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Abstract. We consider the effect of a second order ‘porous media’ [25] term on the evolution of weak
solutions of the fourth order degenerate diffusion equation

(1) ht = −∇ · (hn∇∆h −∇hm)

in one space dimension. The equation without the second order term is derived from a ‘lubrication
approximation’ and models surface tension dominated motion of thin viscous films and spreading

droplets [18]. Here h(x, t) is the thickness of the film, and the physical problem corresponds to n = 3.
For simplicity we consider periodic boundary conditions which has the physical interpretation of

modeling a periodic array of droplets. In a previous work [6] we studied the above equation without
the second order ‘porous media’ term. In particular we showed the existence of nonnegative weak

solutions with increasing support for 0 < n < 3 but the techniques failed for n ≥ 3. This is consistent
with the fact that, in this case, nonnegative self-similar source-type solutions do not exist for n ≥ 3

[3].
In this work, we discuss a physical justification for the ‘porous media’ term when n = 3 and

1 < m < 2. We propose such behavior as a cut off of the singular ‘disjoining pressure’ modeling long
range Van der Waals interactions.

For all n > 0 and 1 < m < 2 we discuss possible behavior at the edge of the support of the solution
via leading order asymptotic analysis of traveling wave solutions. This analysis predicts a certain

‘competition’ between the second and fourth order terms. We present rigorous weak existence theory
for equation (1) for all n > 0 and 1 < m < 2. In particular, the presence of a second order ‘porous

media’ term in equation (1) yields nonnegative weak solutions that converge to their mean as t→∞
and that have additional regularity. Moreover, we show that there exists a time T ∗ after which the

weak solution is a positive strong solution. For n > 3/2, we show that the regularity of the weak
solutions is in exact agreement with that predicted by the asymptotics.

Finally, we present several numerical computations of solutions. The simulations use a weighted
implicit-explicit scheme on a dynamically adaptive mesh. The numerics suggest that the weak solution

described by our existence theory has compact support with a finite speed of propagation. The data
confirms the local ‘power law’ behavior at the edge of the support predicted by asymptotics.

Date: May 1994.
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1. Introduction

We consider weak solutions of the fourth order degenerate diffusion equation

ht = −∇ · (f(h)∇∆h−∇hm)(1)

in one space dimension. We study the case where f(h) = hn, n > 0. The fourth order term comes
from a ‘lubrication approximation’ and models surface tension dominated motion of thin viscous films
and spreading droplets [18]. The second order term in the equation, ∆hm, arises as a cut off of Van
der Waals interactions. We refer to it as the ‘porous media’ term since it is the nonlinearity that arises
in the well known ‘porous media’ equation [25]. Physically, h is the thickness of the the film. This
paper considers weak solutions that can be zero on a set of non-zero measure, hence are relevant to
the droplet problem. We show that for n ≥ 3, the inclusion of such a ‘porous media’ term removes the
singularity associated with the movement of the ‘contact line’ identified in a previous work [6].

1.1. Degenerate Diffusion Equations: Fourth Order versus Second Order. We begin with a
comparison of the fourth order ‘lubrication approximation’

ht = −(|h|nhxxx)x = −(f(h)hxxx)x(2)

to the second order porous media equation

ht = (hm)xx.(3)

1.1.1. The porous media equation. Form > 1, the porous media equation (3) has unique weak solutions.
On the real line, if the initial data is nonnegative and has compact support, then there exists a unique
nonnegative weak solution to the equation. This solution has compact support that propagates with a
finite speed. The porous media equation possesses nonnegative self-similar source-type solutions for all
m > 1

h(x, t) = M2/mt−1/(m+1)Φ(xM−(m−1)/(m+1)t−1/(m+1))

Φ(y) =

{
a(m)(y2

0 − y2)1/(m−1) if y ≤ y0

0 if y > y0.
(4)

Weak solutions with compact support converge to these source-type solutions as t→∞ [21]. Note that
for 1 < m < 2 the ‘source type’ solutions ‘touch down’ with zero slope. In [6] we found a family of
solutions for the fourth order lubrication equation that also touch down with zero slope. In this paper
we show that when 1 < m < 2 and n > 0 there exist weak solutions to equation (1) that have zero
slope at the edge. The rigorous theory for this second order problem relies heavily on a maximum or
comparison principle. This technique is not directly applicable to higher order problems.

1.1.2. The lubrication approximation. The fourth order problem (2) does not satisfy a maximum prin-
ciple. However, the equation possesses a number of conserved and dissipated quantities that provide a
weak solution theory via energy methods. In particular we have the following weak existence theorem
[6].

Theorem 1. Given any nonnegative initial condition h0 ∈ H1(S1), h0 ≥ 0 we have the following
results

Case 1: Given 1 < n < 2, 0 < s < min(2 − n, 1
2 ), and a time T there exists h ≥ 0, h ∈

L∞
(
0, T ;H1(S1)

)
∩ L2

(
0, T ;H2(S1)

)
, that satisfies the equation in the following sense:∫∫

QT

hϕt −
∫∫

QT

f(h)hxxϕxx −
∫∫

QT

f ′(h)hxhxxϕx = 0.(5)

Similar regularity and long-time results have been recently proven for 0 < n < 3 for solutions in a weaker, non-

distribution sense [1]
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Moreover,
h(x, 0) = h0(x) ∀x ∈ S1

hx(·, t)→ h0x strongly in L2(S1) as t→ 0.

Furthermore, given α ≥ 1
2 −

s
4 , h has the additional regularity

h1−s/2 ∈ L2(0, T ;H2(S1))

and
(hα)x ∈ L4(QT ).

Moreover, there exist positive A and c such that for all t ∈ [0, T ],

‖h(·, t)− h̄‖L∞ ≤ Ae−ct,(6)

where h̄ is the mean value of h. A depends only on |h0|H1, h̄, n, and |S1|. The rate of decay, c, depends
only on n, and h̄. In particular, if h0 is nonzero there exists a time T ∗ after which the solution is a
positive strong solution.

Case 1A: If 3
8
< n ≤ 1 the above is true if we replace the equation (5) with a solution in the sense∫∫

QT

hϕt −
∫∫

QT

f(h)hxxϕxx −
∫∫

QT

nhn−α(
hα

α
)xhxxϕx = 0(7)

where α is chosen so that n > α ≥ 1
2
− s

4
.

Case 2: If 2 < n < 3, given any 0 < r < 1 satisfying 0 < 2 + r − n < 1 then for any T there exists
h ≥ 0 such that h ∈ L∞

(
0, T ;H1(S1)

)
and h satisfies the equation in the following sense:∫∫

QT

hϕt +
3
2

∫∫
QT

f ′(h)h2
xϕxx +

1
2

∫∫
QT

f ′′(h)h3
xϕx +

∫∫
QT

f(h)hxϕxxx = 0.

The initial data is achieved as above. Furthermore, h has the additional regularity

h1+r/2 ∈ L2
(
0, T ;H2(S1)

)
and

(hα)x ∈ L4(QT ) ∀α ≥ r

4
+

1
2
.

The long time behavior is as above (6).

The statement for n = 2 is as in Case 2 with a minor change in the form of the equation. There also
is an existence result for 0 < n < 3/8 in a weaker sense introduced in [2]. See [6] for a discussion.

What is striking about these results is that the additional regularity of the weak solutions for
0 < n < 3 is in exact agreement with the regularity of ‘zero contact angle’ nonnegative source type
solutions (see below (13–15)). That is, if we assume that the limiting solution h(x, t) has support
compactly contained in S1 and and h(x) ∼ xβ at the edge of the support for all t on some interval
[0, T ], then the regularity constraints demand that

β ≥ 2 0 < n < 3/2(8)

β ≥ 3/n 3/2 < n < 3.(9)

Furthermore, the techniques used in proving Theorem 1 fail for n ≥ 3. This is consistent with the lack
of similarity or advancing front solutions for n ≥ 3.

We briefly discuss some exact solutions for the equation

ht + (|h|nhxxx)x = 0.(10)
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Compactly supported nonnegative self-similar ‘source type’ solutions exist for all
0 < n < 3 [3]. They have the scaling form

h(x, t) = t−αH(η), η = xt−α α =
1

n + 4
.(11)

Where H(η) solves the ODE

HnHηηη = ηH.(12)

For a given n and mass, there is more than one compactly supported nonnegative symmetric solution
to this ODE. However, if we impose the additional constraint that the solution have Hη = 0 at the
edge of the support, the solution is unique. This was proven in [3], in which they also proved that these
“most regular” solutions have the following behavior at the edge of their support: Let [−a, a] denote
the support of H(η). Then

for 0 < n < 3/2, H(η) ∼ (a− η)2 as η ↑ a,(13)

for n = 3/2 H(η) ∼ (a− η)2 log(1/(a− η))2/3 as η ↑ a,(14)

for 3/2 < n < 3 H(η) ∼ (a− η)3/n as η ↑ a.(15)

The less regular solutions have H(η) ∼ (a − η).
Starov [27] first noted that there are no finite mass ‘source-type’ solutions for n = 3. Brenner and

Bertozzi [9] addressed the significance of this fact for the physical problem of spreading droplets. The
n = 3 case arises when there is a no-slip boundary condition at the liquid solid interface. The lack
of such scaling solutions is consistent with the fact that a no-slip boundary condition leads to infinite
energy dissipation at the contact line for spreading drops with a finite contact angle [17, 19].

The non-existence of source type solutions for n ≥ 3 is due to the structure of the ODE (12) and
is in sharp contrast to the source type solutions for the porous media equation (3) which exist for all
m > 1.

There are also traveling wave solutions of the form h(x, t) = H(x− ct) as described in [8]. Again,
we see transitions in the behavior at critical values of n. It is noteworthy that there are no advancing
front solutions for n ≥ 3. For 3/2 < n < 3 there are advancing front solutions with the simple form

h(x, t) =

{
A(x− ct)3/n x > ct

0 otherwise,
c = (

3
n
− 2)(

3
n
− 1)

3
n
An.

For 0 < n < 3/2 there are advancing front solutions with quadratic A(x − ct)2 leading order behavior
[8]. Finally, there are exact steady solutions for all n

h(x, t) =

{
A− Bx2, |x| < A/

√
B

0 otherwise.
(16)

The proof of the Theorem 1 depends on certain dissipated energies. In this paper we derive analogous
estimates for the equation with both fourth order and second order terms present:

dh

dt
+ (hnhxxx)x − (hm)xx = 0.

We briefly discuss some properties of smooth solutions that we use to prove needed apriori esitimates.
For example, we have conservation of mass,∫

S1
h(x, t)dx =

∫
S1
h0(x)dx.
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When 1 < m < 2, we have dissipation of surface tension energy

(17)
∫
S1
|hx(x, T )|2 dx+

∫∫
QT

f(h)h2
xxx +m

∫∫
QT

hm−1h2
xx

+
m(m− 1)(2−m)

3

∫∫
QT

hm−3h4
x dxdt =

∫
S1
|hx(x, 0)|2 dx,

and the basic entropy dissipation: consider a function G(y) satisfying G′′(y) = 1/f(y) for y > 0. The
convexity of G and mass conservation allow us to choose G so that

∫
S1 G(h(x, t)) dx ≥ 0 for all t.

Integration by parts yields∫
S1
G(h(x, T )) dx+

∫∫
QT

h2
xx +m

∫∫
QT

hm−1

f(y)
h2
x dxdt =

∫
S1
G(h(x, 0)) dx.(18)

For n = 0, the linear problem, the entropy is merely the L2 norm. Bernis and Friedman first introduced
these entropies in [2]. In a previous work [6], we used these and a new class of entropies to prove
Theorem 1. We show that for 1 < m < 2 the same results hold and we extend results to all n > 0
by exploiting sharper estimates obtained by the presence of the second order term. For n > 3/2, we
obtain sharp regularity results. We discuss this briefly now:

1.1.3. Competition between the fourth and second order terms. It is natural to expect that either the
second order term or the fourth order term will control the dynamics at the edge of the support of the
solution. In section 2 we discuss leading order asymptotics for the solution near the edge of its support.
For n ≥ 3 and 1 < m < 2, the asymptotics predict that locally there are advancing travelling wave
solutions and that their behavior at the edge of the support is dictated by the second order term. That
is, the solution at the edge ∼ (x− x(t))1/(m−1). Moreover, for 3/2 < n < 3, and 1 < m < 2, whichever
term gives higher regularity at the edge will dominate. We also discuss some expansions for the case
n < 3/2. The predictions and possibilities are summarized in the chart below. The case n = 3/2 is
special as log dependences play a role when the fourth order term dominates at the edge 14.

Table 1: Behavior at the edge: 2nd vs. 4th order

term behavior at edge 0 < n < 3/2 3/2 < n < 3 n ≥ 3

(hnhxxx)x (x− x0(t))2 for 0 < n < 3/2 can control controls edge if no solutions

n > 0 (x− x0(t))3/n for 3/2 < n < 3 edge if m > n 1/(m− 1) < 3/n
no solutions for n ≥ 3

(hm)xx (x− x0(t))1/(m−1) can control edge controls edge if always controls
1 < m < 2 if 1/(m− 1) > 3/n 1/(m− 1) > 3/n edge

1.2. Main Results. Given that the techniques used to prove Theorem 1 break down as n → 3, a
natural question is what can one say about the problem for n ≥ 3. One result of this paper is that the
inclusion of a second order ‘porous media’ term with 1 < m < 2 enables us to prove the same results
as in Theorem 1. We derive a weak existence theory for the equation

ht + (hnhxxx)x + (hm)xx = 0

for n > 0 and 1 < m < 2. In particular, for n > 3/2, the regularity of the weak solution is in sharp
agreement with that predicted by asymptotics at the edge of the support of the solution (see Table 1
above and section 2). Thus the existence theorem supports the predictions made by the asymptotics.

The main theorem is

Theorem 2. Given any nonnegative initial condition h0 ∈ H1(S1), h0 ≥ 0 we have the following
results



6 A.L. BERTOZZI AND M. PUGH

Case 1: Let n ≥ 3, 1 < m < 2. Then for any time T , there exists h such that h ∈ L∞
(
0, T ;H1(S1)

)
,

h ≥ 0, and h satisfies the equation in the following sense of distributions:∫∫
QT

hϕt +
3
2

∫∫
QT

f ′(h)h2
xϕxx +

1
2

∫∫
QT

f ′′(h)h3
xϕx +

∫∫
QT

f(h)hxϕxxx =
∫∫

QT

(hm)xϕx.

The initial data is achieved as in Theorem 1. Furthermore given α0 > 0 there exists a solution h
satisfying the above that has the additional regularity

h
m+1

2 ∈ L2
(
0, T ;H2(S1)

)
,

(hγ)x,∈ L4(QT ) for all γ ≥ m+ 1
4

,

(h(α+m−1)/2)x,∈ L2(QT ) for all α ≥ α0,

and the long time behavior

‖h(x, t)− h̄‖L∞ ≤ Ae−ct.

A is determined by |h0|H1, n, h̄, and |S1|. The rate of decay, c, is determined by n and h̄. In particular,
if h0 is nonzero there exists a critical time T ∗ after which the solution is guaranteed to be strong and
positive.

Case 2: For 2 < n < 3, 1 < m < 2 the above existence and long time result is true. Moreover, given
r satisfying both 0 < r < 1 and 0 < 2 + r − n, there exists h with the additional regularity

h1+r/2 ∈ L2(0, T ;H2(S1)),

(hα)x ∈ L4(QT ) ∀α ≥ r + 2
4

.

Case 3: Let 1 < n < 2, 1 < m < 2. Then on any time interval [0, T ] given any 0 < s < min(2− n, 1
2
)

and any α0 > max(0, m− n+ 1), there exists a solution in the following sense of distributions:∫∫
QT

hϕt −
∫∫

QT

f(h)hxxϕxx −
∫∫

QT

f ′(h)hxxhxϕx =
∫∫

QT

(hm)xϕx.

The solution has the regularity
h1−s/2 ∈ L2(0, T ;H2(S1)),

(hβ)x ∈ L4(QT ) ∀β ≥ −s+ 2
4

,

(hα)x ∈ L2(QT ) ∀α ≥ α0,

(h(1−n−s+m)/2)x,∈ L2(QT ),
hx ∈ L∞(0, T ;L2(S1)).

and the long time behavior as above.

The theorem for n = 2 is as in Case 2, with a minor change in the defintion of weak solution. The
reader can derive results for 0 < n ≤ 1 following the proofs in [6].

Significant Remark: Note that if we make the ansatz that the weak solution above has a local
powerlaw (x − x0(t))β where x0(t) is the edge of the support then the additional regularity in the
statement of the theorem implies

β ≥
{

max (3/n, 1/(m− 1)) n > 3/2
max

(
2, 1/(1

2 +m− n)
)

0 < n < 3/2.

In particlar, the theorem is sharp given the asymptotics for n > 3/2.
The techniques are similar to [6]. We introduce convex entropies to prove the existence and long

time result. For n ≥ 3 existence and decay of weak solutions follows directly from energy dissipation.
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The convex entropies are only needed for additional regularity. As in [6], we use weak convergence
arguments for nonlinear functions of h in Sobolev spaces to prove existence. There is a direct relation
between the exponents m and n that allow for such spreading solutions.

We use a regularization introduced in [2] and used in [6]. In section 6 we present some numeri-
cal calculations of the solutions which demonstrate the predicted interplay between the ‘lubrication
approximation’ term and the ‘porous media’ term. The simulations indicate that the support of the
solution has finite speed of propagation and continuous flux, two properties desirable for a physically
correct model.

The paper is organized as follows. Section 2 provides a discussion of the asymptotics at the edge
of the solution as a motivation for the sharpness of the theorems. Section 3 reviews the properties
of the regularization scheme. Section 4 proves the existence results for nonnegative initial data for
0 < n. Section 5 proves the long time results for nonnegative initial data for 0 < n. Section 6 presents
numerical calculations. Section 7 summarizes this paper and discusses unsolved problems.

Before proceeding further, we discuss one physical motivation for the equation.

1.3. Long Range Van der Waals Interactions and the Lubrication Approximation. The
lubrication approximation for a thin film of liquid on a solid surface yields a fourth order degenerate
diffusion equation for the film height [18]. In one space dimension, with a no slip boundary condition
on the liquid solid surface, it is

ht + (|h|3hxxx)x = 0.(19)

The derivation uses the Stokes equation for steady viscous flow combined with a depth averaging of
the fluid velocity in the direction perpendicular to the surface.

The no slip boundary condition causes a paradox for films with a moving edge or contact line. Indeed,
a moving contact line produces infinite energy dissipation [17, 19]. Many authors have considered ways
of addressing this problem, including the use of a ‘slip condition’ on the liquid/solid interface. We
discussed the slip models in [6].

In this section we discuss the addition of Van der Waals forces proposed by several authors [28, 15]
to describe such physical phenomena as film rupture (in the repulsive case) and the precursor film (in
the attractive case). In this paper we only address the attractive case.

The boundary of the support of the weak solution physically corresponds to the contact line, the
triple contact point of the air/liquid, air/solid, and solid/liquid interfaces. We denote the respective
interfacial surface energies of the three interfaces by γLV , γSV , and γLS . The spreading parameter, S,
of the system is

S = γSV − γLS − γLV .(20)

When S ≥ 0, the drop energetically prefers to completely wet the surface and the long range character
of the molecular interactions are important to the local dynamics close to the liquid/solid interface
[22]. Such interactions are important on a mesoscopic lengthscale and can be described in terms of a
disjoining pressure [26, 20].

Following [28, 10, 14], the depth averaged fluid velocity satisfies

U(x) = −h
2

3η
(Π(h))x +

γh2

3η
d3h

dx3
= − A

6πh2η
hx +

γh2

3η
d3h

dx3
(21)

where γ is the surface tension, η is the fluid viscosity, Π is the disjoining pressure, and A is the Hamaker
constant.

one calls this situation complete wetting as opposed to partial wetting

approx. 100 - 1000 Ångströms
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Mass conservation gives an evolution equation for the film height:

ht − (
A

6πη
(logh)x −

γh3

3η
d3h

dx3
)x = 0.(22)

In the complete wetting problem, A > 0. Ignoring the capillary term and considering only the long
range Van der Waals forces yields a super diffusive equation for the film height

ht − (
A

6πhη
hx)x = 0.

Solutions to this problem are known to have quite singular behavior [12, 13, 24]. In particular, one
would expect infinite speed of propagation of the support and it is unclear if one can even make sense
of this equation for initial data with compact support.

Several authors have suggested that since the intermolecular effects are not expected below a certain
length scale, the long range Van der Waals model is not reasonable in the limit as h → 0 [22, 28]. In
this spirit, we propose a simple cut off of the gradient of the disjoining pressure at a molecular length
scale, hm. Mathematically, this means replacing the gradient of the disjoining pressure by

[(Π(h))x]c = ϕc(h)(
A

6πh3
)x(23)

where ϕc(h) is a cut off function which is 1 for h > hm and vanishes at h = 0. We make the ansatz
that the cut off function vanishes like hm as h → 0. This produces a modified Van der Waals term in
(22) that is ∼ (logh)xx for hm << h < 1 but has a subdiffusive ‘porous media’ like behavior, (hm)xx,
below the molecular scale hm.

The rigorous theorems presented here are for a simplified equation (1) with just the cutoff behavior.
We expect that the results hold for the equation with the cut off Van der Waals term (23).

In section 6 we present some computations of both the simplified equation (1) and the full equation
(22) with a cut off Van der Waals term.

2. Competition between second and fourth order terms: asymptotics at the edge of

the support.

Before proceeding with the rigorous analysis, we use asymptotics to study the competition between
the second and fourth order terms at the edge of the support.

Let us assume that we have a weak solution to the equation

ht = −(hnhxxx)x + (hm)xx(24)

with compact support the edge of which propagates with finite speed. Either the fourth or the second
order term determines the motion of the edge of the support. In this section we present a simple
asymptotic argument for the competition between the two terms in terms of n and m. In section 4
we present rigorous results which confirm the predictions made by the asymptotics. For n > 3/2, the
rigorous analysis is sharp in that the regularity of the weak solution is in exact agreement with that
predicted by the asymptotics.

We recall that for the lubrication approximation equation (2) advancing fronts only exist for 0 <
n < 3 [3, 8]. This suggests that for (24) to have an advancing front for n ≥ 3, the motion must be due
to solely the second order ‘porous media’ term. However, when n < 3 it should be possible to have
either the second or fourth order term determine the motion of the edge of the support. The leading
order asymptotics below indicate that this intuition is reasonable.

such a method was suggested to us by A. M. Cazabat (private communication).
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A standard technique is to assume that locally the solution looks like a traveling wave near the edge
of its support. Hence we consider solutions of the form

h(x, t) = H(x− ct).
This yields the following equation for H

−cH ′(η) = −(Hn(η)H ′′′(η))′ + (Hm(η))′′

where η = x− ct. Integrating once, we find

A − cH(η) = −Hn(η)H ′′′(η) + (Hm(η))′.(25)

A is determined by the regularity at the edge of the support of H. Without loss of generality, the edge
of the support of the solution corresponds to η = 0.

There are four cases to consider: 0 < n < 3/2 and 3/2 < n and for each of these either A = 0
or A 6= 0. For technical reasons, we do not consider n = 3/2 as the expected behavior is not purely
algebraic (14).

Case 1: 3/2 < n
case 1a: A = 0
Assume that H touches down like ηθ, with θ 6= 1, 2. Then

HnH ′′′ ∼ ηnθ+θ−3, (Hm)′ ∼ ηmθ−1.

If the porous media term is the lowest order term on the right hand side of (25) we have H ∼ (Hm)′

therefore

ηθ ∼ ηmθ−1 =⇒ θ =
1

m− 1
.

θ = 1/(m − 1) is the generic case for solutions of the porous media equation. Note that touchdown
with zero slope at the edge implies θ > 1 which gives the constraint 1 < m < 2. For this behavior to
dominate the fourth order lubrication term we require

Hn(η)H ′′′(η) ≺ (Hm(η))′ =⇒ η(n+1)θ−3 ≺ ηθm−1 =⇒ θ >
2

n+ 1−m.

Combining these, we see that the porous media term dominates at the edge of the support whenever
1

m− 1
= θ >

2
n+ 1−m =⇒ 3

n
<

1
m− 1

.(26)

The same argument shows that if the lubrication approximation term is the lowest order term then

θ =
3
n

and
1

m− 1
<

3
n
.(27)

If θ = 3/n = 1/(m− 1) the two terms are of equal importance.
This argument suggests that the equation selects the power law that gives greater regularity at the

edge. In section 4, we prove that for 3/2 < n and 1 < m < 2 the regularity of the weak solutions is in
sharp agreement with the asymptotics (26–27).

case 1b: A 6= 0
In this case, if the porous media term is the lowest order term then A ∼ (Hm)′. As above, this

implies

θ =
1
m

and
3

n+ 1
<

1
m
.(28)

If the lubrication term is lowest order then

θ =
3

n + 1
and

1
m
<

3
n+ 1

.(29)
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For n > 3/2 and 1 < m < 2, the existence theory of Section 4 excludes behaviors (28–29) as they are
not sufficiently regular.

Case 2: 0 < n < 3/2
case 2a: A 6= 0
Again, the regularity of the weak solutions rules out this case.
case 2b: A = 0
We recall that for 0 < n < 3/2 the lubrication approximation equation (2) has nonnegative self-

similar source-type solutions with expanding support with θ = 2 [3] and receding traveling wave solu-
tions with θ = 3/n [8]. Therefore the options are: the front could recede with θ = 3/n or the front
could advance with θ = 2 (lubrication dominated) or θ = 1/(m− 1) (porous media dominated). Since
we are ultimately concerned with the advancing front case we consider only θ = 2 for the lubrication
dominated behavior.

In the case θ = 2, the lubrication approximation term dominates the motion of the edge, and we
seek an expansion

H(η) = kη2 + Aηa + Bηb + Cηc + . . .(30)

where 2 < a < b < c < . . . Therefore

Hn(η) = knη2n + nkn−1η2(n−1)(Aηa + Bηb + . . . ) + n(n− 1)kn−2η2(n−2)(. . . )2 + . . .

Hm−1(η) is expanded similarly. Defining Ã = a(a−1)(a−2)A, B̃ = b(b−1)(b−2)B, C̃ = c(c−1)(c−2)C,
we find

−HnH ′′′ +Hm−1H ′ =

−
(
knη2n + nAkn−1η2n+a−2 + nBkn−1η2n+b−2 + nCkn−1η2n+c−2 + . . .

)
×(

Ãηa−3 + B̃ηb−3 + C̃ηc−3 + . . .
)

+
(
km−1η2m−2 + A(m− 1)km−2η2m+a−4 + B(m− 1)km−2η2m+b−4 + . . .

)
×(

2kη + aAηa−1 + bBηb−1 + cCηc−1 . . .
)

=
(
−Ãknη2n+a−3 − B̃knη2n+b−3 − C̃knη2n+c−3 − . . .

)
+
(
2kmη2m−1 + aAkm−1η2m+a−3 + bBkm−1η2m+b−3 + . . .

)
.

Recall that −cH = −HnH ′′′ +Hm−1H ′, hence (30) implies the lowest order term above must be η2.
We now begin considering the possibilities.

Case 1: no lowest order terms cancel. In this case, the lowest order term from the lubrication term
is the term of order 2: η2n+a−3 ∼ η2. This implies a = 5− 2n. The coefficient of this term determines
the speed of the edge. The assumption a > 2 then imposes the requirement n < 3/2. The fact that the
lowest order term comes from the lubrication approximation term implies η2n+a−3 � η2m−1, implying
2n+ a− 3 ≤ 2m− 1, hence m ≥ 3/2. This suggests that if m and n satisfy

n <
3
2
, m ≥ 3

2
,

then there is an expansion of the form H(η) = kη2 + Aη5−2n + . . . , where 2k determines the second
derivative at the edge and A determines the speed of the edge.

Case 2: the lowest order term from the lubrication term cancels with the lowest order term from the
porous medium term. If these two terms are to cancel, we need η2n+a−3 ∼ η2m−1. This determines
a = 2(m−n+1) and A is then determined by a and k: a(a−1)(a−2)Akn = 2km. The requirement 2 < a

Our existence theorem states that the weak solution will eventually become a strong positive solution so that the

support must eventually increase to fill the whole periodic domain.
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implies m > n. The cancellation makes η2n+b−3 the lowest order term from the lubrication term, and
η2m+a−3 the lowest order term from the porous medium term. Since the lubrication term dominates
the behavior, η2n+b−3 ∼ η2, determining b = 5 − 2n. The requirement a < b implies m < 3/2, 2 < b
implies n < 3/2. Moreover, η2n+b−3 � η2m+a−3 implies m ≥ n/2 + 3/4, which immediately implies
m > n. This suggests that if m and n satisfy

n <
3
2
, m <

3
2
, m ≥ 1

2
n+

3
4
,

then there is an expansion of the form H(η) = kη2 + Aη2m−2n+2 +Bη5−2n + . . . , where k determines
A and the second derivative at the edge and B determines the speed of the edge.

Case 3: the lowest order and second lowest order terms from the lubrication term cancel with the
respective terms from the porous media term. Repeating the above argument, we find that a and b are
determined by m and n, and if m and n satisfy

n <
3
2
, m <

1
2
n+

3
4
, m ≥ 1

3
n + 1

then there is an expansion of the form H(η) = kη2 +Aη2m−2n+2 +Bη4m−4n+2 +Cη5−2n + . . . Here k
determines A, B, and the second derivative at the edge, while C determines the speed of the edge.

We note that in the above, we have assumed that the lowest order terms in the expansion of Hn

(2) have been from η2(n−1)(Aηa + . . . ) and not from η2(n−2)(Aηa + . . . )2 or other terms. Under this
assumption, we can continue the above process indefinitely, and we see that for any m and n satisfying
n < 3/2 andm > n, there is an expansion H so that H(η) = kη2+· · ·+c̃η5−2n+. . . , where 2k determines
the second derivative at the edge and the coefficients of the intermediate terms and c̃ determines the
speed. This suggests that there are two degrees of freedom: the second derivative and the speed. A
more in depth study of the asymptotics in which an inner expansion at the edge is matched to an outer
expansion away from the edge may yield additional matching constraints.

Thus it is possible to have leading order η2 behavior when m > n and from the above arguments
for n > 3/2, one can have η1/(m−1) behavior when 1/(m− 1) > 3/n. Since n > m and n < 3/2 always
implies 1/(m−1) > 3/n, there is always at least one possible behavior for any 0 < n < 3/2, 1 < m < 2.

3. Regularized problem

To prove existence of weak solutions and to numerically compute the weak solutions we use a regu-
larization scheme introduced in [2] and used in [6, 1].

The regularization involves altering the equation and lifting the initial data. We bound the initial
data for the regularized problem away from zero by

hε0(x) = h0(x) + δ(ε).

where δ(ε) > 0 and hε0 → h0 in H1(S1) as ε→ 0.
In addition, we regularize the equation by considering

hεt = −(fε(hε)hεxxx)x + (hεm)xx

fε(hε) =
hε

4|hε|n

ε|hε|n + hε
4
.

We remark that fε is still degenerate, however for n < 4, fε(y) ∼ y4/ε as y → 0. This degree of
degeneracy is more tractable and this approximate problem has unique positive smooth solutions for
all time.

Theorem 3. (Global existence of unique smooth positive solutions for the regularized problem) Let
h0 ∈ H1(S1), h0 ≥ 0, 1 < m < 2. Given an initial condition

hε0(x) = h0(x) + δ(ε),
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there exists a unique positive solution to the regularized equation

hεt = −(fε(hε)hεxxx)x + (hεm)xx

fε(hε) =
hε

4|hε|n

ε|hε|n + hε
4
.

The proof is a minor modification of that presented in [2], and summarized in [6]. For this reason,
we omit many details. The main points are

• Classical parabolic Schauder estimates guarantee existence of a smooth solution up to a time σ.
• In this short time of existence, for any t < σ, the smooth solution satisfies

(31)
∫
S1
hε

2
x(x, t)dx+

∫ t

0

∫
S1
fε(hε)hε2xxx

+
m(m− 1)(2−m)

3

(
4

m+ 1

)4 ∫ t

0

∫
S1

(
hε

m+1
4

)4

x
+m

∫ t

0

∫
S1
hε
m−1hε

2
xx

=
∫
S1
hε

2
x(x, 0)dx.

Since hε0 → h0 in H1(S1), (31) provides an a priori upper bound for
∫
hε

2
x independent of t and

ε at any time t < σ. This in turn yields an a priori bound for the Hölder norm |hε|C1/2(S1)

|hε(x1, t)− hε(x2, t)| ≤ C|x1 − x2|1/2 ∀t < σ,(32)

|hε(·, t)|L∞(S1) ≤ C ∀t < σ.(33)

Equations (31-33) imply

|hε(x, t1)− hε(x, t2)| ≤ C|t1 − t2|1/8.(34)

In all of the above, C depends only on the H1 norm of the initial data, |h0|H1 .
• We introduce the convex “entropy”

G′′0(y) =
1
yn

for y > 0.

Integration by parts yields

(35)
∫
S1

ε

6hε(x, t)2
dx+

∫
S1
G0(hε(x, t)) dx+

∫ t

0

∫
S1
hε

2
xx

+m

∫ t

0

∫
S1

hε
m−1

fε(hε)
hε

2
x =

∫
S1

ε

6hε0(x)2
+G0(hε0(x)) dx ≤ Cε

for any t < σ. As in [2] and [6], this a priori bound for
∫
S1 ε/h

2
ε and the Hölder continuity (32)

provide an a priori pointwise lower bound for the solution hε(x, t).
• The apriori bound for the minimum depends on ε and |h0|H1 and the bound for the maximum

depends only on |h0|H1 . Hence the solution is uniformly parabolic on [0, σ] and can be continued
to any time T .

• Uniqueness follows from energy methods, as in [2].

We remark that (32–34) imply that {hε} is a uniformly bounded equicontinuous family of functions
on QT . The Arzela-Ascoli theorem guarantees the existence of a subsequence that converges uniformly
to a limit, h.
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4. Existence of Weak Solutions

We recall the regularized equation and initial data from the previous section:

hε0(x) = h0(x) + δ(ε),(36)

hεt = −(fε(hε)hεxxx)x + (hεm)xx,(37)

fε(hε) =
hε

4|hε|n

ε|hε|n + hε
4 .(38)

Let
QT = S1 × (0, T ) ϕ ∈ C∞0 (0, T ;C∞(S1)).

Recall the energy dissipation (31)∫
S1
hε

2
x(x, t) dx ≤

∫
S1
hε

2
0x dx = C.

The Sobolev embedding theorem implies there exists an M <∞ such that

|hε(x, t)| ≤M. ∀x, t.
In all of the following theorems, the initial data is achieved as in Theorem 1.

Proposition 4. Given any nonnegative initial condition h0 ∈ H1(S1), h0 ≥ 0 we have the following
results

Case 1: Let n ≥ 3, 1 < m < 2, and let hε be the unique positive smooth solution to the regularized
problem (36–38) with δ(ε) chosen so that δ(ε) → 0 as ε → 0. Then on any time interval [0, T ],
there exists a subsequence that converges pointwise uniformly and weakly in L∞

(
0, T ;H1(S1)

)
to a

nonnegative h and h satisfies the equation in the following sense:

(39)
∫∫

QT

hϕt +
3
2

∫∫
QT

f ′(h)h2
xϕxx +

1
2

∫∫
QT

f ′′(h)h3
xϕx +

∫∫
QT

f(h)hxϕxxx

=
∫∫

QT

(hm)xϕx.

The initial data is achieved as in Theorem 1. Furthermore, given α0 > 0, there exists h with the
additional regularity

h
m+1

2 ∈ L2
(
0, T ;H2(S1)

)
(hγ)x,∈ L4(QT ) ∀γ ≥ m+ 1

4
.

(h
α+m−1

2 )x,∈ L2(QT ) ∀α ≥ α0.

Case 2: Let 2 < n < 3, 1 < m < 2, and r satisfy both 0 < r < 1 and 0 < 2 + r − n. If hε is the
unique positive smooth solution to the regularized problem (36–38) with

δ(ε) = εθ, θ < 1/2.(40)

then all of the above results hold, and h has the further regularity

h1+r/2 ∈ L2(0, T ;H2(S1))

(hα)x ∈ L4(QT ) ∀α ≥ r + 2
4

.

We remark that there is an existence theorem for n = 2 which is very similar to Case 2, and refer
the reader to [6] for the slightly different definition of weak solution needed.

The proof of this is standard, and we refer the reader to [2] for further details.
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Proof. We first prove Case 1, in which n ≥ 3. Recall that hε is smooth so that we can integrate by
parts:

d

dt

1
2

∫
S1
hε

2
x = −

∫
S1
fε(hε)hε2xxx −

m(m− 1)(2−m)
3

∫
S1
hε
m−3hε

4
x −m

∫
S1
hε
m−1hε

2
xx.(41)

Note that all the terms on the right hand side have the same sign if 1 < m < 2. Integrating in time
gives

(42)
1
2

∫
S1
hε

2
x(·, 0) =

1
2

∫
S1
hε

2
x(·, T ) +

∫∫
QT

fε(hε)hε2xxx

+
m(m − 1)(2−m)

3

∫∫
QT

hε
m−3hε

4
x +m

∫∫
QT

hε
m−1hε

2
xx

which then guarantees apriori bounds independent of ε for

∫
S1
hε

2
x(·, t),

∫∫
QT

fε(hε)hε2xxx,
∫∫

QT

hε
m−3hε

4
x = c0

∫∫
QT

(hε
m+1

4 )x, and
∫∫

QT

hε
m−1hε

2
xx

(43)

in terms of the initial data,
∫
S1 hε

2
x(·, 0).

Note that for any hε smooth and bounded away from zero:∫
S1

(
hε

m+1
2

)2

xx
=
(
m+ 1

2

)2 [∫
S1
hε
m−1hε

2
xx +

(
(m− 1)2 +

(m− 1)(m− 2)
3

)∫
S1
hε
m−3hε

4
x

]
.

Therefore
∫

(hε
m+1

2 )2
xx is a linear combination of apriori bounded quantities, hence is apriori bounded.

Thus the following are bounded uniformly in ε:∫∫
QT

(hε
m+1

2 )2
xx,

∫∫
QT

(hε
m+1

4 )4
x.

We obtain further apriori bounds by noting that integration by parts also implies

d

dt

∫
S1
hε
α = −α(α− 1)

[∫
S1
hε
α−2fε(hε)hε2xx −

1
3

∫
S1

(fε(hε)hεα−2)′′hε4x +m

∫
S1
hε
α−3+mhε

2
x

]
.

Integrating in time implies

m

∫∫
QT

hε
α−3+mhε

2
x = −

∫∫
QT

hε
α−2fε(hε)hε2xx +

1
3

∫∫
QT

(fε(hε)hεα−2)′′hε4x

+
1

α(1− α)

(∫
S1
hε
α(·, T )−

∫
S1
hε
α(·, 0)

)
≤ |hεα−1−mfε(hε)|L∞

∫
S1
hε
m−1hε

2
xx +

1
3
|(fε(hε)hεα−2)′′hε3−m|L∞

∫
S1
hε
m−3hε

4
x

+
1

α|1− α|

(∫
S1
hε
α(·, T ) +

∫
S1
hε
α(·, 0)

)
.

Note that, since α − 1 + n > m, a variant of an argument in the appendix of [6] implies that
|hεα−1−mfε(hε)|L∞ and |(fε(hε)hεα−2)′′hε3−m|L∞ are apriori bounded. Furthermore, since |hε(x, t)| ≤
M for all x and t,

∫
hε
α(·, T ) and

∫
hε
α(·, 0) are bounded. These facts and (43) yield an apriori bound

for
∫∫

QT
hε
α−3+mhε

2
x.
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By weak compactness, these bounds imply that there exists a subsequence so that

hε
m+1

2 ⇀ h
m+1

2 in L2(0, T ;H2(S1)),(44)

(hεγ)x ⇀ (hγ)x in L4(0, T ;L4(S1)) ∀γ ≥ m+ 1
4

,(45)

(hε
α+m−1

2 )x ⇀ (h
α+m−1

2 )x in L2(0, T ;L2(S1)) ∀α ≥ α0,(46)

hεx ⇀ hx in L∞(0, T ;L2(S1)).(47)

Given a test function ϕ ∈ C∞0 (0, T ;C∞(S1)), the approximate solution hε satisfies the integral
equation

(48)
∫∫

QT

hεϕt +
3
2

∫∫
QT

f ′ε(hε)h
2
xϕxx +

1
2

∫∫
QT

f ′′ε (hε)hε3xϕx +
∫∫

QT

fε(hε)hεxϕxxx

=
∫∫

QT

(hεm)xϕx.

To prove that the weak limit h satisfies (39), we must show convergence of the nonlinear terms in (48).
We present the argument for

∫∫
QT

f ′′ε (hε)hε3xϕx. The other terms follow analogously.

Lemma 5. Let Ω ⊂⊂ QT be compactly contained in QT . Then

f ′′ε (hε)hε2x → f ′′(h)h2
x strongly in L2(Ω).

Proof. This is identical to the proof in [6] for the lubrication approximation. Fix µ > 0.∫∫
Ω

(
f ′′ε (hε)hε2x − f ′′(h)h2

x

)2
=
∫∫

Ω∩{h≥µ}

(
f ′′ε (hε)hε2x − f ′′(h)h2

x

)2
+
∫∫

Ω∩{h<µ}

(
f ′′ε (hε)hε2x − f ′′(h)h2

x

)2
.

By the regularity theory of uniformly parabolic equations, h is smooth in Ω∩{h ≥ µ}, hence hε and
its derivatives converge uniformly to h and its derivatives on this set. Taking ε to zero,∫∫

Ω∩{h≥µ}

(
f ′′ε (hε)hε2x − f ′′(h)h2

x

)2 → 0.

For the second integral, we expand the square and bound each term. Taking γ = m+1
4

, we find that
one term is ∫∫

Ω∩{h<µ}
(f ′′ε (hε))2hε

4
x ≤ C

∫∫
h<µ

hε
4−4γ(f ′′ε (hε))2 (hεγ)4

x

≤ C
(

sup
{h<µ}

hε
4−4γ(f ′′ε (hε))2

)∫∫
QT

(hεγ)4
x

≤ C sup
{h<µ}

hε
4−4γ(f ′′ε (hε))2.

In the above we used the fact that (hεγ)x is uniformly bounded in L4(QT ). We now use the fact that
f ′′ε (y) → f ′′(y) uniformly on [0,M ] as ε→ 0 for n > 2, as proved in the appendix of [6]. This and the
uniform convergence of hε to h imply f ′′ε (hε) converges uniformly on QT to f ′′(h). Therefore, by taking
ε small,

sup
{h<µ}

hε
4−4γ(f ′′ε (hε))2 ≤ Cµ4−4γ+2(n−2).
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Recall that m+1
4 = γ < n

2 , implying that 4− 4γ+ 2(n− 2) > 0. The other two terms from the integral
over Ω ∩ {h < µ} are bounded in the same way. Taking µ→ 0, we have the result.

This lemma implies ∫∫
QT

f ′′ε (hε)hε3xϕx →
∫∫

QT

f ′′(h)h3
xϕx.

since ϕ has support Ω compact in QT and hεx converges weakly to hx in L2(QT ). The other nonlinear
terms converge similarily. This finishes the proof for the case n ≥ 3.

We now prove Case 2, in which 2 < n < 3. This uses a convex entropy first introduced in [6]. Take
Grnε(y) so that Gr

′′

nε(y) = yr

fε(y) for y > 0.

Grnε(y) =
yr−n+2

(2− n+ r)(1− n+ r)
+ c+

ε yr−2

(r − 2)(r − 3)

where c is chosen so that
∫
S1 G

r
nε(hε) ≥ 0.

As before,

d

dt

∫
S1
Grnε(hε) = −

∫
S1
hε
rhε

2
xx −

1
3
r(1− r)

∫
S1
hε
r−2hε

4
x −m

∫
S1

hε
r+m−1

fε(hε)
hε

2
x.(49)

We note that all the terms on the right hand side have the same sign since 0 < r < 1. Integrating in
time gives∫

S1
Grnε(hε(·, T )) +

∫∫
QT

hε
rhε

2
xx +

1
3
r(1− r)

∫∫
QT

hε
r−2hε

4
x +m

∫∫
QT

hε
r+m−1

fε(hε)
hε

2
x

=
∫
S1
Grnε(hε(·, 0)).

The constraint (40) on δ(ε) and r−n+2 > 0 provide an a priori bound for the entropy of the initial data,∫
S1 G

r
nε(hε(·, 0)) ≤ C, where C is independent of ε. In this way, the following are bounded independent

of ε∫∫
QT

hε
rhε

2
xx,

∫∫
QT

hε
r−2hε

4
x = c1

∫∫
QT

(hε
r
4 + 1

2 )4
x,

∫∫
QT

hε
r+m−n−1hε

2
x = c2

∫∫
QT

(hε
r+m−n+1

2 )2
x

The above used the fact that there exists C independent of ε such that fε(hε) ≤ Chεn.
For a smooth function bounded away from zero,∫

S1
(hε1+r/2)2

xx = (1 + r/2)2

(∫
S1
hε
rhε

2
xx + {r

2

4
− r

3
(r − 1)}

∫
S1
hε
r−1hε

4
x

)
.

As before, this shows that
∫∫

(hε1+r/2)2
xx is a linear combination of apriori bounded quantities, hence

is apriori bounded. These bounds imply that for fixed r, there exists a subsequence so that in addition
to the weak convergences (44), (45) and (47) we have

(hε1+ r
2 )xx ⇀ (h1+ r

2 )xx in L2(0, T ;L2(S1)),(50)

(hεα)x ⇀ (hα)x in L4(0, T ;L4(S1)) ∀α ≥ r

4
+

1
2

(51)

(hε
r+m+1−n

2 )x ⇀ (h
r+m+1−n

2 )x in L2(0, T ;L2(S1)).(52)

We note that the proof of the bound needed for the weak convergence (46) uses the uniform bounds on∫∫
hε
r−2hε)4

x and
∫∫

hε
rhε

2
xx.

The rest of the proof follows as in the case n ≥ 3, in that these weak convergences imply that the
nonlinear terms converge. For example, (51) is sufficient to prove Lemma 5. The reader is also referred
to [6] for a discussion.
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Proposition 6. Given 1 < n < 2, 1 < m < 2, h0 ≥ 0, and h0 ∈ H1(S1). Let hε be the unique positive
smooth solution to the regularized problem (36–38) with

δ(ε) = εθ, θ <
2
5
.(53)

Then on any time interval [0, T ], there exists a subsequence of {hε} that converges pointwise uniformly
and weakly in

L2(0, T ;H2(S1)) ∩ L∞(0, T ;H1(S1))
to a solution h in the sense of distributions∫∫

QT

hϕt =
∫∫

QT

f(h)hxxϕxx +
∫∫

QT

f ′(h)hxhxxϕx +
∫∫

QT

(hm)xϕx.(54)

Furthermore, given any 0 < s < min(2 − n, 1
2
) and any α0 > max(0, 3/2− n), there exists a solution

with the additional regularity:

h1−s2 , h
m+1

2 ∈ L2(0, T ;H2(S1)),(55)

(h
α−1+m

2 )x ∈ L2(QT ) ∀α ≥ α0(56)

(hγ)x ∈ L4(QT ) ∀γ ≥ min(
1
2
− s

4
,
m+ 1

4
).(57)

h
1−s+m−n

2 , ∈ L2(0, T ;H1(S1)).(58)

We remark that one can prove an existence theorem for 3/8 < n ≤ 1 which is very similar to the
above theorem, and refer the reader to [6] for the definition of weak solution needed. There is also an
existence theorem for 0 < n ≤ 3/8 which uses a weaker definition of weak solution than a distribution
solution. Again, the interested reader is referred to [6] for the details.

Proof. The following proof is almost identical to the existence proof in [6] for the equation (2) without
the ‘porous media’ term for 1 < n < 2. The main difference is the higher regularity (58) obtained from
the presence of the ‘porous media’ term in the Gs entropy dissipation. For this reason, we only sketch
the proof.

Recall the convex entropy G′′0(y) = 1
f(y) introduced in Section 3. Integration by parts yields (35):∫

S1

ε

6hε(x, t)2
dx+

∫
S1
G0(hε(x, t)) dx+

∫ t

0

∫
S1
hε

2
xx +m

∫ t

0

∫
S1

hε
m−1

fε(hε)
hε

2
x ≤ Cε.

The constraint (53) on δ(ε) and n < 2 provide an apriori bound for the entropy of the initial data
Cε =

∫
G0(hε0) +

∫
ε/(6hε20) ≤ C, where C is independent of ε. Mass conservation and the convexity

of G0 allow us to choose G0 so that
∫
G0(hε) ≥ 0. Therefore∫∫

QT

hε
2
xx ≤ C.

Weak compactness implies that there exists a subsequence that converges weakly in
L2(0, T ;H2(S1)) to h. Dissipation of surface tension energy (17) implies that ∂hε/∂t is uniformly
bounded in L2(0, T ;H−1(S1)). The well-known Lions-Aubin lemma [23] then implies that there exists
a subsequence that converges strongly in L2

(
0, T ;H1(S1)) to h.

We now prove that h is a weak solution in the sense (54). Since hε converges pointwise uniformly
to h on QT and f ′ε(y) converges uniformly to f ′(y) on [0,M ] for n > 1 (as proved in the appendix of
[6]), f ′ε(hε) converges uniformly to f ′(h) on QT . Similarly fε(hε) converges uniformly to f(h) on QT .
Hence the limit h(x, t) solves the equation in the sense (54). For example,∫∫

QT

f ′ε(hε)hεxhεxxϕx →
∫∫

QT

f ′(h)hxhxxϕx



18 A.L. BERTOZZI AND M. PUGH

since hεxx converges weakly in L2 to hxx, hεx converges strongly in L2 to hx, and f ′ε(hε) converges
uniformly to f ′(h).

For the extra regularity, we recall a convex entropy first introduced in [6]

G−snε (y) =
1

(2 + s)(3 + s)
ε

y2+s
+

1
(2− n − s)(1 − n− s)y

2−n−s + c

chosen so that (G−snε )′′(y) = 1
ysfε(y)

. By integration by parts,

d

dt

∫
S1
G−snε (hε) = −

∫
S1
hε
−shε

2
xx +

s(s+ 1)
3

∫
S1
hε
−s−2hε

4
x −m

∫
S1

hε
m−1−s

fε(hε)
hε

2
x.

We note that one of the coefficients, s(s+1)
3

, is positive, hence the techniques used above do not im-
mediately apply. However, it is possible to “hide” the

∫∫
hε
−s−2hε

4
x term in the

∫∫
hε
−shε

2
xx term in

such a way as to bound the right hand side from above by a combination of the integrals where all the
coefficients are negative. This requires s < 1

2 , and the details are fully presented in [6]. As before, we
then have apriori upper bounds for the following:∫∫

QT

(hε1/2−s/4)4
x,

∫∫
QT

(hε1−s/2)2
xx.

This used s < 2 − n and the constraint (53) on δ(ε). Again, energy dissipation yields apriori bounds
for ∫∫

QT

(hε
m+1

4 )4
x,

∫∫
QT

(hε
m+1

2 )2
xx.

The uniform bound for
∫∫

hε
α−3+nhε

2
x follows as before, and uses the bounds on

∫∫
hε
−s−2hε

4
x and∫∫

hε
−shε

2
xx. This requires α0 > 3/2− n.

Taking a subsequence of the above subsequence, the limit h inherits these bounds, hence has the
desired regularity.

5. Long Time Behavior of Solutions

In this section we prove the long time results for the equations.

Proposition 7. Given h0 ∈ H1(S1), h0 ≥ 0, let h be the weak solution from Section 4. The mean of
the initial data is denoted h̄, h̄ = 1

|S1|
∫
S1 h0.

Case 1: n ≥ 3. There exist positive A and c such that for all t ∈ [0, T ]

‖h(·, t)− h̄‖L∞ ≤ Ae−ct.

A is determined by |h0|H1 and |S1|. The rate of decay, c, is determined by |S1| and h̄. In particular,
if h0 is nonzero the solution is a positive strong solution after a critical time T ∗.

Case 2: 0 < n < 3. There exist positive A and c such that for all t ∈ [0, T ],

‖h(x, t)− h̄‖L∞ ≤ Ae−ct.

A is determined by |h0|H1, n, h̄, and |S1|. The rate of decay, c, is determined by n and h̄. In particular,
if h0 is nonzero there exists a time T ∗, after which the solution is a positive strong solution.

Proof. We first prove Case 1, n ≥ 3. We recall the energy dissipation (41):

d

dt

1
2

∫
S1
hε

2
x = −

∫
S1
fε(hε)hε2xxx −

m(m− 1)(2−m)
3

∫
S1
hε
m−3hε

4
x −m

∫
S1
hε
m−1hε

2
xx.
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The terms on the right hand side are all nonpositive, hence
d

dt

1
2

∫
S1
hε

2
x ≤ −

m(m − 1)(2−m)
3

∫
S1
hε
m−3hε

4
x ≤ −C

∫
S1
hε

4
x.

In the above, we used the fact that ‖hε(·, t)‖∞ ≤M for all t ∈ [0, T ], hence hε(x, t)m−3 ≥ C. Schwarz’s
inequality then implies

d

dt

∫
S1
hε

2
x ≤ −C

(∫
S1
hε

2
x

)2

.

A variant of Gronwall’s lemma gives∫
S1
hε

2
x(x, t) dx ≤

∫
S1 hε

2
x(x, 0) dx

1 + Ct
∫
S1 hε

2
x(x, 0) dx

<
1
Ct
.

We note that C depends on |h0|H1 , through its dependence on |h0|∞. The weak convergence hεx ⇀ hx
in L2(S1) implies that the weak limit inherits the above bound:∫

S1
(h(x, t)− h̄)2 dx ≤ A

∫
S1
h2
x(x, t) dx ≤ A

Ct
.

In the above we used Poincaré’s inequality:
Poincaré’s inequality. Let h ∈ C2(S1) and consider x0 ∈ S1. Then∫

S1
(h(x)− h(x0))2dx ≤ |S1|2

∫
S1
h2
xdx.

This also holds true for h ∈ H1(S1) by a density argument.
The following interpolation inequality is proven in [6]:

|w|L∞ ≤ (
1 + α

α
)α/(1+α)|w|1/(1+α)

α |w|α/(1+α)
L1 + (

1 + α

α
)|w|L1/|S1|.

where |w|α is the Hölder−α seminorm. Taking α = 1
2 , in the interpolation inequality gives

|h(·, t)− h̄|L∞ ≤
A

Ct1/3
for all t > 0.

This implies that there exists a time, T0, after which h is strictly positive and bounded below by h̄/2
and hence a strong solution. The energy dissipation applied to this strong solution implies that for
t > T0,

d

dt

∫
S1
h2
x ≤ −(

h̄

2
)n
∫
S1
h2
xxx.

Another application of the Poincaré inequality, Gronwall’s lemma, and the interpolation inequality
yields the exponential decay.

The proofs of the other cases are identical to those in [6] for the equation with the lubrication term
alone hence we omit the details. The key ideas are that for 0 < n < 2, the convex entropy

∫
G0(hε) is

equivalent to the L2 norm of hε(·, t)− (h̄ + δ(ε)). That it dissipates with a rate
∫
S1 hε

2
xx implies that

the approximating solutions hε decay exponentially fast at a rate independent of ε. For 1 < n < 3, we
use the dissipation of the following convex entropy

d

dt

∫
S1
Grnε(hε) ≤ −Cr

∫
S1

(hε1+ r
2 )2
xx.

The entropy
∫
Grnε(hε) is equivalent to the L2 norm of hε(·, t)1+r

2 − (h̄ + δ(ε))1+ r
2 . The long time

result then follows. The proofs of equivalence of the entropies to squares of L2 norms is due to a
‘parabolic sandwich’ argument in which we show that the entropies can be chosen so that their graphs
are ‘trapped’ between two parabolas.
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6. Numerical Results

Our numerical scheme is an adaptation of a code used in [7]. With the permission of the authors,
we use some of the language from this source. The simulations use a conventional finite difference
method. Specifically, it is an implicit two level scheme based on central differences. In addition, some
of the numerical results presented here use a dynamically adaptive mesh composed of a fixed macrogrid
and adaptive micro grid needed for higher resolution of the ‘contact line’. The finite difference scheme
with a fixed non-uniform non-adaptive grid was used used in [11, 16, 29] to compute solutions of the
equation ht = −(hhxxx)x. In these works, they compared their results to results from a finite element
method and found excellent agreement.

We consider solutions on a periodic domain [−1, 1] that are symmetric about x = 0. The equation
preserves this symmetry. For this reason, we solve the equation on the interval [0, 1], discretized by the
N mesh points,

0 = x1 < x2 < . . . < xN = 1.

At each computational time level the arrays hi and pi, i ∈ [1, ..., N ], approximate h(x, t) and
−hxx(x, t), and vj , j ∈ [1, ...,N − 1] approximates hxxx(x, t). The hi and pi values exist at the point
xi, while vi is the computed third derivative at the center of the interval, (xi + xi+1)/2. The following
picture depicts these associations:

xi vi xi+1

hi hi+1

pi pi+1

× ×

.

We use the notation:

∆x
i+

1
2

=xi+1 − xi,

x
i+

1
2

= 1
2(xi+1 + xi),

∆xi =x
i+

1
2
− x

i−1
2
,

h
i+

1
2

= 1
2(hi+1 + hi),

∂h
i+

1
2

=
hi+1 − hi
∆x

i+
1
2

,

δ2hi =
∂h

i+
1
2
− ∂h

i−1
2

∆xi
.

For simplicity we describe the difference scheme in space first and later indicate the time step process.
The equation we wish to compute has the form

ht + (f(h)hxxx)x − (Pm(h))xx = 0.
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We discretize the spatial operators by

(hi)t +
f(h

i+
1
2
)vi − f(h

i− 1
2
)vi−1

∆xi
− δ2(Pm(h)i) = 0,(59)

vi + ∂p
i+

1
2

= 0,(60)

pi + δ2hi = 0.(61)

We impose “periodic” boundary conditions by reflection symmetry at the endpoints.
The time discretization of the above set of differential-algebraic relations uses a simple two level

scheme. In advancing from time t to time t + dt we replace the time derivative terms by difference
quotients involving the solution at the old time level (time t) and the as yet unknown solution at the
new time level (time t+ dt). We evaluate the other terms using a weighted average of the solution at
the two time levels; a typical weight is θ = 0.55 on the advanced time level and 1− θ = 0.45 on the old
time level:

∂h

∂t
= N(h) would yield

1
dt

(hi(t + dt)− hi(t)) = .55 N(h(·, t+ dt)) + .45 N(h(·, t)).

At each time level, we have to solve a set of nonlinear equations. This is done with Newton’s method.
By choosing an appropriate ordering of the 3N−1 equations (59–61), the Jacobi matrix has its nonzero
entries close to the diagonal. For this reason, the use of Newton’s method is not a prohibitive expense.

We dynamically choose the length of the time steps to control several aspects. If the result of the
time step violates any of a list of constraints, it rejects the step and tries again with a smaller step size.
To avoid using unnecessarily short time steps, if we easily meet all the constraints for several steps,
we increase the step size by about 20% on the next step. We now describe the constraints the scheme
respects. The first constraint comes from local time truncation. Another constraint rejects any step for
which the minimum of h decreases by more than 10%. We also require that the correction on the first
iteration of Newton’s method is a small fraction of the change over the step, where the initial guess at
the change was the change over the previous step, corrected for any difference in dt’s. This allows us
to solve the equations (59–61) in only one Newton iteration per time step, should we choose to do so.

We use graded spatial grids that are very fine near the contact line and less fine in other regions.
The macro grid is fixed for all time, and we call its intervals “macro intervals”. At a fixed time level,
each macro interval is divided into 2j micro intervals, where j can be different for each macro interval.
The size of hxx and hxxx on the macro interval determine whether to increase or decrease the exponent
j for the next time level. Specifically, if these derivatives are large, j increases and if they are small, j
decreases. In this way, the grid is fine where high resolution is needed and coarse elsewhere.

All the simulations presented here have the C∞0 (S1) initial condition

h0(x) =

{
Ce−a/(x+1/4)2

e−a/(x−1/4)2 |x| < 1/4
0 otherwise.

(62)

The weak solution is approximated via the regularization scheme of section 3. That is, we fix ε and
compute

hεt = −(fε(hε)hεxxx)x + (hεm)xx,

fε(hε) =
hε

4hε
n

εhε
n + hε

4 ,

with initial condition
hε0(x) = h0(x) + δ(ε).

Theorem 3 guarantees that there exists a unique smooth positive solution to the regularization
scheme. Propositions 4 and 6 guarantee that the regularization scheme will for suitably small ε produce a
close approximation of the weak solution. Although no rigorous theorem exists quantifying the accuracy
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of the regularization, the numerics suggests that the convergence is O(δ(ε)). We choose the spatial grids
to be fine enough so that the bulk of the error in computing the weak solution comes from the epsilon
regularization. That is, for fixed epsilon, we choose spatial grids to over-resolve the smooth regularized
solution.

We present computation from several case studies.

6.1. Case 1: n = 3, m = 3/2.
For this case we choose initial data (62) with c = 1 and a = 1/16. We use δ(ε) = ε0.3 in the

regularization scheme. We present calculations with three different values of ε: 10−9, 10−12, and 10−14.
The corresponding values of δ(ε) are 2.00× 10−3, 2.51× 10−4 and 6.310× 10−5.
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0.00

0.05

0.10

0.15

0.20

Regularized approximation of weak solution
n=3, m=1.5

initial condition
hε(x,t), δ(ε)=2.00e-3, t=0.0322
hε(x,t), δ(ε)=2.51e-4, t=0.0322
hε(x,t), δ(ε)=6.31e-5, t=0.0322

Figure 1
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0.020

Regularized approximation of weak solution
n=3, m=1.5, close up near the edge

initial condition
hε(x,t), δ(ε)=2.00e-3, t=0.0322
hε(x,t), δ(ε)=2.51e-4, t=0.0322
hε(x,t), δ(ε)=6.31e-5, t=0.0322

Figure 2

Figures 1–3 show the regularized solution at a fixed time t = 0.0322 for three different values of ε.
Figures 1 and 2 depict hε(x, t) while Figure 3 shows hεxx. Figure 1 shows that all three values of ε
produce approximate solutions very close to each other. Moreover they indicate that the support of
the weak solution has increased from its initial support but that the support has not yet expanded to
fill the entire domain.

Figure 2 shows a close up of the hε(x, t) near the edge of the support of weak solution. The figure
clearly indicates that the convergence is O(δ(ε)). Moreover it shows that the ‘apparent contact line’
has extremely good dependence on ε as ε → 0. Note that at the edge, the regularized solution is a
monotone function. This is as expected for solutions of the porous media equation, ht = (hm)xx, and
should be compared to Case 2 in which the fourth order lubrication approximation dominates at the
edge.
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Figure 3
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Figure 4
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Figure 3 shows hεxx for the three values of the regularization parameter. The graphs indicate that
as ε→ 0, the solution converges to a bounded function with a discontinuity at the edge of its support.
Hence the weak solution appears to ‘touch down’ with a quadratic behavior at its edge, as predicted
by the asymptotics in Section 2 for m = 3/2. Hence for these values of m and n the fourth order term
appears to be negligible at the edge of the support.

6.2. Case 2: n = 1 and m = 1.9. for this case we also choose initial data with c = 1 and a = 1/16. We
again use δ(ε) = ε0.3 in the regularization scheme. Figures 4-6 show the regularized solution at a fixed
time t = 0.0025 for the three different values of ε: 10−9, 10−12, and 10−14. Again, the corresponding
values of δ(ε) are 2.00×10−3, 2.51×10−4 and 6.310×10−5. Figures 4 and 5 depict hε(x, t) while Figure
6 shows hεxx. As in case 1, Figure 4 shows that all three values of ε produce approximate solutions very
close to each other. Moreover they also indicate that the support of the weak solution has increased
from its initial support but has not yet expanded to fill the entire domain.
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Figure 5
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Figure 5 shows a close up of the hε(x, t) near the edge of the support of weak solution. The figure
clearly indicates that the convergence is O(δ(ε)). Moreover it shows that the edge of the support has
extremely good dependence on ε as ε → 0. Note that at the edge the regularized solution is not a
monotone function. That is, the height has a local minimum which is the same order of magnitude
as δ(ε). The solution also shows small oscillations ahead of this minimum. This ‘oscillatory tail’ is
typical of higher order equations. This is in contrast with Case 1, in which the behavior at the edge is
determined by the lower order ‘porous media’ term.

Figure 6 shows hεxx for the three values of the regularization parameter. The graphs indicate that
as ε→ 0, the solution converges to a bounded function with at discontinuity at the edge of its support.
Thus the weak solution appears to ‘touch down’ with a quadratic behavior at its edge, which is the
correct behavior for a traveling wave solution to lubrication approximation, ht = −(hnhxxx)x with
n = 1. The porous media equation with m = 1.9 has a solution that touches down like x10/9. Such
behavior is much more singular than the quadratic touchdown shown here. Hence for this case the
fourth order term dominates at the edge, as predicted by the asymptotics.

6.3. Case 3: Finally, we present a single calculation of a solution with the full ‘Van der Waals’ term
with a cutoff. The equation we compute is

hεt = −(fε(hε)hεxxx)x + (Pm(hε))xx,

fε(hε) =
hε

4hε
3

εhε
3 + hε

4
.

Pm(hε) = log[(µ+ hε
m)1/m], m = 3/2
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with initial condition

hε0(x) = h0(x) + δ(ε).

Note that as µ → 0 we recover the Van der Waals term without a cutoff. However, for fixed µ > 0,
(Pm(hε))x = hε

m−1hεx/(µ+hε
m) so that as hε → 0 the gradient of Pm(hε) behaves like the gradient of

a ‘porous media’ term, (hεm)x/m. Note that while ε is a mathematical regularization of the equation,
µ has the interpretation of a physical cut off scale. Thus we fix µ small and take ε → 0. We remark
that it is crucial that (Pm(hε))x/hεx be a positive function of hε. Otherwise this term produces an ‘ill
posed’ backward diffusion in a range of hε where (Pm(hε))x/hεx changes sign. A variant of Theorem 2
guarantees that the regularization scheme will for suitably small ε produce a close approximation of
the weak solution.

We choose initial data (62) with c = 12 and a = 1. We fix µ = 0.00008, ε = 10−12, and δ(ε) = ε0.3 =
2.51× 10−4. Figure 7 shows hε(x, t) for several times t. Note that the support propagates very quickly
and that a ‘foot’ appears at the edge of the solution. This is qualitatively like the ‘precursor film’ [15]
linked to long range Van der Waals interactions in complete wetting.

7. Conclusions

This paper poses the equation

ht + (hnhxxx)x − (hm)xx = 0, x ∈ S1

as a model problem for the study of a molecular scale cut off of long range Van der Waals forces in the
moving contact line of a completely wetting thin film.

We prove a global existence theorem for weak solutions with nonnegative data and consider all
n > 0 and 1 < m < 2. In addition to the case where n < 3 and sharp existence theory is known for
the homogenous fourth order equation (2), we show that with the addition of the second order term
distribution solutions exist for the critical physical case of n = 3 (and for all n ≥ 3) and that they
become strong positive solutions in the infinite time limit.

In conjunction with the existence theory, we address leading order asymptotic analysis for the edge
of the support of the solution. We examine the competition between the second and fourth order terms
and for n > 3/2 this study indicates the existence theory is sharp.
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We also present numerical calculations of various weak solutions. The numerics show that the
solutions have support with finite speed of propagation and regularity at the edge as dictated by the
asymptotics and rigorous theory.

To our knowledge none of these topics have been addressed before in the the literature for a combined
second order/fourth order equation of this type. In fact, the sharp existence theory for the homogeneous
fourth order equation (2) with 0 < n < 3 has only recently been addressed in two independent papers
[6, 1]. The question of existence of distribution solutions with increasing support for n ≥ 3 is of extreme
importance to the subtle physical problem of a moving contact line in a thin film, where the correct
exponent is n = 3.

We also briefly address the full physical equations and the need for a cut off of the singular disjoining
pressure at a molecular scale. We believe that this paper is the first in either the physics or mathematics
literature to address the mathematical validity of various cut off functions of the disjoining pressure.

There are many open mathematical problems in this field. They include but are not restricted to
uniqueness of a weak solution, any result in higher dimensions, questions of singularity formation (see
e.g. [7, 5, 4] for a discussion). Moreover, there is a need for more comparison of the various models to
actual wetting experiments.
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