MATDO1 Fields and Groups
Assignment 2

Solutions

1. We leave the verification that these are ideals to the reader. That I C I+ J is clear
(write a € Tas a4 0). Tosee I] C I NJ note that forany a € Tand b € ], since I and ]
are ideals (and hence are closed under multiplication by arbitrary elements of R) we have
ab € INJ. Since I and ] are closed under addition we get that every element of I] belongs
tolN]J.

For an example where I] C INJtakeR =7Z,1 =] = (2). Then I] = (4) while IN] = (2).

2. (a)Let] C Sbeanideal. Since $(0) =0 € J we have 0 € ¢~ '(]). Given a,b € ¢~ '(]),
we have ¢(a+b) = d(a) + $(b) € ] (as d(a),d(b) € J and ] is a subgroup of S under
addition). Thus a+b € ¢'(J). We have shown that ¢~'(]) is a subgroup of R under
addition.

Now let a € ¢ '(J) and r € R. Then ¢(ra) = ¢(r)Pp(a). Since ¢p(a) € ] and J is an
ideal, it follows ¢(ra) € J,i.e. ta € ¢'(]).

(b) Let ¢ : R — S be a surjective ring homomorphism and I an ideal of R. We leave it
to the reader to check that ¢(I) is a subgroup under addition (you have seen this in your
group theory course). Let s € ¢(I) and t € S. Then there is a € I such that ¢(a) = s.
Since ¢ is surjective, there is r € R such that ¢(r) = t. Since I is an ideal, ar € I. We have
d(ar) = d(a)d(r) = st, so that st € (I).

(c) Let v : Z — Q be the inclusion map (given by ((n) = n). Then Z is certainly an
ideal of Z but ((Z) = Z is not an ideal of Q.

(d) Let 7t : R — R/I be the quotient map. Given an ideal J C R/I, by Part (a) w'(J)
is an ideal of R. Moreover, since 0 € 7, we have I = ker(nt) = 7 '(0) C 7w '(J). Define

I':{ideals of R/I} — {ideals of R that contain I}.

by M(J) = '(J).
Given aideal ] C R, by (b) 7(]) is an ideal of R/I. Define

© : {ideals of R that contain I} — {ideals of R/I}

by ©(J)) = ¢(I).

We claim that ' and © are inverse functions. Indeed, that (n'(J)) = J simply
follows from surjectivity of 7t (check this). We now check that 7' (7(])) = J for any ideal
J of R with I C J. The inclusion ] C 7 '(n(])) is clear (why?). Let a € 7w '(n(]J)). Then
ni(a) € 7(]), which is to say that 7(a) = t(b) for some b € J. But then a — b € ker(n) = L.
SinceI C J, wehave a—b € J. Since b € ] and ] is a subgroup under addition, it follows
that a € J. Thus ' (n(])) C J.

We leave it to the reader to check that I' and O respect inclusions.

3. Anideal I of R is maximal if and only if there are exactly two ideals of R that contain
I. The correspondence theorem implies that this is equivalent to R/I having exactly two
ideals, which is equivalent to R/I being a field.
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4. LetI = (f(x)). Suppose f(x) is not irreducible. We show that F[x]/(f(x)) is not an
integral domain. Indeed, if f(x) is a unit, then I = F[x] and F[x]/I is not an integral domain
(as it does not satisfy 1 # 0). If f(x) is not a unit, then being reducible it must factor as
f(x) = g(x)h(x) for some g(x) and h(x) of positive degree (and hence degree less than
deg(f(x))). Then in the quotient F[x]/I we have g(x) - h(x) = f(x) = 0. But since g(x)
and h(x) are nonzero and of degree less than the degree of f(x), we have g h(x) £ 0.
(Being a nonzero multiple of f(x), any nonzero element of I has degree > deg( ( )). Thus

g(x),h(x) ¢ L)

5. Given g(x), the division algorithm gives unique q(x) and r(x), the latter of degree less
than deg(f(x)), such that g(x) = f(x )q( ) + r(x). Then g(x) — r(x) € (f(x)), so that in the
quotient F[x]/(f(x)) we have g( ) = 1(x).

As for uniqueness, if 11 (x) = 12(x) for r1(x) and r,(x) both of degree less than deg(f(x)),
then r;(x) — 12(x) belongs to the ideal (f(x)) and has degree less than deg(f(x)). It follows
that r1(x) —m(x) = 0.

6. (a)Let ¢ : Z — F be the canonical ring homomorphism. Then ker(¢) = nZ for some
nonzero n, which we may assume to be nonnegative. Then n is simply the characteristic
of F (why?). If n = p is a prime number, then by the first isomorphism theorem ¢ induces
an isomorphism Z/pZ — Im(¢) (given by a — ¢(a)). It follows that Im(¢) is a subfield
of F (why?). Since Z is cyclic (under addition) and generated by 1 and ¢ respects addition,
Im(¢) is generated under addition by ¢(1) = 1. Any subfield of F must contain 1¢ and
hence the additive subgroup generated by it, which is Im(¢$). Thus Im(¢) is the prime
field of F, completing the proof in the case that ker(¢) is nonzero.

Now suppose ker(¢p) = 0 (i.e. that ¢ is injective). We claim that ¢ extends to an
injective ring map ¢ : Q — F (extends meaning that ¢ = ¢ on Z). For m/n € Q with
m,n € Zand n # 0, define $(m/n) = d(m)dp(n)~". To see that this makes sense first note
that ¢(n) # 0 (and hence is a unit) since ker(¢) is zero. Secondly, note that if m/n = {/k,
then mk = n{, so that p(m)d(k) = p(n)d(£). Since p(n) and ¢ (k) are units it follows that
d(m)d(n)~" = d(0)Pp(k)". (Why did we have to do the second check?)

We leave it to the reader to check that ¢ is a ring homomorphism and that it extends
¢. Since Q is a field, ¢ is injective (alternatively you can find ker(¢)). Being an injective
ring homomorphism, & : Q — F gives an isomorphism Q ~ Im($). We claim that Im()
is the prime field of F. Indeed, Im(p) is certainly a subfield of F (why?). Any subfield
of F contains 1§, hence ¢(m) for any integer m (why?), and hence ¢(m)p(n)~' for any
m,n € Z, n # 0 (why?). Thus any subfield of F must contain Im(d).

(b) Let Fy be the prime field of F. Recalling the definition of a vector space we can
see that F is a vector space over any subfield of F, and in particular over F;. Being a finite
set, F is finite dimensional as a vector space over Fy. Now if «y,... «, is a basis of F over

Fo, then every element of F can be uniquely expressed as a linear combination ) _c;o for
i=1
some ¢; € Fo (1 <i<mn). Thus |F| = [F|* =p™
(c) Recall the following corollary of Lagrange’s theorem from group theory: if G is a
finite group, then ¢'° = e for every g € G. Applying this to the group F* we see that for

every nonzero x € F we have x4~ = 1, or equivalently x4 — x = 0. The latter equation is



trivially satisfied by 0 as well.

7. (a) Suppose the polynomial x* + 1 has a root « in F. Then x* + 1 factors as (x — a)g(x)
for some nonzero g(x) of degree < deg(f(x)). Then in the quotient F[x]/(x* + 1) we have
x— o - g(x) = 0, while x— « and g(x) are nonzero (why?). This proves the “only if”
direction.

Now suppose x* + 1 has no root in F. We shall show that F[x]/(x* + 1) is a field.
Indeed, by Question 5, every nonzero element of F[x]/(x* + 1) can be (uniquely) expressed
as ax + b for some a,b € F with a or b nonzero. If a = 0, then b # 0 and b is certainly
a unit (its inverse being b-T). It remains to show that elements of the form ax + b with
a # 0 are units in F[x]/(x* + 1). Since ax +b = @ - x + b/a and units are closed under
multiplication, it is enough to show that elements of the form x + ¢ are units. Now we
have

XFc-—xFc=—x2+ct=1+¢?
(the last equality being because —x? = T in the quotient F[x]/(x? + 1)). Since x> + 1 = 0 has
no solution in F, it follows that 1 + ¢ € F is nonzero and hence is invertible. We have

x+c-(1+c2) T (x+c) =1,

showing that x + ¢ is indeed a unit.

Remark: The statement we proved here is a special case of the following result, which
we shall see soon: Fx]/(f(x)) is a field if and only if f(x) is irreducible. Note that for degree
2 and 3 polynomials irreducibility is the same as not having any roots in F (why?).

(b) Straightforward calculations show that x> + 1 = 0 has solutions in F, for p =
2,5,13, so that F, [x]/(x* 4 1) is not a field for these values of p.

Remark: We shall prove later that F} is cyclic (in fact, F* is cyclic for any finite field
F). Using this you can easily deduce that for odd primes p, the equation x* + 1 = 0 has
solutions in F, if and only if p = 1 (mod 4).

(c) One easily checks that x* + 1 = 0 does not have a solution in F,, for p = 3,7. Thus
F,[x]/(x* + 1) is a field in these case. By Question 5 it has p? elements.

(d) We need to replace x* + 1 with a polynomial f(x) = x* + « € Fs[x] which has no
roots in Fs. (Again, they key here is irreducibility, but for polynomials of degree 2 that is
equivalent to not having roots.) Then an argument similar to the one in Part (a) would
show that F5[x]/(f(x)) is a field, and in view of Question 5 it has 5% elements.

Calculating the squares of elements of 5 we see that 0, 1,4 are squares, while 2,3 are
not. The polynomial f(x) = x* — 2 does the job. (That is, F5[x]/(x* — 2) is a field with 25
elements.)




