MATD01 Fields and Groups Assignment 2 Solutions

1. We leave the verification that these are ideals to the reader. That $I \subset I + J$ is clear (write $a \in I$ as a + 0). To see $IJ \subset I \cap J$ note that for any $a \in I$ and $b \in J$, since I and J are ideals (and hence are closed under multiplication by arbitrary elements of R) we have $ab \in I \cap J$. Since I and J are closed under addition we get that every element of IJ belongs to $I \cap J$.

For an example where $IJ \subsetneq I \cap J$ take $R = \mathbb{Z}$, I = J = (2). Then IJ = (4) while $I \cap J = (2)$.

2. (a) Let $J \subset S$ be an ideal. Since $\phi(0) = 0 \in J$ we have $0 \in \phi^{-1}(J)$. Given $a, b \in \phi^{-1}(J)$, we have $\phi(a + b) = \phi(a) + \phi(b) \in J$ (as $\phi(a), \phi(b) \in J$ and J is a subgroup of S under addition). Thus $a + b \in \phi^{-1}(J)$. We have shown that $\phi^{-1}(J)$ is a subgroup of R under addition.

Now let $a \in \phi^{-1}(J)$ and $r \in R$. Then $\phi(ra) = \phi(r)\phi(a)$. Since $\phi(a) \in J$ and J is an ideal, it follows $\phi(ra) \in J$, i.e. $ra \in \phi^{-1}(J)$.

(b) Let $\phi : \mathbb{R} \to S$ be a surjective ring homomorphism and I an ideal of \mathbb{R} . We leave it to the reader to check that $\phi(I)$ is a subgroup under addition (you have seen this in your group theory course). Let $s \in \phi(I)$ and $t \in S$. Then there is $a \in I$ such that $\phi(a) = s$. Since ϕ is surjective, there is $r \in \mathbb{R}$ such that $\phi(r) = t$. Since I is an ideal, $ar \in I$. We have $\phi(ar) = \phi(a)\phi(r) = st$, so that $st \in \phi(I)$.

(c) Let $\iota : \mathbb{Z} \to \mathbb{Q}$ be the inclusion map (given by $\iota(n) = n$). Then \mathbb{Z} is certainly an ideal of \mathbb{Z} but $\iota(\mathbb{Z}) = \mathbb{Z}$ is not an ideal of \mathbb{Q} .

(d) Let $\pi : \mathbb{R} \to \mathbb{R}/\mathbb{I}$ be the quotient map. Given an ideal $\mathcal{J} \subset \mathbb{R}/\mathbb{I}$, by Part (a) $\pi^{-1}(\mathcal{J})$ is an ideal of \mathbb{R} . Moreover, since $0 \in \mathcal{J}$, we have $\mathbb{I} = \ker(\pi) = \pi^{-1}(0) \subset \pi^{-1}(\mathcal{J})$. Define

 Γ :{ideals of R/I} \rightarrow {ideals of R that contain I}.

by $\Gamma(\mathcal{J}) = \pi^{-1}(\mathcal{J})$.

Given a ideal $J \subset R$, by (b) $\pi(J)$ is an ideal of R/I. Define

 Θ : {ideals of R that contain I} \rightarrow {ideals of R/I}

by $\Theta(J) = \phi(I)$.

We claim that Γ and Θ are inverse functions. Indeed, that $\pi(\pi^{-1}(\mathcal{J})) = \mathcal{J}$ simply follows from surjectivity of π (check this). We now check that $\pi^{-1}(\pi(J)) = J$ for any ideal J of R with $I \subset J$. The inclusion $J \subset \pi^{-1}(\pi(J))$ is clear (why?). Let $a \in \pi^{-1}(\pi(J))$. Then $\pi(a) \in \pi(J)$, which is to say that $\pi(a) = \pi(b)$ for some $b \in J$. But then $a - b \in \ker(\pi) = I$. Since $I \subset J$, we have $a - b \in J$. Since $b \in J$ and J is a subgroup under addition, it follows that $a \in J$. Thus $\pi^{-1}(\pi(J)) \subset J$.

We leave it to the reader to check that Γ and Θ respect inclusions.

3. An ideal I of R is maximal if and only if there are exactly two ideals of R that contain I. The correspondence theorem implies that this is equivalent to R/I having exactly two ideals, which is equivalent to R/I being a field.

4. Let I = (f(x)). Suppose f(x) is not irreducible. We show that F[x]/(f(x)) is not an integral domain. Indeed, if f(x) is a unit, then I = F[x] and F[x]/I is not an integral domain (as it does not satisfy $1 \neq 0$). If f(x) is not a unit, then being reducible it must factor as f(x) = g(x)h(x) for some g(x) and h(x) of positive degree (and hence degree less than deg(f(x))). Then in the quotient F[x]/I we have $\overline{g(x)} \cdot \overline{h(x)} = \overline{f(x)} = 0$. But since g(x) and h(x) are nonzero and of degree less than the degree of f(x), we have $\overline{g(x)}, \overline{h(x)} \neq 0$. (Being a nonzero multiple of f(x), any nonzero element of I has degree $\geq deg(f(x))$. Thus $g(x), h(x) \notin I$.)

5. Given g(x), the division algorithm gives unique q(x) and r(x), the latter of degree less than deg(f(x)), such that g(x) = f(x)q(x) + r(x). Then $g(x) - r(x) \in (f(x))$, so that in the quotient F[x]/(f(x)) we have $\overline{g(x)} = \overline{r(x)}$.

As for uniqueness, if $r_1(x) = r_2(x)$ for $r_1(x)$ and $r_2(x)$ both of degree less than deg(f(x)), then $r_1(x) - r_2(x)$ belongs to the ideal (f(x)) and has degree less than deg(f(x)). It follows that $r_1(x) - r_2(x) = 0$.

6. (a) Let $\phi : \mathbb{Z} \to F$ be the canonical ring homomorphism. Then $\ker(\phi) = n\mathbb{Z}$ for some nonzero n, which we may assume to be nonnegative. Then n is simply the characteristic of F (why?). If n = p is a prime number, then by the first isomorphism theorem ϕ induces an isomorphism $\mathbb{Z}/p\mathbb{Z} \to \operatorname{Im}(\phi)$ (given by $\overline{a} \mapsto \phi(a)$). It follows that $\operatorname{Im}(\phi)$ is a subfield of F (why?). Since \mathbb{Z} is cyclic (under addition) and generated by 1 and ϕ respects addition, $\operatorname{Im}(\phi)$ is generated under addition by $\phi(1) = 1_F$. Any subfield of F must contain 1_F and hence the additive subgroup generated by it, which is $\operatorname{Im}(\phi)$. Thus $\operatorname{Im}(\phi)$ is the prime field of F, completing the proof in the case that $\ker(\phi)$ is nonzero.

Now suppose ker(ϕ) = 0 (i.e. that ϕ is injective). We claim that ϕ extends to an injective ring map $\tilde{\phi} : \mathbb{Q} \to F$ (extends meaning that $\tilde{\phi} = \phi$ on \mathbb{Z}). For m/n $\in \mathbb{Q}$ with m, $n \in \mathbb{Z}$ and $n \neq 0$, define $\tilde{\phi}(m/n) = \phi(m)\phi(n)^{-1}$. To see that this makes sense first note that $\phi(n) \neq 0$ (and hence is a unit) since ker(ϕ) is zero. Secondly, note that if m/n = ℓ/k , then mk = n ℓ , so that $\phi(m)\phi(k) = \phi(n)\phi(\ell)$. Since $\phi(n)$ and $\phi(k)$ are units it follows that $\phi(m)\phi(n)^{-1} = \phi(\ell)\phi(k)^{-1}$. (Why did we have to do the second check?)

We leave it to the reader to check that $\tilde{\phi}$ is a ring homomorphism and that it extends ϕ . Since \mathbb{Q} is a field, $\tilde{\phi}$ is injective (alternatively you can find ker $(\tilde{\phi})$). Being an injective ring homomorphism, $\tilde{\phi} : \mathbb{Q} \to F$ gives an isomorphism $\mathbb{Q} \simeq \operatorname{Im}(\tilde{\phi})$. We claim that $\operatorname{Im}(\tilde{\phi})$ is the prime field of F. Indeed, $\operatorname{Im}(\tilde{\phi})$ is certainly a subfield of F (why?). Any subfield of F contains 1_F , hence $\phi(m)$ for any integer m (why?), and hence $\phi(m)\phi(n)^{-1}$ for any m, $n \in \mathbb{Z}$, $n \neq 0$ (why?). Thus any subfield of F must contain $\operatorname{Im}(\tilde{\phi})$.

(b) Let F_0 be the prime field of F. Recalling the definition of a vector space we can see that F is a vector space over any subfield of F, and in particular over F_0 . Being a finite set, F is finite dimensional as a vector space over F_0 . Now if $\alpha_1, \ldots \alpha_n$ is a basis of F over F_0 , then every element of F can be uniquely expressed as a linear combination $\sum_{i=1}^{n} c_i \alpha_i$ for some $c_i \in F_0$ ($1 \le i \le n$). Thus $|F| = |F_0|^n = p^n$.

(c) Recall the following corollary of Lagrange's theorem from group theory: if G is a finite group, then $g^{|G|} = e$ for every $g \in G$. Applying this to the group F^{\times} we see that for every nonzero $x \in F$ we have $x^{q-1} = 1$, or equivalently $x^q - x = 0$. The latter equation is

trivially satisfied by 0 as well.

7. (a) Suppose the polynomial $x^2 + 1$ has a root α in F. Then $x^2 + 1$ factors as $(x - \alpha)g(x)$ for some nonzero g(x) of degree $< \frac{\deg(f(x))}{\operatorname{cr} \alpha}$. Then in the quotient $F[x]/(x^2 + 1)$ we have $\overline{x - \alpha} \cdot \overline{g(x)} = 0$, while $\overline{x - \alpha}$ and $\overline{g(x)}$ are nonzero (why?). This proves the "only if" direction.

Now suppose $x^2 + 1$ has no root in F. We shall show that $F[x]/(x^2 + 1)$ is a field. Indeed, by Question 5, every nonzero element of $F[x]/(x^2 + 1)$ can be (uniquely) expressed as $\overline{ax + b}$ for some $a, b \in F$ with a or b nonzero. If a = 0, then $b \neq 0$ and \overline{b} is certainly a unit (its inverse being $\overline{b^{-1}}$). It remains to show that elements of the form $\overline{ax + b}$ with $a \neq 0$ are units in $F[x]/(x^2 + 1)$. Since $\overline{ax + b} = \overline{a} \cdot \overline{x + b/a}$ and units are closed under multiplication, it is enough to show that elements of the form $\overline{x + c}$ are units. Now we have

$$\overline{\mathbf{x}+\mathbf{c}}\cdot\overline{-\mathbf{x}+\mathbf{c}}=\overline{-\mathbf{x}^2+\mathbf{c}^2}=\overline{\mathbf{1}+\mathbf{c}^2}$$

(the last equality being because $\overline{-x^2} = \overline{1}$ in the quotient $F[x]/(x^2 + 1)$). Since $x^2 + 1 = 0$ has no solution in F, it follows that $1 + c^2 \in F$ is nonzero and hence is invertible. We have

$$\overline{\mathbf{x}+\mathbf{c}}\cdot\overline{(\mathbf{1}+\mathbf{c}^2)^{-1}(\mathbf{x}+\mathbf{c})}=\overline{\mathbf{1}},$$

showing that $\overline{x + c}$ is indeed a unit.

Remark: The statement we proved here is a special case of the following result, which we shall see soon: F[x]/(f(x)) is a field if and only if f(x) is irreducible. Note that for degree 2 and 3 polynomials irreducibility is the same as not having any roots in F (why?).

(b) Straightforward calculations show that $x^2 + 1 = 0$ has solutions in \mathbb{F}_p for p = 2, 5, 13, so that $\mathbb{F}_p[x]/(x^2 + 1)$ is not a field for these values of p.

Remark: We shall prove later that \mathbb{F}_p^{\times} is cyclic (in fact, F^{\times} is cyclic for any finite field F). Using this you can easily deduce that for odd primes p, the equation $x^2 + 1 = 0$ has solutions in \mathbb{F}_p if and only if $p \equiv 1 \pmod{4}$.

(c) One easily checks that $x^2 + 1 = 0$ does not have a solution in \mathbb{F}_p for p = 3, 7. Thus $\mathbb{F}_p[x]/(x^2 + 1)$ is a field in these case. By Question 5 it has p^2 elements.

(d) We need to replace $x^2 + 1$ with a polynomial $f(x) = x^2 + \alpha \in \mathbb{F}_5[x]$ which has no roots in \mathbb{F}_5 . (Again, they key here is irreducibility, but for polynomials of degree 2 that is equivalent to not having roots.) Then an argument similar to the one in Part (a) would show that $\mathbb{F}_5[x]/(f(x))$ is a field, and in view of Question 5 it has 5² elements.

Calculating the squares of elements of \mathbb{F}_5 we see that 0, 1, 4 are squares, while 2, 3 are not. The polynomial $f(x) = x^2 - 2$ does the job. (That is, $\mathbb{F}_5[x]/(x^2 - 2)$ is a field with 25 elements.)