1. (1 point) Library/Rochester/setDiffeQ1/osu_de_1_3.pg

Match the following differential equations with their solutions. The symbols A, B, C in the solutions stand for arbitrary constants.
You must get all of the answers correct to receive credit.

1. $\frac{d^{2} y}{d x^{2}}+49 y=0$
2. $\frac{d y}{d x}=\frac{-2 x y}{x^{2}-7 y^{2}}$
3. $\frac{d^{2} y}{d x^{2}}+10 \frac{d y}{d x}+25 y=0$
4. $\frac{d y}{d x}=14 x y$
5. $\frac{d y}{d x}+15 x^{2} y=15 x^{2}$
A. $y=C e^{-5 x^{3}}+1$
B. $y=A e^{7 x^{2}}$
C. $3 y x^{2}-7 y^{3}=C$
D. $y=A e^{-5 x}+B x e^{-5 x}$
E. $y=A \cos (7 x)+B \sin (7 x)$
6. (1 point) Library/MiamiUOhio/DiffEq/Definitions_and_Termino logy/Problem18.pg
Let $y^{\prime \prime \prime}-11 y^{\prime \prime}+28 y^{\prime}=0$.
Find all values of r such that $y=e^{r x}$ satisfies the differential equation. If there is more than one correct answer, enter your answers as a comma separated list.
$r=$ \qquad help (numbers)
7. (1 point) Library/MiamiUOhio/DiffEq/Definitions_and_Termino logy/Problem19.pg
Let $t^{2} y^{\prime \prime}+17 t y^{\prime}+63 y=0$.
Find all values of r such that $y=t^{r}$ satisfies the differential equation for $t>0$. If there is more than one correct answer, enter your answers as a comma separated list.
$r=$ \qquad help (numbers)
8. (1 point) Library/maCalcDB/setDiffEQ3Separable/ur_de_3_1.pg A. Solve the following initial value problem:

$$
\left(t^{2}-16 t+28\right) \frac{d y}{d t}=y
$$

with $y(8)=1$. (Find y as a function of t.) $y=$ \qquad
B. On what interval is the solution valid?

Answer: It is valid for $\quad \ll t<$
C. Find the limit of the solution as t approaches the left end of the interval.
(Your answer should be a number or the word "infinite".)
Answer: \qquad
D. Similar to C, but for the right end.

Answer: \qquad

5. (1 point) Library/Wiley/setAnton_Section_8.4/Anton_8_4_Q9.p

 gSolve the initial value problem.

$$
\frac{d y}{d x}-2 x y=8 x, y(0)=-2
$$

$$
y=
$$

\qquad
6. (1 point) Library/FortLewis/DiffEq/1-First-order/06-Autonom ous/BDH-1-6-37.pg

Determine which differential equation corresponds to each phase line. You should be able to state briefly how you know your choices are correct.
? $1 . \frac{d y}{d t}=y^{2}|y-2|$
? 2. $\frac{d y}{d t}=y(2-y)^{2}$
? 3. $\frac{d y}{d t}=4 y-y^{3}$
? 4. $\frac{d y}{d t}=y(y-2)$
? 5. $\frac{d y}{d t}=y^{2}-3 y$
? 6. $\frac{d y}{d t}=3 y-y^{2}$
?7. $\frac{d y}{d t}=2 y-y^{2}$
? 8. $\frac{d y}{d t}=y^{3}-4 y$

7. (1 point) Library/FortLewis/Diffeq/1-First-order/06-Autonom ous/BDH-1-7-01.pg

Determine the bifurcation value(s) for the oneparameter family

$$
\frac{d y}{d t}=y^{2}+k
$$

$k=$ \qquad help (numbers)

Determine which differential equation corresponds to each phase line. You should be able to state briefly how you know your choices are correct.
? 1. k larger than the bifurcation value
? 2. k equal to the bifurcation value
?3. k smaller than the bifurcation value

