MATD01 Fields and Groups

Assignment 1

Due Friday Jan 17 at $10: 00 \mathrm{pm}$
(to be submitted on Crowdmark)

Notes: By a ring we always mean a commutative ring with $1 \neq 0$. For any prime number p, the field $\mathbb{Z} / p \mathbb{Z}$ is denoted by \mathbb{F}_{p}.

Please write your solutions neatly and clearly. Note that due to time limitations, only some questions will be graded. The assignment covers Chapters 2-4 of Rotman.

1. (a) Suppose $\alpha \in \mathbb{C}$ is a root of a polynomial $f(x) \in \mathbb{Q}[x]$ of degree $n \geq 1$. Show that the set

$$
R=\left\{\sum_{i=0}^{n-1} a_{i} \alpha^{i}: a_{i} \in \mathbb{Q}\right\}
$$

is a subring of \mathbb{C}. (Suggestion: To check that R is closed under multiplication, first note that R is certainly closed under multiplication by rational numbers. Let $f(x)=\sum_{i=0}^{n} c_{i} x^{i}$. Use the fact that $f(\alpha)=0$ and $c_{n} \neq 0$ to show that α^{n} is in R. Now prove by induction on m that that R contains α^{m} for any nonnegative integer m.)
(b) Take $\alpha=\sqrt{2}$. Show that the ring $R=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is in fact a field. (Suggestion: Note that $(a+b \sqrt{2})(a-b \sqrt{2})=a^{2}-2 b^{2}$.)
2. Show that any finite integral domain is a field. (Suggestion: Given nonzero a in a finite integral domain R, consider the elements a, a^{2}, a^{3}, \ldots. Can they all be distinct? Make sure to mention where in your argument you are using the assumption that R is an integral domain.)
3. Let R be a ring. The smallest positive integer k such that

$$
\underbrace{1_{\mathrm{R}}+1_{\mathrm{R}}+\cdots+1_{\mathrm{R}}}_{k \text { times }}=0
$$

is called the characteristic of R. If there is no such k, we say the ring has characteristic zero. Thus for instance, \mathbb{Z} and \mathbb{Q} are of characteristic zero, whereas $\mathbb{F}_{\mathfrak{p}}$ has characteristic p. Show that the characteristic of an integral domain is either zero or a prime number. (Suggestion: For any positive integer n, let $n_{R} \in R$ denote the element $1_{R}+1_{R}+\cdots+1_{R}$ with n appearances of 1_{R}. The distributivity axiom implies that $m_{R} n_{R}=(m n)_{R}$.)
4. (a) Let $R=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$. By Question 1, this is a subring (actually subfield) of \mathbb{C}. Show that the map $\sigma: R \rightarrow \mathbb{C}$ defined by $\sigma(a+b \sqrt{2})=a-b \sqrt{2}$ is a ring homomorphism. (Note that the image of σ is R as well.)
(b) Show that the only ring homomorphisms $R \rightarrow \mathbb{C}$ are the identity and σ. (Suggestion: First argue that any ring homomorphism $R \rightarrow \mathbb{C}$ must act like identity on \mathbb{Q} (the key things being that 1 has to be sent to 1 and the map respects addition). Then argue that $\sqrt{2}$ can only be sent to $\pm \sqrt{2}$. Use $\sqrt{2}^{2}=2$ and the fact that a ring homomorphism respects multiplication.)
5. Let p be a prime number and R a ring of characteristic p. Show that for any $a, b \in R$,

$$
(a+b)^{p}=a^{p}+b^{p} .
$$

Conclude that the map $\phi: R \rightarrow R$ defined by $\phi(a)=a^{p}$ is a ring homomorphism. (Suggestion: Use the binomial formula to expand $(a+b)^{p}$ (which holds because of distributivity and commutativity). Note: A ring homomorphism from a ring to itself is called a ring endomorphism. The ring endomorphism ϕ of this question is called the Frobenius map.) 6. Let R be any ring. Show that there exists a unique ring homomorphism $\mathbb{Z} \rightarrow R$.
7. In each part, determine if I is an ideal of R.
(a) R any ring, a any element of R, and $I=\{a r: r \in R\}$. (The standard notation for $\{a r: r \in R\}$ is (a).)
(b) R any ring, a and b any elements of R, and $I=\{a r+b s: r, s \in R\}$. (Note: The standard notation for this is (a, b). See Question 9 of the practice list.)
(c) $R=\mathbb{Z}[x]$, and I the set of all elements of $\mathbb{Z}[x]$ in which every coefficient is a multiple of 3. (Is this a special case of Part (a)?)
(d) $R=\mathbb{Z}[x]$, and I the set of all elements of $\mathbb{Z}[x]$ in which only even powers of x appear.

Extra Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

1. From the textbook: \#5, 7-16, 18-22, 26-35
2. Let $\psi: R \rightarrow S$ be a ring homomorphism. Show that the map $R[x] \rightarrow S[x]$ given by $\sum_{i} a_{i} x^{i} \mapsto \sum_{i} \psi\left(a_{i}\right) x^{i}$ is a ring homomorphism. Describe its kernel and image.
3. Let F be an integral domain of characteristic $p>0$. Show that the map $F[x] \rightarrow F[x]$ which sends $\sum_{i} a_{i} x^{i} \mapsto \sum_{i} a_{i}^{p} x^{i}$ is a ring homomorphism.
4. (a) Show that the only ring homomorphism $\mathbb{Q} \rightarrow \mathbb{C}$ is the identity map.
(b) Give an example of a ring homomorphism $\mathbb{C} \rightarrow \mathbb{C}$ which is not the identity map
5. Let R be a ring. Every polynomial in $R[x]$ gives us a function $R \rightarrow R$. More precisely, given $f(x)=\sum_{i} a_{i} x^{i} \in R[x]$ and $\alpha \in R$, define $f: R \rightarrow R$ by $f(\alpha)=\sum_{i} a_{i} \alpha^{i}$. Thus to be clear about the notation, we are writing $f(x)$ for the polynomial and f for the associated function $R \rightarrow R$. Consider the map

$$
\Phi: R[x] \rightarrow R^{R}
$$

defined by $\Phi(f(x))=\mathrm{f}$ (see Exercise 9 of the textbook for the notation R^{R}). Show that Φ is a ring homomorphism, and that it will not be injective if R is finite. Give an explicit nonzero element in $\operatorname{ker}(\Phi)$ for $R=\mathbb{F}_{p}$. (Suggestion: Think about Fermat's little theorem.)
6. Let R be a ring and $\alpha \in R$. Show that the map

$$
e v_{\alpha}: R[x] \rightarrow R
$$

defined by $e v_{\alpha}(f(x))=f(\alpha)$ (called evaluation at α) is a ring homomorphism. Give a nonzero element in the kernel of $e v_{\alpha}$.
7. Show that the preimage of an ideal under a ring homomorphism is an ideal. Is the image of an ideal under a ring homomorphism always an ideal? (Prove or give a counter example.)
8. Show that a ring R is a field if and only if its only ideals are zero and R. Conclude that if F is a field, any ring homomorphism from F to any ring is injective. (In particular, if F is a finite field, any ring homomorphism $F \rightarrow F$ is an isomorphism (or an automorphism, since it goes from F to F).)
9. Let R be a ring.
(a) Show that the intersection of any collection of ideals of R is an ideal.
(b) Given any subset $S \subset R$, the intersection of all the ideals of R which contain S is called the ideal generated by S and it denoted by (S) (note that by Part (a), this is indeed an ideal). If $S=\left\{a_{1}, \ldots, a_{n}\right\}$, we just write $\left(a_{1}, \ldots, a_{n}\right)$ instead of $\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$. Show that

$$
\left(a_{1}, \ldots, a_{n}\right)=\left\{\sum_{i=1}^{n} r_{i} a_{i}: r_{i} \in R\right\}
$$

10. For any given rings R and S, we denote the set of all ring homomorphisms $R \rightarrow S$ by $\operatorname{Hom}(R, S)$. For each $\alpha \in \mathbb{C}$, let $e v_{\alpha}: \mathbb{Q}[x] \rightarrow \mathbb{C}$ be map given by $e v_{\alpha}(f(x))=f(\alpha)$. Show that there is a bijection $\mathbb{C} \rightarrow \operatorname{Hom}(\mathbb{Q}[x], \mathbb{C})$ given by $\alpha \mapsto e v_{\alpha}$.
11. Show that in a ring R of characteristic $k>0$, we have $k a=0$ for any $a \in R$. (Here $k a$ means $a+a+\cdots+a$, with k appearances of a. Suggestion: Use $a=1_{R} a$ and distributivity.)
