A geometric approach to regularity of optimal maps

Robert McCann (with Brendle Leger Rankin '24 and Y-H Kim, M Warren '10)

University of Toronto

www.math.toronto.edu/mccann click on 'Talk'

5 December 2024

Outline

- Extremal surface theory
- Optimal transport
- A geometrical view
 - Differential geometry and topology: links to curvature
- 4 Acknowledgements

Minimal hypersurfaces in \mathbb{R}^{n+1}

$$u \in \arg\min_{u|_{\partial\Omega}=f} \int_{\Omega} \sqrt{1+|\nabla u|^2} d^n x$$
 'minimizing'

Blow up limits: on \mathbf{R}^n subsequential $u_0(x) = \lim_{r \to 0} r^2 u(r(x-x_0))$ satisfies

$$0 = \nabla \cdot (\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}})$$
 'minimal'

THM (Bernstein, deGiorgi, Almgren, Simons): If n < 8 then u_0 is linear.

Minimal hypersurfaces in \mathbf{R}^{n+1}

$$u \in \arg\min_{u|_{\partial\Omega}=f} \int_{\Omega} \sqrt{1+|\nabla u|^2} d^n x$$
 'minimizing'

Blow up limits: on \mathbf{R}^n subsequential $u_0(x) = \lim_{r \to 0} r^2 u(r(x-x_0))$ satisfies

$$0 = \nabla \cdot (\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}})$$
 'minimal'

THM (Bernstein, deGiorgi, Almgren, Simons): If n < 8 then u_0 is linear.

COUNTEREXAMPLES (Bombieri-deGiorgi-Giusti '68) whenever $n \ge 8$.

HIGHER CODIMENSION:

- ullet every algebraic curve (or analytic variety p(z)=0 in ${f C}^n$) is minimal
- ullet for analogous minimization in higher codimension, singularities have codimension ≥ 2 (Almgren)

Maximal spacelike hypersurfaces in Minkowski space $\mathbf{R}^{n,1}$

$$u \in \arg\max_{u|_{\partial\Omega}=f} \int_{\Omega} \sqrt{1-|\nabla u|^2} d^n x$$
 'maximizing'

On \mathbf{R}^n , if analogous blow-up u_0 satisfies $|\nabla u_0| < 1$ then

$$0 =
abla \cdot (rac{
abla u}{\sqrt{1 - |
abla u|^2}})$$
 'maximal'

Maximal spacelike hypersurfaces in Minkowski space $\mathbf{R}^{n,1}$

$$u \in rg \max_{u|_{\partial\Omega}=f} \int_{\Omega} \sqrt{1-|\nabla u|^2} d^n x$$
 'maximizing'

On \mathbf{R}^n , if analogous blow-up u_0 satisfies $|\nabla u_0| < 1$ then

$$0 =
abla \cdot (rac{
abla u}{\sqrt{1 - |
abla u|^2}})$$
 'maximal'

THM (Calabi '68): Any entire solutions u_0 with $|\nabla u_0| < 1$ is linear.

PROS: holds for all $n \in \mathbf{N}$

Maximal spacelike hypersurfaces in Minkowski space $\mathbf{R}^{n,1}$

$$u \in rg \max_{u|_{\partial\Omega}=f} \int_{\Omega} \sqrt{1-|\nabla u|^2} d^n x$$
 'maximizing'

On \mathbf{R}^n , if analogous blow-up u_0 satisfies $|\nabla u_0| < 1$ then

$$0 =
abla \cdot (rac{
abla u}{\sqrt{1 - |
abla u|^2}})$$
 'maximal'

THM (Calabi '68): Any entire solutions u_0 with $|\nabla u_0| < 1$ is linear.

PROS: holds for all $n \in \mathbf{N}$

CONS:

- SO(n,1) is noncompact, unlike SO(n+1).
- uniformity of ellipticity degenerates as $|\nabla u_0| \to 1$;
- \bullet orientation delicacies (associated e.g. with disconnectedness of S^0)

What about spacelike n-volume maximizers in e.g. $\mathbb{R}^{n,m}$?

• much less is known (Mealy '91)

What about spacelike n-volume maximizers in e.g. $\mathbb{R}^{n,m}$?

• much less is known (Mealy '91)

THM 1 (Kim, M., Warren '10): graphs of optimal maps are spacelike maximizing (with m = n)

What about spacelike n-volume maximizers in e.g. $\mathbb{R}^{n,m}$?

• much less is known (Mealy '91)

THM 1 (Kim, M., Warren '10): graphs of optimal maps are spacelike maximizing (with m = n)

THM 2 (Brendle, Leger, M., Rankin '24) A sign becomes favorable in the pseudo-Riemannian setting (relative to the Riemannian case) allowing us to give a new proof of Ma-Trudinger-Wang's (2005) regularity results.

Submanifold Geometry

Let $\Sigma^n \subset \hat{M}^{n+m}$ be a maximal spacelike submanifold of a manifold \hat{M} equipped with a signature (n,m) metric $\hat{g}(\cdot,\cdot)$ and its associated Riemann tensor $\hat{R}(\cdot,\cdot,\cdot,\cdot)$. Here spacelike means $g:=\hat{g}|_{(T\Sigma)^2}>0$, maximal means zero mean curvature vector $H=\operatorname{tr}_M\mathbb{I}=0$ and $\mathbb{I}_X:(T_X\Sigma)^2\longrightarrow (T_X\Sigma)^\perp$ is the second fundamental form

$$\mathbb{I}(X,Y) := \hat{D}_X Y - D_X Y,$$

giving the difference between the \hat{g} -covariant derivative \hat{D} and g-covariant derivative D acting on tangent fields X, Y on Σ .

Submanifold Geometry

Let $\Sigma^n \subset \hat{M}^{n+m}$ be a maximal spacelike submanifold of a manifold \hat{M} equipped with a signature (n,m) metric $\hat{g}(\cdot,\cdot)$ and its associated Riemann tensor $\hat{R}(\cdot,\cdot,\cdot,\cdot)$. Here spacelike means $g:=\hat{g}|_{(T\Sigma)^2}>0$, maximal means zero mean curvature vector $H=\operatorname{tr}_M\mathbb{I}=0$ and $\mathbb{I}_X:(T_X\Sigma)^2\longrightarrow (T_X\Sigma)^\perp$ is the second fundamental form

$$\mathbb{I}(X,Y) := \hat{D}_X Y - D_X Y,$$

giving the difference between the \hat{g} -covariant derivative \hat{D} and g-covariant derivative D acting on tangent fields X, Y on Σ . Let e_1, \ldots, e_n and $\hat{E}_1, \ldots, \hat{E}_{n+m}$ denote local orthonormal frames on Σ and \hat{M} respectively.

Lemma

If \hat{S} is an auxiliary Riemannian metric on \hat{M} and $S = \hat{S}|_{(T\Sigma)^2}$, there is a constant $c = c(\|\hat{g}, \hat{g}^{-1}, \hat{S}\|_{C^2(\{x\})})$ independent of Σ such that $(\Delta S)(e_n, e_n) \geq 2S(e_n, e_n) \sum (\hat{R}(e_l, e_n, e_l, e_n) - cS(e_l, e_l))$

Proof sketch: After a long computation exploiting maximality (H = 0),

$$\begin{split} \frac{\Delta S}{2}(e_n, e_n) \\ &= \sum_{l=1}^n \quad (\hat{D}_{e_l, e_l}^2 \hat{S})(e_n, e_n) + 2(\hat{D}_{e_l} \hat{S})(\mathbb{I}(e_l, e_n), e_n) + \hat{S}(\mathbb{I}(e_l, e_n), \mathbb{I}(e_l, e_n)) \\ &- \hat{g}(\mathbb{I}(e_l, e_n), \mathbb{I}(e_l, e_n)) - \sum_{\alpha, \beta=1}^{n+m} \hat{S}^{\alpha\beta} \hat{R}(e_l, e_n, e_l, \hat{E}_{\alpha}) \hat{S}(\hat{E}_{\beta}, e_n) \\ &+ S(e_n, e_n) \hat{R}(e_l, e_n, e_l, e_n) \\ &\geq \end{split}$$

Proof sketch: After a long computation exploiting maximality (H = 0),

$$\frac{\Delta S}{2}(e_{n}, e_{n})
= \sum_{l=1}^{n} (\hat{D}_{e_{l},e_{l}}^{2} \hat{S})(e_{n}, e_{n}) + 2(\hat{D}_{e_{l}} \hat{S})(\mathbb{I}(e_{l}, e_{n}), e_{n}) + \hat{S}(\mathbb{I}(e_{l}, e_{n}), \mathbb{I}(e_{l}, e_{n}))
-\hat{g}(\mathbb{I}(e_{l}, e_{n}), \mathbb{I}(e_{l}, e_{n})) - \sum_{\alpha, \beta=1}^{n+m} \hat{S}^{\alpha\beta} \hat{R}(e_{l}, e_{n}, e_{l}, \hat{E}_{\alpha}) \hat{S}(\hat{E}_{\beta}, e_{n})
+ S(e_{n}, e_{n}) \hat{R}(e_{l}, e_{n}, e_{l}, e_{n})
\geq S(e_{n}, e_{n}) [\hat{R}(e_{l}, e_{n}, e_{l}, e_{n}) - cS(e_{l}, e_{l})]$$

Corollary

Any point and direction $(z, e_n) \in T\Sigma$ which maximize S locally satisfy

$$cS(e_n,e_n) \geq \sum_{i=1}^n \hat{R}(e_i,e_n,e_i,e_n) = \operatorname{tr}_{\Sigma} \hat{R}(\cdot,e_n,\cdot,e_n).$$

Optimal transport

b(x,y) 'benefit' per unit mass transported from $x\in\Omega$ to $\bar x\in\bar\Omega$ $\Omega,\bar\Omega\subset\subset \mathbf R^n$ bounded domains (or oriented manifolds); 'landscapes'; n-forms $0<\mu,\bar\mu$ on $\Omega,\bar\Omega$; normalized densities of supply and demand $\mu(x)=\rho(x)dx^1\wedge\cdots\wedge dx^n$ and $\bar\mu(\bar x)=\bar\rho(\bar x)d\bar x^1\wedge\ldots d\bar x^n$

MONGE (1781): seek

$$\sup_{F_{\#}\mu=\bar{\mu}}\int_{\Omega}b(x,F(x))\mu$$

Optimal transport

b(x,y) 'benefit' per unit mass transported from $x\in\Omega$ to $\bar x\in\bar\Omega$ $\Omega,\bar\Omega\subset\subset \mathbf R^n$ bounded domains (or oriented manifolds); 'landscapes'; n-forms $0<\mu,\bar\mu$ on $\Omega,\bar\Omega$; normalized densities of supply and demand $\mu(x)=\rho(x)dx^1\wedge\cdots\wedge dx^n$ and $\bar\mu(\bar x)=\bar\rho(\bar x)d\bar x^1\wedge\ldots d\bar x^n$

MONGE (1781): seek

$$\sup_{F_{\#}\mu=\bar{\mu}}\int_{\Omega}b(x,F(x))\mu=\min_{b\leq u\oplus\bar{u}}\int_{\Omega}u\mu+\int_{\bar{\Omega}}\bar{u}\bar{\mu}$$

KANTOROVICH (1942)

• det $DF(x) = \pm \rho(x)/\bar{\rho}(F(x))$ if $F: \Omega \longrightarrow \bar{\Omega}$ is a diffeomorphism

HYPOTHESES (Ma-Trudinger-Wang)

```
(A0) b \in C^4(\operatorname{cl}(\Omega \times \bar{\Omega})) and for each x \in \operatorname{cl}(\Omega):

(A1) \bar{x} \in \operatorname{cl}(\bar{\Omega}) \mapsto D_x b(x, \bar{x}) := (\frac{\partial b}{\partial x^1}, \dots, \frac{\partial b}{\partial x^n}) is a diffeomorphism;

(A2) with convex range \bar{\Omega}_x = D_x b(x, \operatorname{cl}(\bar{\Omega}))
```

HYPOTHESES (Ma-Trudinger-Wang)

(A0)
$$b \in C^4(cl(\Omega \times \overline{\Omega}))$$
 and for each $x \in cl(\Omega)$:

(A1)
$$\bar{x} \in cl(\bar{\Omega}) \mapsto D_x b(x, \bar{x}) := (\frac{\partial b}{\partial x^1}, \dots, \frac{\partial b}{\partial x^n})$$
 is a diffeomorphism;

(A2) with convex range
$$\bar{\Omega}_x = D_x b(x, \operatorname{cl}(\bar{\Omega}))$$

DEFN: $t \in [0,1] \mapsto (x,\bar{x}_t) \in \mathrm{cl}(\Omega \times \bar{\Omega})$ is called a *b*-segment if

$$\frac{d^2}{dt^2}[D_x b(x, \bar{x}_t)] = 0 \qquad \forall t \in [0, 1]$$

Assume
$$b^*(\bar{x},x) := b(x,\bar{x})$$
 also satisfies (A0)-(A2) and (A3) $\left. \frac{\partial^2 b}{\partial s \partial t} \right|_{s=0=t} (x_s,\bar{x}_t) = 0 \implies \left. \frac{\partial^4 b}{\partial^2 s \partial^2 t} \right|_{s=0=t} (x_s,\bar{x}_t) > 0$ whenever (x_0,\bar{x}_t) is a b -segment (and $(x_s)_{s \in [0,1]} \in C^2$)

Theorem (Ma-Trudinger-Wang (2005))

If (A0-A1) a unique minimizer $F_{\#}\mu=\bar{\mu}$ exists. If also (A2-A3) and $\log \rho$, $\log \bar{\rho} \in C^{\alpha}$ for some $\alpha>0$, then $F\in C^{1,\alpha}_{loc}(\Omega,\bar{\Omega})$ (and smooth away from the boundary if $(b,\rho,\bar{\rho})$ are).

- first result for an open class of costs c = -b
- subsequent improvements / related results by many authors
- Loeper '10: if (B3) fails $\exists \log \rho, \log \bar{\rho} \in C^{\infty}$ for which !F discontinuous

A geometric view (Kim-M. '10)

RMK: Kantorovich $\gamma = (id \times F)_{\#}\mu$ satisfies $\Delta \geq 0$ on $\Sigma \times \Sigma := (\operatorname{spt}\gamma)^2$, where

$$\Delta(x, \bar{x}; x_0, \bar{x}_0) = b(x, \bar{x}) + b(x_0, \bar{x}_0) - b(x, \bar{x}_0) - b(x_0, \bar{x})$$

=: $\Delta_0(x, \bar{x})$.

Fix $(x_0, \bar{x}_0) \in \hat{M} := \Omega \times \bar{\Omega}$. Taylor expanding $\Delta_0(x, \bar{x})$ around (x_0, \bar{x}_0) yields

$$\Delta_0(x_0 + \delta x, \bar{x}_0 + \delta \bar{x}) =$$

A geometric view (Kim-M. '10)

RMK: Kantorovich $\gamma = (id \times F)_{\#}\mu$ satisfies $\Delta \geq 0$ on $\Sigma \times \Sigma := (\operatorname{spt}\gamma)^2$, where

$$\Delta(x,\bar{x};x_0,\bar{x}_0) = b(x,\bar{x}) + b(x_0,\bar{x}_0) - b(x,\bar{x}_0) - b(x_0,\bar{x})$$

=: $\Delta_0(x,\bar{x})$.

Fix $(x_0, \bar{x}_0) \in \hat{M} := \Omega \times \bar{\Omega}$. Taylor expanding $\Delta_0(x, \bar{x})$ around (x_0, \bar{x}_0) yields

$$\Delta_{0}(x_{0} + \delta x, \bar{x}_{0} + \delta \bar{x}) = \frac{1}{2}(\delta x, \delta \bar{x}) \operatorname{Hess} \Delta_{0} \begin{pmatrix} \delta x \\ \delta \bar{x} \end{pmatrix} + O(|\delta x| + |\delta \bar{x}|)^{3}$$
$$= \sum_{i,j=1}^{n} \delta x^{i} \delta \bar{x}^{j} \frac{\partial^{2} b}{\partial x^{j} \partial \bar{x}^{j}} + O(|\delta x| + |\delta \bar{x}|)^{3}$$

- $\hat{h}:= \textit{Hess}_{(x_0,\bar{x}_0)} \, \Delta_0$ is a pseudo-Riemannian metric since $\det rac{\partial^2 b}{\partial x^i \partial \bar{x}^j}
 eq 0$
- ullet its signature is (n,n) since $(\delta x,\pm \delta \bar{x})$ flips the sign of the sum above
- $\Sigma := \operatorname{spt} \gamma$ is *nontimelike*, i.e. $h = \hat{h}|_{T\Sigma^2} \ge 0$ by RMK above.

• e.g. for $b(x, y) = x \cdot y$,

more generally,

$$\hat{h} := \textit{Hess}_{(x_0,y_0)} \Delta_0 = \left[egin{array}{ccc} 0 & D_{x^iy^j}^2 b(x_0,y_0) \ D_{x^iy^j}^2 b(x_0,y_0)^{\mathcal{T}} & 0 \end{array}
ight] \ & ext{SO} \ \Delta_0(x_0 + \delta x, y_0 + \delta y) = -\Delta_0(x_0 + \delta x, y_0 - \delta y) + \textit{I.o.t.} \end{array}$$

- thus \hat{h} has signature (n, n) assuming full rank
- also (A2) \Leftrightarrow geodesic convexity of each $\{x\} \times \bar{\Omega}$ in $(\Omega \times \bar{\Omega}, \hat{h})$
- note $\{x\} \times \bar{\Omega}$ and similarly $\Omega \times \{\bar{x}\}$ are both \hat{h} -null

Conformal and calibrated geometries

THM (Kim-M. '10) If (A0)-(A2) then (A3) \Leftrightarrow $\hat{R}(p \oplus 0, 0 \oplus \bar{p}, p \oplus 0, 0 \oplus \bar{p}) > 0$ whenever $\hat{h}(p \oplus 0, 0 \oplus \bar{p}) = 0$.

Theorem (Kim-M.-Warren '10)

b-optimality of γ implies $\Sigma = spt(\gamma)$ is volume maximizing (wrt compactly supported perturbations) for a conformally equivalent metric $\hat{g} = \chi \hat{h}$, with conformal factor $\chi(x,\bar{x}) > 0$ chosen so that the volume form $\operatorname{vol}_{\hat{g}} = \mu \wedge \bar{\mu}$, (i.e. has Lebesgue density $\rho(x)\bar{\rho}(\bar{x})$ on $\hat{M} = \Omega \times \bar{\Omega}$).

Conformal and calibrated geometries

THM (Kim-M. '10) If (A0)-(A2) then (A3) \Leftrightarrow $\hat{R}(p \oplus 0, 0 \oplus \bar{p}, p \oplus 0, 0 \oplus \bar{p}) > 0$ whenever $\hat{h}(p \oplus 0, 0 \oplus \bar{p}) = 0$.

Theorem (Kim-M.-Warren '10)

b-optimality of γ implies $\Sigma = spt(\gamma)$ is volume maximizing (wrt compactly supported perturbations) for a conformally equivalent metric $\hat{g} = \chi \hat{h}$, with conformal factor $\chi(x,\bar{x})>0$ chosen so that the volume form $\operatorname{vol}_{\hat{g}} = \mu \wedge \bar{\mu}$, (i.e. has Lebesgue density $\rho(x)\bar{\rho}(\bar{x})$ on $\hat{M} = \Omega \times \bar{\Omega}$). In particular Σ has zero mean curvature wrt the metric \hat{g}).

Proof sketch: $\Phi = \frac{1}{2}(\mu + \bar{\mu})$ is a calibration of Σ ; i.e. $\Sigma - \Sigma' = \partial \Lambda$ implies

$$1 = \int_{\Sigma} \Phi = \int_{\Sigma'} \Phi \geq \|\Phi\|_{\hat{g}} \mathrm{vol}_{g} \Sigma' \geq \mathrm{vol}_{g} \Sigma'$$

with equality when $\Sigma' = \Sigma$.

Fix any (say Euclidean) metric s_{ij} on Ω and the induced Riemannian metric

$$\hat{S} := \chi^2 \sum_{i,j=1}^n (s_{ij} dx^i \otimes dx^j + \sum_{k,l=1}^n s^{ij} \frac{\partial^2 b}{\partial x^i \partial \bar{x}^k} \frac{\partial^2 b}{\partial x^j \partial \bar{x}^l} d\bar{x}^k d\bar{x}^l)$$

satisfying $\mathrm{vol}_{\hat{\mathbf{S}}} = \mu \wedge \bar{\mu}$ on $\hat{M} = \Omega \times \bar{\Omega}$. (A0-A3) yields $\kappa > 0$ such that

$$\hat{R}_{\hat{g}}(p \oplus 0, 0 \oplus \bar{p}, p \oplus 0, 0 \oplus \bar{p}) \geq \kappa |p \wedge \bar{p}|_{\hat{S}}^2 \qquad \forall (z, p \oplus \bar{p}) \in T\hat{M}.$$

Theorem (Brendle-Leger-M.-Rankin '24 apriori spacelike estimate)

If $0 \leq \hat{\phi} \in C_c^{\infty}(\Omega \times \bar{\Omega})$ and $F_{\#}\mu = \bar{\mu}$ is a smooth b-optimal diffeomorphism then

Fix any (say Euclidean) metric s_{ij} on Ω and the induced Riemannian metric

$$\hat{S} := \chi^2 \sum_{i,j=1}^n (s_{ij} dx^i \otimes dx^j + \sum_{k,l=1}^n s^{ij} \frac{\partial^2 b}{\partial x^i \partial \bar{x}^k} \frac{\partial^2 b}{\partial x^j \partial \bar{x}^l} d\bar{x}^k d\bar{x}^l)$$

satisfying $\mathrm{vol}_{\hat{\mathsf{S}}} = \mu \wedge \bar{\mu}$ on $\hat{M} = \Omega \times \bar{\Omega}$. (A0-A3) yields $\kappa > 0$ such that

$$\hat{R}_{\hat{g}}(p \oplus 0, 0 \oplus \bar{p}, p \oplus 0, 0 \oplus \bar{p}) \geq \kappa |p \wedge \bar{p}|_{\hat{S}}^2 \qquad \forall (z, p \oplus \bar{p}) \in T\hat{M}.$$

Theorem (Brendle-Leger-M.-Rankin '24 apriori spacelike estimate)

If $0 \leq \hat{\phi} \in C_c^\infty(\Omega \times \bar{\Omega})$ and $F_\#\mu = \bar{\mu}$ is a smooth b-optimal diffeomorphism then

$$(\kappa \phi^2)^{n-1} S \le cg$$

on $\Sigma = Graph(F) \subset \Omega \times \bar{\Omega} = \hat{M}$, where $(\phi, S, g) = (\hat{\phi}, \hat{S}, \hat{g})|_{\Sigma}$ and $c = c(\|\hat{g}, \hat{g}^{-1}, \hat{S}, \hat{\phi}\|_{C^2(\operatorname{spt}\hat{\phi})}, \|\log \frac{\mu}{\operatorname{vol}_s}\|_{C^0})$ is independent of $\mu, \bar{\mu}$.

Proof sketch: Kantorovich dual potentials satisfy

$$u(x) + \bar{u}(\bar{x}) - b(x,\bar{x}) \geq 0$$

on \hat{M} with equality on $\Sigma = Graph(F)$. Thus

$$Du(x) - D_x b(x, F(x)) = 0$$
 (FOC)
 $D^2 u(x) - D_{xx}^2 b(x, F(X)) \ge 0.$ (SOC)

Differentiating (FOC) yields

$$D_{xx}^2 u - D_{xx}^2 b(x, F(x)) = D_{x\bar{x}}^2 b(x, F(x)) DF(x)$$

whose determinant

$$\log \det[D_{xx}^2 u - D_{xx}^2 b(x, F(x))] = \log |\frac{\rho}{\bar{\rho}} \det D_{x\bar{x}}^2 b|$$

is bounded by the asserted constants. At least (SOC) becomes strict.

At the point z=(x,F(x)) which maximizes the largest eigenvalue of ϕS relative to g, we can extend the Euclidean coordinates (x^1,\ldots,x^n) which diagonalize $A=(D^2u+D_{xx}^2b(x_0,F(x_0))\chi$ to Riemannian normal coordinates for \hat{S} . Taking p_i to be the eigenvector of A with eigenvalue λ_i , we can build a g-orthonormal basis $e_i=(2\lambda_i)^{-1/2}(p\oplus\lambda_i\bar{p}_i)$ for $T_z\Sigma$ where

$$\bar{p}_i = \lambda_i^{-1} \sum_{k=1}^n \frac{\partial F^k}{\partial x^i} \frac{\partial}{\partial \bar{x}^k}.$$

Moreover $S(e_i, e_j) = \mu_i \delta_{ij}$ with $\mu_i = \frac{\lambda_i + \lambda_i^{-1}}{2}$. Ordering the eigenvalues so $\mu_i \leq \mu_n$, multilinearity and the special structure of the Riemann tensor $\hat{R}_{\hat{g}}$ yield

At the point z=(x,F(x)) which maximizes the largest eigenvalue of ϕS relative to g, we can extend the Euclidean coordinates (x^1,\ldots,x^n) which diagonalize $A=(D^2u+D_{xx}^2b(x_0,F(x_0))\chi$ to Riemannian normal coordinates for \hat{S} . Taking p_i to be the eigenvector of A with eigenvalue λ_i , we can build a g-orthonormal basis $e_i=(2\lambda_i)^{-1/2}(p\oplus\lambda_i\bar{p}_i)$ for $T_z\Sigma$ where

$$\bar{p}_i = \lambda_i^{-1} \sum_{k=1}^n \frac{\partial F^k}{\partial x^i} \frac{\partial}{\partial \bar{x}^k}.$$

Moreover $S(e_i, e_j) = \mu_i \delta_{ij}$ with $\mu_i = \frac{\lambda_i + \lambda_j^{-1}}{2}$. Ordering the eigenvalues so $\mu_i \leq \mu_n$, multilinearity and the special structure of the Riemann tensor $\hat{R}_{\hat{g}}$ yield

$$\hat{R}(e_i, e_n, e_i, e_n) \ge \frac{\kappa}{4} (\frac{\lambda_n}{\lambda_n} + \frac{\lambda_i}{\lambda_n}) - c(\mu_i + \mu_n + 1)$$

The determinant bound and arithmetic-geometric mean inequality give

$$\sum_{i=1}^{n-1} \hat{R}_{\hat{g}}(e_i, e_n, e_i, e_n) \geq \frac{\kappa}{c} \mu_n^{\frac{n}{n-1}} - c\mu_n.$$

But our Corollary bounds this sum $\leq c\mu_n$, hence μ_n is bounded!

References: www.math.toronto.edu/mccann/publications

Thank you!