MATDO1 Fields and Groups
Assignment 3

Solutions
1. By Lagrange’s theorem every element o € F* satisfies a9~ = off*| = 1, so that every
element of F* is a root of x4~ — 1. Thus
[[x— | 7 =1).

xeFx

Comparing first the degrees and then the leading coefficients we get

H(x—oc) = x971—1.

x€eFXx

Now compare coefficients of x4 (resp. 1) in the two sides of the equality to get the for-
mulas (i) and (ii). (For (ii) you should consider the case of characteristic 2 separately.)

2. (a) Suppose (1) is maximal for some nonzero r. Then by the definition of a maximal
ideal, (r) # R and hence 1 is not a unit. Now suppose r = ab for some a,b € R. We then
have (1) C (a). It follows from the maximality of (r) that either (a) = () or (a) = R. In the
former case, since R is an integral domain, we must have r = au for some unit u (why?),
and again since R is an integral domain and a # 0 (as r # 0) it follows from ab = au that
b = u; hence b is a unit. On the other hand, if (a) = R then a is a unit.

Remark: We will shortly see that the hypothesis of maximality of (r) here can be
weakened; it is enough to assume that the ideal (1) is prime. (We'll define prime ideals
soon. Any maximal ideal is prime.)

(b) Suppose Ris a PID and r € R is irreducible. Let (1) C I for some ideal I C R. We
shall argue that I is either (r) or R. Since Ris a PID, I = (a) for some a € R. Then (r) C (a)
gives 1 = ab for some b € R. Since r is irreducible, either a or b must be a unit. In the
former case I = R and in the latter case (1) = (a) (why?).

(c) Let F be any field. Let f(x) be an irreducible element of F[x]. Since F[x] is a PID,
by Part (b) above the ideal (f(x)) of F[x] is maximal. By Problem 3 of last assignment
Fix]/(f(x)) is a field.

Take F = F; and f(x) = x* + x + 1 € F,[x]. Being of degree 2, the polynomial f(x)
is irreducible in [F,[x] if and only if f(x) has no root in F,. Checking x = 0,1 we see that
x? + x + 1 indeed has no root in [F,, hence is irreducible. Thus K = F,[x]/(x? +x + 1) is a
tield. By Problem 5 of last assignment K has 4 elements.

3. (a)true

(b) Let I be any proper ideal of a principal ideal domain R. Suppose I contains an
irreducible element r. We claim that then I = (r). Indeed, by Problem 2(b) above, the
ideal (r) is maximal. Combining with (r) C I and properness of I it follows that (r) = L.
Applying this to R = F[x] and I = ker(ev,) we get that if f(x) € ker(ev,) is irreducible,
then ker(evy) = (f(x)).

Conversely, suppose ker(evy) = (f(x)). Since ker(ev,) is a proper ideal (of F[x]), f(x)
is not a unit. Suppose f(x) = g(x)h(x). Then 0 = f(x) = g(a)h(«), so that g(«) or
h(o) must be zero. Suppose g(x) = 0. Then g(x) € ker(evy), so that f(x) | g(x) (why?).
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Combining with f(x) = g(x)h(x), in view of f(x) # 0 (which holds because « is algebraic)
and the fact that F[x] is a domain, it follows that h(x) must be a unit (why?). (Alternative
argument using results from Chapter 7: By the first isomorphism theorem F[x]/ ker(evy)
is isomorphic to a subring of K, hence is an integral domain (why?). Thus ker(evy) is a
prime ideal. Since « is algebraic, ker(ev,) is nonzero. Thus any generator of ker(ev,) is
irreducible.)

We now know that the following two conditions are equivalent for any element f(x) €
ker(evy):

(i) f(x) is monic and generates ker(evy).

(ii) f(x) is monic and irreducible.
Being a nonzero ideal of F[x], the ideal ker(ev,) has a unique element f(x) satisfying (i).
The same element is the unique element satisfying (ii).

(c) The minimal polynomial of i over Q is f(x) = x* + 1 (f(x) is irreducible, monic and
satisfies f(i) = 0). The minimal polynomial of v/2 4 1 over Q is g(x) = x* — 2x — 1 (why?).

(d) Let n be the dimension of K as a vector space over F. Given « € K, consider the
elements o/ (0 < j < n). Since K is n-dimensional over F, any n + 1 elements of K are
F- lmearly dependent. In particular, there are ¢; € F (0 < j < n), not all zero, such that

Z c¢jod = 0. Then w« is a root of the nonzero polynomial Z ¢;x) € Flx].
j=0 j=0
4. Foreach a € C, let ev, : Q[x] — C be the map defined by ev,(f(x)) = f(«) (evaluation
at o). We claim that
Hom(Q[x],C) ={ev, : x € C}.

We leave it to the reader to check that the maps ev, are indeed ring homomorphisms.
Given arbitrary ¢ € Hom(Q[x],C), set « = ¢(x). Then for any f(x Z cixt € Qlx],

) "2 pledd0)t 2 Y ciod = evalf(x)),

so that ¢ = ev,. (Note that in (x) we used the following fact, which we leave it to the
reader to check: if ¢ : Q — C is a ring homomorphism, then ¢(c) = ¢ for every c € Q.)
(b) Throughout the solution, given any r € R we write T for the element r + I of R/L.
First we show the “if” statement. Suppose there is a ring homomorphism ¢ : R/I — S
such that ¢ = ¢ o 7. Then

why?
[ =ker(m) C ker(d).

To prove the “only if” statement, let us assume for the moment that a map ¢ : R/I — S
satisfying ¢ = ¢ o mexists. Given any T € R/I, we have T = T for some r € R, and from
¢ = ¢ o mwe have

$(T) = ¢(r) = d(n(r)) = d(r).
Back to the proof of the “only if” statement, suppose I C ker(¢). Define ¢ : R/I — S by the
formula suggested above, that is, given T € R/T with T =T, set ¢(T) = ¢(r) (as observed
above, if the map § exists, it has to be given by this formula). The assumption I C ker(¢)

guarantees that ¢ is well-defined. Indeed, if ¥ = 1/ for some 1,17’ € R, thent — 1’ € L
Thanks to I C ker(¢) we thus have ¢(r) = ¢(r’). We leave it to the reader to check that ¢
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(which at the moment, is a function R/I — S) is a ring homomorphism. That ¢ = dom
holds is by construction of ¢:

Pomn(r) =¢(r) = ¢(r).
Now the “moreover” statement: this follows from the following general fact about func-
tions: if f: X — Y and g1, 9, : Y — Z are functions, f is surjective, and g; o f = g, o f, then
g1 = g2. We leave checking this to the reader. Applying it to our situation, ¢ o 7t = ¢ om
implies ¢ = 5,.
Finally, for the last assertion, consider
I':{¢ € Hom(R,S): I C ker(¢)} — Hom(R/L,S)
given by
b= b

(with notation as above). This makes sense by the “only if” part of the statement we
proved earlier(and its proof, where we said what ¢ is). We claim that I" is a bijection.

Indeed, we shall construct the inverse to I': given any { € Hom(R/I, S), the composition
P o 7tis a ring homomorphism R — S and satisfies I = ker(7) C ker( o 7). Define

A :Hom(R/L,S) — {¢p € Hom(R,S) : I C ker(¢)}

by
P — mop.
We now check that A = T': for any ¢ € Hom(R, S) satisfying 1 C ker(¢), we have

AoT(d) =A) =m0 = ¢.
(so the composition A o I is identity). On the other hand, given any € Hom(R/L, S),

FroA(W)=TWomn)=1Pom=1.

(For the last equality, we have used 1\ o 7t o 7 = 1 o t (which holds by definition of 1 o 7)
and surjectivity of 7t - see the remark we made in the proof of the “moreover” statement.)

(c) Let us focus on homomorphisms Q[x]/(x* — 2) — C first. By Part (b), we need
to find homomorphisms Q[x] — C which map [ = (x* — 2) to zero. Part (a) describes all
homomorphisms Q[x] — C: each is of the form ev, : f(x) — f(«) for some o« € C. For ev,
to send x* — 2 to zero, « has to be a root of x*> — 2. Thus there are three homomorphisms
Q[x] — C that vanish on I, namely ev;; : f(x) — f(v/2), eviys, ¢ f(x) = f(v2w), and
eV s, & T(X) = f(v/2w?), where v/2 is the positive third root of 2 and w = e?™/3, Each
induces a map Q[x]/(x*—2) — C (and these are the only homomorphisms Q[x]/(x*—2) —
C); they are the maps

eV, f(x) - f(V2), @y, fx) - f(V2w),  evas: f(x) - f(V2w?).

Out of these only the first one gives a map into R.

Now on to the kernels and images. The kernels are all zero, as irreducibility of x* — 2
over Q implies that Q[x]/(x* —2) is a field. The image of eV, (for & = V2, V2w and v2w?)
is by definition {f(«x) : f[x] € Q[x]}. By Question 1 on Assignment 1, this can be expressed
more simply as

Im(evy) ={a+ba+ca’:a,b,c € Q}
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(make sure you agree). Each of the images is a 3-dimensional vector space over Q with
basis {1, &, «*}. (The dimension is 3 and not less since otherwise « would be a root of a
polynomial of degree < 3 with coefficients in Q, which is absurd: being irreducible, x> — 2
is the minimal polynomial of x over Q.)

Note that Im(ev;) is real, and hence is different from Im(evy; ) and Im(evy;5)).
We claim that the latter two images are also different. Indeed, if

Im(evys,)) =Im(evys o)) = K,

then K contains both ¥/2"w? and v2w?, and hence contains v/2 (why? do we know that K
is a field?). It follows that K contains Im(ev35), and then comparing dimensions (as vector
spaces over Q) we get K = Im(ev;), which is absurd.

(d) Similar to the previous part, there are three maps Q[x]/(x
induced by evaluation maps at the roots of x* — 8:

3 —8) — C and they are

vy f(x) o f(2), e : f(x) = f2w), &g : f(x) — f(2w?)
2mi/3

(Where w =e again).

The situation for images and kernels is different from the previous part, as x* — 8 is
not irreducible over Q. Its factorization as a product of irreducible elements is (x —2)(x* +
2x +4). Here 2w and 2w? are roots of x* + 2x + 4. The image of ev, (which by definition
is {f() : f[x] € Q[x]}) is simply Q if « = 2. On the other hand, for o = 2w, 2w? the image
Im(evy) is a 2-dimensional vector space over Q with basis {1, «} (why?). We leave it to the
reader to check that

Im(evie) = Im(evyy2).

(Use w? = —w —1.)

Finally, here are the kernels:

ker(ev;) = (x — 2), ker(ev,,) = ker(evy,2) = (x2 + 2x + 4).

5. (a) x* — 1. We leave the calculations to the reader. (See the last few practice questions
on Assignment 5 for a general result regarding the gcd of x™ — T and x™ —1.)

(b) The gcd does not change if we enlarge the field, as the calculations in Euclid’s
algorithm will stay exactly the same.

(©)in Qx]: x* =1 = (x = 1)(x + 1)(x*> + x + 1)(x? — x + 1). The last two factors are
irreducible over QQ because they don’t have any rational roots.

5
in Clx]: x* — 1 =J](x— "), { = e*™®,
i=0



