1. (1 point) Library/Rochester/setLinearAlgebra12Diagonalizati on/ur_la_12_3.pg
Let

$$
M=\left[\begin{array}{cc}
5 & 1 \\
-4 & 9
\end{array}\right]
$$

Find formulas for the entries of M^{n}, where n is a positive integer.

$$
M^{n}=\left[\begin{array}{ll}
& - \\
- & -
\end{array}\right]
$$

2. (1 point) Library/NAU/setLinearAlgebra/JordanForm.pg Let

$$
A=\left[\begin{array}{cccc}
-5 & -2 & -2 & 8 \\
16 & 7 & 12 & -8 \\
0 & 0 & -1 & -4 \\
-4 & -1 & -1 & 7
\end{array}\right]
$$

Find a matrix P such that $D=P^{-1} A P$ is the Jordan canonical form of A. The Jordan form is upper triangular. The blocks are ordered increasingly by eigenvalue and then by block size.
$P=\left[\begin{array}{llll}- & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & -\end{array}\right], D=\left[\begin{array}{cccc}- & - & - & - \\ - & - & - & - \\ - & - & - & - \\ - & - & - & -\end{array}\right]$
3. (1 point) Library/TCNJ/TCNJ_Eigenvalues/problem1.pg
A is an $n \times n$ matrix.
Check the true statements below:

- A. A matrix A is not invertible if and only if 0 is an eigenvalue of A.
- B. To find the eigenvalues of A, reduce A to echelon form.
- C. If $A x=\lambda x$ for some vector x, then λ is an eigenvalue of A.
- D. Finding an eigenvector of A might be difficult, but checking whether a given vector is in fact an eigenvector is easy.
- E. A number c is an eigenvalue of A if and only if the equation $(A-c I) x=0$ has a nontrivial solution x.

4. (1 point) Library/Rochester/setLinearAlgebra11Eigenvalues/u r_la_11_13.pg
Suppose a 3×3 matrix A has only two distinct eigenvalues. Suppose that $\operatorname{tr}(A)=-4$ and $\operatorname{det}(A)=-32$. Find the eigenvalues of A with their algebraic multiplicities.

The smaller eigenvalue $=\ldots$ has multiplicity \quad, and the larger eigenvalue $=\ldots$ has multiplicity \quad.
5. (1 point) Library/Rochester/setLinearAlgebra11Eigenvalues/u r_la_11_9.pg
Supppose A is an invertible $n \times n$ matrix and \vec{v} is an eigenvector of A with associated eigenvalue -7 . Convince yourself that \vec{v} is an eigenvector of the following matrices, and find the associated eigenvalues.
(1) The matrix A^{5} has an eigenvalue \qquad
(2) The matrix A^{-1} has an eigenvalue \qquad
(3) The matrix $A+3 I_{n}$ has an eigenvalue \qquad
(4) The matrix $3 A$ has an eigenvalue \qquad -
6. (1 point) Library/NAU/setLinearAlgebra/JordanBlockSizes.pg Let λ be an eigenvalue of the linear operator L and define $L_{\lambda}:=L-\lambda I$. The following table lists the nullities of the powers of L_{λ}.

k	1	2	3
4	5	6	7
8			
nullity $\left(L_{\lambda}^{k}\right)$	6	11	16
20	24	27	30
31			

Find the sizes of the Jordan blocks corresponding to λ of the Jordan form of the matrix of L as a list of integers.
Sizes: \qquad

> 7. (1 point) Library/NAU/setLinearAlgebra/JordanForm2.pg

Let

$$
A=\left[\begin{array}{cccc}
-13 & -44 & -16 & -24 \\
0 & 1 & 0 & 0 \\
-22 & -70 & -25 & -39 \\
24 & 76 & 28 & 43
\end{array}\right] .
$$

Find a matrix P such that $D=P^{-1} A P$ is the Jordan canonical form of A. The Jordan form is upper triangular. The blocks are ordered increasingly by eigenvalue and then by block size.

$$
P=\left[\begin{array}{llll}
- & - & - & - \\
- & - & - & - \\
- & - & - & -
\end{array}\right], D=\left[\begin{array}{cccc}
- & - & - & - \\
- & - & - & - \\
- & - & - & - \\
- & - & - & -
\end{array}\right]
$$

Generated by © CeBWorK, http://webwork.maa.org, Mathematical Association of America

