MATD01 Fields and Groups

Assignment 4

Solutions

1. Statements (h), (i), (p), and (s) are false (Question 7 gives a counter-example for (h) and (i) and counter-examples for (p) and (s) are given in the hints). All other statements are true.

Simpler counter-example for (h): Take $R=\mathbb{Z}[x]$ and $a=x$. Then x is irreducible but (x) is not maximal (as $(x) \subsetneq(2, x) \subsetneq \mathbb{Z}[x])$. Note that this is not a counter example for (i) (why?).
2. Since a and b are relatively prime, there are $r, s \in R$ such that $a r+b s=1$. Then $\mathrm{car}+\mathrm{cbs}=\mathrm{c}$. Now ab divides both car and cbs (why?), so it also divides c .
3. Consider

$$
\Gamma: \operatorname{Hom}(R[x], S) \longrightarrow \operatorname{Hom}(R, S) \times S
$$

defined by

$$
\Gamma(\phi)=\left(\left.\phi\right|_{R}, \phi(x)\right)
$$

(where $\left.\phi\right|_{R}$ is the restriction of ϕ to R - see Statement (b) of Question 1). We claim that Γ is a bijection. Indeed, for injectivity note that if $\phi_{1}, \phi_{2} \in \operatorname{Hom}(R[x], S)$ and $\Gamma\left(\phi_{1}\right)=\Gamma\left(\phi_{2}\right)$, then for every $\sum_{i} r_{i} x^{i} \in R[x]$,

$$
\phi_{1}\left(\sum_{i} r_{i} x^{i}\right)=\sum_{i} \phi_{1}\left(r_{i}\right) \phi_{1}(x)^{i} \stackrel{\text { why? }}{=} \sum_{i} \phi_{2}\left(r_{i}\right) \phi_{2}(x)^{i}=\phi_{2}\left(\sum_{i} r_{i} x^{i}\right)
$$

so that $\phi_{1}=\phi_{2}$. For surjectivity, given $\psi \in \operatorname{Hom}(R, S)$ and $\alpha \in S$ consider the map $\phi: R[x] \rightarrow S$ defined by

$$
\phi\left(\sum_{i} r_{i} x^{i}\right)=\sum_{i} \psi\left(r_{i}\right) \alpha^{i} .
$$

Then ϕ is a ring homomorphism (as it is the composition of the map $R[x] \rightarrow S[x]$ given by $\sum_{i} r_{i} x^{i} \mapsto \sum_{i} \psi\left(r_{i}\right) x^{i}$ and the evaluation map $S[x] \rightarrow$ S given by $\left.f(x) \mapsto f(\alpha)\right)$. Clearly $\Gamma(\phi)=(\psi, \alpha)$.
4. First we note that $I=\{2 f(x)+x g(x): f(x), g(x) \in \mathbb{Z}[x]\}$ consists of all polynomials in $\mathbb{Z}[x]$ whose constant term is even (verify this). Now suppose $I=(h(x))$ for some $h(x) \in$ $\mathbb{Z}[x]$. Then $h(x) \mid 2$ (why?). Since \mathbb{Z} is an integal domain, it follows that $h(x)$ and hence the quotient of 2 in division by $h(x)$ must be of degree zero. Thus $h(x) \in\{ \pm 1, \pm 2\}$. If $f(x)= \pm 1$, then $I=\mathbb{Z}[x]$, which is false (as $3 \notin I$). If $f(x)= \pm 2$, then every element of $\mathrm{I}=(2)$ must have all coefficients even, which is again false (as $x \in I$).
5. (a) $x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$. The two polynomials $x^{2}+x+1$ and $x^{2}-x+1$ are irreducible over \mathbb{Q} since they don't have any rational roots.
(b) Since ω is a root of $x^{6}-1$, it must be a root of one of the irreducible factors of $x^{6}-1$. Since it is a primitive 6 -th root, it cannot be a root of $x-1, x+1$, or $x^{2}+x+1$ (reason for the last one: $x^{2}+x+1$ is a factor of $x^{3}-1$). Thus ω must be a root of $x^{2}-x+1$. Being irreducible and monic, thus $x^{2}-x+1$ is the minimal polynomial of ω (over \mathbb{Q})
(c) The kernel is the ideal $\left(x^{2}-x+1\right)$. (See last week's Question 3(b).)
(d) Note that $\omega^{3}=-1$, as $\left(\omega^{3}\right)^{2}=1$ and $\omega^{3} \neq 1$. Thus (by the hypotheses on $\mathfrak{m}, \mathfrak{n}$) we have $f(\omega)=\omega^{2}-\omega+1=0$. It follows that $x^{2}-x+1 \mid f(x)$ (why?). The hypotheses on m, n also imply that $f(x)$ must have degree larger than 2 .
6. We will outline the procedure, leaving the calculations to the reader. Use Euclid's algorithm to find $h(x), k(x) \in \mathbb{Q}[x]$ such that

$$
g(x) h(x)+f(x) k(x)=1
$$

(Such $h(x)$ and $k(x)$ exist because $g(x)$ is nonzero with $\operatorname{deg}(g(x)<\operatorname{deg}(f(x))$, so that $f(x)$ cannot divide $g(x)$. Since $f(x)$ is irreducible, it follows that $\operatorname{gcd}(f(x), g(x))=1$.) Then in the quotient $\mathbb{Q}[x] /(f(x))$,

$$
\overline{g(x)} \cdot \overline{h(x)}=1
$$

(why?), so that $\overline{h(x)}=\overline{g(x)}^{-1}$. Answer: $\overline{g(x)}^{-1}=\overline{x^{5}+x^{4}+x+1}$.
7. (a) Let $S=\{a+b \sqrt{-D}: a, b \in \mathbb{Z}\}$. It is clear that $S \subset \mathbb{Z}[\sqrt{-D}]$, so that we need to show that $\mathbb{Z}[\sqrt{-D}] \subset S$. Note that S is closed under taking \mathbb{Z}-linear combinations (i.e. if $\alpha, \beta \in S$, then $a \alpha+b \beta \in S$ for every $a, b \in S$). Thus it is enough to show that $\sqrt{-D}^{m} \in S$ for every $m \geq 0$. We show this by induction on m. The base case $m=0$ is clear. Suppose $\sqrt{-D}^{m} \in S$ for some $m \geq 0$. Thus there are integers a, b such that $\sqrt{-D}^{m}=a+b \sqrt{-D}$. Then

$$
\sqrt{-D}^{m+1}=\sqrt{-D} \sqrt{-D}^{m}=\sqrt{-D}(a+b \sqrt{-D})=-D b+a \sqrt{-D} \in S
$$

(b) Define the function $\mathrm{N}: \mathbb{Z}[\sqrt{-\mathrm{D}}] \rightarrow \mathbb{Z}$ (called the norm function) by

$$
N(a+b \sqrt{-D})=a^{2}+D b^{2} \quad(a, b \in \mathbb{Z})
$$

Note that here we are using the fact that any element of $\mathbb{Z}[\sqrt{-D}]$ can be uniquely expressed in the form $a+b \sqrt{-D}$ with $a, b \in \mathbb{Z}$. Indeed, 1 and $\sqrt{-D}$ are linearly independent over \mathbb{Q} (i.e. $a+b \sqrt{-D}=0$ for $a, b \in \mathbb{Q}$ implies $a, b=0$), for $\sqrt{-D}$ is not rational. We leave it to the reader to check that $N(\alpha \beta)=N(\alpha) N(\beta)$ for any $\alpha, \beta \in \mathbb{Z}[\sqrt{-D}]$ (just write $\alpha=a+b \sqrt{-D}$ and $\beta=c+d \sqrt{-D}$ and compute both sides). Also it is clear that $N(\alpha) \geq 0$ for every $\alpha \in \mathbb{Z}[\sqrt{-D}]$, and $N(\alpha)=0$ if and only if $\alpha=0$.

Now suppose $\alpha \in \mathbb{Z}[\sqrt{-D}]^{\times}$. Then $N(\alpha) N\left(\alpha^{-1}\right)=N\left(\alpha \alpha^{-1}\right)=N(1)=1$. Since N takes values in the non-negative integers, it follows that $\mathrm{N}(\alpha)=1$. Conversely, if $\alpha=a+b \sqrt{-D} \in \mathbb{Z}[\sqrt{-D}]$ has norm 1 , then

$$
1=N(\alpha)=a^{2}+D b^{2}=(a+b \sqrt{-D})(a-b \sqrt{-D})
$$

so that $\alpha \in \mathbb{Z}[\sqrt{-\bar{D}}]^{\times}$. Thus the units of $\mathbb{Z}[\sqrt{-D}]$ are exactly the elements of norm 1 .
Since $D>0$, the only solutions $(a, b) \in \mathbb{Z}^{2}$ to $a^{2}+D b^{2}=1$ are $(a, b)=(\pm 1,0)$ if $D>1$ and $(a, b)=(\pm 1,0),(0, \pm 1)$ if $D=1$. Thus the only elements of norm 1 (= units) in $\mathbb{Z}[\sqrt{-\mathrm{D}}]$ are ± 1 if $\mathrm{D}>1$ and $\pm 1, \pm i$ if $\mathrm{D}=1$.

Remark: Let $\mathrm{D}<0$ with -D a non-square (note: if -D is a square then $\mathbb{Z}[\sqrt{-\mathrm{D}}]=\mathbb{Z}$). One defines the norm function similarly. This time $N(a+b \sqrt{-D})=a^{2}+D b^{2}$ can be negative. The units of $\mathbb{Z}[\sqrt{-D}]$ are exactly the elements of norm ± 1. One can show that the group of units of $\mathbb{Z}[\sqrt{-D}]$ contains an infinite cyclic group in this case. (The equation $\mathrm{a}^{2}+\mathrm{Db}^{2}=1$ with $\mathrm{D}<0$ has infinitely many solutions. Read about Pell's equation on Wikipedia.)
(c) Firstly, 2 is not a unit by (b). Now suppose $2=(a+b \sqrt{-5})(c+d \sqrt{-5})$ for some $a, b, c, d \in \mathbb{Z}$. Taking norms we see that

$$
\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)=4
$$

Since $2 \neq k^{2}+5 \ell^{2}$ for any $k, \ell \in \mathbb{Z}$ (only need to look at $\ell=0, k= \pm 1$, as otherwise $k^{2}+5 \ell^{2}>2$), either we must have $a^{2}+5 b^{2}=1$ or $c^{2}+5 d^{2}=1$. This implies that either $a+b \sqrt{-5}$ or $c+d \sqrt{-5}$ is a unit.
(d) For the first assertion note that $(1+\sqrt{-5})(1-\sqrt{-5})=6=2 \cdot 3$. For the second assertion, note that if $2 \mid a+b \sqrt{-5}$ then both a and b must be even (why?).
(e) No. In a PID, the ideal generated by an irreducible element is prime. We saw above that 2 is irreducible in $\mathbb{Z}[\sqrt{-5}]$, but that the ideal (2) is not prime (as it contains $(1+\sqrt{-5})(1-\sqrt{-5})$, but it neither contains $1+\sqrt{-5}$ nor $1-\sqrt{-5})$.

