

Figure 0.1: The trace-determinant plane. Warning: each point in the plane represents infinitely many systems $X^{\prime}=A X$. Angles may change, directions of rotation may change, and so forth!

If A is an $n \times n$ diagonalizable matrix then the general solution of $\vec{X}^{\prime}=A \vec{X}$ is $\vec{X}(t)=\sum_{k=1}^{n} c_{k} e^{\lambda_{k} t} \vec{v}_{k}$ where $\left(\lambda_{k}, \vec{v}_{k}\right)$ are n eigenvalue-eigenvector pairs of A, chosen so that $\left\{\vec{v}_{1}, \vec{v}_{k}, \ldots \vec{v}_{n}\right\}$ is a linearly independent set.

Equation solving techniques

- To solve an equation of the form $\frac{d x}{d t}=f(t) \varphi(x)$, rewrite as $\frac{d x}{\varphi(x)}=f(t) d t$. Then take the integral. Don't forget the integration constant. In addition, do not forget to check the case when $\varphi(x)=0$.
- To solve a first-order linear equation of the form $x^{\prime}+p(t) x=q(t)$, first multiply the equation by $\mu(t)$. Then choose a $\mu(t)$ so that $\mu^{\prime}(t)=\mu(t) p(t)$. With this choice of $\mu(t)$, the ODE becomes $(\mu(t) x(t))^{\prime}=\mu(t) q(t)$. Integrate the equation with respect to t and, if possible, solve for $x(t)$.

Zoology of planar linear systems $X^{\prime}=A X$ when $\operatorname{det}(A) \neq 0$.

name	eigenvalues
saddle	$\lambda_{1}<0<\lambda_{2}$
sink	$\lambda_{1}<\lambda_{2}<0$
source	$0<\lambda_{1}<\lambda_{2}$
center	$\lambda_{j}= \pm i \beta, \beta \neq 0$
spiral sink	$\lambda_{j}=\alpha \pm i \beta, \alpha<0, \beta \neq 0$
spiral source	$\lambda_{j}=\alpha \pm i \beta, \alpha>0, \beta \neq 0$
stable proper node	$\lambda_{1}=\lambda_{2}<0$ and A is diagonalizable
unstable proper node	$0<\lambda_{1}=\lambda_{2}$ and A is diagonalizable
stable improper node	$\lambda_{1}=\lambda_{2}<0$ and A is not diagonalizable
unstable improper node	$0<\lambda_{1}=\lambda_{2}$ and A is not diagonalizable

