Mary Pugh Assignment Webwork_6 due 02/26/2020 at 11:59pm EST

1. (1 point) Library/Rochester/setLinearAlgebra12Diagonalizati
on/ur_la_12_3.pg
Let

 $M = \left[\begin{array}{cc} 5 & 1 \\ -4 & 9 \end{array} \right].$

Find formulas for the entries of M^n , where *n* is a positive integer.

$$M^n = \begin{bmatrix} & & & & \\ & & & & & \\ & & & & & & \\ \end{bmatrix}$$

2. (1 point) Library/NAU/setLinearAlgebra/JordanForm.pg Let

$$A = \begin{bmatrix} -5 & -2 & -2 & 8\\ 16 & 7 & 12 & -8\\ 0 & 0 & -1 & -4\\ -4 & -1 & -1 & 7 \end{bmatrix}$$

Find a matrix *P* such that $D = P^{-1}AP$ is the Jordan canonical form of *A*. The Jordan form is upper triangular. The blocks are ordered increasingly by eigenvalue and then by block size.

3. (1 point) Library/TCNJ/TCNJ_Eigenvalues/problem1.pg

A is an $n \times n$ matrix.

Check the true statements below:

- A. A matrix A is not invertible if and only if 0 is an eigenvalue of A.
- B. To find the eigenvalues of *A*, reduce *A* to echelon form.
- C. If $Ax = \lambda x$ for some vector x, then λ is an eigenvalue of A.
- D. Finding an eigenvector of A might be difficult, but checking whether a given vector is in fact an eigenvector is easy.
- E. A number c is an eigenvalue of A if and only if the equation (A cI)x = 0 has a nontrivial solution x.

4. (1 point) Library/Rochester/setLinearAlgebrallEigenvalues/u r_la_11_13.pg

Suppose a 3×3 matrix A has only two distinct eigenvalues. Suppose that tr(A) = -4 and det(A) = -32. Find the eigenvalues of A with their algebraic multiplicities. The smaller eigenvalue = ____ has multiplicity ____, and the larger eigenvalue = ____ has multiplicity ____.

5. (1 point) Library/Rochester/setLinearAlgebrallEigenvalues/u
r_la_11_9.pg

Suppose *A* is an invertible $n \times n$ matrix and \vec{v} is an eigenvector of *A* with associated eigenvalue -7. Convince yourself that \vec{v} is an eigenvector of the following matrices, and find the associated eigenvalues.

- (1) The matrix A^5 has an eigenvalue _____.
- (2) The matrix A^{-1} has an eigenvalue _____.
- (3) The matrix $A + 3I_n$ has an eigenvalue _____
- (4) The matrix 3A has an eigenvalue _____.

6. (1 point) Library/NAU/setLinearAlgebra/JordanBlockSizes.pg Let λ be an eigenvalue of the linear operator L and define $L_{\lambda} := L - \lambda I$. The following table lists the nullities of the powers of L_{λ} .

		-	
k	1	2	3
4	5	6	7
8			
nullity (L_{λ}^k)	6	11	16
20	24	27	30
31			

Find the sizes of the Jordan blocks corresponding to λ of the Jordan form of the matrix of *L* as a list of integers. Sizes: ______

7. (1 point) Library/NAU/setLinearAlgebra/JordanForm2.pg Let

$$A = \begin{bmatrix} -13 & -44 & -16 & -24 \\ 0 & 1 & 0 & 0 \\ -22 & -70 & -25 & -39 \\ 24 & 76 & 28 & 43 \end{bmatrix}.$$

Find a matrix *P* such that $D = P^{-1}AP$ is the Jordan canonical form of *A*. The Jordan form is upper triangular. The blocks are ordered increasingly by eigenvalue and then by block size.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America