
MATD01 Fields and Groups
Assignment 3

Solutions

1. By Lagrange’s theorem every element α ∈ F× satisfies αq−1 = α|F×| = 1, so that every
element of F× is a root of xq−1 − 1. Thus∏

α∈F×
(x− α)

∣∣ (xq−1 − 1).

Comparing first the degrees and then the leading coefficients we get∏
α∈F×

(x− α) = xq−1 − 1.

Now compare coefficients of xq−2 (resp. 1) in the two sides of the equality to get the for-
mulas (i) and (ii). (For (ii) you should consider the case of characteristic 2 separately.)

2. (a) Suppose (r) is maximal for some nonzero r. Then by the definition of a maximal
ideal, (r) 6= R and hence r is not a unit. Now suppose r = ab for some a, b ∈ R. We then
have (r) ⊂ (a). It follows from the maximality of (r) that either (a) = (r) or (a) = R. In the
former case, since R is an integral domain, we must have r = au for some unit u (why?),
and again since R is an integral domain and a 6= 0 (as r 6= 0) it follows from ab = au that
b = u; hence b is a unit. On the other hand, if (a) = R then a is a unit.

Remark: We will shortly see that the hypothesis of maximality of (r) here can be
weakened; it is enough to assume that the ideal (r) is prime. (We’ll define prime ideals
soon. Any maximal ideal is prime.)

(b) Suppose R is a PID and r ∈ R is irreducible. Let (r) ⊂ I for some ideal I ⊂ R. We
shall argue that I is either (r) or R. Since R is a PID, I = (a) for some a ∈ R. Then (r) ⊂ (a)
gives r = ab for some b ∈ R. Since r is irreducible, either a or b must be a unit. In the
former case I = R and in the latter case (r) = (a) (why?).

(c) Let F be any field. Let f(x) be an irreducible element of F[x]. Since F[x] is a PID,
by Part (b) above the ideal (f(x)) of F[x] is maximal. By Problem 3 of last assignment
F[x]/(f(x)) is a field.

Take F = F2 and f(x) = x2 + x + 1 ∈ F2[x]. Being of degree 2, the polynomial f(x)
is irreducible in F2[x] if and only if f(x) has no root in F2. Checking x = 0, 1 we see that
x2 + x + 1 indeed has no root in F2, hence is irreducible. Thus K = F2[x]/(x2 + x + 1) is a
field. By Problem 5 of last assignment K has 4 elements.

3. (a) true
(b) Let I be any proper ideal of a principal ideal domain R. Suppose I contains an

irreducible element r. We claim that then I = (r). Indeed, by Problem 2(b) above, the
ideal (r) is maximal. Combining with (r) ⊂ I and properness of I it follows that (r) = I.
Applying this to R = F[x] and I = ker(evα) we get that if f(x) ∈ ker(evα) is irreducible,
then ker(evα) = (f(x)).

Conversely, suppose ker(evα) = (f(x)). Since ker(evα) is a proper ideal (of F[x]), f(x)
is not a unit. Suppose f(x) = g(x)h(x). Then 0 = f(α) = g(α)h(α), so that g(α) or
h(α) must be zero. Suppose g(α) = 0. Then g(x) ∈ ker(evα), so that f(x)

∣∣ g(x) (why?).
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Combining with f(x) = g(x)h(x), in view of f(x) 6= 0 (which holds because α is algebraic)
and the fact that F[x] is a domain, it follows that h(x) must be a unit (why?). (Alternative
argument using results from Chapter 7: By the first isomorphism theorem F[x]/ker(evα)
is isomorphic to a subring of K, hence is an integral domain (why?). Thus ker(evα) is a
prime ideal. Since α is algebraic, ker(evα) is nonzero. Thus any generator of ker(evα) is
irreducible.)

We now know that the following two conditions are equivalent for any element f(x) ∈
ker(evα):

(i) f(x) is monic and generates ker(evα).
(ii) f(x) is monic and irreducible.

Being a nonzero ideal of F[x], the ideal ker(evα) has a unique element f(x) satisfying (i).
The same element is the unique element satisfying (ii).

(c) The minimal polynomial of i over Q is f(x) = x2+ 1 (f(x) is irreducible, monic and
satisfies f(i) = 0). The minimal polynomial of

√
2+ 1 over Q is g(x) = x2 − 2x− 1 (why?).

(d) Let n be the dimension of K as a vector space over F. Given α ∈ K, consider the
elements αj (0 ≤ j ≤ n). Since K is n-dimensional over F, any n + 1 elements of K are
F-linearly dependent. In particular, there are cj ∈ F (0 ≤ j ≤ n), not all zero, such that
n∑
j=0

cjα
j = 0. Then α is a root of the nonzero polynomial

n∑
j=0

cjx
j ∈ F[x].

4. For each α ∈ C, let evα : Q[x] → C be the map defined by evα(f(x)) = f(α) (evaluation
at α). We claim that

Hom(Q[x],C) = {evα : α ∈ C}.
We leave it to the reader to check that the maps evα are indeed ring homomorphisms.
Given arbitrary φ ∈ Hom(Q[x],C), set α = φ(x). Then for any f(x) =

∑
i

cix
i ∈ Q[x],

φ(f(x))
why?
=

∑
i

φ(ci)φ(x)
i (∗)
=

∑
i

ciα
i = evα(f(x)),

so that φ = evα. (Note that in (∗) we used the following fact, which we leave it to the
reader to check: if φ : Q → C is a ring homomorphism, then φ(c) = c for every c ∈ Q.)

(b) Throughout the solution, given any r ∈ Rwe write r for the element r+ I of R/I.
First we show the “if” statement. Suppose there is a ring homomorphism φ : R/I→ S

such that φ = φ ◦ π. Then

I = ker(π)
why?
⊂ ker(φ).

To prove the “only if” statement, let us assume for the moment that a map φ : R/I → S

satisfying φ = φ ◦ π exists. Given any T ∈ R/I, we have T = r for some r ∈ R, and from
φ = φ ◦ πwe have

φ(T) = φ(r) = φ(π(r)) = φ(r).

Back to the proof of the “only if” statement, suppose I ⊂ ker(φ). Define φ : R/I→ S by the
formula suggested above, that is, given T ∈ R/I with T = r, set φ(T) = φ(r) (as observed
above, if the map φ exists, it has to be given by this formula). The assumption I ⊂ ker(φ)
guarantees that φ is well-defined. Indeed, if r = r ′ for some r, r ′ ∈ R, then r − r ′ ∈ I.
Thanks to I ⊂ ker(φ) we thus have φ(r) = φ(r ′). We leave it to the reader to check that φ
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(which at the moment, is a function R/I → S) is a ring homomorphism. That φ = φ ◦ π
holds is by construction of φ:

φ ◦ π(r) = φ(r) = φ(r).
Now the “moreover” statement: this follows from the following general fact about func-
tions: if f : X→ Y and g1, g2 : Y → Z are functions, f is surjective, and g1 ◦ f = g2 ◦ f, then
g1 = g2. We leave checking this to the reader. Applying it to our situation, φ ◦ π = φ

′ ◦ π
implies φ = φ

′
.

Finally, for the last assertion, consider

Γ : {φ ∈ Hom(R, S) : I ⊂ ker(φ)} → Hom(R/I, S)

given by
φ 7→ φ

(with notation as above). This makes sense by the “only if” part of the statement we
proved earlier(and its proof, where we said what φ is). We claim that Γ is a bijection.
Indeed, we shall construct the inverse to Γ : given any ψ ∈ Hom(R/I, S), the composition
ψ ◦ π is a ring homomorphism R→ S and satisfies I = ker(π) ⊂ ker(ψ ◦ π). Define

Λ : Hom(R/I, S) → {φ ∈ Hom(R, S) : I ⊂ ker(φ)}

by
ψ 7→ π ◦ψ.

We now check that Λ = Γ−1: for any φ ∈ Hom(R, S) satisfying I ⊂ ker(φ), we have

Λ ◦ Γ(φ) = Λ(φ) = π ◦ φ = φ.

(so the composition Λ ◦ Γ is identity). On the other hand, given any ψ ∈ Hom(R/I, S),

Γ ◦Λ(ψ) = Γ(ψ ◦ π) = ψ ◦ π = ψ.

(For the last equality, we have used ψ ◦ π ◦ π = ψ ◦ π (which holds by definition of ψ ◦ π)
and surjectivity of π - see the remark we made in the proof of the “moreover” statement.)

(c) Let us focus on homomorphisms Q[x]/(x3 − 2) → C first. By Part (b), we need
to find homomorphisms Q[x] → C which map I = (x3 − 2) to zero. Part (a) describes all
homomorphisms Q[x] → C: each is of the form evα : f(x) 7→ f(α) for some α ∈ C. For evα
to send x3 − 2 to zero, α has to be a root of x3 − 2. Thus there are three homomorphisms
Q[x] → C that vanish on I, namely ev 3√

2
: f(x) 7→ f( 3

√
2), ev 3√

2ω
: f(x) 7→ f( 3

√
2ω), and

ev 3√
2ω2 : f(x) 7→ f( 3

√
2ω2), where 3

√
2 is the positive third root of 2 and ω = e2πi/3. Each

induces a map Q[x]/(x3−2) → C (and these are the only homomorphisms Q[x]/(x3−2) →
C); they are the maps

ev 3√
2
: f(x) 7→ f(

3
√
2), ev 3√

2ω
: f(x) 7→ f(

3
√
2ω), ev 3√

2ω2 : f(x) 7→ f(
3
√
2ω2).

Out of these only the first one gives a map into R.
Now on to the kernels and images. The kernels are all zero, as irreducibility of x3 − 2

over Q implies that Q[x]/(x3− 2) is a field. The image of evα (for α = 3
√
2,

3
√
2ω and 3

√
2ω2)

is by definition {f(α) : f[x] ∈ Q[x]}. By Question 1 on Assignment 1, this can be expressed
more simply as

Im(evα) = {a+ bα+ cα2 : a, b, c ∈ Q}
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(make sure you agree). Each of the images is a 3-dimensional vector space over Q with
basis {1, α, α2}. (The dimension is 3 and not less since otherwise α would be a root of a
polynomial of degree < 3with coefficients in Q, which is absurd: being irreducible, x3− 2
is the minimal polynomial of α over Q.)

Note that Im(ev 3√
2
) is real, and hence is different from Im(ev 3√

2ω
)) and Im(ev 3√

2ω2)).
We claim that the latter two images are also different. Indeed, if

Im(ev 3√
2ω
)) = Im(ev 3√

2ω2)) =: K,

then K contains both 3
√
2
2
ω2 and 3

√
2ω2, and hence contains 3

√
2 (why? do we know that K

is a field?). It follows that K contains Im(ev 3√
2
), and then comparing dimensions (as vector

spaces over Q) we get K = Im(ev 3√
2
), which is absurd.

(d) Similar to the previous part, there are three maps Q[x]/(x3 − 8) → C and they are
induced by evaluation maps at the roots of x3 − 8:

ev2 : f(x) 7→ f(2), ev2ω : f(x) 7→ f(2ω), ev2ω2 : f(x) 7→ f(2ω2)

(whereω = e2πi/3 again).
The situation for images and kernels is different from the previous part, as x3 − 8 is

not irreducible over Q. Its factorization as a product of irreducible elements is (x−2)(x2+
2x + 4). Here 2ω and 2ω2 are roots of x2 + 2x + 4. The image of evα (which by definition
is {f(α) : f[x] ∈ Q[x]}) is simply Q if α = 2. On the other hand, for α = 2ω, 2ω2 the image
Im(evα) is a 2-dimensional vector space over Q with basis {1, α} (why?). We leave it to the
reader to check that

Im(ev2ω) = Im(ev2ω2).

(Useω2 = −ω− 1.)
Finally, here are the kernels:

ker(ev2) = (x− 2), ker(ev2ω) = ker(ev2ω2) = (x2 + 2x+ 4).

5. (a) x2 − 1. We leave the calculations to the reader. (See the last few practice questions
on Assignment 5 for a general result regarding the gcd of xm − 1 and xn − 1.)

(b) The gcd does not change if we enlarge the field, as the calculations in Euclid’s
algorithm will stay exactly the same.

(c) in Q[x]: x6 − 1 = (x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1). The last two factors are
irreducible over Q because they don’t have any rational roots.

in C[x]: x6 − 1 =
5∏
i=0

(x− ζi), ζ = e2πi/6.


