MATD01 Fields and Groups

Assignment 1

Solutions

1. (a) R is easily seen to be a rational vector subspace of \mathbb{C}. Thus to show that R is a subring it is enough to check that the numbers $\alpha^{m}(m \geq 0)$ are in R (as a product of two elements of R is a \mathbb{Q}-linear combination of the $\alpha^{m}(m \geq 0)$). This can be checked by induction on m : clearly $\alpha^{0}=1 \in R$, and if $\alpha^{m} \in R$, i.e. if α^{m} is a \mathbb{Q}-linear combination of $1, \alpha, \ldots, \alpha^{n-1}$, then α^{m+1} is a \mathbb{Q}-linear combination of $\alpha, \ldots, \alpha^{n}$. Since $f(\alpha)=0$ for some $f(x) \in \mathbb{Q}[x]$ of degree n, α^{n} is a \mathbb{Q}-linear combination of $1, \alpha, \ldots, \alpha^{n-1}$. Hence

$$
\alpha^{m+1} \in \operatorname{span}_{\mathbb{Q}}\left\{\alpha, \ldots, \alpha^{n}\right\} \subset \operatorname{span}_{\mathbb{Q}}\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}=R .
$$

(Here $\operatorname{span}_{\mathbb{Q}}(S)$ means the \mathbb{Q}-span of S, i.e. the set of all linear combinations of the elements of S with coefficients in \mathbb{Q}.)
(b) We have $(a+b \sqrt{2})^{-1}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}$. (Note that if $a+b \sqrt{2} \neq 0$ with $a, b \in \mathbb{Q}$ then a or b must be nonzero, and hence $a-b \sqrt{2}$ is also nonzero (as $\sqrt{2}$ is irrational). Hence $a^{2}-2 b^{2}=(a+b \sqrt{2})(a-b \sqrt{2}) \neq 0$. $)$
2. Let F be a finite integral domain and $a \in F-\{0\}$. The elements $a^{n}(n \geq 0)$ cannot all be distinct. Thus we have $a^{n}=a^{m}$ for some integers $n>m \geq 0$. Since F is an integral domain and $a^{m} \neq 0$, cancellation property implies that $a^{n-m}=1$.
3. For and $a \in R$ and $n \in \mathbb{Z}_{\geq 0}$ let us write na for $a+a+\ldots+a$ with n appearances of a (this can be generalized to the negative integers too by $(-\mathfrak{n}) a:=-(n a)$ but that's not necessary for this question). By distributivity $\left(m 1_{R}\right)\left(n 1_{R}\right)=(m n) 1_{R}$. Now suppose R is an integral domain of positive characteristic k. Then $k>1$ (why?). Suppose k is not prime. Then $k=n m$ for some $k>n, m>1$. We have $\left(m 1_{R}\right)\left(n 1_{R}\right)=(m n) 1_{R}=0$, so that (since R is an integral domain) we must have $n 1_{R}=0$ or $m 1_{R}=0$. Either way this contradicts the defining property of k.
4. (a) We leave it to the reader to verify the three requirements (respecting addition and multiplication, and sending $1 \mapsto 1$).
(b) The identity and σ are ring homomorphisms $R \rightarrow \mathbb{C}$. To see that these are the only ones, let $\phi: R \rightarrow \mathbb{C}$ be a ring homomorphism. We leave it to the reader to check that the only ring map $\mathbb{Q} \rightarrow \mathbb{C}$ is the identity. Thus $\left.\phi\right|_{\mathbb{Q}}(=$ the restriction of ϕ to $\mathbb{Q} \subset R)$ is the identity, and we have $\phi(a+b \sqrt{2})=a+b \phi(\sqrt{2})$ for any $a, b \in \mathbb{Q}$. We have $\sqrt{2}^{2}=2$, so that $\phi(\sqrt{2})^{2}=\phi(2)=2$. Thus $\phi(\sqrt{2})= \pm \sqrt{2}$. In the + case we have $\phi=\mathrm{Id}$ and in the minus case $\phi=\sigma$.
5. First let us make a general observation. Let R be an arbitrary ring, $a \in R$ and $n a$ positive integer. Note that $n a=n\left(1_{R} a\right)=\left(n 1_{R}\right) a$ by distributivity. Now if $n=p$ is the characteristic of R, we have $p a=p\left(1_{R} a\right)=\left(p 1_{R}\right) a=0 a=0$. More generally, if n is divisible by the characteristic p of R, we have $n a=(n / p)(p a)=(n / p) 0=0$.

Back to the question, by distributivity we have

$$
(a+b)^{p}=\sum_{\substack{k=0 \\ 1}}^{p}\binom{p}{k} a^{k} b^{p-k}
$$

Since p is prime, for any $0<k<p$ the number $\binom{p}{k}=\frac{p!}{k!(p-k)!}$ is divisible by p (as its numerator is divisible by p and the denominator is not). Thus by our earlier observation (since R has characteristic p) we have

$$
\sum_{k=0}^{p}\binom{p}{k} a^{k} b^{p-k}=a^{p}+b^{p}
$$

This shows that the Frobenius respects addition. That it respects multiplication and identity is clear.
6. Define $\phi: \mathbb{Z} \rightarrow R$ by $\phi(n)=n 1_{R}$ (notation as in the solution to Problem 3). We leave it to the reader to check that ϕ is a ring homomorphism (from group theory we know this is a group map; using distributivity one can check that it also respects multiplication).

Given any ring map $\psi: \mathbb{Z} \rightarrow R$, we have $\psi(1)=1_{R}$. Now being a group map we must have $\psi(n)=n \psi(1)=n 1_{R}$, so that $\psi=\phi$.
7. The subsets given in Parts (a)-(c) are ideals; we leave the verifications to the reader. The subset I given in Part (d) is not an ideal, since $x^{2} \in I$ but $x \cdot x^{2}=x^{3}$ is not in I.

