
MAT267: HW7

If you’re choosing to do this assignment, please submit it by 11:59pm on Saturday April
25, 2020.

This document was updated April 24 to clarify problem 5b. Also the notation δ was
overloaded in problems 1c-1f; this has now been fixed. Also the notation α and β was
overloaded in problems 1g and 1j; this has now been fixed. And problem 4f was fixed.

1. (20 points) Recall the LotkaVolterra equations{
x′ = αx− βxy
y′ = −γy + δxy

where α, β, γ, δ > 0. We’re interested in the dynamics in the x, y ≥ 0 region of the
plane. This twelve-part (!!) problem walks you through the steps to make the argument
rigorous in the eyes of an analyst1.
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The four quadrants are the open sets

I = {(x, y) |x > γ/δ, y > α/β}
II = {(x, y) | 0 < x < γ/δ, y > α/β}
III = {(x, y) | 0 < x < γ/δ, 0 < y < α/β}
IV = {(x, y) |x > γ/δ, 0 < y < α/β}

1The analyst would work through all of these steps on their own. To what degree they would share
their calculations/arguments with others would depend on where they’re planning to present the work. See
the “AARGH!” in the photo of a journal article that Terry Tao posted in his tribute to Jean Bourgain
https://terrytao.wordpress.com/2018/12/29/jean-bourgain/. As you’ve noticed, our textbook often
presents proofs that rely on the reader to be able to identify where there are gaps that need to be filled in
and to be able to figure out how to fill them in.
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(a) Prove that the set Ax := {(x, 0) |x > 0} is invariant under the flow. Prove
that if X(t) is a solution of the nonlinear system and if there is some time t0 so
that X(t0) ∈ Ax then the maximal interval of existence of X(t) is (−∞,∞) and
X(t)→ ~0 as t→ −∞ and |X(t)| → ∞ as t→∞.

(b) Prove that the set Ay := {(0, y) | y > 0} is invariant under the flow. Prove
that if X(t) is a solution of the nonlinear system and if there is some time t0 so
that X(t0) ∈ Ay then the maximal interval of existence of X(t) is (−∞,∞) and
X(t)→ ~0 as t→∞ and |X(t)| → ∞ as t→ −∞.

(c) Let SI,II = {(γ/δ, y) | y > α/β}. Prove that if X(t) is a solution of the nonlinear

system and if there is some time t0 so that X(t0) ∈ SI,II then there is some δ̃ > 0

so that X(t) ∈ I for all t ∈ (t0 − δ̃, t0) and X(t) ∈ II for all t ∈ (t0, t0 + δ̃).

(d) Let SII,III = {(x, α/β) | 0 < x < γ/δ}. Prove that if X(t) is a solution of the
nonlinear system and if there is some time t0 so that X(t0) ∈ SII,III then there

is some δ̃ > 0 so that X(t) ∈ II for all t ∈ (t0 − δ̃, t0) and X(t) ∈ III for all

t ∈ (t0, t0 + δ̃).

(e) Let SIII,IV = {(γ/δ, y) | 0 < y < α/β}. Prove that if X(t) is a solution of the
nonlinear system and if there is some time t0 so that X(t0) ∈ SIII,IV then there

is some δ̃ > 0 so that X(t) ∈ III for all t ∈ (t0 − δ̃, t0) and X(t) ∈ IV for all

t ∈ (t0, t0 + δ̃). Feel free to invoke your answer to part c) as much as possible, if
you’re confident in your answer to part c).

(f) Let SIV,I = {(x, α/β) |x > γ/δ}. Prove that if X(t) is a solution of the nonlinear

system and if there is some time t0 so that X(t0) ∈ SIV,I then there is some δ̃ > 0

so that X(t) ∈ IV for all t ∈ (t0 − δ̃, t0) and X(t) ∈ I for all t ∈ (t0, t0 + δ̃). Feel
free to invoke your answer to part d) as much as possible, if you’re confident in
your answer to part d).

(g) Let X(t) = (x(t), y(t)) be a solution of the nonlinear system with maximal interval

of existence (α̃, β̃). Assume there is some time t0 so that X(t0) ∈ I. Prove that

one of two things must happen: either β̃ < ∞ and y(t) → ∞, or the solution
crosses into region II at some time t1 where t1 > t0.

(h) Let X(t) = (x(t), y(t)) be a solution of the nonlinear system. Assume there is
some time t0 so that X(t0) ∈ II. Prove that the solution crosses into region III
at some time t1 where t1 > t0.

(i) Let X(t) = (x(t), y(t)) be a solution of the nonlinear system. Assume there is
some time t0 so that X(t0) ∈ III. Prove that the solution crosses into region IV
at some time t1 where t1 > t0. Feel free to invoke your answer to part g) as much
as possible, if you’re confident in your answer to part g).

(j) Let X(t) = (x(t), y(t)) be a solution of the nonlinear system with maximal interval

of existence (α̃, β̃). Assume there is some time t0 so that X(t0) ∈ IV . Prove that

one of two things must happen: either β̃ < ∞ and x(t) → ∞, or the solution
crosses into region I at some time t1 where t1 > t0. Feel free to invoke your
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answer to part h) as much as possible, if you’re confident in your answer to part
h).

(k) Solve the separable ODE
dy

dx
=
−γy + δxy

αx− βxy
to implicitly determine a solution (x, y(x)) of the ODE in the first quadrant
{(x, y) |x, y > 0}. Your solution (x, y(x)) satisfies an equation of the form
L(x, y(x)) = L(x0, y0). What is L(x, y)?

(l) If (x0, y0) 6= (γ/δ, α/β), the level set of L(x, y) through (x0, y0) is a closed curve
in the first quadrant. This is something that you should (I hope!) know from
MAT257. If you’d like to plot a few level sets, you can do this using wolframalpha.
For example, ContourPlot[{x+y==1,x+2y==1},{x,0,2},{y,0,2}]
Prove that L(x, y) is a Liapunov function for the Lotka-Volterra system on the
open set O = {(x, y) |x, y > 0}. (You may need to add a constant to L to ensure
that L(X∗) = 0 at X∗ = (γ/δ, α/β) and L > 0 on O−X∗.
Now consider initial data X0 = (x0, y0) with 0 < x0 6= γ/δ and 0 < y0 6= α/β.
Prove that the solution of initial value problem with X(t0) = X0 has maximal
interval of existence (−∞,∞) and is a periodic solution whose solution travels in
a counterclockwise manner in the first quadrant of the plane.

2. (15 points) Consider the nonlinear system{
x′ = x (y + 2x− 2)

y′ = y (y − 1)
.

Let
III = {(x, y) | 0 < x < 1− y/2, 0 < y < 1}.

(0, 1)

(0, 2)

(1, 0)
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y
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Prove that if X0 ∈ III then the solution of the initial value problem with X(t0) = X0

has maximal interval of existence (α,∞) 3 t0, that X(t) ∈ III for all t ≥ t0, and
X(t)→ ~0 as t→∞.
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3. (10 points) The Liapunov stability theorem is stated on page 193 and is proven on
pages 196-197. The following is asking you to expand on two points that are not
dwelled upon in the book.

(a) Prove that there’s guaranteed to be a sequence {tn} with tn →∞ so that {X(tn)}
converges to some point Z0 ∈ Bδ(X

∗)?

(b) Prove that if X(tn)→ X∗ as tn →∞ then X(t)→ X∗ as t→∞.

4. (15 points) Consider the system {
x′ = y

y′ = −x− 3 ε x2

Assume ε > 0. We are interested in the behaviour of solutions in all of R2.

(a) Plot the nullclines of the system and indicate the direction of the vector field
along the nullclines. Indicate the regions in the phase plane where x′ > 0, x′ < 0,
y′ > 0, and y′ < 0. Find the two equilibrium solutions of the system of ODEs:
Xeq,1 and Xeq,2. Linearize the system at the equilibrium solutions and describe
the behaviour of the nonlinear system near the equilibrium solutions.

(b) Let
L(x, y) = y2 + x2 + 2 ε x3.

Verify that if (x(t), y(t)) is a solution of the system of ODEs then

d

dt
L(x(t), y(t)) = 0

and therefore solutions of the system lie in level sets of the function L.

(c) Sketch some level sets of L. (Do this without using wolframalpha; you can figure
out what they look like using symmetry arguments and arguments about cubics.)
Make sure to include the level sets with values L(Xeq,1) and L(Xeq,2) as well as
some values between these two values and some values larger than the maximum
of the two values and some value smaller than the minimum of the two values.
Label your level sets in such a way to make it clear which level sets correspond
to which values.

(d) Some level sets contain only one solution. That is, given a point on the level set,
X0, the resulting solution has maximal interval of existence (−∞,∞) and

{X(t) | t ∈ R} = the entire level set

What are the level sets that contain only one solution? Put arrows on the level
sets in your plot to indicate the direction of the motion of the solution.

(e) Some level sets contain two solutions. You can find two points X0 and Y0 so that
X(t) and Y (t) (the solutions through X0 and Y0 satisfy

{X(t) | t ∈ R} ∪ {Y (t) | t ∈ R} = the entire level set

What are the level sets that contain two solution? Put arrows on the level sets in
your plot to indicate the direction of the motion of the two solutions.

4



(f) There is a level set that contains four solutions. You can find four points W0, X0,
Y0, and Z0 so that W (t), X(t), Y (t), and Z(t) (the solutions through W0, X0, Y0,
and Z0 satisfy

{W (t) | t ∈ R}∪{X(t) | t ∈ R}∪{Y (t) | t ∈ R}∪{Z(t) | t ∈ R} = the entire level set

What is the level set that contains three solutions? Put arrows on the level set in
your plot to indicate the direction of the motion of the three solutions.

5. (10 points) Given a system of ODEs, X ′ = F (X), we can seek a Liapunov function
L that will help us understand the behaviour of solutions, at least in regions of the
phase space. (Whether or not we succeed, is a different question.) But we can also
ask the opposite question: Given a function L that we want to minimize, can we try
to minimize it by using it to create a system of ODEs, X ′ = F (X), that we can study.
In this problem, you’ll do precisely that.

(a) Consider a function L : Rn → R. If it’s C1, it has level sets and one can compute
∇L(x, y) to see the direction of fastest increase. This suggests a natural system
of ODEs to consider: those given by gradient descent.

X ′ = F (X) := −∇L(X).

By construction, ∇L(X) · F (X) ≤ 0 at all X. Now assume that L is C2 so that
we’re guaranteed that X ′ = F (X) has solutions and that they’re unique.

Prove that if X ′ = G(X) is some other C1 vector field such at each point
‖F (X)‖ = ‖G(X)‖ then L decreases more quickly along a solution X(t) of
X ′ = F (X) than along a solution Y (t) of Y ′ = G(Y ).

(b) Consider the function L : R2 → R where

L(x, y) = 132 + 16
√

3− 10x− 4
√

3x+
5

4
x2 + 28y + 2

√
3y − 1

2

√
3xy +

7

4
y2

Find and solve X ′ = −∇L(X). As t → ∞, what do solutions X(t) converge to?
What type of nonzero initial conditions yield solutions that converge the fastest to
this point? What type of nonzero initial conditions yield solutions that converge
the slowest to this point? Do some contour plots to come up with a conjecture as
to why some initial conditions would lead to faster convergence and others lead
to slower convergence.

(c) L is quadratic and so you can seek to write it in the form

L(x, y) =
(
x− a y − b

)
A

(
x− a
y − b

)
=
(
x− a y − b

) (a11 a12
a21 a22

) (
x− a
y − b

)
You could multiply the above out and match coefficients and solve for the six
unknowns. Or you could use MAT257 methods to find the matrix A and the
point (a, b). Explain how you would find A and the point (a, b). Having found A
and point (a, b), are you confident that (a, b) is a global minimizer? How would
you figure out whether or not it is? Do this for the matrix A that you found.
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6. (10 points) You can do gradient descent on any C2 function L : Rn → R. Whether
or not your solution goes to an equilbrium solution, whether or not the equilibrium
solution is unique, and whether or not the equilibrium solution is a global (or even
local) minimizer is a different question. Consider the function

L(x, y) = x2 y2 =⇒

{
x′ = −2x y2

y′ = −2 y x2

(a) The definition of Liapunov function is given after the theorem on page 193. Why
is L not a Liapunov function on R2?

(b) In a similar manner as for the Lotka-Volterra system, you can find curves in the
plane that solutions must live in. Given (x0, y0) with x0, y0 > 0, find y(x) so that
the solution of the IVP must lie in the graph of y(x).

(c) Prove that although L is not a Liapunov function, it is one when restricted to
the graph of y(x). From this, what must the solution of the initial value problem
with (x(t0), y(t0)) = (x0, y0) converge to as t→∞?

(d) To do if you’re curious, no need to hand in. You can find a solution of of the
system that goes through (x0, y0) as follows. You seek a decreasing function s(t)
so that (s(t), y(s(t))) lies in the graph (x, y(x)) and so that as t→∞ the solution
(s(t), y(s(t))) converges to the point you found in part c). How does the rate of
convergence to the equilibrium solution depend on the initial point (x0, y0)? How
does this compare to the situation where the function you’re trying to minimize
is a simple quadratic? (Or, more to the point, is a function that has local minima
near which it’s strictly convex.)

Obviously, the optimization problems in this homework are simple because you can find
the critical points and the trajectories taken by gradient descent. In the real world,
you’d be using a computer and would be hoping to find ways to do things faster than
simple gradient descent.

There is an idea in the above that you may want to think about. In general, it can be hard to
control solutions in R2 or in Rn because there’s no ordering like there is in R. A real-valued
function that decreases along a solution imposes an ordering on a solution (see problem 3b
and problem 6c). Similarly, nullclines divide the plane into regions in which one has an
ordering on each component of the the solution as long as it is in the region in question.
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