gll1)"-
Since || Sxp|l1 = [|Sap’||1 = 1, using Proposition D.2 to integrate (142) over =
yields the desired inequality. The case ||g||1 = oo follows from the Monotone

Convergence Theorem, after noting that (139) increases with g. QED.

Remark D.5 The result of [11] extends to the case & = —1/d, but since

v — —oo the extension cannot be obtained from the scaling relation (142).
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