## Mary Pugh Assignment Webwork\_5 due 02/12/2020 at 11:59pm EST

## 138695\_MAT267H1\_S\_LEC0101

**1.** (1 point) Library/maCalcDB/setDiffEQ4Linear1stOrder/ur\_de\_4 \_10.pg

A. Let g(t) be the solution of the initial value problem

$$\frac{dy}{dt} + 7y = 0,$$

with y(0) = 1. Find g(t). g(t) =\_\_\_\_\_.

B. Let f(t) be the solution of the initial value problem

$$\frac{dy}{dt} + 7y = \exp(3t)$$

with y(0) = 1/10. Find f(t).  $f(t) = \_$ \_\_\_\_\_

C. Find a constant *c* so that

$$k(t) = f(t) + cg(t)$$

solves the differential equation in part B and k(0) = 12. c =\_\_\_\_\_\_.

**2.** (1 point) Library/AlfredUniv/diffeq/linear/duiller.pg According to Ince [pg. 531] the first known use of integrating factors to solve a differential equation was by Fatio de Duiller in June of 1687. He was solving the equation

$$3xdy - 2ydx = 0$$

which we would write in standard form (using the prime notation) as

\_\_ = \_

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

For this equation the integrating factor is: \_\_\_\_\_\_After multiplying both sides by the integrating factor and unapplying the product rule we get the new differential equation:



Integrating both sides we get the algebraic equation

=

Solving for y, the solution to the differential equation is y = \_\_\_\_\_ (using C as the constant)

[Ince] Ince E L, Ordinary Differential Equations, Longmans, Green and Co, London, 1927.

**3.** (1 point) Library/WHFreeman/Rogawski\_Calculus\_Early\_Transce ndentals\_Second\_Edition/9\_Introduction\_to\_Differential\_Equatio ns/9.1\_Solving\_Differential\_Equations/9.1.39.pg

Solve the initial value problem  $t^2 \frac{dy}{dt} - t = 1 + y + ty$ , y(1) = 1. y = \_\_\_\_\_

**4.** (1 point) Library/FortLewis/DiffEq/1-First-order/04-Linearintegrating-factor/KJ-2-2-37.pg

(1) Find the solution to the initial value problem

 $\frac{y'-e^{-t}+3}{y}=-3, \ y(0)=3.$ 

\_\_\_\_\_ help (equations)

(2) Discuss the behavior of the solution y(t) as t becomes large. Does  $\lim_{t\to\infty} y(t)$  exist? If the limit exists, enter its value. If the limit does not exist, enter *DNE*.

 $\lim_{t \to \infty} y(t) = \underline{\qquad} \text{ help (numbers)}$