MATD01 Fields and Groups

Assignment 3

Due Friday Jan 31 at $10: 00 \mathrm{pm}$
(to be submitted on Crowdmark)

Notes: By a ring we always mean a commutative ring with $1 \neq 0$. For any prime number p, the field $\mathbb{Z} / p \mathbb{Z}$ is denoted by \mathbb{F}_{p}. For brevity, we denote the element $r+I$ of a quotient ring R / I by \bar{r}. Given rings R and S, we denote the set of all ring homomorphisms $R \rightarrow S$ by $\operatorname{Hom}(R, S)$.

Please write your solutions neatly and clearly. Note that due to time limitations, only some questions will be graded. The assignment covers up to Chapter 6 of Rotman.

1. Let p be a prime number and F a field with $q=p^{k}$ elements. Prove that

$$
x^{q-1}-1=\prod_{\alpha \in \mathrm{F}^{\times}}(x-\alpha)
$$

in $F[x]$. By comparing coefficients of suitable powers of x, conclude that (i) $\sum_{\alpha \in F^{x}} \alpha=0$ and (ii) $\prod_{\alpha \in F^{\times}} \alpha=-1$. (Remark: Note that in particular, if we take $F=\mathbb{F}_{p}$, (ii) gives Wilson's theorem $(p-1)!\equiv-1(\bmod p)$. Hint: Think about the roots of $x^{q-1}-1$ in F. A question from last week's assignment can be useful. Also the following result can be useful: if $f(x) \in F[x]$ has distinct roots $\alpha_{1}, \ldots, \alpha_{n} \in F$, then $\prod_{i=1}^{n}\left(x-\alpha_{i}\right) \mid f(x)$.)
2. An element r of a ring R is called irreducible if it satisfies the following two properties: (i) r is not a unit, and (ii) if $r=a b$ for some $a, b \in R$, then a or b is a unit.
(a) Suppose R is an integral domain and $r \in R$ nonzero. Show that if the ideal (r) is maximal, then r is irreducible. (Recall that an ideal I of R is called maximal if $I \neq R$ and there is no ideal J such that $\mathrm{I} \subsetneq \mathrm{J} \subsetneq R$.)
(b) Show that if R is a PID then the converse of the statement of the previous part is also true. That is, if r is irreducible, then (r) is maximal.
(c) Construct a field with 4 elements. (Hint: Find an irreducible polynomial $f(x) \in$ $\mathbb{F}_{2}[x]$ of degree 2. Keep Question 3 of last week's assignment in mind.)
3. Let $F \subset K$ be fields. Let $\alpha \in K$. We say α is algebraic over F if there exists a nonzero polynomial $f(x) \in F[x]$ such that $f(\alpha)=0$. For instance, every element of F is algebraic over F (α being a root of $x-\alpha$).
(a) True or false: α is algebraic over F if and only if the map $e v_{\alpha}: F[x] \rightarrow K$ given by $f(x) \mapsto f(\alpha)$ is not injective.
(b) Suppose α is algebraic over F. Let $f(x) \in \operatorname{ker}\left(e v_{\alpha}\right)$. Show that $f(x)$ is irreducible if and only if it generates $\operatorname{ker}\left(e v_{\alpha}\right)$. Conclude that there is a unique monic irreducible polynomial $p_{\alpha}(x) \in F[x]$ such that $p_{\alpha}(\alpha)=0$. The polynomial $p_{\alpha}(x)$ is called the minimal polynomial of α over F.
(c) Find the minimal polynomials of i and $\sqrt{2}+1$ over \mathbb{Q} and \mathbb{R}.
(d) We say K is a finite extension of F if K is finite dimensional as a vector space over F. Show that if K is a finite extension of F, then every element of K is algebraic over F. (Hint:

Let n be the dimension of K as a vector space over F. Given $\alpha \in K$, consider the elements $\alpha^{\mathfrak{j}}(0 \leq \mathfrak{j} \leq n)$. Can they be linearly independent?)
4. (a) Find all ring homomorphisms $\mathbb{Q}[x] \rightarrow \mathbb{C}$. (Hint: Is such a homomorphism determined by the image of x ?)
(b) Let R and S be rings and I an ideal of R. Let $\pi: R \rightarrow R / I$ be the quotient map. Let $\phi: R \rightarrow S$ be a ring homomorphism. Show that $I \subset \operatorname{ker}(\phi)$ if and only if there is a ring homomorphism $\bar{\phi}: R / I \rightarrow S$ such that $\phi=\bar{\phi} \circ \pi$. Moreover, show that the map $\bar{\phi}$ is unique when it exists. Conclude that we have a bijection

$$
\{\phi \in \operatorname{Hom}(R, S): I \subset \operatorname{ker}(\phi)\} \rightarrow \operatorname{Hom}(R / I, S)
$$

given by $\phi \mapsto \bar{\phi}$. (See the notes at the beginning for the notation $\operatorname{Hom}(R, S)$.)
(c) Find all ring homomorphisms $\mathbb{Q}[x] /\left(x^{3}-2\right) \rightarrow \mathbb{C}$ and $\mathbb{Q}[x] /\left(x^{3}-2\right) \rightarrow \mathbb{R}$ and the kernel and image of each. Are the images fields? (Hint: Is $x^{3}-2$ irreducible in $\mathbb{Q}[x]$?)
(d) Find all ring homomorphisms $\mathbb{Q}[x] /\left(x^{3}-8\right) \rightarrow \mathbb{C}$ and the kernel and image of each.
5. (a) Use Euclid's algorithm to find the gcd of the elements $f(x)=x^{10}-1$ and $g(x)=$ $x^{6}-1$ of $\mathbb{Q}[x]$. Give a generator for the ideal $(f(x), g(x))$ of $\mathbb{Q}[x]$.
(b) What is the gcd of the polynomials $f(x)$ and $g(x)$ of Part (a) considered as elements of $\mathbb{C}[x]$?
(c) Write $g(x)$ as a product of ireducible polynomials in (i) $\mathbb{Q}[x]$ and (ii) $\mathbb{C}[x]$.

Extra Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

1. From Galois Theory by J. Rotman, second edition: Exercises \# 40-48
2. Find the kernel of the map $\phi: \mathbb{Q}[x] \rightarrow \mathbb{C}$ defined by $f(x) \mapsto f(i)$. (Hint: Question 3 of the assignment.)
3. Let $\alpha \in \mathbb{C}$ be algebraic over \mathbb{Q}. Show that

$$
F:=\operatorname{span}_{\mathbb{Q}}\left\{\alpha^{j}: j \geq 0\right\}
$$

(i.e. the set of all linear combinations of the $\alpha^{j}(j \geq 0)$ with coefficients in $\left.\mathbb{Q}\right)$ is a subfield of \mathbb{C}, and that $\operatorname{dim}_{\mathbb{Q}}(F)$ (i.e. the dimension of F as a vector space over \mathbb{Q}) equals the degree of the minimal polynomial of α over \mathbb{Q}. (Hint: To see F is a field, consider the evaluation map $\mathrm{e} v_{\alpha}: \mathbb{Q}[x] \rightarrow \mathbb{C}$ (sending $f(x) \mapsto f(\alpha)$). What are its image and kernel? Use the first isomorphism theorem. Remember the minimal polynomial of α over \mathbb{Q} is irreducible in $\mathbb{Q}[x]$. For the assertion regarding the dimension, try to give a basis of F.)
4. Let R be a ring.
(a) Show that if $a, b \in R$ are irreducible and $a \mid b$, then $b=a u$ for a unit u (and hence $(a)=(b)$.

For the remainder of this question we assume R is a PID.
(b) We say $a, b \in R$ are relatively prime if $(a, b)=R$. Show that if a and b are relatively prime and $a \mid b c$, then $a \mid c$.
(c) Let a be irreducible. Show that given any $b \in R$, either $a \mid b$ or a and b are relatively prime. Conclude that if $a \mid b c$ (and a is irreducible), then $a \mid b$ or $a \mid c$.
5. Let R be a ring. A collections of ideals $\left(I_{n}\right)_{n \geq 0}$ of R with

$$
\mathrm{I}_{1} \subset \mathrm{I}_{2} \subset \mathrm{I}_{3} \subset \cdots
$$

is called an ascending chain of ideals. An ascending chain of ideals $\mathrm{I}_{1} \subset \mathrm{I}_{2} \subset \mathrm{I}_{3} \subset \cdots$ is said to stabilize, or eventually become stationary, if there is some positive integer N such that $I_{n}=I_{n+1}$ for $n \geq N$. The ring R is called Noetherian* if any ascending chain of ideals of R stabilizes.
(a) Show that any PID is Noetherian. (Hint: Let $\mathrm{I}_{1} \subset \mathrm{I}_{2} \subset \mathrm{I}_{3} \subset \cdots$ be an ascending chain of ideals in a principal ideal domain R. Consider the union $J=\bigcup_{n \geq 1} I_{n}$. Is J an ideal (why)? Now use the assumption that R is a PID.)
(b) Let R be a PID. Let $r \in R$ be nonzero and not a unit. Show that r is divisible by an irreducible element. (Hint: Suppose not (so in particular, r is not irreducible itself). Try to produce an ascending chain of ideals that does not stabilize.)
(c) An integral domain R is called a unique factorization domain (or a UFD, for short) if it satisfies the following property: if $r \in R$ is nonzero and not a unit, then (i) $r=a_{1} \ldots a_{k}$ for some irreducible elements a_{1}, \ldots, a_{k}, and (ii) if $r=a_{1} \ldots a_{k}$ and $r=b_{1} \ldots b_{\ell}$ with the a_{i} and b_{j} irreducible, then $k=\ell$ and moreover, after possibly relabelling the b_{j}, we have $a_{i} \in b_{i} R^{\times}$. (In other words, the factorization is "as unique as it can be", that is, up to rearranging the factors and rescaling by units.)

An example of a unique factorization domain is \mathbb{Z}; this is by the fundamental theorem of arithmetic. Show that any PID is a UFD.

[^0]6. Let R be a 3-dimensional vector space over \mathbb{Q} with basis $\{1, \alpha, \beta\}$. Thus every element of R is a formal linear combination $a+b \alpha+c \beta$ with $a, b, c \in \mathbb{Q}$, with addition and scalar multiplication defined in the obvious way (that is, $(a+b \alpha+c \beta)+\left(a^{\prime}+b^{\prime} \alpha+c^{\prime} \beta\right)=$ $\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \alpha+\left(c+c^{\prime}\right) \beta$ and $\left.r(a+b \alpha+c \beta)=r a+r b \alpha+r c \beta\right)$. There is an obvious way of identifying \mathbb{Q} as a subset of R (namely, by $a \mapsto a+0 \alpha+0 \beta$). Define a multiplication on R which makes it a field with $\mathbb{Q} \subset R$ a subfield. (Hint: You need to define $\alpha^{2}, \alpha \beta$, and β^{2} appropriately. First use quotient rings to construct a field extension F of \mathbb{Q} which is three dimensional as a vector space over \mathbb{Q}. Then "transport" the multiplication from F to R.)
7. Let R be a PID and $a, b, c \in R$. Suppose a and b are relatively prime. Show that if a and b divide c, then so does $a b$.

[^0]: *Named after Emmy Noether (1882-1935).

