Assignment Webwork_4 due 02/08/2020 at 11:59pm EST

1. (1 point) Library/UMN/calculusStewartCCC/s_17_1_6.pg

The general solution to the second-order differential equation 3y'' = 4y' is in the form $y(x) = c_1 e^{rx} + c_2$. Find the value of r.

• 4/3

2. (1 point) Library/MiamiUOhio/DiffEq/Definitions_and_Termino logy/Problem18.pg

Let
$$y''' - 10y'' + 9y' = 0$$
.

Find all values of r such that $y = e^{rx}$ satisfies the differential equation. If there is more than one correct answer, enter your answers as a comma separated list.

r = help (numbers)

Correct Answers:

• 0, 9, 1

3. (1 point) Library/MiamiUOhio/DiffEq/Definitions_and_Termino logy/Problem19.pg

Let
$$t^2y'' + 11ty' + 24y = 0$$
.

Find all values of r such that $y = t^r$ satisfies the differential equation for t > 0. If there is more than one correct answer, enter your answers as a comma separated list.

r =_____help (numbers)

Correct Answers:

−6, −4

4. (1 point) Library/Wiley/setAnton_Section_8.1/Question20.pg For the differential equation y'' + 4y' + 13y = 0, a general solution is of the form $y = e^{-2x}(C_1 \sin 3x + C_2 \cos 3x)$, where C_1 and C_2 are arbitrary constants.

Applying the initial conditions y(0) = 3 and y'(0) = 9, find the specific solution.

y = _____ Correct Answers:

• $e^{(-2x)} * [5*sin(3*x)+3*cos(3*x)]$

5. (1 point) Library/Utah/AP_Calculus_I/set10_Differential_Equ tions/g0.pg

Here are some initial value problems with obvious solutions, as discussed in class. In all cases the solutions are functions of x. All letters other than y and x denote constants.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

The solution of

$$y' = ky$$
, $y(0) = A$

is

$$y(x) =$$

The solution of

$$y'' = k^2 y$$
, $y(1) = y(-1) = A$

is

$$y(x) = \underline{\hspace{1cm}}.$$

The solution of

$$y'' = k^2 y$$
, $y(1) = -y(-1) = A$

is

$$y(x) = \underline{\hspace{1cm}}$$

The solution of

$$y'' = -k^2y$$
, $y(0) = 1$, $y'(0) = 0$

is

$$y(x) =$$

The solution of

$$y'' = -k^2y$$
, $y(0) = 0$, $y'(0) = 1$

is

$$y(x) =$$

The solution of

$$y'' = -k^2y$$
, $y(0) = A$, $y'(0) = B$

is

$$y(x) = \underline{\hspace{1cm}}$$

Correct Answers:

- A*exp(k*x)
- A* (exp(k*x)+exp(-k*x))/(exp(k)+exp(-k))
- A* (exp(k*x)-exp(-k*x))/(exp(k)-exp(-k))
- cos(k*x)
- sin(k*x)/k
- A*cos(k*x)+B*sin(k*x)/k

6. (1 point) Library/UMN/calculusStewartCCC/s_17_1_30.pg Solve the boundary-value problem $y''-4y'+4y=0,\ y(0)=8,\ y(1)=0.$

Answer: y(x) =

Note: *If there is no solution, type "None". Correct Answers:*

• 8*e^(2*x)-8*x*e^(2*x)