MATD01 Fields and Groups

Assignment 3

Solutions

1. By Lagrange's theorem every element $\alpha \in F^{\times}$ satisfies $\alpha^{q-1} = \alpha^{|F^{\times}|} = 1$, so that every element of F^{\times} is a root of $x^{q-1} - 1$. Thus

$$\prod_{x\in F^{\times}}(x-\alpha) \ \big| \ (x^{q-1}-1).$$

Comparing first the degrees and then the leading coefficients we get

$$\prod_{\alpha\in F^{\times}}(x-\alpha) \ = \ x^{q-1}-1.$$

Now compare coefficients of x^{q-2} (resp. 1) in the two sides of the equality to get the formulas (i) and (ii). (For (ii) you should consider the case of characteristic 2 separately.)

2. (a) Suppose (r) is maximal for some nonzero r. Then by the definition of a maximal ideal, (r) \neq R and hence r is not a unit. Now suppose r = ab for some a, b \in R. We then have (r) \subset (a). It follows from the maximality of (r) that either (a) = (r) or (a) = R. In the former case, since R is an integral domain, we must have r = au for some unit u (why?), and again since R is an integral domain and a \neq 0 (as r \neq 0) it follows from ab = au that b = u; hence b is a unit. On the other hand, if (a) = R then a is a unit.

Remark: We will shortly see that the hypothesis of maximality of (r) here can be weakened; it is enough to assume that the ideal (r) is prime. (We'll define prime ideals soon. Any maximal ideal is prime.)

(b) Suppose R is a PID and $r \in R$ is irreducible. Let $(r) \subset I$ for some ideal $I \subset R$. We shall argue that I is either (r) or R. Since R is a PID, I = (a) for some $a \in R$. Then $(r) \subset (a)$ gives r = ab for some $b \in R$. Since r is irreducible, either a or b must be a unit. In the former case I = R and in the latter case (r) = (a) (why?).

(c) Let F be any field. Let f(x) be an irreducible element of F[x]. Since F[x] is a PID, by Part (b) above the ideal (f(x)) of F[x] is maximal. By Problem 3 of last assignment F[x]/(f(x)) is a field.

Take $F = \mathbb{F}_2$ and $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$. Being of degree 2, the polynomial f(x) is irreducible in $\mathbb{F}_2[x]$ if and only if f(x) has no root in \mathbb{F}_2 . Checking x = 0, 1 we see that $x^2 + x + 1$ indeed has no root in \mathbb{F}_2 , hence is irreducible. Thus $K = \mathbb{F}_2[x]/(x^2 + x + 1)$ is a field. By Problem 5 of last assignment K has 4 elements.

3. (a) true

(b) Let I be any proper ideal of a principal ideal domain R. Suppose I contains an irreducible element r. We claim that then I = (r). Indeed, by Problem 2(b) above, the ideal (r) is maximal. Combining with $(r) \subset I$ and properness of I it follows that (r) = I. Applying this to R = F[x] and $I = \ker(ev_{\alpha})$ we get that if $f(x) \in \ker(ev_{\alpha})$ is irreducible, then $\ker(ev_{\alpha}) = (f(x))$.

Conversely, suppose ker $(ev_{\alpha}) = (f(x))$. Since ker (ev_{α}) is a proper ideal (of F[x]), f(x) is not a unit. Suppose f(x) = g(x)h(x). Then $0 = f(\alpha) = g(\alpha)h(\alpha)$, so that $g(\alpha)$ or $h(\alpha)$ must be zero. Suppose $g(\alpha) = 0$. Then $g(x) \in ker(ev_{\alpha})$, so that $f(x) \mid g(x)$ (why?).

Combining with f(x) = g(x)h(x), in view of $f(x) \neq 0$ (which holds because α is algebraic) and the fact that F[x] is a domain, it follows that h(x) must be a unit (why?). (Alternative argument using results from Chapter 7: By the first isomorphism theorem $F[x]/\ker(ev_{\alpha})$ is isomorphic to a subring of K, hence is an integral domain (why?). Thus $\ker(ev_{\alpha})$ is a prime ideal. Since α is algebraic, $\ker(ev_{\alpha})$ is nonzero. Thus any generator of $\ker(ev_{\alpha})$ is irreducible.)

We now know that the following two conditions are equivalent for any element $f(x) \in ker(ev_{\alpha})$:

- (i) f(x) is monic and generates ker(ev_{α}).
- (ii) f(x) is monic and irreducible.

Being a nonzero ideal of F[x], the ideal ker(ev_{α}) has a unique element f(x) satisfying (i). The same element is the unique element satisfying (ii).

(c) The minimal polynomial of i over \mathbb{Q} is $f(x) = x^2 + 1$ (f(x) is irreducible, monic and satisfies f(i) = 0). The minimal polynomial of $\sqrt{2} + 1$ over \mathbb{Q} is $g(x) = x^2 - 2x - 1$ (why?).

(d) Let n be the dimension of K as a vector space over F. Given $\alpha \in K$, consider the elements α^j ($0 \le j \le n$). Since K is n-dimensional over F, any n + 1 elements of K are F-linearly dependent. In particular, there are $c_j \in F$ ($0 \le j \le n$), not all zero, such that $\sum_{j=0}^{n} c_j \alpha^j = 0$. Then α is a root of the nonzero polynomial $\sum_{j=0}^{n} c_j x^j \in F[x]$.

4. For each $\alpha \in \mathbb{C}$, let $ev_{\alpha} : \mathbb{Q}[x] \to \mathbb{C}$ be the map defined by $ev_{\alpha}(f(x)) = f(\alpha)$ (evaluation at α). We claim that

$$\operatorname{Hom}(\mathbb{Q}[x],\mathbb{C}) = \{ev_{\alpha} : \alpha \in \mathbb{C}\}.$$

We leave it to the reader to check that the maps ev_{α} are indeed ring homomorphisms. Given arbitrary $\phi \in \text{Hom}(\mathbb{Q}[x], \mathbb{C})$, set $\alpha = \phi(x)$. Then for any $f(x) = \sum_{i} c_i x^i \in \mathbb{Q}[x]$,

$$\varphi(f(x)) \stackrel{\text{why?}}{=} \sum_{i} \varphi(c_{i})\varphi(x)^{i} \stackrel{(*)}{=} \sum_{i} c_{i}\alpha^{i} = e\nu_{\alpha}(f(x)),$$

so that $\phi = ev_{\alpha}$. (Note that in (*) we used the following fact, which we leave it to the reader to check: if $\phi : \mathbb{Q} \to \mathbb{C}$ is a ring homomorphism, then $\phi(c) = c$ for every $c \in \mathbb{Q}$.)

(b) Throughout the solution, given any $r \in R$ we write \overline{r} for the element r + I of R/I.

First we show the "if" statement. Suppose there is a ring homomorphism $\overline{\Phi} : \mathbb{R}/\mathbb{I} \to \mathbb{S}$ such that $\Phi = \overline{\Phi} \circ \pi$. Then

$$I = ker(\pi) \overset{why?}{\subset} ker(\varphi).$$

To prove the "only if" statement, let us assume for the moment that a map $\overline{\Phi}$: $R/I \rightarrow S$ satisfying $\Phi = \overline{\Phi} \circ \pi$ exists. Given any $T \in R/I$, we have $T = \overline{r}$ for some $r \in R$, and from $\phi = \overline{\Phi} \circ \pi$ we have

$$\overline{\Phi}(\mathsf{T}) = \overline{\Phi}(\overline{\mathsf{r}}) = \overline{\Phi}(\pi(\mathsf{r})) = \Phi(\mathsf{r}).$$

Back to the proof of the "only if" statement, suppose $I \subset \ker(\phi)$. *Define* $\overline{\phi} : R/I \to S$ by the formula suggested above, that is, given $T \in R/I$ with $T = \overline{r}$, set $\overline{\phi}(T) = \phi(r)$ (as observed above, if the map $\overline{\phi}$ exists, it has to be given by this formula). The assumption $I \subset \ker(\phi)$ guarantees that $\overline{\phi}$ is well-defined. Indeed, if $\overline{r} = \overline{r'}$ for some $r, r' \in R$, then $r - r' \in I$. Thanks to $I \subset \ker(\phi)$ we thus have $\phi(r) = \phi(r')$. We leave it to the reader to check that $\overline{\phi}$

(which at the moment, is a function $R/I \to S$) is a ring homomorphism. That $\phi = \overline{\phi} \circ \pi$ holds is by construction of $\overline{\phi}$:

$$\overline{\Phi} \circ \pi(\mathbf{r}) = \overline{\Phi}(\overline{\mathbf{r}}) = \Phi(\mathbf{r}).$$

Now the "moreover" statement: this follows from the following general fact about functions: if $f : X \to Y$ and $g_1, g_2 : Y \to Z$ are functions, f is surjective, and $g_1 \circ f = g_2 \circ f$, then $g_1 = g_2$. We leave checking this to the reader. Applying it to our situation, $\overline{\phi} \circ \pi = \overline{\phi}' \circ \pi$ implies $\overline{\phi} = \overline{\phi}'$.

Finally, for the last assertion, consider

$$\Gamma: \{ \phi \in \operatorname{Hom}(\mathsf{R},\mathsf{S}) : \mathsf{I} \subset \ker(\phi) \} \to \operatorname{Hom}(\mathsf{R}/\mathsf{I},\mathsf{S})$$

given by

$$\phi \mapsto \overline{\phi}$$

(with notation as above). This makes sense by the "only if" part of the statement we proved earlier(and its proof, where we said what $\overline{\phi}$ is). We claim that Γ is a bijection. Indeed, we shall construct the inverse to Γ : given any $\psi \in \text{Hom}(R/I, S)$, the composition $\psi \circ \pi$ is a ring homomorphism $R \to S$ and satisfies $I = \text{ker}(\pi) \subset \text{ker}(\psi \circ \pi)$. Define

$$\Lambda: \operatorname{Hom}(R/I, S) \to \{ \varphi \in \operatorname{Hom}(R, S) : I \subset \ker(\varphi) \}$$

by

 $\psi\mapsto\pi\circ\psi.$

We now check that $\Lambda = \Gamma^{-1}$: for any $\phi \in \text{Hom}(\mathbb{R}, S)$ satisfying $I \subset \text{ker}(\phi)$, we have

$$\Lambda \circ \Gamma(\phi) = \Lambda(\overline{\phi}) = \pi \circ \overline{\phi} = \phi.$$

(so the composition $\Lambda \circ \Gamma$ is identity). On the other hand, given any $\psi \in \text{Hom}(R/I, S)$,

$$\Gamma \circ \Lambda(\psi) = \Gamma(\psi \circ \pi) = \overline{\psi \circ \pi} = \psi.$$

(For the last equality, we have used $\overline{\psi \circ \pi} \circ \pi = \psi \circ \pi$ (which holds by definition of $\overline{\psi \circ \pi}$) and surjectivity of π - see the remark we made in the proof of the "moreover" statement.)

(c) Let us focus on homomorphisms $\mathbb{Q}[x]/(x^3-2) \to \mathbb{C}$ first. By Part (b), we need to find homomorphisms $\mathbb{Q}[x] \to \mathbb{C}$ which map $I = (x^3 - 2)$ to zero. Part (a) describes all homomorphisms $\mathbb{Q}[x] \to \mathbb{C}$: each is of the form $ev_{\alpha} : f(x) \mapsto f(\alpha)$ for some $\alpha \in \mathbb{C}$. For ev_{α} to send $x^3 - 2$ to zero, α has to be a root of $x^3 - 2$. Thus there are three homomorphisms $\mathbb{Q}[x] \to \mathbb{C}$ that vanish on I, namely $ev_{\sqrt[3]{2}} : f(x) \mapsto f(\sqrt[3]{2})$, $ev_{\sqrt[3]{2}\omega} : f(x) \mapsto f(\sqrt[3]{2}\omega)$, and $ev_{\sqrt[3]{2}\omega^2} : f(x) \mapsto f(\sqrt[3]{2}\omega^2)$, where $\sqrt[3]{2}$ is the positive third root of 2 and $\omega = e^{2\pi i/3}$. Each induces a map $\mathbb{Q}[x]/(x^3-2) \to \mathbb{C}$ (and these are the only homomorphisms $\mathbb{Q}[x]/(x^3-2) \to \mathbb{C}$); they are the maps

$$\overline{ev_{\sqrt[3]{2}}}:\overline{f(x)}\mapsto f(\sqrt[3]{2}), \quad \overline{ev_{\sqrt[3]{2}\omega}}:\overline{f(x)}\mapsto f(\sqrt[3]{2}\omega), \quad \overline{ev_{\sqrt[3]{2}\omega^2}}:\overline{f(x)}\mapsto f(\sqrt[3]{2}\omega^2).$$

Out of these only the first one gives a map into \mathbb{R} .

Now on to the kernels and images. The kernels are all zero, as irreducibility of $x^3 - 2$ over \mathbb{Q} implies that $\mathbb{Q}[x]/(x^3-2)$ is a field. The image of $\overline{ev_{\alpha}}$ (for $\alpha = \sqrt[3]{2}, \sqrt[3]{2}\omega$ and $\sqrt[3]{2}\omega^2$) is by definition {f(α) : f[x] $\in \mathbb{Q}[x]$ }. By Question 1 on Assignment 1, this can be expressed more simply as

$$\operatorname{Im}(\overline{ev_{\alpha}}) = \{a + b\alpha + c\alpha^{2} : a, b, c \in \mathbb{Q}\}$$

(make sure you agree). Each of the images is a 3-dimensional vector space over \mathbb{Q} with basis {1, α , α^2 }. (The dimension is 3 and not less since otherwise α would be a root of a polynomial of degree < 3 with coefficients in \mathbb{Q} , which is absurd: being irreducible, $x^3 - 2$ is the minimal polynomial of α over \mathbb{Q} .)

Note that $\operatorname{Im}(\overline{ev_{\sqrt[3]{2}\omega}})$ is real, and hence is different from $\operatorname{Im}(\overline{ev_{\sqrt[3]{2}\omega}})$ and $\operatorname{Im}(\overline{ev_{\sqrt[3]{2}\omega^2}})$. We claim that the latter two images are also different. Indeed, if

$$\mathrm{Im}(\overline{ev_{\sqrt[3]{2}\omega}})) = \mathrm{Im}(\overline{ev_{\sqrt[3]{2}\omega^2}})) =: \mathsf{K},$$

then K contains both $\sqrt[3]{2}^2 \omega^2$ and $\sqrt[3]{2} \omega^2$, and hence contains $\sqrt[3]{2}$ (why? do we know that K is a field?). It follows that K contains $\text{Im}(\overline{ev_{\sqrt[3]{2}}})$, and then comparing dimensions (as vector spaces over \mathbb{Q}) we get $K = \text{Im}(\overline{ev_{\sqrt[3]{2}}})$, which is absurd.

(d) Similar to the previous part, there are three maps $\mathbb{Q}[x]/(x^3-8) \to \mathbb{C}$ and they are induced by evaluation maps at the roots of $x^3 - 8$:

$$\overline{ev_2}:\overline{f(x)}\mapsto f(2), \quad \overline{ev_{2\omega}}:\overline{f(x)}\mapsto f(2\omega), \quad \overline{ev_{2\omega^2}}:\overline{f(x)}\mapsto f(2\omega^2)$$

(where $\omega = e^{2\pi i/3}$ again).

The situation for images and kernels is different from the previous part, as $x^3 - 8$ is not irreducible over \mathbb{Q} . Its factorization as a product of irreducible elements is $(x-2)(x^2 + 2x + 4)$. Here 2ω and $2\omega^2$ are roots of $x^2 + 2x + 4$. The image of $\overline{ev_{\alpha}}$ (which by definition is $\{f(\alpha) : f[x] \in \mathbb{Q}[x]\}$) is simply \mathbb{Q} if $\alpha = 2$. On the other hand, for $\alpha = 2\omega$, $2\omega^2$ the image Im (ev_{α}) is a 2-dimensional vector space over \mathbb{Q} with basis $\{1, \alpha\}$ (why?). We leave it to the reader to check that

$$\mathrm{Im}(\mathrm{ev}_{2\omega}) = \mathrm{Im}(\mathrm{ev}_{2\omega^2}).$$

(Use $\omega^2 = -\omega - 1$.)

Finally, here are the kernels:

$$\ker(\overline{ev_2}) = (\overline{x-2}), \qquad \ker(\overline{ev_{2\omega}}) = \ker(\overline{ev_{2\omega^2}}) = (\overline{x^2 + 2x + 4}).$$

5. (a) $x^2 - 1$. We leave the calculations to the reader. (See the last few practice questions on Assignment 5 for a general result regarding the gcd of $x^m - 1$ and $x^n - 1$.)

(b) The gcd does not change if we enlarge the field, as the calculations in Euclid's algorithm will stay exactly the same.

(c) in $\mathbb{Q}[x]$: $x^6 - 1 = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1)$. The last two factors are irreducible over \mathbb{Q} because they don't have any rational roots.

in
$$\mathbb{C}[x]$$
: $x^6 - 1 = \prod_{i=0}^{5} (x - \zeta^i), \, \zeta = e^{2\pi i/6}.$