If A is an $n \times n$ diagonalizable matrix then the general solution of $\vec{X}^{\prime}=A \vec{X}$ is $\vec{X}(t)=\sum_{k=1}^{n} c_{k} e^{\lambda_{k} t} \vec{v}_{k}$ where $\left(\lambda_{k}, \vec{v}_{k}\right)$ are n eigenvalue-eigenvector pairs of A, chosen so that $\left\{\vec{v}_{1}, \vec{v}_{k}, \ldots \vec{v}_{n}\right\}$ is a linearly independent set.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=(a d-b c) I
$$

The vectors E_{1} and E_{2} are

$$
E_{1}=\binom{1}{0}, \quad E_{2}=\binom{0}{1}
$$

Equation-solving techniques

- To solve an equation of the form $\frac{d x}{d t}=f(t) \varphi(x)$, rewrite as $\frac{d x}{\varphi(x)}=f(t) d t$. Then take the integral. Don't forget the integration constant. In addition, do not forget to check the case when $\varphi(x)=0$.
- To solve a first-order linear equation of the form $x^{\prime}+p(t) x=q(t)$, first multiply the equation by $\mu(t)$. Then choose a $\mu(t)$ so that $\mu^{\prime}(t)=\mu(t) p(t)$. With this choice of $\mu(t)$, the ODE becomes $(\mu(t) x(t))^{\prime}=\mu(t) q(t)$. Integrate the equation with respect to t and, if possible, solve for $x(t)$.
- $X^{\prime}=A X+G(t)$ with $X\left(t_{0}\right)=X_{0}$ has solution

$$
X(t)=e^{t A} X_{0}+\int_{t_{0}}^{t} e^{(t-s) A} G(s) d s
$$

- $X^{\prime}=A(t) X+G(t)$ with $X\left(t_{0}\right)=X_{0}$ has solution

$$
X(t)=\Psi(t) \Psi\left(t_{0}\right)^{-1} X_{0}+\int_{t_{0}}^{t} \Psi(t) \Psi(s)^{-1} G(s) d s
$$

where the columns of $\Psi(t)$ are n linearly independent solutions of $X^{\prime}=A(t) X$.

- To solve $y^{\prime \prime}+q(t) y^{\prime}+r(t) y=g(t)$, first find linearly independent solutions y_{1} and y_{2} of $y^{\prime \prime}+q(t) y^{\prime}+r(t) y=0$. A particular solution is $y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$ where

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W(t)} d t, \quad u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W(t)} d t
$$

Where $W(t)=\operatorname{det}\left(\left[y_{1}(t), y_{2}(t) ; y_{1}^{\prime}(t), y_{2}^{\prime}(t)\right]\right)$.

