Mary Pugh Assignment Webwork_4 due 02/05/2020 at 11:59pm EST

1. (1 point) Library/UMN/calculusStewartCCC/s_17_1_6.pg The general solution to the second-order differential equation 3y'' = 4y' is in the form $y(x) = c_1e^{rx} + c_2$. Find the value of *r*. Answer: r =_____

 $\begin{array}{l} \textbf{2. (1 point)} \mbox{Library/MiamiUOhio/DiffEq/Definitions_and_Termino} \\ \mbox{logy/Problem18.pg} \\ \mbox{Let } y''' - 10y'' + 9y' = 0. \end{array}$

Find all values of *r* such that $y = e^{rx}$ satisfies the differential equation. If there is more than one correct answer, enter your answers as a comma separated list.

r =_____ help (numbers)

3. (1 point) Library/MiamiUOhio/DiffEq/Definitions_and_Termino logy/Problem19.pg Let $t^2y'' + 11ty' + 24y = 0$.

Find all values of r such that $y = t^r$ satisfies the differential equation for t > 0. If there is more than one correct answer, enter your answers as a comma separated list.

r =_____help (numbers)

4. (1 point) Library/Wiley/setAnton_Section_8.1/Question20.pg For the differential equation y'' + 4y' + 13y = 0, a general solution is of the form $y = e^{-2x}(C_1 \sin 3x + C_2 \cos 3x)$, where C_1 and C_2 are arbitrary constants.

Applying the initial conditions y(0) = 3 and y'(0) = 9, find the specific solution.

y = ____

5. (1 point) Library/Utah/AP_Calculus_I/set10_Differential_Equ ations/g0.pg

Here are some initial value problems with obvious solutions, as discussed in class. In all cases the solutions are functions of x. All letters other than y and x denote constants.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

The solution of y' = ky, y(0) = Ais y(x) = -The solution of $y'' = k^2 y$, y(1) = y(-1) = Ais y(x) =_ The solution of $y'' = k^2 y$, y(1) = -y(-1) = Ais y(x) =_____ The solution of $y'' = -k^2 y$, y(0) = 1, y'(0) = 0is y(x) =_____ The solution of $y'' = -k^2 y$, y(0) = 0, y'(0) = 1is $y(x) = _$ The solution of $y'' = -k^2 y$, y(0) = A, y'(0) = Bis y(x) =_____ 6. (1 point) Library/UMN/calculusStewartCCC/s_17_1_30.pg Solve the boundary-value problem y'' - 4y' + 4y = 0, y(0) =8, v(1) = 0. Answer: $y(x) = _$

Note: If there is no solution, type "None".