MAT267: HW3

Please do these problems and submit them by 11:59pm on Sunday (March 1).
This document last updated Feb 26 to change the due date to March 1.

1. The matrix

$$
A=\left(\begin{array}{rrrr}
2 & -1 & 3 & 0 \\
0 & 2 & 0 & 1 \\
-1 & 0 & 2 & 1 \\
0 & -1 & 2 & 2
\end{array}\right)
$$

has eigenvalues $2+i, 2+i, 2-i$, and $2-i$. It's not diagonalizable. It has eigenvalueeigenvector pairs

$$
\lambda_{+}=2+i, \quad V_{+}=\left(\begin{array}{r}
1 \\
-i \\
0 \\
1
\end{array}\right), \quad \text { and } \quad \lambda_{-}=2-i, \quad V_{-}=\left(\begin{array}{c}
1 \\
i \\
0 \\
1
\end{array}\right)
$$

In the following you're going to first compute the Jordan canonical Form over the complex numbers. Then you'll compute the real canonical form over the real numbers.
(a) Find a vector U_{+}so that

$$
\left(A-\lambda_{+} I\right) U_{+}=V_{+} .
$$

Yes, you're going to have to do a tedious Gaussian elimination on a 4×5 complex matrix. At least it has nice entries.
(b) Find a vector U_{-}so that

$$
\left(A-\lambda_{-} I\right) U_{-}=V_{-} .
$$

Please do this by being clever and don't do more Gaussian elimination!
(c) Using the vectors $V_{ \pm}$and $U_{ \pm}$construct a complex matrix P so that P is invertible and

$$
A P=P\left(\begin{array}{cccc}
\lambda_{+} & 1 & 0 & 0 \\
0 & \lambda_{+} & 0 & 0 \\
0 & 0 & \lambda_{-} & 1 \\
0 & 0 & 0 & \lambda_{-}
\end{array}\right)
$$

(d) Write $V_{+}=V_{1}+i V_{2}$. Find $A V_{1}$ and $A V_{2}$ in terms of $\operatorname{Re}\left(\lambda_{+}\right), \operatorname{Im}\left(\lambda_{+}\right), V_{1}$, and V_{2}.
(e) Write $U_{+}=V_{3}+i V_{4}$. Find $A V_{3}$ and $A V_{4}$ in terms of $\operatorname{Re}\left(\lambda_{+}\right), \operatorname{Im}\left(\lambda_{+}\right), V_{1}, V_{2}, V_{3}$, and V_{4}.
(f) Using the vectors V_{1}, V_{2}, V_{3}, and V_{4}, construct a real matrix P so that P is invertible and

$$
A P=P\left(\begin{array}{rrrr}
2 & 1 & 1 & 0 \\
-1 & 2 & 0 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

(g) As a sanity check you should figure out how things would have changed had you done the real canonical form based on $V_{-}=V_{1}-i V_{2}$ and $U_{-}=V_{3}-i V_{4}$.
2. Consider the linear system

$$
X^{\prime}=A X=\left(\begin{array}{rrrr}
3 & 0 & 1 & -1 \\
1 & 1 & 1 & -1 \\
0 & -1 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right) X
$$

The matrix has eigenvalues $2,2,2$, and 2 . The time- $t \operatorname{map} \phi_{t}^{A}(X)$ is a linear:

$$
\phi_{t}^{A}(X)=\mathcal{A}(t) X
$$

Another way of viewing this is: there's a time-dependent matrix $\mathcal{A}(t)$ so that the solution of the initial value problem $X^{\prime}=A X$ with $X(0)=X_{0}$ can be written as

$$
X(t)=\mathcal{A}(t) X_{0}
$$

Find the matrix $\mathcal{A}(t)$.
3. The $n \times n$ matrices A and B are similar if there is an invertible matrix P so that

$$
A=P B P^{-1}
$$

Assume A and B are similar matrices. Find a homeomorphism $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ so that $X^{\prime}=A X$ and $X^{\prime}=B X$ are conjugate linear systems.
4. Chapter 5, problem 9.
5. Chapter 5, problems 14 and 15. Note: you're not being asked for proofs, just give a brief reason for each item in problems 14 and 15.
6. Chapter 6, problem 5.
7. Chapter 6, problem 7.
8. Chapter 6, problems 12a, 12e, 12f, and 12 j .
9. Chapter 6, problem 13.
10. Chapter 6, problem 14.

