
MATD01 Fields and Groups
Assignment 1

Solutions

1. (a) R is easily seen to be a rational vector subspace of C. Thus to show that R is
a subring it is enough to check that the numbers αm (m ≥ 0) are in R (as a product of
two elements of R is a Q-linear combination of the αm (m ≥ 0)). This can be checked by
induction on m: clearly α0 = 1 ∈ R, and if αm ∈ R, i.e. if αm is a Q-linear combination of
1, α, . . . , αn−1, then αm+1 is a Q-linear combination of α, . . . , αn. Since f(α) = 0 for some
f(x) ∈ Q[x] of degree n, αn is a Q-linear combination of 1, α, . . . , αn−1. Hence

αm+1 ∈ spanQ{α, . . . , α
n} ⊂ spanQ{1, α, . . . , α

n−1} = R.

(Here spanQ(S) means the Q-span of S, i.e. the set of all linear combinations of the ele-
ments of Swith coefficients in Q.)

(b) We have (a + b
√
2)−1 = a−b

√
2

a2−2b2
. (Note that if a + b

√
2 6= 0 with a, b ∈ Q then

a or b must be nonzero, and hence a − b
√
2 is also nonzero (as

√
2 is irrational). Hence

a2 − 2b2 = (a+ b
√
2)(a− b

√
2) 6= 0.)

2. Let F be a finite integral domain and a ∈ F − {0}. The elements an (n ≥ 0) cannot all
be distinct. Thus we have an = am for some integers n > m ≥ 0. Since F is an integral
domain and am 6= 0, cancellation property implies that an−m = 1.
3. For and a ∈ R and n ∈ Z≥0 let us write na for a + a + . . . + a with n appearances of
a (this can be generalized to the negative integers too by (−n)a := −(na) but that’s not
necessary for this question). By distributivity (m1R)(n1R) = (mn)1R. Now suppose R is an
integral domain of positive characteristic k. Then k > 1 (why?). Suppose k is not prime.
Then k = nm for some k > n,m > 1. We have (m1R)(n1R) = (mn)1R = 0, so that (since R
is an integral domain) we must have n1R = 0 or m1R = 0. Either way this contradicts the
defining property of k.
4. (a) We leave it to the reader to verify the three requirements (respecting addition and
multiplication, and sending 1 7→ 1).

(b) The identity and σ are ring homomorphisms R→ C. To see that these are the only
ones, let φ : R → C be a ring homomorphism. We leave it to the reader to check that the
only ring map Q → C is the identity. Thus φ|Q (= the restriction of φ to Q ⊂ R) is the
identity, and we have φ(a + b

√
2) = a + bφ(

√
2) for any a, b ∈ Q. We have

√
2
2
= 2, so

that φ(
√
2)2 = φ(2) = 2. Thus φ(

√
2) = ±

√
2. In the + case we have φ = Id and in the

minus case φ = σ.
5. First let us make a general observation. Let R be an arbitrary ring, a ∈ R and n a
positive integer. Note that na = n(1Ra) = (n1R)a by distributivity. Now if n = p is the
characteristic of R, we have pa = p(1Ra) = (p1R)a = 0a = 0. More generally, if n is
divisible by the characteristic p of R, we have na = (n/p)(pa) = (n/p)0 = 0.

Back to the question, by distributivity we have

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k.
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Since p is prime, for any 0 < k < p the number
(
p
k

)
= p!

k!(p−k)!
is divisible by p (as its

numerator is divisible by p and the denominator is not). Thus by our earlier observation
(since R has characteristic p) we have

p∑
k=0

(
p

k

)
akbp−k = ap + bp.

This shows that the Frobenius respects addition. That it respects multiplication and iden-
tity is clear.
6. Define φ : Z → R by φ(n) = n1R (notation as in the solution to Problem 3). We leave
it to the reader to check that φ is a ring homomorphism (from group theory we know this
is a group map; using distributivity one can check that it also respects multiplication).

Given any ring map ψ : Z → R, we have ψ(1) = 1R. Now being a group map we must
have ψ(n) = nψ(1) = n1R, so that ψ = φ.
7. The subsets given in Parts (a)-(c) are ideals; we leave the verifications to the reader.
The subset I given in Part (d) is not an ideal, since x2 ∈ I but x · x2 = x3 is not in I.


