1. (1 point) Library/UMN/calculusStewartCCC/s_17_1_6.pg

The general solution to the second-order differential equation $3 y^{\prime \prime}=4 y^{\prime}$ is in the form $y(x)=c_{1} e^{r x}+c_{2}$. Find the value of $r$.

Answer: $r=$
2. (1 point) Library/MiamiUOhio/DiffEq/Definitions_and_Termino
logy/Problem18.pg
Let $y^{\prime \prime \prime}-10 y^{\prime \prime}+9 y^{\prime}=0$.
Find all values of $r$ such that $y=e^{r x}$ satisfies the differential equation. If there is more than one correct answer, enter your answers as a comma separated list.
$r=$ $\qquad$ help (numbers)
3. (1 point) Library/MiamiUOhio/DiffEq/Definitions_and_Termino logy/Problem19.pg
Let $t^{2} y^{\prime \prime}+11 t y^{\prime}+24 y=0$.
Find all values of $r$ such that $y=t^{r}$ satisfies the differential equation for $t>0$. If there is more than one correct answer, enter your answers as a comma separated list.
$r=\ldots$ help (numbers)
4. (1 point) Library/Wiley/setAnton_Section_8.1/Question20.pg For the differential equation $y^{\prime \prime}+4 y^{\prime}+13 y=0$, a general solution is of the form $y=e^{-2 x}\left(C_{1} \sin 3 x+C_{2} \cos 3 x\right)$, where $C_{1}$ and $C_{2}$ are arbitrary constants.
Applying the initial conditions $y(0)=3$ and $y^{\prime}(0)=9$, find the specific solution.

$$
y=
$$

$\qquad$
5. (1 point) Library/Utah/AP_Calculus_I/set10_Differential_Equ ations/q0.pg
Here are some initial value problems with obvious solutions, as discussed in class. In all cases the solutions are functions of $x$. All letters other than $y$ and $x$ denote constants.

The solution of

$$
y^{\prime}=k y, \quad y(0)=A
$$

is
$y(x)=$ $\qquad$
The solution of

$$
y^{\prime \prime}=k^{2} y, \quad y(1)=y(-1)=A
$$

is
$y(x)=$ $\qquad$
The solution of

$$
y^{\prime \prime}=k^{2} y, \quad y(1)=-y(-1)=A
$$

is
$y(x)=$ $\qquad$
The solution of

$$
y^{\prime \prime}=-k^{2} y, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

is
$y(x)=$ $\qquad$
The solution of

$$
y^{\prime \prime}=-k^{2} y, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

is
$y(x)=$ $\qquad$
The solution of

$$
y^{\prime \prime}=-k^{2} y, \quad y(0)=A, \quad y^{\prime}(0)=B
$$

is
$y(x)=$ $\qquad$
6. (1 point) Library/UMN/calculusStewartCCC/s_17_1_30.pg Solve the boundary-value problem $y^{\prime \prime}-4 y^{\prime}+4 y=0, y(0)=$ $8, y(1)=0$.

Answer: $y(x)=$ $\qquad$
Note: If there is no solution, type "None".

