MATD01 Fields and Groups

Assignment 2

Solutions

1. We leave the verification that these are ideals to the reader. That $\mathrm{I} \subset \mathrm{I}+\mathrm{J}$ is clear (write $a \in I$ as $a+0$). To see $I J \subset I \cap J$ note that for any $a \in I$ and $b \in J$, since I and J are ideals (and hence are closed under multiplication by arbitrary elements of R) we have $a b \in I \cap J$. Since I and J are closed under addition we get that every element of IJ belongs to $\mathrm{I} \cap \mathrm{J}$.

For an example where $I J \subsetneq I \cap J$ take $R=\mathbb{Z}, I=J=(2)$. Then $I J=(4)$ while $I \cap J=(2)$.
2. (a) Let $J \subset S$ be an ideal. Since $\phi(0)=0 \in J$ we have $0 \in \phi^{-1}(J)$. Given $a, b \in \phi^{-1}(J)$, we have $\phi(a+b)=\phi(a)+\phi(b) \in J$ (as $\phi(a), \phi(b) \in J$ and J is a subgroup of S under addition). Thus $a+b \in \phi^{-1}(J)$. We have shown that $\phi^{-1}(J)$ is a subgroup of R under addition.

Now let $a \in \phi^{-1}(J)$ and $r \in R$. Then $\phi(r a)=\phi(r) \phi(a)$. Since $\phi(a) \in J$ and J is an ideal, it follows $\phi(r a) \in$ J, i.e. $r a \in \phi^{-1}(J)$.
(b) Let $\phi: R \rightarrow S$ be a surjective ring homomorphism and I an ideal of R. We leave it to the reader to check that $\phi(\mathrm{I})$ is a subgroup under addition (you have seen this in your group theory course). Let $s \in \phi(I)$ and $t \in S$. Then there is $a \in I$ such that $\phi(a)=s$. Since ϕ is surjective, there is $r \in R$ such that $\phi(r)=t$. Since I is an ideal, $a r \in I$. We have $\phi(a r)=\phi(a) \phi(r)=s t$, so that $s t \in \phi(I)$.
(c) Let $\iota: \mathbb{Z} \rightarrow \mathbb{Q}$ be the inclusion map (given by $t(n)=n$). Then \mathbb{Z} is certainly an ideal of \mathbb{Z} but $\iota(\mathbb{Z})=\mathbb{Z}$ is not an ideal of \mathbb{Q}.
(d) Let $\pi: R \rightarrow R / I$ be the quotient map. Given an ideal $\mathcal{J} \subset R / I$, by Part (a) $\pi^{-1}(\mathcal{J})$ is an ideal of R. Moreover, since $0 \in \mathcal{J}$, we have $I=\operatorname{ker}(\pi)=\pi^{-1}(0) \subset \pi^{-1}(\mathcal{J})$. Define

$$
\Gamma:\{\text { ideals of } R / \mathrm{I}\} \rightarrow \text { \{ideals of } \mathrm{R} \text { that contain } \mathrm{I}\} .
$$

by $\Gamma(\mathcal{J})=\pi^{-1}(\mathcal{J})$.
Given a ideal $J \subset R$, by (b) $\pi(J)$ is an ideal of R / I. Define

$$
\Theta:\{\text { ideals of } \mathrm{R} \text { that contain } \mathrm{I}\} \rightarrow \text { ideals of } \mathrm{R} / \mathrm{I}\}
$$

by $\Theta(\mathrm{J})=\phi(\mathrm{I})$.
We claim that Γ and Θ are inverse functions. Indeed, that $\pi\left(\pi^{-1}(\mathcal{J})\right)=\mathcal{J}$ simply follows from surjectivity of π (check this). We now check that $\pi^{-1}(\pi(\mathrm{~J}))=\mathrm{J}$ for any ideal J of R with $I \subset J$. The inclusion $J \subset \pi^{-1}(\pi(J))$ is clear (why?). Let $a \in \pi^{-1}(\pi(J))$. Then $\pi(a) \in \pi(J)$, which is to say that $\pi(a)=\pi(b)$ for some $b \in J$. But then $a-b \in \operatorname{ker}(\pi)=I$. Since $I \subset J$, we have $a-b \in J$. Since $b \in J$ and J is a subgroup under addition, it follows that $a \in J$. Thus $\pi^{-1}(\pi(J)) \subset J$.

We leave it to the reader to check that Γ and Θ respect inclusions.
3. An ideal I of R is maximal if and only if there are exactly two ideals of R that contain I. The correspondence theorem implies that this is equivalent to R / I having exactly two ideals, which is equivalent to R / I being a field.
4. Let $I=(f(x))$. Suppose $f(x)$ is not irreducible. We show that $F[x] /(f(x))$ is not an integral domain. Indeed, if $f(x)$ is a unit, then $I=F[x]$ and $F[x] / I$ is not an integral domain (as it does not satisfy $1 \neq 0$). If $f(x)$ is not a unit, then being reducible it must factor as $f(x)=g(x) h(x)$ for some $g(x)$ and $h(x)$ of positive degree (and hence degree less than $\operatorname{deg}(f(x))$). Then in the quotient $F[x] /$ I we have $\overline{g(x)} \cdot \overline{h(x)}=\overline{f(x)}=0$. But since $g(x)$ and $h(x)$ are nonzero and of degree less than the degree of $f(x)$, we have $\overline{g(x)}, \overline{h(x)} \neq 0$. (Being a nonzero multiple of $f(x)$, any nonzero element of I has degree $\geq \operatorname{deg}(f(x))$. Thus $\mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x}) \notin \mathrm{I}$.)
5. Given $g(x)$, the division algorithm gives unique $q(x)$ and $r(x)$, the latter of degree less than $\operatorname{deg}(f(x))$, such that $g(x)=f(x) q(x)+r(x)$. Then $g(x)-r(x) \in(f(x))$, so that in the quotient $F[x] /(f(x))$ we have $\overline{g(x)}=\overline{r(x)}$.

As for uniqueness, if $\overline{r_{1}(x)}=\overline{r_{2}(x)}$ for $r_{1}(x)$ and $r_{2}(x)$ both of degree less than $\operatorname{deg}(f(x))$, then $r_{1}(x)-r_{2}(x)$ belongs to the ideal $(f(x))$ and has degree less than $\operatorname{deg}(f(x))$. It follows that $r_{1}(x)-r_{2}(x)=0$.
6. (a) Let $\phi: \mathbb{Z} \rightarrow F$ be the canonical ring homomorphism. Then $\operatorname{ker}(\phi)=n \mathbb{Z}$ for some nonzero n, which we may assume to be nonnegative. Then n is simply the characteristic of F (why?). If $n=p$ is a prime number, then by the first isomorphism theorem ϕ induces an isomorphism $\mathbb{Z} / p \mathbb{Z} \rightarrow \operatorname{Im}(\phi)$ (given by $\bar{a} \mapsto \phi(a)$). It follows that $\operatorname{Im}(\phi)$ is a subfield of F (why?). Since \mathbb{Z} is cyclic (under addition) and generated by 1 and ϕ respects addition, $\operatorname{Im}(\phi)$ is generated under addition by $\phi(1)=1_{F}$. Any subfield of F must contain 1_{F} and hence the additive subgroup generated by it, which is $\operatorname{Im}(\phi)$. $\operatorname{Thus} \operatorname{Im}(\phi)$ is the prime field of F, completing the proof in the case that $\operatorname{ker}(\phi)$ is nonzero.

Now suppose $\operatorname{ker}(\phi)=0$ (i.e. that ϕ is injective). We claim that ϕ extends to an injective ring map $\tilde{\phi}: \mathbb{Q} \rightarrow F$ (extends meaning that $\tilde{\phi}=\phi$ on \mathbb{Z}). For $m / n \in \mathbb{Q}$ with $m, n \in \mathbb{Z}$ and $n \neq 0$, define $\tilde{\phi}(m / n)=\phi(m) \phi(n)^{-1}$. To see that this makes sense first note that $\phi(n) \neq 0$ (and hence is a unit) since $\operatorname{ker}(\phi)$ is zero. Secondly, note that if $m / n=\ell / k$, then $m k=n \ell$, so that $\phi(m) \phi(k)=\phi(n) \phi(\ell)$. Since $\phi(n)$ and $\phi(k)$ are units it follows that $\phi(m) \phi(n)^{-1}=\phi(\ell) \phi(k)^{-1}$. (Why did we have to do the second check?)

We leave it to the reader to check that $\tilde{\phi}$ is a ring homomorphism and that it extends ϕ. Since \mathbb{Q} is a field, $\tilde{\phi}$ is injective (alternatively you can find $\operatorname{ker}(\tilde{\phi})$). Being an injective ring homomorphism, $\tilde{\phi}: \mathbb{Q} \rightarrow F$ gives an isomorphism $\mathbb{Q} \simeq \operatorname{Im}(\tilde{\phi})$. We claim that $\operatorname{Im}(\tilde{\phi})$ is the prime field of F. Indeed, $\operatorname{Im}(\tilde{\phi})$ is certainly a subfield of F (why?). Any subfield of F contains 1_{F}, hence $\phi(m)$ for any integer m (why?), and hence $\phi(m) \phi(n)^{-1}$ for any $m, n \in \mathbb{Z}, n \neq 0$ (why?). Thus any subfield of F must contain $\operatorname{Im}(\tilde{\phi})$.
(b) Let F_{0} be the prime field of F. Recalling the definition of a vector space we can see that F is a vector space over any subfield of F, and in particular over F_{0}. Being a finite set, F is finite dimensional as a vector space over F_{0}. Now if $\alpha_{1}, \ldots \alpha_{n}$ is a basis of F over F_{0}, then every element of F can be uniquely expressed as a linear combination $\sum_{i=1}^{n} c_{i} \alpha_{i}$ for some $c_{i} \in F_{0}(1 \leq i \leq n)$. Thus $|F|=\left|F_{0}\right|^{n}=p^{n}$.
(c) Recall the following corollary of Lagrange's theorem from group theory: if G is a finite group, then $g^{|G|}=e$ for every $g \in G$. Applying this to the group F^{\times}we see that for every nonzero $x \in F$ we have $x^{q-1}=1$, or equivalently $x^{q}-x=0$. The latter equation is
trivially satisfied by 0 as well.
7. (a) Suppose the polynomial $x^{2}+1$ has a root α in F. Then $x^{2}+1$ factors as $(x-\alpha) g(x)$ for some nonzero $g(x)$ of degree $<\operatorname{deg}(f(x))$. Then in the quotient $F[x] /\left(x^{2}+1\right)$ we have $\overline{x-\alpha} \cdot \overline{\mathrm{g}(x)}=0$, while $\overline{x-\alpha}$ and $\overline{g(x)}$ are nonzero (why?). This proves the "only if" direction.

Now suppose $x^{2}+1$ has no root in F. We shall show that $F[x] /\left(x^{2}+1\right)$ is a field. Indeed, by Question 5, every nonzero element of $F[x] /\left(x^{2}+1\right)$ can be (uniquely) expressed as $\overline{a x+b}$ for some $a, b \in F$ with a or b nonzero. If $a=0$, then $b \neq 0$ and \bar{b} is certainly a unit (its inverse being $\overline{\mathrm{b}^{-1}}$). It remains to show that elements of the form $\overline{\mathrm{ax}+\mathrm{b}}$ with $a \neq 0$ are units in $F[x] /\left(x^{2}+1\right)$. Since $\overline{a x+b}=\bar{a} \cdot \overline{x+b / a}$ and units are closed under multiplication, it is enough to show that elements of the form $\overline{x+c}$ are units. Now we have

$$
\overline{x+c} \cdot \overline{-x+c}=\overline{-x^{2}+c^{2}}=\overline{1+c^{2}}
$$

(the last equality being because $\overline{-x^{2}}=\overline{1}$ in the quotient $F[x] /\left(x^{2}+1\right)$). Since $x^{2}+1=0$ has no solution in F, it follows that $1+c^{2} \in F$ is nonzero and hence is invertible. We have

$$
\overline{x+c} \cdot \overline{\left(1+c^{2}\right)^{-1}(x+c)}=\overline{1},
$$

showing that $\overline{x+c}$ is indeed a unit.
Remark: The statement we proved here is a special case of the following result, which we shall see soon: $F[x] /(f(x))$ is a field if and only if $f(x)$ is irreducible. Note that for degree 2 and 3 polynomials irreducibility is the same as not having any roots in F (why?).
(b) Straightforward calculations show that $x^{2}+1=0$ has solutions in \mathbb{F}_{p} for $p=$ $2,5,13$, so that $\mathbb{F}_{p}[x] /\left(x^{2}+1\right)$ is not a field for these values of p.

Remark: We shall prove later that \mathbb{F}_{p}^{\times}is cyclic (in fact, F^{\times}is cyclic for any finite field F). Using this you can easily deduce that for odd primes p, the equation $x^{2}+1=0$ has solutions in \mathbb{F}_{p} if and only if $p \equiv 1(\bmod 4)$.
(c) One easily checks that $x^{2}+1=0$ does not have a solution in \mathbb{F}_{p} for $p=3,7$. Thus $\mathbb{F}_{p}[x] /\left(x^{2}+1\right)$ is a field in these case. By Question 5 it has p^{2} elements.
(d) We need to replace $x^{2}+1$ with a polynomial $f(x)=x^{2}+\alpha \in \mathbb{F}_{5}[x]$ which has no roots in \mathbb{F}_{5}. (Again, they key here is irreducibility, but for polynomials of degree 2 that is equivalent to not having roots.) Then an argument similar to the one in Part (a) would show that $\mathbb{F}_{5}[x] /(f(x))$ is a field, and in view of Question 5 it has 5^{2} elements.

Calculating the squares of elements of \mathbb{F}_{5} we see that $0,1,4$ are squares, while 2,3 are not. The polynomial $f(x)=x^{2}-2$ does the job. (That is, $\mathbb{F}_{5}[x] /\left(x^{2}-2\right)$ is a field with 25 elements.)

