
MATD01 Fields and Groups
Assignment 2

Solutions

1. We leave the verification that these are ideals to the reader. That I ⊂ I + J is clear
(write a ∈ I as a + 0). To see IJ ⊂ I ∩ J note that for any a ∈ I and b ∈ J, since I and J
are ideals (and hence are closed under multiplication by arbitrary elements of R) we have
ab ∈ I∩ J. Since I and J are closed under addition we get that every element of IJ belongs
to I ∩ J.

For an example where IJ ( I∩J take R = Z, I = J = (2). Then IJ = (4) while I∩J = (2).

2. (a) Let J ⊂ S be an ideal. Since φ(0) = 0 ∈ J we have 0 ∈ φ−1(J). Given a, b ∈ φ−1(J),
we have φ(a + b) = φ(a) + φ(b) ∈ J (as φ(a), φ(b) ∈ J and J is a subgroup of S under
addition). Thus a + b ∈ φ−1(J). We have shown that φ−1(J) is a subgroup of R under
addition.

Now let a ∈ φ−1(J) and r ∈ R. Then φ(ra) = φ(r)φ(a). Since φ(a) ∈ J and J is an
ideal, it follows φ(ra) ∈ J, i.e. ra ∈ φ−1(J).

(b) Let φ : R → S be a surjective ring homomorphism and I an ideal of R. We leave it
to the reader to check that φ(I) is a subgroup under addition (you have seen this in your
group theory course). Let s ∈ φ(I) and t ∈ S. Then there is a ∈ I such that φ(a) = s.
Since φ is surjective, there is r ∈ R such that φ(r) = t. Since I is an ideal, ar ∈ I. We have
φ(ar) = φ(a)φ(r) = st, so that st ∈ φ(I).

(c) Let ι : Z → Q be the inclusion map (given by ι(n) = n). Then Z is certainly an
ideal of Z but ι(Z) = Z is not an ideal of Q.

(d) Let π : R → R/I be the quotient map. Given an ideal J ⊂ R/I, by Part (a) π−1(J )
is an ideal of R. Moreover, since 0 ∈ J , we have I = ker(π) = π−1(0) ⊂ π−1(J ). Define

Γ : {ideals of R/I} → {ideals of R that contain I}.

by Γ(J ) = π−1(J ).
Given a ideal J ⊂ R, by (b) π(J) is an ideal of R/I. Define

Θ : {ideals of R that contain I} → {ideals of R/I}

by Θ(J) = φ(I).
We claim that Γ and Θ are inverse functions. Indeed, that π(π−1(J )) = J simply

follows from surjectivity of π (check this). We now check that π−1(π(J)) = J for any ideal
J of R with I ⊂ J. The inclusion J ⊂ π−1(π(J)) is clear (why?). Let a ∈ π−1(π(J)). Then
π(a) ∈ π(J), which is to say that π(a) = π(b) for some b ∈ J. But then a − b ∈ ker(π) = I.
Since I ⊂ J, we have a − b ∈ J. Since b ∈ J and J is a subgroup under addition, it follows
that a ∈ J. Thus π−1(π(J)) ⊂ J.

We leave it to the reader to check that Γ and Θ respect inclusions.

3. An ideal I of R is maximal if and only if there are exactly two ideals of R that contain
I. The correspondence theorem implies that this is equivalent to R/I having exactly two
ideals, which is equivalent to R/I being a field.
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4. Let I = (f(x)). Suppose f(x) is not irreducible. We show that F[x]/(f(x)) is not an
integral domain. Indeed, if f(x) is a unit, then I = F[x] and F[x]/I is not an integral domain
(as it does not satisfy 1 6= 0). If f(x) is not a unit, then being reducible it must factor as
f(x) = g(x)h(x) for some g(x) and h(x) of positive degree (and hence degree less than
deg(f(x))). Then in the quotient F[x]/I we have g(x) · h(x) = f(x) = 0. But since g(x)
and h(x) are nonzero and of degree less than the degree of f(x), we have g(x), h(x) 6= 0.
(Being a nonzero multiple of f(x), any nonzero element of I has degree ≥ deg(f(x)). Thus
g(x), h(x) /∈ I.)

5. Given g(x), the division algorithm gives unique q(x) and r(x), the latter of degree less
than deg(f(x)), such that g(x) = f(x)q(x) + r(x). Then g(x) − r(x) ∈ (f(x)), so that in the
quotient F[x]/(f(x)) we have g(x) = r(x).

As for uniqueness, if r1(x) = r2(x) for r1(x) and r2(x) both of degree less than deg(f(x)),
then r1(x) − r2(x) belongs to the ideal (f(x)) and has degree less than deg(f(x)). It follows
that r1(x) − r2(x) = 0.

6. (a) Let φ : Z → F be the canonical ring homomorphism. Then ker(φ) = nZ for some
nonzero n, which we may assume to be nonnegative. Then n is simply the characteristic
of F (why?). If n = p is a prime number, then by the first isomorphism theorem φ induces
an isomorphism Z/pZ → Im(φ) (given by a 7→ φ(a)). It follows that Im(φ) is a subfield
of F (why?). Since Z is cyclic (under addition) and generated by 1 and φ respects addition,
Im(φ) is generated under addition by φ(1) = 1F. Any subfield of F must contain 1F and
hence the additive subgroup generated by it, which is Im(φ). Thus Im(φ) is the prime
field of F, completing the proof in the case that ker(φ) is nonzero.

Now suppose ker(φ) = 0 (i.e. that φ is injective). We claim that φ extends to an
injective ring map φ̃ : Q → F (extends meaning that φ̃ = φ on Z). For m/n ∈ Q with
m,n ∈ Z and n 6= 0, define φ̃(m/n) = φ(m)φ(n)−1. To see that this makes sense first note
that φ(n) 6= 0 (and hence is a unit) since ker(φ) is zero. Secondly, note that if m/n = `/k,
thenmk = n`, so that φ(m)φ(k) = φ(n)φ(`). Since φ(n) and φ(k) are units it follows that
φ(m)φ(n)−1 = φ(`)φ(k)−1. (Why did we have to do the second check?)

We leave it to the reader to check that φ̃ is a ring homomorphism and that it extends
φ. Since Q is a field, φ̃ is injective (alternatively you can find ker(φ̃)). Being an injective
ring homomorphism, φ̃ : Q → F gives an isomorphism Q ' Im(φ̃). We claim that Im(φ̃)
is the prime field of F. Indeed, Im(φ̃) is certainly a subfield of F (why?). Any subfield
of F contains 1F, hence φ(m) for any integer m (why?), and hence φ(m)φ(n)−1 for any
m,n ∈ Z, n 6= 0 (why?). Thus any subfield of Fmust contain Im(φ̃).

(b) Let F0 be the prime field of F. Recalling the definition of a vector space we can
see that F is a vector space over any subfield of F, and in particular over F0. Being a finite
set, F is finite dimensional as a vector space over F0. Now if α1, . . . αn is a basis of F over

F0, then every element of F can be uniquely expressed as a linear combination
n∑
i=1

ciαi for

some ci ∈ F0 (1 ≤ i ≤ n). Thus |F| = |F0|
n = pn.

(c) Recall the following corollary of Lagrange’s theorem from group theory: if G is a
finite group, then g|G| = e for every g ∈ G. Applying this to the group F× we see that for
every nonzero x ∈ F we have xq−1 = 1, or equivalently xq − x = 0. The latter equation is
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trivially satisfied by 0 as well.

7. (a) Suppose the polynomial x2 + 1 has a root α in F. Then x2 + 1 factors as (x−α)g(x)
for some nonzero g(x) of degree < deg(f(x)). Then in the quotient F[x]/(x2 + 1) we have
x− α · g(x) = 0, while x− α and g(x) are nonzero (why?). This proves the “only if”
direction.

Now suppose x2 + 1 has no root in F. We shall show that F[x]/(x2 + 1) is a field.
Indeed, by Question 5, every nonzero element of F[x]/(x2+1) can be (uniquely) expressed
as ax+ b for some a, b ∈ F with a or b nonzero. If a = 0, then b 6= 0 and b is certainly
a unit (its inverse being b−1). It remains to show that elements of the form ax+ b with
a 6= 0 are units in F[x]/(x2 + 1). Since ax+ b = a · x+ b/a and units are closed under
multiplication, it is enough to show that elements of the form x+ c are units. Now we
have

x+ c ·−x+ c = −x2 + c2 = 1+ c2

(the last equality being because −x2 = 1 in the quotient F[x]/(x2 + 1)). Since x2 + 1 = 0 has
no solution in F, it follows that 1+ c2 ∈ F is nonzero and hence is invertible. We have

x+ c · (1+ c2)−1(x+ c) = 1,
showing that x+ c is indeed a unit.

Remark: The statement we proved here is a special case of the following result, which
we shall see soon: F[x]/(f(x)) is a field if and only if f(x) is irreducible. Note that for degree
2 and 3 polynomials irreducibility is the same as not having any roots in F (why?).

(b) Straightforward calculations show that x2 + 1 = 0 has solutions in Fp for p =
2, 5, 13, so that Fp[x]/(x2 + 1) is not a field for these values of p.

Remark: We shall prove later that F×
p is cyclic (in fact, F× is cyclic for any finite field

F). Using this you can easily deduce that for odd primes p, the equation x2 + 1 = 0 has
solutions in Fp if and only if p ≡ 1 (mod 4).

(c) One easily checks that x2 + 1 = 0 does not have a solution in Fp for p = 3, 7. Thus
Fp[x]/(x2 + 1) is a field in these case. By Question 5 it has p2 elements.

(d) We need to replace x2 + 1 with a polynomial f(x) = x2 + α ∈ F5[x] which has no
roots in F5. (Again, they key here is irreducibility, but for polynomials of degree 2 that is
equivalent to not having roots.) Then an argument similar to the one in Part (a) would
show that F5[x]/(f(x)) is a field, and in view of Question 5 it has 52 elements.

Calculating the squares of elements of F5 we see that 0, 1, 4 are squares, while 2, 3 are
not. The polynomial f(x) = x2 − 2 does the job. (That is, F5[x]/(x2 − 2) is a field with 25
elements.)


