1. (1 point) Library/maCalcDB/setDiffEQ4Linear1stOrder/ur_de_4 _10.pg
A. Let $g(t)$ be the solution of the initial value problem

$$
\frac{d y}{d t}+7 y=0
$$

with $y(0)=1$.
Find $g(t)$.
$g(t)=$
B. Let $f(t)$ be the solution of the initial value problem

$$
\frac{d y}{d t}+7 y=\exp (3 t)
$$

with $y(0)=1 / 10$.
Find $f(t)$.
$f(t)=$
C. Find a constant c so that

$$
k(t)=f(t)+c g(t)
$$

solves the differential equation in part B and $k(0)=12$. $c=$ \qquad —.
2. (1 point) Library/AlfredUniv/diffeq/linear/duiller.pg

According to Ince [pg. 531] the first known use of integrating factors to solve a differential equation was by Fatio de Duiller in June of 1687. He was solving the equation

$$
3 x d y-2 y d x=0
$$

which we would write in standard form (using the prime notation) as

$$
\ldots=
$$

For this equation the integrating factor is:
After multiplying both sides by the integrating factor and unapplying the product rule we get the new differential equation:

$$
\frac{d}{d x}[\square]=
$$

Integrating both sides we get the algebraic equation
Solving for y , the solution to the differential equation is $\mathrm{y}=$
\qquad (using C as the constant)
[Ince] Ince E L, Ordinary Differential Equations, Longmans, Green and Co, London, 1927.
3. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transce ndentals_Second_Edition/9_Introduction_to_Differential_Equatio ns/9.1_Solving_Differential_Equations/9.1.39.pg

Solve the initial value problem $t^{2} \frac{d y}{d t}-t=1+y+t y, y(1)=1$. $y=$ \qquad
4. (1 point) Library/FortLewis/DiffEq/1-First-order/04-Linear-integrating-factor/KJ-2-2-37.pg
(1) Find the solution to the initial value problem

$$
\frac{y^{\prime}-e^{-t}+3}{y}=-3, \quad y(0)=3
$$

\qquad help (equations)
(2) Discuss the behavior of the solution $y(t)$ as t becomes large. Does $\lim _{t \rightarrow \infty} y(t)$ exist? If the limit exists, enter its value. If the limit does not exist, enter $D N E$.

$$
\lim _{t \rightarrow \infty} y(t)=\ldots \text { help (numbers) }
$$

