Mary Pugh Assignment Webwork_1 due 01/15/2020 at 11:59pm EST

138695_MAT267H1_S_LEC0101

1. (1 point) Library/Rochester/setDiffEQ1/osu_de_1_3.pg Match the following differential equations with their solutions. The symbols A, B, C in the solutions stand for arbitrary constants.

You must get all of the answers correct to receive credit.

$$-1. \quad \frac{d^2y}{dx^2} + 49y = 0$$

$$-2. \quad \frac{dy}{dx} = \frac{-2xy}{x^2 - 7y^2}$$

$$-3. \quad \frac{d^2y}{dx^2} + 10\frac{dy}{dx} + 25y = 0$$

$$-4. \quad \frac{dy}{dx} = 14xy$$

$$-5. \quad \frac{dy}{dx} + 15x^2y = 15x^2$$

A. $y = Ce^{-5x^3} + 1$
B. $y = Ae^{7x^2}$
C. $3yx^2 - 7y^3 = C$
D. $y = Ae^{-5x} + Bxe^{-5x}$
E. $y = A\cos(7x) + B\sin(7x)$

 $\begin{array}{l} \textbf{2. (1 point)} \mbox{Library/MiamiUOhio/DiffEq/Definitions_and_Termino} \\ \mbox{logy/Problem18.pg} \\ \mbox{Let } y''' - 11y'' + 28y' = 0. \end{array}$

Find all values of *r* such that $y = e^{rx}$ satisfies the differential equation. If there is more than one correct answer, enter your answers as a comma separated list.

r =_____help (numbers)

3. (1 point) Library/MiamiUOhio/DiffEq/Definitions_and_Termino logy/Problem19.pg Let $t^2y'' + 17ty' + 63y = 0$.

Find all values of *r* such that $y = t^r$ satisfies the differential equation for t > 0. If there is more than one correct answer, enter your answers as a comma separated list.

r =_____help (numbers)

4. (1 point) Library/maCalcDB/setDiffEQ3Separable/ur_de_3_1.pg A. Solve the following initial value problem:

$$(t^2 - 16t + 28)\frac{dy}{dt} = y$$

with y(8) = 1. (Find y as a function of *t*.) y = _____. Answer: It is valid for $__ < t < __$.

C. Find the limit of the solution as t approaches the left end of the interval.

(Your answer should be a number or the word "infinite".) Answer: _____.

D. Similar to C, but for the right end. Answer: _____.

5. (1 point) Library/Wiley/setAnton_Section_8.4/Anton_8_4_09.p

Solve the initial value problem.

v = -

$$\frac{dy}{dx} - 2xy = 8x, \ y(0) = -2$$

6. (1 point) Library/FortLewis/DiffEq/1-First-order/06-Autonom
ous/BDH-1-6-37.pg

Determine which differential equation corresponds to each phase line. You should be able to state briefly how you know your choices are correct.

?1.	$\frac{dy}{dt} = y^2 y - 2 $
?2.	$\frac{dy}{dt} = y(2-y)^2$
? 3.	$\frac{dy}{dt} = 4y - y^3$
?4.	$\frac{dy}{dt} = y(y-2)$
? 5.	$\frac{dy}{dt} = y^2 - 3y$
?6.	$\frac{dy}{dt} = 3y - y^2$
?7.	$\frac{dy}{dt} = 2y - y^2$
?8.	$\frac{dy}{dt} = y^3 - 4y$

B. On what interval is the solution valid?

7. (1 point) Library/FortLewis/DiffEq/1-First-order/06-Autonom
ous/BDH-1-7-01.pg

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Determine the bifurcation value(s) for the one-parameter family

$$\frac{dy}{dt} = y^2 + k.$$

k = _____ help (numbers)

Determine which differential equation corresponds to each phase line. You should be able to state briefly how you know your choices are correct.

- ? 1. *k* larger than the bifurcation value
- ? 2. k equal to the bifurcation value
- ? 3. *k* smaller than the bifurcation value

